
ECOOP Summer School:
Teaching with Grace

Kim Bruce
Pomona College

Joint work with Andrew Black, James Noble,
Tim Jones, Michael Homer, &a host of students.

Outline

• Motivation for a new teaching language

• The Grace language

• Teaching with Grace

• Current status

• Homework!

Why is learning to program
so hard?

• Must understand problem to be solved

• Must get logic of solution exactly
correct.

• New, artificial language:
• Must get syntax exactly right

• Must understand semantics of language

• Ignoring issues of efficiency, reusability, etc.

Can we make it easier?

• Only to a certain extent
• Use a restricted domain for programs

• Provide well-constructed libraries with simple
semantics

• Provide helpful tools: syntax coloring, code-
completion, IDE, debugger, …

Language

• When tools are too complicated, focus
on tools rather than product.
• Do we teach complicated power tools before

screwdriver and hammer?

• Do we teach pilots to fly with an Airbus?

What if we use a language
designed for novices?

… but not a toy language!

Historical Precedents

• Basic

• Logo (turtle graphics)

• Pascal

• Lesser known: Turing, Blue, …

• Mini-worlds: Karel the Robot, Alice,
Scratch, Greenfoot, …

OO Teaching Frustrations

• Want to teach objects first
• but must teach classes first.

• Classes are extensible object factories
• Important — but not on the first day!

• Why not just define objects directly,  
 so students can get right intuition?

8

Java Problems

• public static void main(String [] args)

• Primitive types versus object types,
• “==” versus “equals”

• Flawed implementation of generics

• Static versus instance – on variables &
methods

• float vs. double vs. int vs. long

9

>>> class aClass:
 """A simple example class"""
 val = 47
 def f(self):
 return 'hello world'

>>> x = aClass()
>>> x.value = 17
>>> x.val
47
>>> x.f()
'hello world'

Python Problems

disappearing self?

no information hiding
except by name mangling

uncaught typos

10

Programming is Complex

• Want students to focus on essential
complexities of programming …

• … not accidental complexities of the
language.

Is there useful user data on
Programming Languages?

Controversial!

Benefits of (Explicit)
Static Types

• Empirical studies by Stefan Hanenberg
et al.
• Static type systems help humans use a new set

of classes (API)

• Static type systems make it easier for humans
to fix type errors (but not semantic errors)

• IDE’s and documentation don’t compensate
for difference w/dynamically-typed languages

Hanenberg, invited talk, PLATEAU 2014

What’s important for
industrial adoption of language

• Yes:
• Open source libs, extending existing code,

familiarity

• No:
• Simplicity, development speed

• Fruitless waiting for industry to develop
simple language

Meyerovitch, Rabin, OOPSLA ‘13

What if we could have:

• Good features and low syntactic
overhead of Python, but with
• information hiding

• consistent method declaration & use

• required variable declarations

• optional static type-checking

• direct definition of objects

15

Goal for Grace

Integrate current ideas in programming
languages into a simple, general-purpose
object-oriented language aimed at
helping novices learn to program.

16

2010

Target Audience

• First-year students in OO CS 1 or 2
• objects early or late

• static or dynamic typing

• functionals first or scripting first or …

• Can also be used with advanced
students in OO programming course.

Introducing Grace

We are in dog-food business!

Pitch Today Aimed at Faculty

• Simple, powerful language
• objects and classes

• blocks provide power

• uniform & simple syntax and semantics

• Supports variety of approaches
• objects-early, objects-late, functional-first, …

Hello World in Grace:

print "hello world"

21

 Objects
def mySquare = object {

 var side := 10

 method area {
 side * side
 }

 method stretchBy(n) {
 side := side + n
 }
}

Defaults: instance variables and constants are private,
methods are public - defaults can be overridden

22ClickerSimple

Types

• … are optional and can be added gradually

• … are structural (need not be declared with
object or class)

• if it quacks like a duck, it is a duck
• subtyping too

• Classes are not types, they are object factories!

23

Typed Objects
type Square = {
 area -> Number
 stretchBy (n: Number) -> Done
}

def mySquare: Square = object {
 var side: Number := 10
 method area -> Number {
 side * side
 }
 method stretchBy (n: Number) -> Done {
 side := side + n
 }
}

24

like Void

Single numeric type

Classes

class aSquare.withSide (s: Number) -> Square {
 var side: Number := s
 method area -> Number {
 side * side
 }
 method stretchBy (n: Number) -> Done {
 side := side + n
 }
 print "Created square with side {s}"
}

No separate constructors.
Type annotations can be omitted or included

• … generate objects:

25

Classes

def aSquare = object {
method withSide (s: Number) -> Square {
object {

 var side: Number := s
 method area -> Number {
 side * side
 }
 method stretchBy (n: Number) -> Done {
 side := side + n
 }
 print "Created square with side {s}”

}
}

• … abbreviate by an object with a factory method:

26

Inheritance

• Single inheritance from classes or
objects (perhaps with traits).

• Semantics similar to Java.

• Subtyping independent of inheritance!

Extending Types

type Graphic2D = Graphic & type {
 width -> Number
 height -> Number

 setSize (width: Number, height: Number) -> Done
 width := (width: Number) -> Done
 height := (height: Number) -> Done
}

Readability

• Multi-part method names
• Taken from Smalltalk:

 line.from (startPoint)  
 to (endPoint) on (canvas)  

•Indenting is significant

Blocks

def square = {n -> n * n}
square.apply (7) // returns 49

def nums = 1 .. 100
def squares = nums.map {n -> n * n}

30

• Syntax for anonymous functions

function

• Can have any number of parameters

• Represents object with apply method

Blocks

while {boolExp} do {someStuff}

squares.forEach {n ->
 if (n.isEven) then {print n}
}

• Blocks signal delayed or repeated evaluation

31

block,
evaluated repeatedly

boolean
expression, evaluated

once

Blocks

method repeat (n: Number) times (block) {
 for (1 .. n) do {_: Number ->
 block.apply
 }
}

repeat (5) times {
 print "hi"
}

• Blocks make it simple to define new “control
structures” as methods

32

Matching

match(myVal)  
 case{ n: Number ->
 "The number {n+1} is next”
 }  
 case{ s: String ->
 "The string {s} seen”
 }  
 case{ (true) ->
 "This is true!”
 }

• Provides type-safe switch/case

33

Avoid Hoare’s
“Billion Dollar Mistake”

• No built-in null

• Accessing uninitialized variable is error

• Replace null by:
• sentinel objects, or

• error actions

34

Sentinel Objects

A real object, tailored for the situation, e.g.:

def emptyList = object {
 method asString {"<emptyList>"}
 method do(action) {}
 method map(function) {self}
 method size {0}
}

Sentinel Objects
Simplifies code, eliminates testing for null

class aList.cons(value, tailList) {
 method asString {"({head}:{tail})"}
 method head {value}
 method tail {tailList}
 method do (action) {
 action.apply (head)
 tail.do (action)
 }
 method map (function) {
 aList.cons (function.apply (head),
 tail.map (function))
 }
 method size {1 + tail.size}
}

boolean
expression, evaluated

once
no conditional code

Variant Types
def absent = Singleton.named (“absent”)

type OptionNumber = Number | absent
var x: OptionNumber := table.lookUp(key)
match(x)
 case {x':Number -> ... x' ...}
 case {(absent) -> return unknown(key)}

Static guarantee that x will always be matched

val: A | B iff val:A or val:B

Allows elimination of null

Error Actions

• Grace encourages the use of blocks to
specify error actions or default values:

• … but also supports handling exceptions

var x := table.at (key) ifAbsent{
 return unknown (key)  
 }

Dialects

• Idea “stolen” from Racket

• Used to expand or restrict language
• Includes static checker.

• Examples:
• objectdraw, requiredTypes, staticTypes, …

• Add new constructs (not new syntax)
• E.g., graphics primitive, control constructs, …

Dialects

• Contain a checker that can enforce
constraints:
• All types provided, static type safety, required

loop invariants/variants, pre and post-
conditions, …

• Dialects are written in Grace
• … though requires knowledge of methods to

extract subexpressions.

• Wrote a dialect to write dialects!

Modules

• Are just objects
 import “Frog” as frogFactory

• frogFactory is now an object with all
features defined in file Frog.grace

• Everything is an object!!
• Dialects, too!

Collections

• Standard collections built in:
• sequences, lists, sets, dictionaries

• Primitive arrays de-emphasized in favor
of lists (like Python).

Objectdraw Library

• Support for
• High-level graphics

• Simplified event-driven programming with
mouse events

• Animations

• GUI components

Teaching with Grace

Teaching with Grace

• Class tested in Fall 2014 w/ novices at
Pomona College

• Class tested in Spring 2015 with
seniors / graduate students at PSU.

• Graduate intake program at PSU later
this summer.

• Pomona again in the fall.

Pomona Approach

• Use graphics because they are concrete
• Add animations using timers

• Started without static types
• Added types at end of 2nd week

• Will move even earlier next fall

• Taught Java last 3 weeks, alas

Java: An eventful approach
by Bruce, Danyluk, & Murtagh

Programming with Grace

Day 1: Objects
dialect "objectdraw"
object {
 inherits graphicApplication.size (400,400)

 // Make a box and display "hello world" when program begins
 filledRect.at (100 @ 200) size (50,30) on (canvas)
 text.at (90 @ 150) with ("Hello World!") on (canvas)

 // Display nested ovals and a line when mouse is pressed
 method onMousePress (point) {
 framedOval.at (140 @ 180) size (50, 40) on (canvas)
 framedOval.at (150 @ 190) size (30, 20) on (canvas)
 line.from (0 @ 400) to (400 @ 0) on (canvas)
 }
 startGraphics
}

Day 2: Using Parameters
dialect "objectdraw"

object {
 inherits graphicApplication.size (400,400)

 var nextLineStarts: Point // where mouse pressed

 // when mouse pressed remember where mouse was
 method onMousePress (point: Point) -> Done {
 nextLineStarts := point
 }

 // Draw a new line to mouse location.
 method onMouseDrag (point: Point) -> Done {
 line.from (nextLineStarts) to (point) on (canvas)
 }

 startGraphics
} ColorScribble

First 2 Weeks

• Graphics and event-handling
• respond to mouse events

• Conditionals

• Types

• Defining classes & objects

Weeks 3 & 4

• Declarations & Visibility
• defs: is public

• vars: is readable, writeable

• methods: is confidential

• While loops and animation
• Pong game

Weeks 5 & 6

• GUI components
• pop-up menus, buttons, labels, text fields

• Containers to organize objects

• Recursion
• Recursive data structures (list & tree-like)

NestedRects

Weeks 7 & 8

• Lists & Matrices
• Lists like Java ArrayList or C++ Vector

• Access via
• myList.at (7) or myList[7]

• Update via
• myList.at (7) put (“first”) or myList[7] := “first”

DrawingList

Weeks 9 & 10

• Inheritance
• Single — but likely adding traits

• String algorithms

• Exceptions

Weeks 11 to 14

• Blitz intro to weirdness of Java

• I/O

• Searching & Sorting

Java Weirdnesses

• Constructors &
parameters (scope)

• Location of semi-colons
• Add () for

parameterless methods
• Classes/interfaces in

separate files
• Private/protected/public
(& default)

• Reverse order of writing
types

• Multiple numeric types
• Primitive vs object

types
• Required static typing
• Assignment with =
• Default values of

instance variables
• but not local

variables
• null pointer exceptions

Java Weirdnesses

• Constant is “static final” or “final”
• self => this
• resolving identifiers in nested

scopes: this.x
• Static overloading of methods  
(not allowed in Grace)

• Primitive arrays
• exceeding array bounds
• Start counting at 0

Teaching Materials

• Text: Teaching with Grace at 
www.cs.pomona.edu/~kim/

• Web page with previous version of
course:
• http://www.cs.pomona.edu/~kim/

CSC051GF14/

Current Status

• Class tests:
• Fall ’14 in Pomona intro. (repeat Fall ’15)

• Spring ‘15 in o-o design course at PSU

• Implementations
• Minigrace compiler: on web via Javascript

• http://web.cecs.pdx.edu/~grace/minigrace/exp/
• Also C backend, command line compiler

• Hopper: continuation-passing interpreter

• Kernan: interpreter in C# on Mono
58

Student response

• Very positive
• Language syntax and semantics easy.

• Web-based implementation popular

• Negatives
• Issues w/ error messages & speed,

• though most cleared up by end of semester

• Most negative — learning Java at end.
• Had to transition to Java-based data structures

course.

Summary
• Grace is a small yet powerful language with simple

conceptual foundations

• Starting with objects simplifies teaching
• Classes can be introduced soon thereafter

• Separating classes from types is conceptually
important

• Dialects & blocks allow customization of language

• Gradual typing provides flexibility for instructors
• add types once students have seen the need

60

Grace
• Please Contribute!

• Need IDE implementors, library designers,
and more.

• Information at gracelang.org

• Implementation at  
http://web.cecs.pdx.edu/~grace/minigrace/exp/
• Use Chrome browser for best experience

61

Questions?

http://www.cs.pomona.edu/~kim/GraceStuff/

