
Preface

I wrote this book to provide a description of the foundations of statically

typed class-based object-oriented programming languages for those inter-

ested in learning about this area. An important goal is to explain how the

different components of these languages interact, and how this results in

the kind of type systems that are used in popular object-oriented languages.

We will see that an understanding of the theoretical foundations of object-

oriented languages can lead to the design of more expressive and flexible

type systems that assist programmers in writing correct programs.

Programmers used to untyped or dynamically typed languages often com-

plain about being straitjacketed by the restrictive type systems of object-

oriented languages. In fact many existing statically typed object-oriented

languages have very restrictive type systems that almost literally force pro-

grammers to use casts or other mechanisms to escape from the static type

system. In this work we aim to meet the needs of a programmer who wants

a more expressive type system. Thus another goal of this text is to promote

richer type systems that reduce the need for bypassing the type checker.

Because of the semantic complexity of the features of object-oriented lan-

guages, particularly subtyping and inheritance, it is difficult to design a static

type system that is simultaneously safe and flexible. To be sure that there are

no holes in the type system we need to prove that the type system is safe

(essentially that no type errors can occur at run time), but we cannot do that

without a description of the meaning of programs. Thus this book contains

careful formal descriptions of the syntax, type system, and semantics of sev-

eral progressively more complex object-oriented programming languages.

With these definitions, it is possible to prove type safety.

Object-oriented programming languages have been of great practical and

theoretical interest, but most of the interesting developments in foundations

have been accessible only to researchers in the area. Moreover, papers in

the area have taken quite different approaches, as well as using different



xvi Preface

notation and even different terminology from each other. As a result, it has

been difficult for outsiders to learn the basic material in this area.

This book differs from other recent books in the foundations of object-

oriented languages in several ways. First, the focus of attention is class-

based object-oriented languages, rather than object-based or multi-method

languages. Thus our study is very relevant to the most popular kind of

object-oriented languages in use today.

Second, this book approaches the foundations from the point of view of a

programmer or language designer wishing to understand the type systems

of object-oriented languages and to see how to extend the type systems to

increase the expressiveness of these languages. The semantics presented sug-

gest extensions to the language and provide the foundations for verifying the

safety of the type system.

Third, we base the foundation of object-oriented programming languages

on the classical typed lambda calculus and its extensions rather than intro-

ducing new calculi to explain the fundamental constructs. Thus we can rely

on classical results, only including a brief review of the lambda calculus to

introduce readers to the notation.

This book is intended for several different audiences. My intention has

been to make it accessible to students, especially advanced undergraduates

and graduate students, to practitioners wishing to have a deeper under-

standing of the foundations of object-oriented programming languages, and

to researchers who wish to understand developments in the foundations of

object-oriented languages. It can be used as the main text for a course in

the foundations of object-oriented programming languages or as a supple-

mentary text for a course with a broader focus that includes object-oriented

programming languages.

We have designed the first part of the book, comprising the first seven

chapters, to be especially accessible to a wide variety of readers. These chap-

ters provide a relatively non-technical introduction to key issues in the type

systems of object-oriented programming languages. As such, this part may

be especially appropriate for use in a general undergraduate or graduate

course covering concepts of object-oriented programming languages or as

the basis for self-study.

The next part, comprising Chapters 8 and 9, provides a relatively quick

introduction to the simply typed lambda calculus and many of its exten-

sions. The goal of this part is to have the reader understand how the lambda

calculus can provide a formal description of programming language con-

structs. This part also introduces the formalism for writing the syntax and



Preface xvii

type-checking rules for programming languages. For readers with a solid

understanding of programming languages as provided for by Pierce’s text,

Type Systems for Programming Languages [Pie02], or Mitchell’s Foundations for

Programming Languages [Mit96], for example, these chapters will simply pro-

vide a quick review. Others will need to spend more time to understand

how such a primitive language can be used as a model of important pro-

gramming language concepts and to learn how to read and understand the

type-checking rules. It is not necessary to understand the deep results about

the lambda calculus found in more specialized texts in order to understand

the use of lambda calculus in this book.

The third part of the book, comprising Chapters 10 through 14, presents

the core foundational material on class-based object-oriented languages. We

begin by providing a formal definition of a simple object-oriented language,

SOOL, and its type system. Chapters 11 and 12 explore understanding the

semantics of SOOL by translating terms into a very rich extension of the

typed lambda calculus. With this understanding of the language, Chapter

13 presents a proof of soundness and safety of SOOL. This chapter is the

technically most difficult of the book. The details of the proof in the first

section of that chapter may be skipped on the first reading, but the statement

of the soundness and safety theorems and the other material in the chapter

are important as they illustrate how a careful formal definition of a language

can lead to provable safety.

The language SOOL was kept very simple so that the proof of soundness

could avoid as many complications as possible. The last chapter of this part

discusses many of the more specialized concepts commonly found in object-

oriented languages that were left out of SOOL. These include references

to methods from the superclass, more refined access control in classes, nil

objects, and even a discussion of multiple inheritance.

The final part of this book explores extensions of the type systems of

object-oriented languages suggested by our understanding of the semantics

of SOOL. The extensions include F-bounded polymorphism, a new type

keyword, MyType, standing for the type of self, and a relation, match-

ing, that is more general than subtyping. We will find that the addition of

these features adds considerably to the expressiveness of object-oriented lan-

guages, yet we will prove that they do not compromise the type safety of

the language. We end with the presentation of a language that incorporates

MyType, matching, and a new form of bounded polymorphism using match-

ing, but that no longer contains the notion of subtyping. We will see that this

simpler language is still very expressive, even without subtyping.



xviii Preface

The topics covered in this book represent an active area of research, with

new papers appearing every year. There are many topics that I would have

liked to have included, but could not because of a desire to keep the size

of this book manageable. The best way to keep up with current research in

the area is to attend or examine the proceedings of major conferences and

workshops in this area. The major conferences presenting new research in

the broad area of programming languages are the Principles of Programming

Languages (POPL) and Programming Language Design and Implementation

(PLDI) conferences. The most important conferences presenting research

on object-oriented languages are the annual Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA) conference and the Eu-

ropean Conference on Object-Oriented Programming (ECOOP). The annual

Foundations of Object-Oriented Languages (FOOL) workshop provides an

important, though less formal, forum for new results in the area covered by

this book. Information on the FOOL workshops is available at

http://www.cs.williams.edu/˜kim/FOOL/.

One of my favorite quotes, first encountered as a signature tag on e-mail,

is the following:

“The difference between theory and practice is greater in practice than

in theory” Author unknown

In pursuing my own research on topics central to the issues covered in this

book, I have tried to keep this quote in mind. As a result, rather than just

theorizing about issues in programming language design, my students and I

have implemented interpreters and compilers for languages similar to those

discussed here. (For pedagogical reasons the languages described in the text

are different in inessential ways from the languages we have implemented.)

The experience of implementing and using these languages has provided

better insight to the strengths and limitations of the type systems discussed

here. It is my hope, and indeed one of the reasons for writing this book,

that the knowledge obtained by the research community in the foundations

of object-oriented programming languages will eventually work its way into

practical and widely used programming languages. The growing interest in

the extension, GJ, of Java described in Section 4.1 provides evidence that this

kind of technology transfer has already begun.

The material presented in this book is the result of the dedicated and cre-

ative work of many researchers. The Historical Notes and References sections

at the end of each of the four parts of the book credit the contributions of



Preface xix

many of those doing research in this area. I have also benefitted greatly from

personal and professional interactions from many researchers in this area.

Primary credit for helping me get started doing research in the seman-

tics of programming languages goes to Albert Meyer, from whom I learned

an enormous amount, both about semantics and about the process of doing

research, while on my first leave from Williams College. A ten-year-long

professional collaboration with Guiseppe Longo was extremely productive

and enjoyable, while incidentally introducing me to the beauty of Italy and

France. Peter Wegner deserves credit for introducing me to object-oriented

programming languages and asking annoying questions that led to many

interesting results. John Mitchell and Luca Cardelli provided key influences

(and funding) during a visit to Palo Alto in the spring of 1991 that led to my

work on the design and proofs of type safety of object-oriented programming

languages.

A three-month visit to the Newton Institute of Mathematical Sciences in

the fall of 1995 during the special program on Semantics of Computation

provided a great opportunity to work with other researchers in the semantics

of programming languages. The interaction with Benjamin Pierce and Luca

Cardelli there led to our joint paper comparing different styles of semantics

for object-oriented languages.

Similarly, early meetings of the workshops on the Foundations of Object-

Oriented Languages (the FOOL workshops) resulted in many interesting

discussions (and arguments), some of which led to the paper “On binary

methods” [BCC+95], a paper with 8 co-authors who at times seemed to have

at least 10 different opinions on how best to approach the issues involved. I

have learned more through writing these papers (in spite of the difficulty of

writing conclusions!) than through almost any other activity as a researcher.

Teaching a graduate programming languages course while on a visiting pro-

fessorship at Princeton University allowed me to begin writing this book

while trying out the material on students.

Opportunities for collaboration with my computer science honors students

at Williams College and my co-authors have taught me a great deal over the

years. My honors students in computer science include Robert Allen, Jon

Burstein, David Chelmow, John N. (Nate) Foster, Benjamin Goldberg, Gerald

Kanapathy, Leaf Petersen, Dean Pomerleau, Jon Riecke, Wendy Roy, Angela

Schuett, Adam Seligman, Charles Stewart, Robert van Gent, and Joseph Van-

derwaart. Aside from the researchers and students mentioned above, my co-

authors in programming language research papers include Roberto Amadio,

Giuseppe Castagna, Jon Crabtree, Roberto DiCosmo, Allyn Dimock, Adrian



xx Preface

Fiech, Gary Leavens, Robert Muller, Martin Odersky, Scott Smith, and Philip

Wadler.

I owe a great debt of gratitude to the National Science Foundation, most

recently through the offices of Frank Anger, for their long-standing support

for my research. NSF research grants supporting the research reported here

include NSF CCR-9121778, CCR-9424123, CCR-9870253, and CCR-9988210.

Any opinions, findings, and conclusions or recommendations expressed in

this material are those of the author and do not necessarily reflect the views

of the National Science Foundation.

Special thanks go to those who provided comments and corrections on

drafts of this manuscript. Narciso Martí-Oliet, John N. Foster, and an anony-

mous reviewer provided very detailed and helpful comments on a complete

draft of this book. Andrew Black provided very useful and detailed com-

ments on an early survey paper that evolved into this book. Others who

provided useful comments on different portions of the book, suggested ap-

proaches, or were helpful in clearing up historical details included Martín

Abadi, Luca Cardelli, Craig Chambers, Kathleen Fisher, Cheng Hu, Assaf

Kfoury, John Mitchell, Benjamin Pierce, and Jack Wiledon. Thanks to my ed-

itor Bob Prior for his friendship, for his faith in this project, and for making

this task less painful than it might have been. I am grateful to Christopher

Manning for sharing the LaTeX macros that resulted in this book design.

I take full credit for all omissions and errors remaining in this book. Please

send corrections to kim@cs.williams.edu. I will provide a web site with er-

rata or clarifications at

http://www.cs.williams.edu/~kim/FOOLbook.html

and through MIT Press at

http://mitpress.mit.edu/

I give great thanks to my family for their love and support during the long

years spent writing this book. Thanks to my colleagues in the Computer Sci-

ence Department at Williams for their professional support and intellectual

stimulation. Finally, thanks to my teachers whose guidance led me to begin

this interesting journey. Special thanks are due to H. Jerome Keisler and the

late Jon Barwise at the University of Wisconsin, the late Harry Mullikan and

Paul Yale at Pomona College, and Shirley Frye and Mike Svaco at Scottsdale

Arcadia High School.


