
5 Understanding Subtypes

Thus far we have assumed that only object types have subtypes, and that

subtypes are formed only by adding new methods to object types. In this

chapter we provide some insight into ways that subtyping can be extended

to more types, and how the subtyping relation on object types can be made

richer.

Recall from Chapter 2 that type S is a subtype of a type T, written S <: T,SUBTYPE

if an expression of type S can be used in any context that expects an element

of type T. Another way of putting this is that any expression of type S can

masquerade as an expression of type T.

This definition can be made more concrete by introducing a rule stating

that if S <: T and expression e has type S, then e also has type T. This rule,

usually termed the subsumption rule, provides a mechanism for informing theSUBSUMPTION RULE

type checker that an expression of a subtype can masquerade as an element

of a supertype.

Subtyping provides added flexibility in constructing legal expressions of a

language. Let x be a variable holding values of type T. If e is an expression

of type T, then of course x := e is a legal assignment statement.

Now suppose that S is a subtype of T and e’ has type S. Then e’ can

masquerade as an element of type T, and hence x := e’ will also be a legal

assignment statement. Similarly an actual parameter of type S may be used

in a function or procedure call when the corresponding formal parameter’s

type is declared to be T.

In most pure object-oriented languages, objects are represented as implicit

references. Assignment and parameter passing are interpreted as binding

new names to existing objects, i.e., as ways of creating sharing. Because ele-

ments of a supertype and subtype both take the same amount of space (the

space to hold a reference) there is no implementation difficulty in using el-

72 5 Understanding Subtypes

ements of the subtype in contexts expecting elements of the supertype. The

difficulty instead is determining when using an element of another type is

logically correct, i.e., all operations expected for the supertype make sense

for the subtype.

How can we determine when one type is a subtype of another? A careful

theoretical analysis of this topic would take us far afield from the aims of

this text into complex issues of domain theory in denotational semantics.

Instead we will present intuitive arguments for determining when one type

is a subtype of another. The subtyping rules in this section are based on those

given by Cardelli [Car88].

5.1 Subtyping for non-object types

Because object types have similarities to records of functions, we begin with

examining the simpler cases of subtyping for record and function types,

holding off on object types until later in this chapter. We also include a dis-

cussion of references (i.e., the types of variables in programming languages)

here, in order to prepare for the later discussion of instance variables in ob-

jects. This will also be useful in discussing subtyping for arrays and mutable

records.

5.1.1 Record types

In order to keep the initial discussion as simple as possible, we deal in this

subsection only with immutable (or “read-only”) records of the sort found

in functional programming languages like ML. While one can create records

in a single operation, the only operations that may be applied to existing

immutable record values are to extract the values of particular fields. No

operations are available to update particular fields of these records. Because

the operations do not depend on the order of the fields, we consider record

types that differ only in the order of their fields as identical.

An object can be interpreted as a record whose fields include their meth-

ods. Because methods may not be updated in objects, the study of immutable

records will be important to our understanding of object types. We discuss

in Section 5.1.3 the impact of allowing updatable fields.

Records associate values to labels so that the values may be extracted using

the name of the label. The type of a record specifies the type of the value

corresponding to each label. For example, we can define the record type

5.1 Subtyping for non-object types 73

SandwichType = {| bread:BreadType; filling:FoodType|}.

An example of an element of type SandwichType is

s:Sandwich := {| bread:BreadType := rye;
filling:FoodType := pastrami |}

Because these records are immutable, the only operations available on s are

the extraction of values held in the bread and filling fields via expres-

sions s.bread and s.filling.

Suppose that we are given that CheeseType <: FoodType. Let

CheeseSandwichType = {| bread:BreadType;
filling:CheeseType;
sauce:SauceType |}

and

cs:CheeseSandwich := {| bread:BreadType := white;
filling:CheeseType := cheddar;
sauce:SauceType := mustard |}

We claim that CheeseSandwichType <: SandwichType.

For elements of CheeseSandwichType to successfully masquerade as

elements of SandwichType, expressions of type CheeseSandwichType
need to support all of the operations applicable to expressions of type Sand-
wichType. Since the only operation available on these records is extracting

fields, it is straightforward to show this.

A record cs of type CheeseSandwichType has the bread and filling
fields expected of a value of type SandwichType. Moreover, the results of

extracting the bread field from values of each of the two sandwich types

each have type BreadType. The result of extracting the filling field from

a record of type CheeseSandwichType is of type CheeseType, which is

not the same as FoodType. However, because CheeseType <: FoodType,

it can masquerade as a value of type FoodType.

Thus no matter which label from FoodType is extracted from a value

of CheeseSandwichType, the result can masquerade as the correspond-

ing type of SandwichType. Hence CheeseSandwichType is a subtype of

SandwichType. The extra fields in CheeseSandwichType are irrelevant

as we only need to know that enough fields of the appropriate types are

available in order to masquerade as a Sandwich type.

Figure 5.1 illustrates a slightly more abstract version of this argument. In

that figure a record r’: {| m:S’; n:T’; p:U’ q:V’ |} is masquerading

74 5 Understanding Subtypes

r

-

-

-

m

n

p

S

T

U
r’

-

-

-

-

m

n

p

q

S’

T’

U’

V’

-

-

-

m

n

p

S

T

U

Figure 5.1 A record r: {| m:S; n:T; p:U |}, and another record r’: {| m:S’; n:T’; p:U’;

q:V’ |} masquerading as an element of type {| m:S; n:T; p:U |}.

as a record of type {| m:S; n:T; p:U |}. We illustrate this by placing

the figure representing r’ inside a box (think costume) which has the same

interface as an element of type {| m:S; n:T; p:U |}.

For the masquerade to be successful, the value of the m field of r’, for

example, must be able to masquerade as a value of type S. Similarly for the

n and p fields. Again, notice that the subtype may have more labeled fields

(e.g., the q field) than the supertype, since the extra fields don’t get in the way

of any of the operations applicable to the supertype.

Thus one record type is a subtype of another if the first has all of the fields

of the second (and perhaps more), and the types of the corresponding fields

are subtypes. Notice that the ordering of the fields is irrelevant in determin-

ing subtyping. We identify record types that are the same up to the ordering

of fields.

We write this more formally as follows. Let {| li:Ti |}1≤i≤n represent the

type of a record with labels li of type Ti for 1 ≤ i ≤ n. Then,

{| lj :Tj |}1≤j≤n <: {| li:Ui|}1≤i≤k, if k ≤ n and for all 1 ≤ i ≤ k,Ti <: Ui.

By this definition, CheeseSandwichType <: SandwichType.

It is sometimes convenient to break up the subtyping for records into two

pieces: breadth and depth subtyping rules. One record type is a breadth sub-BREADTH SUBTYPE

type of another if the first has all of the fields of the second (and perhaps

more). A record type is a depth subtype of another if they have exactly theDEPTH SUBTYPE

same fields, but the types of the corresponding fields are subtypes.

Again, the general subtyping rule above is appropriate for record values

in which the only operations available are extracting labeled fields. Later we

5.1 Subtyping for non-object types 75

S - f - T

S’ - f’ - T’S - - T

Figure 5.2 A function f:S→ T, and another function f’:S’→ T’ masquerading as

having type S → T.

discuss how the subtyping rule would change if operations were available to

update the fields.

5.1.2 Function types

The proper definition of subtyping for function types has provoked great

controversy and confusion, so it is worth a careful look. As discussed earlier,

we write S→ T for the type of functions that take a parameter of type S and

return a result of type T. If (S’→ T’) <: (S→ T), then we should be able to

use an element of the first functional type in any context in which an element

of the second type would type check.

Suppose we have a function f with type S→ T. In order to use a function,

f’, with type S’→ T’, in place of f, the function f’ must be able to accept

an argument of type S and return a value of type T. See Figure 5.2.

To masquerade successfully as a function of type S→ T, function f’ must

be able to be applied to an argument, s, of type S. Because the domain of

f’ is S’, it can be applied to elements of type S as long as S <: S’. In that

case, using subsumption, s can be treated as an element of type S’, making

f’(s) type-correct.

On the other hand, if the output of f’ has type T’, then T’ <: T will

guarantee that the output of f’ can be treated as an element of type T. Sum-

marizing,

(S’→ T’) <: (S→ T), if S<: S’ and T’<: T

If we assume, as before, that CheeseType <: FoodType, it follows that

76 5 Understanding Subtypes

(Integer → CheeseType) <: (Integer → FoodType)

but

(FoodType → Integer) <: (CheeseType → Integer)

In the latter case, if f’:FoodType → Integer, then f’ can be applied to

an expression of type CheeseType, since that expression can masquerade

as being of type FoodType.

The reverse is not true, since if f:CheeseType→ Integer, it may not be

possible to apply f to an argument of type FoodType. The body of f may

apply an operation that is only defined for expressions of type CheeseType.

For example, suppose melt is a function that can be applied to elements of

type CheeseType, but not FoodType. Then if melt is applied to the param-

eter in the body of f, an execution error would arise if the actual parameter

was of type FoodType and not CheeseType.

Procedure types may be subtyped as though they were degenerate func-

tion types that always return a default type Void.

The subtype ordering of parameter types in function subtyping is the re-

verse of what might initially have been expected, while the output types of

functions are ordered in the expected way. We say that subtyping for pa-

rameter types is contravariant (i.e., goes the opposite direction of the relation

being proved), while the subtyping for result types of functions is covariant

(i.e., goes in the same direction).

The contravariance for parameter types can be initially confusing, because

it is always permissible to replace an actual parameter by another whose

type is a subtype of the original. However the key is that in the subtyping

rule for function types, it is the function, not the actual parameter, which is

being replaced.

Let us look at one last example to illustrate why contravariance is appro-

priate for type changes in the parameter position of functions and proce-

dures. The contravariant rule for procedures tells us that it is possible to

replace a procedure, p, of type CheeseType→ Void by a procedure, p’, of

type FoodType→ Void.

The procedure p can be applied to any value, cheese, of type Cheese-
Type. Because CheeseType <: FoodType, the value cheese can mas-

querade as an element of type FoodType. As a result, p’ can also be applied

to the value cheese. Thus p’, and indeed any procedure of type FoodType
→ Void, can masquerade as an element of type CheeseType→ Void.

5.1 Subtyping for non-object types 77

5.1.3 Types of variables

Variables holding values of type T have very different properties than simple

values of type T. Variables holding values of type T may be the targets (left

sides) of assignments, while values of type T may only be the sources (right

sides) of such assignments. Obviously, an expression representing a value,

e.g., 3, of type integer may not be a target of an assignment statement.

Thus we need to distinguish values of type T from variables holding val-

ues of type T. Because variables are sometimes referred to as references, we

will denote the type of variables holding values of type T as Ref T. Thus

a variable x holding integer values will have type Ref Integer, while the

number 17 has type Integer.

Variables in programming languages typically represent two kinds of val-

ues. This can be seen by examining the meaning of the statement

x := x + 1

The x on the left side of the assignment represents a location in memory that

can hold values, while the x on the right represents the value stored in that

location. These values are sometimes referred to as the l-value and r-value ofL-VALUE

R-VALUE the variable. The l-value (so-called because it is used as the value of variables

to the left of an assignment) represents the location of the variable, while

the r-value (used for variables occurring on the right side of an assignment)

represents the value stored in the variable.

To make this distinction clearer as we examine variables, we will use the

notation val x to stand for the r-value of a variable x, while an unqualified

x will represent the l-value of the variable. Thus, we would re-write the

above assignment as:

x := val x + 1

In the rest of this subsection we show that the variable (reference) types

have only trivial subtypes. We begin as usual with an example.

Suppose once more that CheeseType <: FoodType, apple is a value of

type FoodType, fv is a variable with type Ref FoodType, and cheddar is

a value of type CheeseType. Then the assignment

fv := apple

is type-correct because apple has type FoodType. It follows that

fv := cheddar

78 5 Understanding Subtypes

x
-

�

val

:=

S

S
x’

-

�

val

:=

S’

S’

-

�

val

:=

S

S

Figure 5.3 A variable x:Ref S, and another variable x’:Ref S’ masquerading as

having type Ref S.

is also type-correct, because we can always replace a value of type FoodType
by a value of a subtype. That is, using cheddar in a slot expecting a value

of type FoodType is safe because CheeseType <: FoodType.

Suppose cv is a variable with type Ref CheeseType. We noted above that

fv := apple is fine, but replacing fv by cv in the assignment statement to

obtain cv := apple results in a type error.

For example, suppose again that melt is a function that can be applied

to cheeses but not general foods like apples. Thus an execution error would

result if melt were applied to cv and it held a value, apple, that was not of

type CheeseType.

Thus it is not type-correct to replace a variable holding values of a given

type by a variable holding values of a subtype.

As suggested in the example above, the fact that variables may be the tar-

gets of assignments will have a great impact on the subtype properties (or

rather the lack of them) of reference types. In particular, the example illus-

trates that Ref CheeseType cannot be a subtype of Ref FoodType, even

though CheeseType <: FoodType.

Suppose we wish variable x’ with type Ref S’ to masquerade as a vari-

able holding values of type S. See Figure 5.3 for a graphic illustration.

As indicated earlier, a variable x holding values of type S has two values:

an l-value and an r-value, where the latter value is obtained by writing val
x. Thus two operations are applicable to variables, assignment statements

with the variable on the left, and val expressions. In the first of these, the

variable occurs in a value-receiving context, while in the second it occurs in

a value-supplying context.

The second of the two operations is represented in the figure by the arrow

labeled “val” coming out of the variable (because it supplies a value). If x is

a variable with type Ref S, then val x returns a value of type S.

5.1 Subtyping for non-object types 79

For a variable x’ holding values of type S’ to be able to masquerade as a

value of type S in all contexts of this kind, we need S’ <: S. This should be

clear from the right diagram in the figure, where in order for x’ to provide a

compatible value using the val operator, we need S’ <: S.

A value-receiving context is one in which a variable holding values of type

S is the target of an assignment, e.g., a statement of the form x := e, for e
an expression of type S. This is represented in the figure by an arrow labeled

“:=” going into the variable.

In this context we will be interpreting the variable as a reference or loca-

tion (i.e., the l-value) in which to store a value. We have already seen that

an assignment x := e is type safe if the type S of e is a subtype of the type

declared to be held in the variable x. Thus if we wish to use a variable hold-

ing values of type S’ in all contexts where the right side of the assignment is

a value of type S, we must ensure that S <: S’. Again this should be clear

from the right diagram in the figure.

Going back to the example at the beginning of this section, suppose we

have an assignment statement,

cv := cheddar

for cv a variable holding values of type CheeseType and cheddar a value

of type CheeseType. If fv is a variable holding values of type FoodType,

then we can insert fv in place of cv in the assignment statement, obtaining

fv := cheddar

Because CheeseType <: FoodType, this assignment is legal. However the

assignment cv := apple would not be legal.

Thus for a variable holding values of type S’ to masquerade as a variable

holding values of type S in value-supplying (r-value) contexts we must have

S’ <: S

while it can masquerade in value-receiving (l-value) contexts only if

S <: S’

It follows that there are no non-trivial1 subtypes of variable (reference) types.

Thus,

Ref S’<: Ref S, if S’ ' S,

1. A subtype is trivial if it is equivalent to the supertype in the sense that they are each subtypes

of each other.

80 5 Understanding Subtypes

where S’ ' S abbreviates S’ <: S and S <: S’. We can think of ' as defin-

ing an equivalence class of types including such things as pairs of record

types that differ only in the order of fields. It is common to ignore the differ-

ences between such types and to consider them equivalent.

We can get a deeper understanding of the behavior of reference and func-

tion types under subtyping by considering the different roles played by sup-

pliers and receivers of values. Any slot in a type expression that corresponds

to a supplier of values must have subtyping behave covariantly (the same di-

rection as the full type expression), while any slot corresponding to a receiver

of values must have contravariant subtyping (the opposite direction).

Thus l-values of variables and parameters of functions, both of which are

receivers of argument values, behave contravariantly with respect to sub-

typing. On the other hand, the r-values of variables and the results of func-

tions, both of which are suppliers of values, behave covariantly. Because

variables have both behaviors, any changes in type must be simultaneously

contravariant and covariant. Hence subtypes of reference types must actu-

ally be equivalent.

5.1.4 Types of updatable records and arrays

The same analysis as for references can lead us to subtyping rules for updat-

able records and arrays. An updatable record should support operations of

the form r.l := e, which results in a record whose l field is e, while the

values of the other fields are unchanged. The simplest way to model this

with the constructs introduced so far is to represent an updatable record as

an immutable record, each of whose fields represents a reference.2 Thus the

fields represent locations whose values could be updated.

An updatable record with name and age fields would have type

PersonInfo = {| name:Ref String; age:Ref Integer |}

Thus if mother has type PersonType, then mother.name has type Ref
String.

Combining the record and reference subtyping rules,

{| lj :Ref Tj |}1≤j≤n <: {| li:Ref Ui|}1≤i≤k,

if k ≤ n and for all 1 ≤ i ≤ k,Ti ' Ui.

2. In a real implementation, the locations of the fields would be calculated from the location of

the beginning of the record and the size of each field. However this difference has no impact on

the subtyping rules.

5.1 Subtyping for non-object types 81

Thus the subtype has at least the fields of the supertype, but, because the

fields can be updated, corresponding fields must have equivalent types. Thus

adding fields results in a subtype, but no changes to the types of existing

fields is allowed.

Arrays behave analogously to functions. Let

ROArray[IndexType] of T

denote a read-only array of elements of type T with subscripts in Index-
Type. This data type can be modeled by a function from IndexType to T,

as one can think of accessing an array element, A[i], as being similar to

applying a function to that index and obtaining the value. As a result, the

subtyping rules are similar to those of functions:

ROArray[IndexType’] of S’ <: ROArray[IndexType] of S,
if S’ <: S and IndexType <: IndexType’

Intuitively, the index types of read-only arrays change contravariantly be-

cause, like function parameters, they are value receivers, while the types of

elements of the arrays change covariantly because read-only arrays supply

values of those types, just like function return types.

Of course, arrays in most programming languages allow individual com-

ponents to be updated. We can model Array[IndexType] of T by a

function from IndexType to Ref T. From function and reference subtyping

rules it follows that

Array [IndexType’] of S’<: Array [IndexType] of S
if S’ ' S and IndexType<: IndexType’

As before, the index types of arrays change contravariantly, but now the

types of elements of the arrays are invariant because arrays both supply and

receive values of those types.

Java’s [AGH99] type rules for array types are not statically type-safe. In

Java the type of an array holding elements of type T is written T[].3 The

subtyping rule for array types in Java is

S’[] <: S[], if S’ <: S.

The following Java class will illustrate the problems with this typing rule.

Suppose C is a class with a subclass CSub, and suppose the method method-
OfCSubOnly() is defined in class CSub, but was not available in C. Now

define the class BreakJava below:

3. Java array types do not mention the type of subscripts because they are always integers.

82 5 Understanding Subtypes

class BreakJava{
C v = new C();
void arrayProb(C[] anArray){

if (anArray.length > 0)
anArray[0] = v; // (2)

}

static void main(String[] args){
BreakJava bj = new BreakJava();
CSub paramArray = new CSub[10];
bj.arrayProb(paramArray); // (1)
paramArray[0].methodOfCSubOnly(); // (3)

}
}

The first two lines of the mainmethod construct a new instance of the class

BreakJava and create an array of CSubwith 10 elements. The message send

of arrayProb to bj at (1) will result in a type error.

The problem is that paramArray, an array of elements of type CSub, is

passed to method arrayProb where an array of type C was expected. Be-

cause of this, the assignment in line (2) of arrayProb will result in the

assignment of a value v from class C into an array which is supposed to hold

values of type CSub. We know that it is illegal to assign a value of a su-

perclass into a variable holding values of the subclass. In fact, if allowed

this would result in a run-time error in line (3), which would be executed

immediately after the method arrayProb finishes executing. Because the

value v of class C was assigned to paramArray[0], the message send of

methodOfCSubOnly() would fail as elements of class C do not support

that method.

The correct rule for arrays specified above implies that the message send

in line (1) would result in a static type error because CSub[] fails to be a

subtype of C[].

While the Java designers used an incorrect rule for static checks of sub-

typing with arrays, they compensated for this by inserting extra dynamic

checks. Thus Java would not indicate any type errors at compile time, but

it would insert a dynamic check at line (2) because of the assignment to an

array parameter. That dynamic check would fail during the execution of the

message send bj.arrayProb(paramArray) from line (1). The message

send at line (3) would never be reached at run time because an exception

5.2 Object types 83

would have been raised due to the failure of the dynamic check at line (2).

Thus the Java designers compensate for not catching the type error stat-

ically by performing dynamic checks when an individual component of an

array is assigned to. Why did they use this obviously faulty subtyping rule,

when it results in having to add extra code to assignments to array param-

eters? While it is necessary for type safety, this extra code in compiled pro-

grams is problematic as it results both in increased size of programs and a

slowdown in their execution.

One reason the Java designers might have included this faulty rule would

be to allow generic sorts (and similar operations) to be written that could

pass the static type checker. Java programmers can write sort methods that

take elements of type Comparable[], where Comparable is an interface

supporting a method compareTo that returns a negative, zero, or positive

int depending on whether the receiver is smaller than, equal to, or larger

than the parameter. Java’s unsafe subtyping rule for arrays allows any array

of elements that implement Comparable to be passed to such sort methods,

even though they are in theory vulnerable to the same errors as illustrated

above.

However, the actual code written in these sort routines typically does not

create a dynamic type error because it simply reorders elements of the ar-

ray, rather than assigning brand new values. Thus one result of the decision

to give up static type safety by including an “incorrect” subtyping rule for

arrays is to make it easier for programmers to write more flexible programs.4

As we saw in Section 4.1, parametric polymorphism of the sort introduced

in GJ would allow the creation of type-correct generic sorts without the need

for this unsafe rule. Thus we can recapture static type safety and maintain

expressiveness of the language by introducing a richer type system. We will

see other examples of this trade-off in later chapters.

5.2 Object types

While most popular object-oriented languages determine subtyping of ob-

ject types based on whether the corresponding classes are subclasses, this

identification of subclass with subtype is not necessary. In this section we

determine subtyping rules for objects that depend only on their public inter-

faces or object types.

4. The reason why this subtyping rule for arrays was included is apparently not as principled.

An implementation hack for arrays resulted in a desire for this subtyping rule [Joy98].

84 5 Understanding Subtypes

The subtyping rules for object types follow from those of records and func-

tions. From the outside, the only operation available on objects is message

sending. As a result, object types behave like immutable records. The sub-

typing rule is:

ObjectType {|lj :S′j |}1≤j≤n <: ObjectType {|li:Si|}1≤i≤k,

if k ≤ n and for all 1 ≤ i ≤ k,S′i <: Si.

Because the types S′i and Si are method types, they are functional types. Sup-

pose S′i = T′i → U′i and Si = Ti → Ui. Then, by the subtyping rule for function

types, S′i <: Si if both Ti <: T′i and U′i <: Ui. That is, object types are sub-

types if for every method in the supertype there is a method with the same

name in the subtype such that the range types of corresponding methods

vary covariantly, and the domain types vary contravariantly.

What is the relation between subclasses and subtypes? Most popular stat-

ically typed object-oriented languages allow no changes to method types in

subclasses. This clearly implies that the object types generated by a subclass-

superclass pair are in the subtype relation. We noted earlier that C++ allows

covariant changes to result types in subclasses. By the above, this also results

in subtypes.

As we saw in Section 4.2, Eiffel [Mey92] allows covariant changes to both

parameter and result types of methods in subclasses. We exhibited an exam-

ple there showing that this was not type-safe. The subtyping rule given here

for object types explains this failure by making it clear that covariant changes

to parameter types are not statically type safe. The language Sather [Omo91]

allows contravariant changes to parameter types and covariant changes to

return types in subclasses. Thus it is the most flexible in allowing changes to

subclasses so that the resulting object types are in the subtype relation.

While our focus in this section has been on subtyping, a related interesting

question is what, if any, restrictions must be placed on changing types of

methods in subclasses, even if we don’t care whether subclasses generate

subtypes. We examine that question in Chapter 6.

5.3 Subtyping for class types

We haven’t yet introduced the notion of class types as ways of categorizing

classes (just as object types categorize objects). We will do that carefully later.

However, it is evident that a class type should include information on the

types of instance variables and methods. The reason is that to determine

5.3 Subtyping for class types 85

whether we can extend a class with new methods or instance variables, we

need to know what methods and instance variables already exist there. If a

type of a class is to give us sufficient information about a class to determine

whether or not a particular extension is legal, it will need to include that

information about methods and instance variables.

Let us use the notation ClassType (IV, M) for the type of a class whose

instance variables have names and types given by the labels and types of

record type IV, and whose methods have names and types given by the

record type M. If all instance variables are invisible from outside of an ob-

ject generated by a class, then the type of objects generated from a class with

type ClassType (IV, M) will be ObjectType M.

Because most object-oriented languages use class names as types, this no-

tation for class types may look unusual to the reader. We emphasize again

that objects have types of the form ObjectType M, while classes will now

have types of the form ClassType (IV, M).

We can ask whether one class type can be a subtype of another. As before,

to determine whether one class type can be a subtype of another we must

consider what operations are available on classes. There are only two: creat-

ing new objects and extending classes to form subclasses. We will see that in

our system there can be no non-trivial subtypes of class types exist, because

of the difficulty of masquerading in both of these contexts.

Suppose class C’ of type ClassType (IV’, M’) is attempting to masquerade

as having type ClassType (IV, M). Let us see what constraints on IV’, IV,

M’, and M follow from this assumption.

Evaluating new C’ will generate an object of type ObjectType M’. If C’
is to successfully masquerade as an element of type ClassType (IV, M) then

the type of the expression new C’, ObjectType M’, must be a subtype of

ObjectType M. Thus we need M’<: M.

Suppose a subclass SC is defined by inheritance from C:

class SC inherits C modifies li1 , . . . ,lim
{. . .}

so that SC is well-typed with type ClassType (IVsub,Msub) when C has type

ClassType (IV,M). If the type of C’ is a subtype of ClassType (IV,M), then

SC should be well-typed if C is replaced by the masquerading C’. However,

any method m of C could have been overridden in SC with a method of the

same type. Because this override must still be legal in the subclass built from

C’, all methods in Mmust have the same type in M’ (as otherwise the override

would have been illegal).

Similarly, M’ could have no more methods than M. If M’ had an extra

86 5 Understanding Subtypes

method, m’, we could define a subclass of C with an added method m’ with

an incompatible type from that of m’ in M’. If we attempt to define a similar

subclass from C’, we would get a type error in defining the subclass (pre-

suming that there are any restrictions at all on changing types in subclasses).

Thus if ClassType (IV’,M’) <: ClassType (IV,M) then we must have M’
' M. Similar arguments on instance variables can be used to show that IV’
' IV. Thus there can be no non-trivial subtypes of class types:

ClassType (IV’,M’) <: ClassType (IV,M), if IV’ ' IV and M’ ' M

The language discussed so far in this text has no access qualifiers like Java

and C++’s private, protected, and public. We will discuss these qualifiers in

Section 14.4, where we introduce the names secret, hidden, and visible
for access qualifiers whose meanings are similar to Java and C++’s. Secret
features are not visible outside of the class. That is, they are not visible to

subclasses or other objects. Our default for instance variables is that they

are hidden. This means that they are accessible to subclasses, but not to

other objects. In Section 14.4 we assume that class types should not mention

secret features (i.e., Java’s private features). Thus two classes whose vis-
ible and hidden feature names and signatures are the same have the same

class type. With this understanding of class types, the claim that there are no

non-trivial subtypes for class types remains true.

5.4 Summary

In this chapter, we provided a relatively careful, though informal, analysis

of subtyping. The subtyping rules for immutable record types included both

breadth and depth subtyping. That is, a subtype of a record type could include

extra labeled fields (breadth) or could replace the type of one of the existing

labeled fields by a subtype (depth subtyping).

We addressed the issue of covariance versus contravariance changes in

creating subtypes of function types. We discovered that to avoid problems,

only covariant changes were allowed to return types and only contravariant

changes were allowed to domain types in subtyping function types. Most

languages allow no changes to either domain or range types in subtyping

function types, though some allow covariant changes in range types. There

do not seem to be compelling examples where contravariant changes in do-

main types are useful.

We emphasize that the rules provided above can be proved mathemati-

cally to be safe. Languages that allow covariant changes to both range and

5.4 Summary 87

domain types (like Eiffel) are not statically type-safe. They either sacrifice

type safety altogether or require link or run-time checks to regain type safety.

Reference types (types of variables) allowed no subtyping because ele-

ments of these types can both be used as sources of values (e.g., using the

val construct) and as receivers of values in assignment statements. Sub-

typing for mutable records and arrays followed naturally from the rules for

immutable records, functions, and references. Mutable records allow only

breadth subtyping, while arrays only allow contravariant changes to the in-

dex types.

Subtyping for object types followed naturally from the rules for immutable

records and functions. A subtype of an object type can add new methods

(breadth subtyping again) or replace the type of an existing method with a

subtype (depth subtyping). By the subtyping rules on function types, one

may make contravariant changes to the domain type of the method and co-

variant changes to the return type. Because instance variables (or hidden

methods) do not show up in the public interface of objects, they have no

impact on subtyping.

There is no non-trivial subtyping for class types, because of the possibility

of conflicts in extending class definitions using inheritance.

We summarize the subtyping rules discussed in this chapter in Figure 5.4.

For simplicity we presume that there are no subtype relations involving type

constants. (That is, we do not allow Integer <: Real, for example.)

We have also generalized the subtyping rule for function types to include

functions with more than one argument. The domain of a function with mul-

tiple arguments is represented as a product or tuple type.

In the next chapter we address the impact of our rules for subtyping on

the allowed changes to types of methods and instance variables in defining

subclasses.

88 5 Understanding Subtypes

Rec <:
{| lj :Tj |}1≤j≤n <: {| li:Ui|}1≤i≤k,

if k ≤ n and for all 1 ≤ i ≤ k,Ti <: Ui.

Fcn <:
(S′

1
× . . .× S′n → T’) <: (S1 × . . .× Sn → T),

if Si <: S′i for 1 ≤ i ≤ n, and T’<: T.

Ref <: Ref S’<: Ref S, if S’ ' S.

Rec <:
{| lj :Ref Tj |}1≤j≤n <: {| li:Ref Ui|}1≤i≤k,

if k ≤ n and for all 1 ≤ i ≤ k,Ti ' Ui.

Read-only Array <:

ROArray[IndexType’] of S’<:

ROArray[IndexType] of S,

if S’<: S and IndexType<: IndexType’.

Array <:
Array[IndexType’] of S’<: Array[IndexType] of S,

if S’ ' S and IndexType<: IndexType’.

Object <:
ObjectType {|lj :S′j |}1≤j≤n <: ObjectType {|li:Si|}1≤i≤k,

if k ≤ n and for all 1 ≤ i ≤ k,S′i <: Si.

Class <:
ClassType (IV’,M’) <: ClassType (IV,M),

if IV’ ' IV and M’ ' M

Figure 5.4 Summary of subtyping rules.

