
15 Adding Bounded Polymorphism

to SOOL

Adding F-bounded parametric polymorphism of the sort discussed in Sec-

tion 4.1 to SOOL is relatively straightforward, as it is not that different from

the addition of parametric polymorphism to the lambda calculus. In this

chapter we provide the details of an extension, PSOOL, of SOOL. ThePSOOL

reader is invited to go back and review Section 4.1 for the motivation to add

F-bounded polymorphism.

15.1 Introducing PSOOL

We begin by introducing the syntax of type and value expressions inPSOOL

and then providing type-checking rules. We follow this with a few simple

examples of the use of F-bounded polymorphism.

We first add a kind system like that for the polymorphic lambda calculus

in Chapter 9. However, for simplicity we restrict the kinds to those that take

types as arguments rather than elements of higher kinds. We represent the

kind of all types by *.

κ ∈ Kind : : = * | *⇒ κ

Type constructors are either types or functions that take a type as a pa-

rameter and return a constructor. We write U::κ to indicate that U is a type

constructor with kind κ. Let T C be a set of type constants containing the

type constant TopObject. LetL be a set of record labels, and T I a set of type

identifiers. Constructor expressions ofPSOOL, CONSRPSOOL(T C,L, T I),

(with their associated kinds) are defined as follows:

1. If c ∈ T C, then c:: *.

2. If t ∈ T I, then t:: *.

292 15 Adding Bounded Polymorphism to SOOL

3. If T:: * and U:: κ, then TpFunc(t).U:: *⇒ κ.

4. If T:: * and F:: *⇒ κ, then F(T):: κ.

5. If T:: * and U:: *, then ForAll(t <: T). U:: *.

6. . . .

The elided elements in the last case consist of all of the type definitions from

SOOL, all given with kind *. We omit them here because they would over-

whelm the new constructor expressions.

If T has kind *, then we say that T is a type expression of PSOOL (written

T ∈ T YPEPSOOL(T C,L, T I)). Notice that the constructor identifiers and

constants are only of kind * (and hence will be referred to as type identifiers

and constants).

Constructor expressions of the form TpFunc(t).U represent functions tak-

ing a type T to type [T/t]U. The expression F(T) represents the application

of type function F to argument T.

If T and U are types, then ForAll(t <: T). U is the type of polymorphic

functions taking subtypes of T to values of type U.

While constructors may only take types as arguments, it is possible to

obtain type functions taking several type parameters by writing them in a

curried fashion, that is, defining a type function that returns another type

function. An example is TpFunc(t).TpFunc(u).t→ u.

As in ΛP
<:, we include in Figure 15.1 a congruence rule, FuncAppCong, for

simplifying constructor applications. In combination with the correspond-

ing subtyping and type-checking rules, Cong <: and Congruence, this will

allow us to simplify constructor applications appearing in expressions to be

type-checked. (While we don’t bother to write the corresponding rules, the

congruence relation is reflexive, symmetric, and transitive.)

It is important not to confuse polymorphic types – those types with the

form ForAll(t <: T). U, and functions from types to types – those func-

tions with kind *⇒*and typically written in the form TpFunc(t).U. Func-

tions from types to types can be applied to a type and return a type, while a

polymorphic type is just a type – the type of an expression that takes a type

as a parameter and returns an element of the return type.

We now introduce the expressions of PSOOL. New expressions include

bounded polymorphic functions and their applications.

Definition 15.1.1 The set of pre-expressions, PEXPPSOOL(EC,L, EI , T I) of

PSOOL over a set EC of expression constants, a set L of labels, a set EI of expres-

15.1 Introducing PSOOL 293

FuncAppCong
T: : *

C ` (TpFunc(t).U)(T’) ∼= [T’/t]U

Congruence
C, E ` M: T C ` T ∼= T’

C, E ` M: T’

Cong <:
S ∼= S’, T’ ∼= T, C ` S<: T

C ` S’<: T’

Figure 15.1 Congruence rules for PSOOL.

sion identifiers, and a set T I of type identifiers, is given by the following context-free

grammar (where we assume t ∈ T I and T, U ∈ T YPEPSOOL(T C,L, T I)):

E ∈ Exp ::= . . . | polyFunc(t <: T): U is Block | E [T]

As above, the elided expressions represent the usual expressions of SOOL,

which are omitted here.

An expression of the form polyFunc(t <: T): U is Block represents a

polymorphic function that takes a type parameter and returns the element of

type U determined by evaluating Block. The second new expression repre-

sents the application of a polymorphic function to a type parameter. Notice

that F(T) represents the application of a type function to a type, while E [T]

represents the application of a polymorphic function to a type.

We present a detailed example of these constructs later in this chapter.

However simple examples of a type function and a polymorphic function

follow.

PFcn = TpFunc(t).t → Integer;

polyx = polyFunc(t <: Point): t → Integer is
function(p:t): Integer is p ⇐ getx();

PFcn is a type function that send a type T to the type T → Integer. On

the other hand, polyx is a polymorphic function that takes a subtype, T, of

Point, and a value p of type T, and returns the integer obtained by sending

a getx message to p. The type of polyx is ForAll(t <: Point). PFcn(t).

The subtyping rules are the same as those for SOOL except for the addi-

tion of rules for constructor functions, constructor applications, and bounded

294 15 Adding Bounded Polymorphism to SOOL

Constructor <:
C ` U’<: U

C ` TpFunc(t).U’<: TpFunc(t).U

ConstructorApp <:
C ` F: : *⇒κ, T: : *, C ` F’<: F

C ` F’(T)<: F(T)

BdPoly <:
C ∪ {t<: T} ` U’<: U

C ` ForAll(t <: T).U’<: ForAll(t <: T).U

Figure 15.2 New subtyping rules for PSOOL.

PolyFcn
C ∪ {t<: T}, E ` Block: U

C, E ` polyFunc(t <: T): U is Block: ForAll(t <: T).U

where T may involve t.

PolyFcnApp

C, E ` E: ForAll(t <: T).U
C, E ` T’<: [T’/t]T

C, E ` E [T’]: [T’/t]U

Figure 15.3 Typing rules for new expressions of PSOOL.

polymorphic types. The rules, which are similar to the corresponding rules

for ΛP
<:, are given in Figure 15.2.

The definition of static type environments, E , does not need to be modified

from Definition 10.2.3, nor does the definition of type constraint system, C,

from Definition 12.1.1, which already included bounded types.

Type-checking rules for the new expressions are given in Figure 15.3. Be-

cause the definition of type constraints allows the constraint T on a type iden-

tifier t to involve that identifier, we may type check instances of F-bounded

polymorphism.

Recall the following example of GJ code from Section 4.1.

interface OrderableF<T> {
public boolean equal(T other);
public boolean greaterThan(T other);
public boolean lessThan(T other);

}

15.1 Introducing PSOOL 295

In PSOOL we model OrderableF as a function from types to types:

OrderableF = TpFunc(t).ObjectType {
equal:t → Boolean;
greaterThan:t → Boolean;
lessThan:t → Boolean

}

Thus OrderableF takes an object type parameter, T <: TopObject, and

returns an object type with equal, greaterThan, and lessThan methods

that take parameters of type T.

OrderableF can then be used in a class definition as follows:

BPOrderedList:ForAll(Elt <: OrderableF(Elt)).
BPClassTp(Elt) =

polyFunc(Elt <: OrderableF(Elt)):BPClassTp(Elt) is {
return class({| ... |}, {| ... |})

}

if class({|...|}, {|...|}) has type BPClassTp(Elt).

As with SOOL, we write programs in a language supporting convenient

abbreviations. Parametric functions returning classes will be written as pa-

rameterized classes. Thus the above examples can be written in the following

more readable style:

OrderableF(t <: TopObject) = ObjectType {
equal:t → Boolean;
greaterThan:t → Boolean;
lessThan:t → Boolean

}

class BPOrderedList(Elt <: OrderableF(Elt)) {
return class { ... };

If we also have

SomeOrdType = ObjectType {
equal:SomeOrdType → Boolean;
greaterThan:SomeOrdType → Boolean;
lessThan:SomeOrdType → Boolean;
...

}

296 15 Adding Bounded Polymorphism to SOOL

then new BPOrderedList(SomeOrdType) will create a new ordered list

with elements of type SomeOrdType if we can show that SomeOrdType
<: BPOrderedList(SomeOrdType).

Interestingly, we have no way of showing directly that

C ` SomeOrdType<: OrderableF(SomeOrdType).

However, OrderableF(SomeOrdType) is congruent to

SmallOrdType = ObjectType {
equal:SomeOrdType → Boolean;
greaterThan:SomeOrdType → Boolean;
lessThan:SomeOrdType → Boolean

}

and ∅ ` SomeOrdType<: SmallOrdType. Thus by Cong <: it is type safe

to apply BPOrderedList to SomeOrdType.

15.2 Translational semantics of PSOOL

The translation of PSOOL to ΛP
<:

is straightforward, as ΛP
<:

has constructs

corresponding to all new constructs added in PSOOL. In order to simplify

the notation we assume that restrictions have been made as suggested in

Section 13.2 to ensure that class types have unique types. Thus we can define

the translation by induction on the expressions rather than on their typings.

As a result we will write the translation in the more notationally compact

form of TC [[E]] rather than TC [[C, E ` E: T]].

The translation of types and type functions is given in Figure 15.4, while

the translation of expressions is given in Figure 15.5. We do not bother to

repeat the translation of expressions of SOOL as they are unchanged.

We interpret TopObject as an object type with no methods, but it could

easily be changed to include methods of the sort contained in Java’s Ob-
ject class, though all other object type definitions would have to implicitly

contain those method names.

The proof of type safety is a straightforward extension of that for SOOL,

and is left as an exercise for the reader. The proof consists of adding cases

for bounded polymorphic functions and polymorphic function application.

Type expressions involving function applications may be reduced using the

congruence rules.

15.3 Summary 297

TC [[TpFunc(t).U]]
∆
= λ(t <: TC [[T]]). TC [[U]]

TC [[F(T)]]
∆
= TC [[F]](TC [[T]])

TC [[TopObject]]
∆
= TC [[ObjectType {| |}]]

TC [[t]]
∆
= t

TC [[ForAll(t <: T).U]]
∆
= ∀(t <: TC [[T]]). TC [[U]]

Figure 15.4 Translation of type constructors and the new types of PSOOL to corre-

sponding type constructors and types in Λ
P
<:

.

TC [[C, E ` E [T’]: [T’/t]U]]
∆
= T X

C
[[C, E ` E: ForAll(t <: T).U]] [T X

C
[[T’]]]

TC [[C, E ` polyFunc(t <: T): U is Block: ForAll(t <: T).U]]
∆
=

Λ(t <: TC [[T]]). TC [[C′, E ` Block: U]]

Figure 15.5 Translation of selected expressions of PSOOL to expressions in Λ
P
<:

.

15.3 Summary

In this chapter we showed that the addition of F-bounded polymorphism to

SOOL to form PSOOL is straightforward and raises no new issues in the

translational semantics. This allows us to model object-oriented languages

like GJ.

Next chapter we push the boundaries of statically typed object-oriented

languages to begin investigating adding extra expressiveness similar to that

found in languages like Eiffel and Beta. However, we will accomplish this

while retaining a statically type-safe language.

