
Reports and Articles

CURRICULUM '78

Recommendations for the Undergraduate Program
in Computer Science
A Report of the ACM Curriculum Committee on Computer Science

Editors: Richard H. Austing, University of Maryland
Bruce H. Barnes, National Science Foundation
Della T. Bonnette, University of Southwestern Louisiana
Gerald L. Engel, Old Dominion University
Gordon Stokes, Brigham Young University

Contained in this report are the recommendations for
the undergraduate degree program in Computer Science
of the Curriculum Committee on Computer Science (C3S)
of the Association for Computing Machinery (ACM).

The core curriculum common to all computer science
undergraduate programs is presented in terms of elemen-
tary level topics and courses, and intermediate level
courses. Elective courses, used to round out an under-
graduate program, are then discussed, and the entire
program including the computer science component and
other material is presented. Issues related to undergrad-
uate computer science education, such as service courses,
supporting areas, continuing education, facilities, staff,
and articulation are presented.

Key Words and Phrases: computer sciences courses,
computer science curriculum, computer science educa-
tion, computer science undergraduate degree programs,
service courses, continuing education

CR Categories: 1.52

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
© 1979 ACM 0001-0782/79/0300-0147 $00.75.

147

Contents
1. Introduction
2. Core Curriculum

2.1 Introduction
2.2 Objectives
2.3 Elementary Material
2.4 Implementation Considerations
2.5 Sample Elementary Level Courses
2.6 Sample Intermediate Level Courses

3. Computer Science Electives
3.1 Introduction
3.2 Elementary Level
3.3 Advanced Level

4. The Undergraduate Program
4.1 Introduction
4:2 Computer Science Requirements and Electives
4.3 Mathematics Requirements
4.4 Other Requirements and Electives

5. Service Courses
5.1 Introduction
5.2 General Service Courses
5.3 Supporting Areas
5.4 Continuing Education

6. Other Considerations
6.1 Introduction
6.2 Facilities
6.3 Staff
6.4 Articulation
References
Appendix

Communications March 1979
of Volume 22
the ACM Number 3

1. Introduction

Curriculum development work in computer science
has been a continuing effort of the Curriculum Commit-
tee on Computer Science (C3S) of the Association for
Computing Machinery (ACM). The work leading to the
material presented in this report was started under the
chairmanship of C'~S of Preston Hammer, and continued
when John Hamblen was appointed chairman in 1976.

In the time since the publication of "Curriculum '68"
[1] by C'~S, many significant developments have occurred
within computer science education, and many educa-
tional efforts have been undertaken by C3S, other groups
within ACM, and other professional organizations. As
part of the background work in preparation of this re-
port, an extensive survey of the literature of computer
science education since "Curriculum '68" was prepared
and published [2]. The efforts of C3S since 1968 are
summarized in this document.

The writing group, in its preparation of this set of
recommendations, paid considerable attention to the de-
velopments as reported in the literature, and to informal
comments received regarding "Curriculum '68." In addi-
tion to this, a variety of individuals, representing many
different types of institutions, and many different inter-
ests within computer science, were brought into C3S
meetings and working sessions to present their ideas. A
working draft of the report was prepared and published
in the June 1977 SIGCSE Bulletin in order that the ma-
terial receive as wide a distribution as possible, and to
provide an opportunity for input from interested individ-
uals. Prior to the publication of the working paper, draft
reports on specific areas were widely circulated and nu-
merous panel and discussion sessions were held both to
inform interested parties of the thinking of the Commit-
tee and to allow for comments and suggestions on the
work done to that point.

The wide circulation of the various drafts and work-
ing papers resulted in numerous suggestions and con-
structive criticisms, many of which have been incorpo-
rated into this final document. In addition to this input,
a relationship of mutual benefit has developed by inter-
action with the parallel, but independent, development
of the Model Curricula Subcommittee of the IEEE Com-
puter Society leading to the publication of their curricu-
lum guidelines in Computer Science and Engineering [3].

The writing group is most grateful to all those indi-
viduals who contributed to the effort. The Appendix con-
tains the names and affiliations of those people who
contributed by serving on C3S, by supplying course out-
lines, by supplying comments on the draft report, and in
other ways contributing to the final version presented
here. The Committee, of course, assumes full responsi-
bility for the substance of this material and the recom-
mendations contained herein.

The report first presents the core curriculum com-
mon to all computer science undergraduate programs.
This is presented in Section 2 in terms of elementary level

148

material and courses, and intermediate level courses.
Section 3 presents computer science electives that may
be used to round out an undergraduate program. In Sec-
tion 4, the full course of study is presented which includes
the computer science component, and other material
necessary in a program at the bachelor degree level. The
important areas of service courses, including general
service courses, supporting areas, and continuing educa-
tion are discussed in Section 5. The report concludes by
addressing the areas of facilities, staff, and articulation
in Section 6.

In studying this report, it should be recognized that
it is a set of guidelines, prepared by a group of individuals
working in a committee mode. As such, the recommen-
dations will not satisfy everyone, nor is it intended that
they be appropriate to all institutions. It is the hope of the
Committee that this report will further stimulate com-
puter science educators to think about their programs
and, as appropriate, to share their thinking with others.
If this is done, the primary objective of the preparation
of these guidelines will have been met.

2. Core Curriculum

2.1 Introduction
Within the present work, C3S has considered the clas-

sification scheme of computer science as defined in "Cur-
riculum '68" with a view to isolating those areas which
should be common to all computer science undergradu-
ate degree programs.

The core curriculum, described in this section, repre-
sents this refinement. The material is divided into a sec-
tion on elementary material, including the specifications
of topics at this level and the description of five sample
courses, and the intermediate levels, including the de-
scription of three sample courses. This collection of eight
courses represents one way to include the required core
material in the computer science undergraduate major.

While the course material is detailed later on in the
section, to gain perspective the eight courses (three se-
mester hours each) are listed here:
CS 1. Computer Programming I
CS 2. Computer Programming II
CS 3. Introduction to Computer Systems
CS 4. Introduction to Computer Organization
CS 5. Introduction to File Processing
CS 6. Operating Systems and Computer Architecture I
CS 7. Data Structures and Algorithm Analysis
CS 8. Organization of Programming Languages

The structuring of the courses as to prerequisites is
shown in Figure 1. The solid lines represent required pre-
requisites, while the dashed lines represent highly recom-
mended prerequisites. This diagram includes courses
representing only the computer science material consid-
ered to be essential to the program. The entire program,
including relevant mathematics requirements, is illus-
trated in Figure 2 on page 160.

Communications March 1979
of Volume 22
the ACM Number 3

Fig. 1. Computer science core curriculum.

C~

C~ ;2

I I I
I c s 3 __ c s4

The discussion of the core course material in this
section concentrates on the computer science compo-
nents which are necessary for the undergraduate pro-
gram. The relationship of this material to two-year pro-
grams (especially transfer programs) and the developing
high school programs will be considered in Section 6.4.

The elementary core material represents subject mat-
ter necessary for all students in computer science in order
to be able to achieve the objectives of the undergraduate
major. The intermediate level core material follows nat-
urally by providing the students who have been equipped
with the basics of the field with the tools to be operational
computer scientists.

2.2 Objectives
The core material is required as a prerequisite for ad-

vanced courses in the field and thus it is essential that the
material be presented early in the program. In learning
this material, the computer science student should be
provided with the foundation for achieving at least the
objectives of an undergraduate degree program that are
listed below.

Computer science majors should:
1. be able to write programs in a reasonable amount of

time that work correctly, are well documented, and
are readable;

2. be able to determine whether or not they have written
a reasonably efficient and well organized program;

3. know what general types of problems are amenable
to computer solution, and the various tools necessary
for solving such problems;

4. be able to assess the implications of work performed
either as an individual or as a member of a team;

p

5. understand basic computer architectures;
6. be prepared to pursue in-depth training in one or

more application areas or further education in com-
puter science.

It should be recognized that these alone do not rep-
resent the total objectives of an undergraduate program,
but only those directly related to the computer science
component. Material addressing other requirements and
electives is covered in Section 4.4.

149

2.3 Elementary Material
In order to facilitate the attainment of the objectives

above, computer science majors must be given a thor-
ough grounding in the study of the implementation of
algorithms in programming languages which operate on
data structures in the environment of hardware. Empha-
sis at the elementary level then should be placed on algo-
rithms, programming, and data structures, but with a
good understanding of the hardware capabilities involved
in their implementation.

Specifically, the following topics are considered ele-
mentary. They should be common to all undergraduate
programs in computer science.

Programming Topics
P1. Algorithms: includes the concept and properties of

algorithms; the role of algorithms in the problem
solving process; constructs and languages to facili-
tate the expression of algorithms.

P2. Programming Languages: includes basic syntax and
semantics of a higher level (problem oriented) lan-
guage; subprograms; I/O; recursion.

P3. Programming Style: includes the preparation of
readable, understandable, modifiable, and more
easily verifiable programs through the application
of concepts and techniques of structured program-
ming; program documentation; some practical as-
pects of proving programs correct. (Note: Program-
ming style should pervade the entire curriculum
rather than be considered as a separate topic.)

P4. Debugging and Verification: includes the use of de-
bugging software, selection of test data; techniques
for error detection; relation of good programming
style to the use of error detection; and program ver-
ification.

P5. Applications: includes an introduction to uses of
selected topics in areas such as information retrieval,
file management, lexical analysis, string processing
and numeric computation; need for and examples of
different types of programming languages; social,
philosophical, and ethical considerations.

Software Organization
S1. Computer Structure and Machine Language: in-

cludes organization of computers in terms of I/O,
storage, control and processing units; register and
storage structures, instruction format and execution;
principal instruction types; machine arithmetic; pro-
gram control; I /O operations; interrupts.

$2. Data Representation: includes bits, bytes, words and
other information structures; number representa-
tion; representation of elementary data structures;
data transmission, error detection and correction;
fixed versus variable word lengths.

$3. Symbolic Coding and Assembly Systems: includes
mnemonic operation codes; labels; symbolic ad-
dresses and address expressions; literals; extended
machine operations and pseudo operations; error
flags and messages; scanning of symbolic instruc-

Communications March 1979
of Volume 22
the ACM Number 3

tions and symbol table construction; overall design
and operation of assemblers, compilers, and inter-
preters.

$4. Addressing Techniques: includes absolute, relative,
base associative, indirect, and immediate address-
ing; indexing; memory mapping functions; storage
allocation, paging and machine organization to facil-
itate modes of addressing.

$5. Macros: includes definition, call, expansion of
macros; parameter handling; conditional assembly
and assembly time computation.

$6. Program Segmentation and Linkage: includes sub-
routines, coroutines and functions; subprogram
loading and linkage; common data linkage transfer
vectors; parameter passing and binding; overlays;
re-entrant subprograms; stacking techniques; link-
age using page and segment tables.

$7. Linkers and Loaders: separate compilation of sub-
routines; incoming and outgoing symbols; reloca-
tion; resolving intersegment references by direct and
indirect linking.

$8. Systems and Utility Programs: includes basic con-
cepts of loaders, I /O systems, human interface with
operating systems; program libraries.

Hardware Organization
H1. Computer Systems Organization: includes charac-

teristics of, and relationships between I /O devices,
processors, control units, main and auxiliary storage
devices; organization of modules into a system; mul-
tiple processor configurations and computer net-
works; relationship between computer organization
and software.

H2. Logic Design: includes basic digital circuits; AND,
OR, and NOT elements; half-adder, adder, storage
and delay elements; encoding-decoding logic; basic
concepts of microprogramming; logical equivalence
between hardware and software; elements of switch-
ing algebra; combinatorial and sequential networks.

H3. Data Representation and Transfer: includes codes,
number representation; flipflops, registers, gates.

H4. Digital Arithmetic: includes serial versus parallel ad-
ders; subtraction and signed magnitude versus com-
plemented arithmetic; multiply/divide algorithms;
elementary speed-up techniques for arithmetic.

H5. Digital Storage and Accessing: includes memory
control; data and address buses; addressing and
accessing methods; memory segmentation; data flow
in multimemory and hierarchical systems.

H6. Control and I/O: includes synchronous and asyn-
chronous control; interrupts; modes of communi-
cation with processors,

H7. Reliability: includes error detection and correction,
diagnostics.

Data Structures and File Processing
D1. Data Structures: includes arrays, strings, stacks,

queues, linked lists; representation in memory; algo-
rithms for manipulating data within these structures.

D2. Sorting and searching: includes algorithms for in-
core sorting and searching methods; comparative
efficiency of methods; table lookup teclhniques; hash
coding.

D3. Trees: includes basic terminology and types; repre-
sentation as binary trees; traversal schemes; repre-
sentation in memory; breadth-first and depth-first
search techniques; threading.

D4. File Terminology: includes record, file, blocking,
database; overall idea of database management sys-
tems.

D5. Sequential Access: includes physical characteristics
of appropriate storage media; sort/merge algo-
rithms; file manipulation techniques for updating,
deleting, and inserting records.

D6. Random Access: includes physical characteristics of
appropriate storage media; physical representation
of data structures on storage devices; algorithms and
techniques for implementing inverted lists, multi-
lists, indexed sequential, hierarchical structures.

D7. File I /O: includes file control systems (directory,
allocation, file control table, file security) ; I /O spec-
ification statements for allocating space and catalog-
ing files; file utility routines; data handling (format
definition, block buffering, buffer pools, compac-
tion).

2.4 Implementation Considerations
Throughout the presentation of the elementary level

material, programming projects should be assigned; these
projects should be designed to aid in the comprehension
and use of language details, to exemplify the problem
solving process, and/or to introduce more advanced
areas of computer science.

Good programming style should be stressed in the
teaching of all of this material. The discipline required
to achieve style will promote the development of effec-
tive algorithms and should result in students writing cor-
rect, understandable programs. Thus emphasis in the
programming exercises should be placed on efficient
algorithms, structured programming techniques, and
good documentation.

A specific course on structured programming, or on
programming style, is not intended at the elementary
level. The topics are of such importance that they should
be considered a common thread throughout the entire
curriculum and, as such, should be totally integrated into
the curriculum. They provide a philosophy of discipline
which pervades all of the course work.

Throughout the presentation of this elementary ma-
terial, meaningful actual computer applications should
be cited and reviewed. In the process of so doing, refer-
ence must be made to the social, philosophical, and ethi-
cal considerations involved in the applications. Like
structured programming, these issues are of such import-
ance to the development of the computer scientist that
they must permeate the instruction at this level.

It would be desirable, though not necessary, for the

150 Communications March 1979
of Volume 22
the ACM Number 3

computer science major to be familiar with all of the ele-
mentary level topics before taking intermediate level
courses. This, however, may not always be possible. Fac-
tors influencing how and when courses are offered which
include the material are: the purpose and circumstances
of a particular department within the context of its edu-
cational institution, the availability of computer re-
sources, and whether an institution is on the quarter or
semester system.

Most courses at this level should include laboratory
sessions. These laboratories provide the student with the
opportunity to gain practical experience by actually solv-
ing problems on the computer. Laboratory sessions
should be implemented in such a way that the student
can develop good programming techniques under close
supervision. The instructor may or may not be the same
as for the lecture portion of the course. The absence of
a specific laboratory in a course description does not im-
ply that programming should not be required.

2.5 Sample Elementary Level Courses
The following set of courses is provided merely as a

sample to illustrate one of the ways in which core mate-
rial at the elementary level might be presented. Other
implementations are possible. No matter what implemen-
tation is attempted, however, all of the elementary mate-
rial specified in Section 2.3 should be included so that
students are equipped with adequate background for in-
termediate and advanced level material.

Each course described in the sample set is assumed
to be offered on a semester basis. Suggested numbers of
hours of credit are given in parentheses immediately after
the course titles. For example, (2-2-3) indicates two
hours of lectures and two hours of laboratory per week
for a total of three semester hours of credit.

CS 1. Computer Programming I (2-2-3)
The objectives of this course are:

(a) to introduce problem solving methods and algorithm
development;
(b) to teach a high level programming language that is
widely used; and
(c) to teach how to design, code, debug, and document
programs using techniques of good programming style.
COURSE OUTLINE

The material on a high level programming language
and on algorithm development can be taught best as an
integrated whole. Thus the topics should not be covered
sequentially. The emphasis of the course is on the tech-
niques of algorithm development and programming with
style. Neither esoteric features of a programming lan-
guage nor other aspects of computers should be allowed
to interfere with that purpose.

TOPICS

A. Computer Organization. An overview identifying
components and their functions, machine and assem-
bly languages. (5%)

B. Programming Language and Programming. Repre-
sentation of integers, reals, characters, instructions.
Data types, constants, variables. Arithmetic expres-
sion. Assignment statement. Logical expression. Se-
quencing, alternation, and iteration. Arrays. Subpro-
grams and parameters. Simple I /O. Programming
projects utilizing concepts and emphasizing good
programming style. (45 %)

C. Algorithm Development. Techniques of problem
solving. Flowcharting. Stepwise refinement. Simple
numerical examples. Algorithms for searching (e.g.
linear, binary), sorting (e.g. exchange, insertion),
merging of ordered lists. Examples taken from such
areas as business applications involving data manip-
ulation, and simulations involving games. (45 %)

D. Examinations. (5%)

CS 2. Computer Programming II (2-2-3)
Prerequisite: CS 1

The objectives of this course are:
(a) to continue the development of discipline in program
design, in style and expression, in debugging and testing,
especially for larger programs;
(b) to introduce algorithmic analysis; and
(c) to introduce basic aspects of string processing, recur-
sion, internal search/sort methods and simple data struc-
tures.

COURSE OUTLINE

The topics in this outline should be introduced as
needed in the context of one or more projects involving
larger programs. The instructor may choose to begin with
the statement of a sizeable project, then utilize structured
programming techniques to develop a number of small
projects each of which involves string processing, recur-
sion, searching and sorting, or data structures. The em-
phasis on good programming style, expression, and doc-
umentation, begun in CS 1, should be continued. In order
to do this effectively, it may be necessary to introduce a
second language (especially if a language like Fortran is
used in CS 1). In that case, details of the language should
be included in the outline. Analysis of algorithms should
be introduced, but at this level such analysis should be
given by the instructor to the student.

Consideration should be given to the implementation
of programming projects by organizing students into
programming teams. This technique is essential in ad-
vanced level courses and should be attempted as early as
possible in the curriculum. If large class size makes such
an approach impractical, every effort should be made to
have each student's programs read and critiqued by an-
other student.

ToPIcs

A. Review. Principles of good programming style, ex-
pression, and documentation. Details of a second lan-
guage if appropriate. (15 %)

B. Structured Programming Concepts. Control flow. In-
variant relation of a loop. Stepwise refinement of

151 Communications March 1979
of Volume 22
the ACM Number 3

both statements and data structures, or top-down
programming. (40%)

C. Debugging and Testing. (10%)
D. String Processing. Concatenation. Substrings. Match-

ing. (5%)
E. lnternal Searching and Sorting. Methods such as bi-

nary, radix, Shell, quicksort, merge sort. Hash cod-
ing. (10%)

F. Data Structures. Linear allocation (e.g. stacks,
queues, deques) and linked allocation (e.g. simple
linked lists). (10%)

G. Recursion. (5%)
H. Examinations. (5%)

CS 3. Introduction to Computer Systems (2-2-3)
Prerequisite: CS 2

The objectives of this course are:
(a) to provide basic concepts of computer systems;
(b) to introduce computer architecture; and
(c) to teach an assembly language.
COURSE OUTLINE

The extent to which each topic is discussed and the
ordering of topics depends on the facilities available and
the nature and orientation of CS 4 described below.
Enough assembly language details should be covered
and projects assigned so that the student gains experience
in programming a specific computer. However, concepts
and techniques that apply to a broad range of computers
should be emphasized. Programming methods that are
developed in CS 1 and CS 2 should also be utilized in
this course.
TOPICS
A. Computer Structure and Machine Language. Mem-

ory, control, processing and I /O units. Registers,
principal machine instruction types and their formats.
Character representation. Program control. Fetch-
execute cycle. Timing. I /O operations. (15 %)

B. Assembly Language. Mnemonic operations. Sym-
bolic addresses. Assembler concepts and instruction
format. Data-word definition. Literals. Location
counter. Error flags and messages. Implementation
of high level language constructs. (30%)

C. Addressing Techniques. Indexing. Indirect Address-
ing. Absolute and relative addressing. (5 %)

D. Macros. Definition. Call. Parameters. Expansion.
Nesting. Conditional assembly. (10 %)

E. File 1/0. Basic physical characteristics of I /O and
auxiliary storage devices. File control system. I /O
specification statements and device handlers. Data
handling, including buffering and blocking. (5 %)

F. Program Segmentation and Linkage. Subroutines.
Coroutines. Recursive and re-entrant routines.
(20%)

G. Assembler Construction. One-pass and two-pass as-
semblers. Relocation. Relocatable loaders. (5%)

H. Interpretive Routines. Simulators. Trace. (5 %)
I. Examinations. (5%)

152

CS 4. Introduction to Computer Organization
(3-0-3) or (2-2-3)
Prerequisite: CS 2

The objectives of this course are:
(a) to introduce the organization and structuring of the
major hardware components of computers;
(b) to understand the mechanics of information transfer
and control within a digital computer system; and
(c) to provide the fundamentals of logic design.

COURSE OUTLINE
The three main categories in the outline, namely

computer architecture, arithmetic, and basic logic de-
sign, should be interwoven throughout the course rather
than taught sequentially. The first two of these areas may
be covered, at least in part, in CS 3 and the amount of
material included in this course will depend on how the
topics are divided between the two courses. The logic
design part of the outline is specific and essential to this
course. The functional, logic design level is emphasized
rather than circuit details which are more appropriate in
engineering curricula. The functional level provides the
student with an understanding of the mechanics of in-
formation transfer and control within the computer sys-
tem. Although much of the course material can and
should be presented in a form that is independent of any
particular technology, it is recommended that an actual,
simple minicomputer or microcomputer system be stud-
ied. A supplemental laboratory is appropriate for that
purpose.

TOPICS
A. Basic Logic Design. Representation of both data and

control information by digital (binary) signals. Logic
properties of elemental devices for processing (gates)
and storing (flipflops) information. Description by
truth tables, Boolean functions and timing diagrams.
Analysis and synthesis of combinatorial networks of
commonly used gate types. Parallel and serial regis-
ters. Analysis and synthesis of simple synchronous
control mechanisms; data and address buses; ad-
dressing and accessing methods; memory segmenta-
tion. Practical methods of timing pulse generation.
(25%)

B. Coding. Commonly used codes (e.g. BCD, ASCII).
Parity generation and detection. Encoders, decoders,
code converters. (5 %)

C. Number Representation and Arithmetic. Binary
number representation, Unsigned addition and sub-
traction. One's and two's complement, signed mag-
nitude and excess radix number representations and
their pros and cons for implementing elementary
arithmetic for BCD and excess-3 representations.
(10%)

D. Computer Architecture. Functions of, and communi-
cation between, large-scale components of a com-
puter system. Hardware implementation and se-
quencing of instruction fetch, address construction,
and instruction execution. Data flow and control

Communications March 1979
of Volume 22
the ACM Number 3

E.

F.

block diagrams of a simple processor. Concept of
microprogram and analogy with software. Properties
of simple I /O devices and their controllers, synchro-
nous control, interrupts. Modes of communications
with processors. (35 %)
Example. Study of an actual, simple minicomputer
or microcomputer system. (20%)
Examinations. (5 %)

CS 5. Introduction to File Processing (3-0-3)
Prerequisite: CS 2

The objectives of this course are:
(a) to introduce concepts and techniques of structuring
data on bulk storage devices;
(b) to provide experience in the use of bulk storage de-
vices; and
(c) to provide the foundation for applications of data
structures and file processing techniques.

COURSZ OUTLINE

The emphasis given to topics in this outline will vary
depending on the computer facilities available to stu-
dents. Programming projects should be assigned to give
students experience in file processing. Characteristics
and utilization of a variety of storage devices should be
covered even though some of the devices are not part of
the computer system that is used. Algorithmic analysis
and programming techniques developed in CS 2 should
be utilized.

ToPIcs

A. File Processing Environment. Definitions of record,
file, blocking, compaction, database. Overview of
database management system. (5 %)

B. Sequential Access. Physical characteristics of sequen-
tial media (tape, cards, etc.). External sort/merge
algorithms. File manipulation techniques for updat-
ing, deleting and inserting records in sequential files.
(3O%)

C. Data Structures. Algorithms for manipulating linked
lists. Binary, B-trees, B*-trees, and AVL trees. Algo-
rithms for traversing and balancing trees. Basic con-
cepts of networks (plex structures). (20%)

D. Random Access. Physical characteristics of disk/
drum and other bulk storage devices. Physical repre-
sentation of data structure on storage devices. Algo-
rithms and techniques for implementing inverted
lists, multilist, indexed sequential, and hierarchical
structures. (35 %)

E. File 1/0. File control systems and utility routines,
I /O specification statements for allocating space and
cataloging files. (5%)

F. Examinations. (5%)

2.6 Sample Intermediate Level Courses
Sample versions of three courses at the intermediate

level are given to illustrate topics and material which
should be required of all computer science majors. This
material and the elementary level topics in Section 2.3

153

constitute the minimum requirements which should be
common to all computer science undergraduate pro-
grams to achieve the basic objectives of those programs.

Courses which cover the intermediate level material
contain a strong emphasis on fundamental concepts ex-
emplified by various types of programming languages,
architecture and operating systems, and data structures.
Neither theoretical treatments nor case study approaches
in and of themselves are adequate or appropriate at this
level. Advanced level (elective) courses may be used for
predominantly theoretical treatment of topics or for com-
prehensive case studies.

CS 6. Operating Systems and Computer
Architecture I (2-2-3)
Prerequisite: CS 3 and CS 4

(CS 5 recommended)
The objectives of this course are:

(a) to develop an understanding of the organization and
architecture of computer systems at the register-transfer
and programming levels of system description;
(b) to introduce the major concept areas of operating sys-
tems principles;
(c) to teach the inter-relationships between the operating
system and the architecture of computer systems.

COURSE OUTLINE
This course should emphasize concepts rather than

case studies. Subtleties do exist, however, in operating
systems that do not readily follow from concepts alone.
It is recommended that a laboratory requiring hands on
experience be included with this course.

The laboratory for the course would ideally use a
small computer where students could actually implement
sections of operating systems and have them fail without
serious consequences to other users. This system should
have, at a minimum, a CPU, memory, disk or tape, and
some terminal device such as a teletype or CRT. The
second best choice for the laboratory experience would
be a simulated system running on a larger machine.

The course material should be liberally sprinkled
with examples of operating system segments imple-
mented on particular computer system architectures. The
interdependence of operating systems and architecture
should be clearly delineated. Integrating these subjects
at an early stage in the curriculum is particularly impor-
tant because the effects of computer architecture on sys-
tems software has long been recognized. Also, modern
systems combine the design of operating systems and the
architecture.
TOPICS

A. Review. Instruction sets. I /O and interrupt structure.
Addressing schemes. Microprogramming. (10%)

B. Dynamic Procedure Activation. Procedure activation
and deactivation on a stack, including dynamic stor-
age allocation, passing value and reference parame-
ters, establishing new local environments, addressing
mechanisms for accessing parameters (e.g. displays,

Communications March 1979
of Volume 22
the ACM Number 3

relative addressing in the stack). Implementing non-
local references. Re-entrant programs. Implementa-
tion on register machines. (15 %)

C. System Structure. Design methodologies such as
level, abstract data types, monitors, kernels, nuclei,
networks of operating system modules. Proving cor-
rectness. (10%)

D. Evaluation. Elementary queueing, network models
of systems, bottlenecks, program behavior, and sta-
tistical analysis. (15 %)

E. Memory Management. Characteristics of the hier-
archy of storage media, virtual memory, paging, seg-
mentation. Policies and mechanisms for efficiency of
mapping operations and storage utilization. Memory
protection. Multiprogramming. Problems of auxil-
iary memory. (20%)

F. Process Management. Asynchronous processes. Us-
ing interrupt hardware to trigger software procedure
calls. Process stateword and automatic SWITCH in-
structions. Semaphores. Ready lists. Implementing
a simple scheduler. Examples of process control
problems such as deadlock, producer/consumers,
readers/writers. (20%)

G. Recovery Procedures. Techniques of automatic and
manual recovery in the event of system failures. (5 %)

H. Examinations. (5%)

CS 7. Data Structures and Algorithm Analysis
(3-0-3)
Prerequisite: CS 5

The objectives of this course are:
(a) to apply analysis and design techniques to nonnu-
meric algorithms which act on data structures;
(b) to utilize algorithmic analysis and design criteria in
the selection of methods for data manipulation in the
environment of a database management system.
COURSE OUTLINE

The material in this outline could be covered sequen-
tially in a course. It is designed to build on the founda-
tion established in the elementary material, particularly
on that material which involves algorithm development
(P1, P3) and data structures and file processing (D1,
D7). The practical approach in the earlier material
should be made more rigorous in this course through the
use of techniques for the analysis and design of efficient
algorithms. The results of this more formal study should
then be incorporated into data management system de-
sign decisions. This involves differentiating between theo-
retical or experimental results for individual methods
and the results which might actually be achieved in sys-
tems which integrate a variety of methods and data struc-
tures. Thus, database management systems provide the
applications environment for topics discussed in the
course.

Projects and assignments should involve implemen-
tation of theoretical results. This suggests an alternative
way of covering the material in the course, namely to

154

treat concepts, algorithms, and analysis in class and deal
with their impact on system design in assignments. Of
course, some in-class discussions of this impact would
occur, but at various times throughout the course rather
than concentrated at the end.
ToPics

A. Review. Basic data structures such as stacks, queues,
lists, trees. Algorithms for their implementation.
(10%)

B. Graphs. Definition, terminology, and property (e.g.
connectivity). Algorithms for finding paths and span-
ning trees. (15 %)

C. Algorithms Design and Analysis. Basic techniques of
design and analysis of efficient algorithms for internal
and external sorting/merging/searching. Intuitive
notions of complexity (e.g. NP-hard problems).
(30%)
Memory Management. Hashing. Algorithms for dy-
namic storage allocation (e.g. buddy system, bound-
ary-tag), garbage collection and compaction. (15 %)
System Design. Integration of data structures, sort/
merge/search methods (internal and external) and
memory media into a simple database management
system. Accessing methods. Effects on run time,
costs, efficiency. (25%)
Examinations. (5 %)

D.

E.

F.

CS 8. Organization of Programming Languages
(3-0-3)
Prerequisite: CS 2 (CS 3 and CS 5 highly

recommended)
The objectives of this course are:

(a) to develop an understanding of the organization of
programming languages, especially the run-time behav-
ior of programs;
(b) to introduce the formal study of programming lan-
guage specification and analysis;
(c) to continue the development of problem solution and
programming skills introduced in the elementary level
material.

COURSE OUTLINE

This is an applied course in programming language
constructs emphasizing the run-time behavior of pro-
grams. It should provide appropriate background for
advanced level courses involving formal and theoretical
aspects of programming languages and/or the compila-
tion process.

The material in this outline is not intended to be cov-
ered sequentially. Instead, programming languages could
be specified and analyzed one at a time in terms of their
features and limitations based on their run-time environ-
ments. Alternatively, desirable specification of program-
ming languages could be discussed and then exemplified
by citing their implementations in various languages. In
either case, programming exercises in each language
should be assigned to emphasize the implementations of
language features.

Communications March 1979
of Volume 22
the ACM Number 3

T o P i c s

A. Language Definition Structure. Formal language con-
cepts including syntax and basic characteristics of
grammars, especially finite state, context-free, and
ambiguous. Backus-Naur Form. A language such as
Algol as an example. (15 %)

B. Data Types and Structures. Review of basic data
types, including lists and trees. Constructs for speci-
fying and manipulating data types. Language fea-
tures affecting static and dynamic data storage man-
agement. (1 0 %)

C. Control Structures and Data Flow. Programming
language constructs for specifying program control
and data transfer, including D O . . . FOR, D O . . .
WHILE, R E P E A T . . . UNTIL, BREAK, subrou-
tines, procedures, block structures, and interrupts.
Decision tables, recursion. Relationship with good
programming style should be emphasized. (! 5 %)

D. Run-time Consideration. The effects of the run-time
environment and binding time on various features of
programming languages. (25 %)

E. Interpretative Languages. Compilation vs. interpre-
tation. String processing with language features such
as those available in SNOBOL 4. Vector processing
with language features such as those available in
APL. (2 0 %)

F. Lexical Analysis and Parsing. An introduction to
lexical analysis including scanning, finite state ac-
ceptors and symbol tables. An introduction to pars-
ing and compilers including push-down acceptors,
top-down and bottom-up parsing. (10 %)

G. Examinations. (5 %)

3. Computer Science Electives

3.1 Introduction
In this section a variety of computer science electives

will be considered which are appropriate at the elemen-
tary and advanced levels. Elective courses at the elemen-
tary level, while enhancing the program of a student,
normally should not be used to meet the requirements of
the major program. Elective courses at the advanced
level should be selected to meet major requirements as
well as to allow the student to explore particular areas of
computer science in more detail.

3.2 Elementary Level
At the elementary level it would be highly desirable to

provide a mechanism for offering courses in specific pro-
gramming languages such as APL, Cobol, LISP, or P L / I
which could be taken as electives by computer science
majors or majors in other disciplines. The extent of the
course, the number of credits offered and the prerequi-
sites would depend on the language offered and the pur-
pose for offering it. One convenient way to achieve this
goal would be to include in the curriculum a Program-
ming Language Laboratory for variable credit (i.e. one

to three semester hours). The prerequisite could be des-
ignated in general as "consent of instructor" or more
specifically as CS 1 or CS 2 and the laboratory could be
taken for repeated credit provided that different lan-
guages were taught. In addition to its function as an elec-
tive, the laboratory could be offered in conjunction with
an intermediate or advanced course, thus enabling an
instructor to require students to learn a specific language
at the same time they take a course (e.g. LISP in the
laboratory along with CS 7--Data Structures and Algo-
rithm Analysis).

3.3 Advanced Level
Ten advanced level elective courses are specified.

Computer Science departments should offer as many as
possible of these courses on a regular basis, but few de-
partments are expected to have sufficient resources to
offer all, or even a large majority, of them. Possible addi-
tional courses which could be offered as special topics
are listed in Section 3.4.

CS 9. Computers and Society (3-0-3)
Prerequisite: elementary core material

The objectives of this course are:
(a) to present concepts of social value and valuations;
(b) to introduce models which describe the impact of
computers on society;
(c) to provide a framework for professional activity that
involves explicit consideration of and decisions concern-
ing social impact;
(d) to present tools and techniques which are applicable
to problems posed by the social impact of computers.

Much debate surrounds the role of this course in the
curriculum. While few will disagree that professional
computer scientists should be instructed to evaluate
social issues regarding that which they do, it has been
argued that such a course is not a computer science
course, but rather should be in the area of the social sci-
ences. Another argument is presented which states that
this material is so important that it should not merely be
covered in a single course, but instead should be inte-
grated throughout the curriculum. Although this latter
argument has validity, it is difficult to insure sufficient
coverage of topics when they are scattered throughout
a number of courses. As a result it is recommended that
this course be considered at least as a strongly recom-
mended elective. If, in fact, the material to meet the
above objectives is not covered in the other intermediate
and advanced level courses in this program, then this
course should be required.

A computer science major taking an advanced level
computers and society course would be expected to be
familiar with the elementary material described in the
previous section. All of that material, however, is not
necessarily prerequisite for such a course. The prerequi-
site should, in fact, be chosen in such a manner that non-
majors would also be able to take the course. A mixture
of majors in such a course would provide broadening

155 Communications March 1979
of Volume 22
the ACM Number 3

interchange and would benefit both the computer science
students and the other majors. The course should be
taught by the computer science faculty, but team-teach-
ing with faculty from other disciplines should be encour-
aged. The course could be general and treat a number of
computer impact topics, or specific, and treat in depth
one of the topics (such as legal issues in computing). This
recommendation is conditioned on the assumption that
instructors who present material on societal impact,
whether as an entire course or as part of other courses,
will try to include both sides of or approaches to issues
without instilling their own philosophical leanings on
complex societal issues. For example, certain topics con-
tain political overtones which should be discussed, but
which, if not done carefully, can give the material a polit-
ical science flavor it does not deserve.

A strict outline is not given. The number of topics
and extent of coverage as well as the instructional tech-
niques used can vary considerably and still meet the ob-
jectives of the course. A term project involving computer
applications that are manifested in the local community
is strongly recommended. Possible topics, but certainly
not an exhaustive list, that could be included in such a
course are as follows:

A. History of computing and technology
B. The place of the computer in modern society
C. The computer and the individual
D. Survey of computer applications
E. Legal issues
F. Computers in decision-making processes
G. The computer scientist as a professional
H. Futurists' views of computing
I. Public perception of computers and computer

scientists

CS 10. Operating Systems and Computer
Architecture II (2-2-3)
Prerequisite: CS 6; Corequisite: a course in

statistics
COURSE OUTLINE

This course continues the development of the mate-
rial in CS 6. Emphasis should be on intrasystem com-
munication.
TOPICS

A. Review. I /O and interrupt structure. Addressing
schemes. Memory management. (10%)

B. Concurrent Processes. Concepts of processes in par-
allel. Problems associated with determinancy, free-
dom from deadlock, mutual exclusion, and synchro-
nization. (15 %)

C. Name Management. Limitations of linear address
space. Implementation of tree-structured space of
objects for the support of modular programming.
(15%)

D. Resource Allocation. Queueing and network control
policies. Concepts of system balancing and thrashing.

156

Job activation/deactivation. Process scheduling.
Multiprogramming systems. (25%)

E. Protection. Contraints for accessing objects. Mech-
anism to specify and enforce access rules. Imple-
mentation in existing systems. (15 %)

F. Advanced Architecture and Operating Systems Im-
plementations. Pipelining and parallelism. User in-
terface considerations. Introduction to telecommuni-
cations, networks (including minicomputers) and
distributed systems. (15 %)

G. Examinations. (5 %)

CS 11. Database Management Systems Design
(3-0-3)
Prerequisites: CS 6 and CS 7

COURSE OUTLINE

This course should emphasize the concepts and struc-
tures necessary to design and implement a database man-
agement system. The student should become acquainted
with current literature on the subject and should be given
anopportunity to use a database management system if
possible.

During the course the student should gain an under-
standing of various physical file organization and data
organization techniques. The concept of data models
should be covered and the network, relational, and hier-
archical data models should be explored. Examples of
specific database management systems should be ex-
amined and related to the data models discussed. The
student should become familiar with normalized forms
of data relations including canonical schema representa-
tions. Techniques of systems design and implementation
should be discussed and practiced. Data integrity and file
security techniques should be explored. The major ex-
perience of the course should be the design and imple-
mentation of a simple database management system that
would include file security and some form of query into
the system.
ToPicS

A. Introduction to Database Concepts. Goals of DBMS
including data independence, relationships, logical
and physical organizations, schema and subschema.
(5%)

B. Data Models. Hierarchical, network, and relational
models with a description of the logical and data
structure representation of the database system. Ex-
amples of implementations of the various models.
(15%)

C. Data Normalization. First, second, and third normal
forms of data relations. Canonical schema. Data in-
dependence. (5 %)

D. Data Description Languages. Forms, applications,
examples, design strategies. (10%)

E. Query Facilities. Relational algebra, relational cal-
culus, data structures for establishing relations.
Query functions. Design and translation strategies.
(15%)

Communications March 1979
of Volume 22
the ACM Number 3

F. File Organization. Storage hierarchies, data struc-
tures, multiple key systems, indexed files, hashing.
Physical characteristics. (25 %)

G. Index Organization. Relation to files. Inverted file
systems. Design strategies. (5 %)

H. File Security. Authentication, authorization, trans-
formation, encryptions. Hardware and software tech-
niques. Design strategies. (10%)

I. Data Integrity and Reliability. Redundancy, recov-
ery, locking, and monitoring. (5 %)

J. Examinations. (5%)

CS 12. Artificial Intelligence (3-0-3)
Prerequisite: CS 7

COURSE OUTLINE

This course introduces students to basic concepts
and techniques of artificial intelligence, or intelligent sys-
tems, and gives insights into active research areas and
applications. Emphasis is placed on representation as a
central and necessary concept for work in intelligent sys-
tems. Strategies for choosing representations as well as
notational systems and structures should be discussed.
Students should understand, for example, that the selec-
tion of a programming language is really a basic repre-
sentational choice and that an important component of
that choice is whether the programming language is
really the basic representational mode or whether it is a
translator/interpreter of an intermediate representa-
tional mode such as the predicate calculus or other nota-
tional system (e.g. modal or fuzzy logics).

Other issues of importance in this course are natural
language, vision systems, search strategies, and control.
The extent and type of coverage will vary. The use of
natural language and vision systems in applications of
intelligent systems research to other disciplines should
be emphasized. Search strategies should be seen as be-
ing implicit in representation and control. General issues
related to control should be discussed and illustrated by
examples of existing systems. A variety of applications
could be mentioned at the beginning of the course as
motivation for studying intelligent systems. These appli-
cations could then be elaborated on at appropriate times
throughout the course or at the end.

Students could profit from a background in LISP be-
cause of its widespread use in artificial intelligence work.
A Programming Language Laboratory as described in
Section 3.2 could be used to provide this background
either concurrently or with CS 7. If neither alternative is
possible, then an introduction to LISP could be included
in the course during the discussion of representation, but
there would not be enough time for an in-depth treatment
of the language.

TOPICS
A. Representation. Constraints and capabilities of nota-

tional systems such as logics and programming lan-
guages. Notational structures such as trees, networks,
statistical representations, and frames. Strategies for

choosing representations (e.g. exploiting natural con-
straints in data, representation of similar patterns as
in analogies). Introduction to LISP. (40%)

B. Search Strategies. Tree and graph searches (e.g. depth
and breadth first, minimax, alpha-beta). Heuristics.
(15%)

C. Control. General characteristics of production and
procedurally oriented systems. Parallel vs. serial
processing. Existing systems to illustrate issues (e.g.
HEARSAY II, DENDRAL, MYCIN). (20%)

D. Communication and Perception. Introduction to
concepts related to current research in natural lan-
guage and in vision systems. Use of tactility in intel-
ligent systems. (10%)

E. Applications. Sampling of current work in such areas
as psychology, medicine, science, architecture, and
such machines as industrial robots. (10%)

F. Examinations. (5 %)

CS 13. Algorithms (3-0-3)
Prerequisites: CS 7 and CS 8

COURSE OUTLINE

This course should develop students' abilities as
writers and critics of programs by exposing students to
problems and their algorithmic solution. As program-
ming is both art and science, student programmers can
benefit considerably from analysis of case studies in a
wide variety of areas. All options for presenting algo-
rithms in a very high level language should be considered,
without regard for whether a processor exists for that
language. Translation of each algorithm to a more ma-
chine-readable form can be given separately, if necessary.
Careful choice of the level of abstraction appropriate to
a given problem should be made as a means of adjust-
ing students' load in the course.

Domain independent techniques should emerge dur-
ing the course as algorithm-rich topics are presented
from various areas. One convenient classification of top-
ics into areas to ensure breadth of coverage is: combina-
torics, numerical analysis, systems programming, and
artificial intelligence. Algorithms from a majority of these
areas should be analyzed, although not necessarily in the
order indicated in the outline. The percentage ranges
are intended to give instructors flexibility in choosing
areas and topics.
TOPICS

A. Combinatorics. Algorithms for unordered and or-
dered sets, graphs, matrices (within the semi-ring
paradigm), bit vectors. (10-25%)

B. Numerical Analysis. Algorithms for integer arithme-
tic (fast multiplication, prime testing, sieves, factor-
ing, greatest common denominator, linear Diophan-
fine equations), real arithmetic (Taylor series, how
various calculators work), polynomial arithmetic,
random numbers, matrix operations (inversion, de-
terminants). (10-25%)

157 Communications March 1979
of Volume 22
the ACM Number 3

C. Systems Programming. Algorithms in text processors
(pattern matching) language processors (parsing,
storage management), operating systems (schedul-
ing, synchronization), database management (sort-
ing, searching). (10-25 %)

D. Artificial Intelligence. Algorithms in natural language
processing (concordances, context-free parsers), ro-
botics (vision, manipulator operation), theorem prov-
ing and problem solving (decision methods, search
heuristics). (10-25%)

E. Domain Independent Techniques. Divide-and-con-
quer. Solution of recurrence equations. Dynamic
programming. (15 %)

F. Examinations. (5 %)

CS 14. Software Design and Development
(3-0-3) or (2-2-3)
Prerequisites: CS 7 and CS 8

COURSE OUTLINE

This course presents a formal approach to state-of-
the-art techniques in software design and development
and provides a means for students to apply the tech-
niques. An integral part of the course is the involvement
of students working in teams in the organization, man-
agement, and development of a large software project.
The team project aspect can be facilitated either by
scheduling separate laboratories or by using some of the
lecture periods to discuss practical aspects of the team
projects.

TOPICS

A. Design Techniques. Formal models of structured
programming. Demonstrations of code reading and
correctness. Stepwise refinement and reorganization.
Segmentation. Top-down design and development.
Information hiding. Iterative enhancement. Struc-
tured design. Strength and coupling measures. (50%)

B. Organization and Management. Milestones and esti-
mating. Chief programmer teams. Program libraries.
Walk-throughs. Documentation. (15 %)

C. Team Project. Organization, management, and de-
velopment of a large scale software project by stu-
dents working in teams. (30%)

D. Examinations. (5%)

CS 15. Theory of Programming Languages (3-0-3)
Prerequisite: CS 8

COURSE OUTLINE
This is a course in the formal treatment of program-

ming language translation and compiler design concepts.
Course material builds on the background established
in CS 8, specifically on the introduction to lexical anal-
ysis, parsing, and compilers. Emphasis should be on the
theoretical aspects of parsing context-free languages,
translation specifications, and machine-independent code
improvement. Programming projects to demonstrate var-
ious concepts are desirable, but extensive projects to
write compilers, or major components of compilers,

158

should be deferred to a special topics course on compiler
writing.
ToPics

A. Review. Grammars, languages, and their syntax and
semantics. Concepts of parsing and ambiguity. BNF
description of Algol. (15 %)

B. Scanners. Finite state grammars and recognizers.
Lexical scanners. Implementation of symbol tables.
(20%)

C. Parsers. Theory and examples of context-free lan-
guages and push-down automata (PDA). Context-
free parsing techniques such as recursive descent,
LL(k) , precedence, LR(k) , SLR (k). (40%)

D. Translation. Techniques of machine-independent
code generation and improvement. Inherited and
synthesized attributes. Syntax directed translation
schema. (20%)

E. Examinations. (5%)

CS 16. Automata, Computability, and Formal
Languages (3-0-3)
Prerequisites: CS 8 and MA 4 (see Sect. 4.1)

COURSE OUTLINE

This course offers a diverse sampling of the areas of
theoretical computer science and their hierarchical inter-
connections. Basic results relating to formal models of
computation should be introduced. Stress should be
given to developing students' skills in understanding
rigorous definitions in computing environments and in
determining their logical consequences. In this regard
strong emphasis should be placed on problem assign-
ments and their evaluations.

Material need not be presented in the order specified,
but it is important to give nearly equal emphasis among
the major areas. Topics within each area can be covered
in greater depth in appropriate special topics courses.
ToPIcs

A. Finite State Concepts. Acceptors (including non-
determinism). Regular expressions. Closure proper-
ties. Sequential machines and finite state transducers.
State minimization. (30%)

B. Formal Grammars. Chomsky hierarchy grammars,
pushdown acceptors and linear bounded automata.
Closure properties and algorithms on grammars.
(35%)

C. Computability and Turing Machines. Turing machine
as acceptor and transducer. Universal machine.
Computable and noncomputable functions. Halting
problem. (30%)

D. Examinations. (5%)

CS 17. Numerical Mathematics: Analysis (3-0-3)
Prerequisites: CS 1 and MA 5

COURSE OUTLINE

This course with CS 18 forms a one-year introduc-
tion to numerical analysis. The courses are intended to

Communications March 1979
of Volume 22
the ACM Number 3

be independent of each other. Students should be ex-
pected not only to learn the basic algorithms of numeri-
cal computation, but also to understand the theoretical
foundations of the algorithms and various problems re-
lated to the practical implementations of the algorithms.
Thus each topic implies a discussion of the algorithm,
the related theory, and the benefits, disadvantages, and
pitfalls associated with the method. Programming assign-
ments should be given to illustrate solutions of realistic
problems rather than just the coding of various algo-
rithms. Topics such as convergence and error analysis
for specific algorithms should be treated in a theoretical
manner. Floating point arithmetic and use of mathe-
matical subroutine packages are included in both courses
because they should be discussed throughout the courses
as they relate to specific problems. All other topics in
each course should be covered sequentially. The depth
to which topics are treated may vary, but most, if not all,
topics should be discussed.
TOPICS

A. Floating Point Arithmetic. Basic concepts of floating
point number systems. Implications of finite preci-
sion. Illustrations of errors due to roundoff. (15 %)

B. Use of Mathematical Subroutine Packages. (5 %)
C. Interpolation. Finite difference calculus. Polynomial

interpolation. Inverse interpolation. Spline interpola-
tion. (15%)

D. Approximation. Uniform approximation. Discrete
least-squares. Polynomial approximation. Fourier
approximation. Chebyshev economization. (1 0 2)

E. Numerical Integration and Differentiation. Interpola-
tory numerical integration. Euler-McLauren sum
formula. Gaussian quadrature. Adaptive integration.
Fast Fourier transform. Richardson extrapolation
and numerical differentiation. (15 %)

F. Solution of Nonlinear Equations. Bisection. Fixed
point iteration. Newton's method. Secant method.
Muller's method. Aitken's process. Rates of conver-
gence. Efficient evaluation of polynomials. Bair-
stow's method. (15%)

G. Solution of Ordinary Differential Equations. Taylor
series methods. Euler's method, with local and global
error analysis. Runge-Kutta methods. Predictor-cot-
rector methods. Automatic error monitoring-change
of step size and order. Stability. (20%)

H. Examinations. (5%)

CS 18. Numerical Mathematics: Linear Algebra
(3-0-3)
Prerequisites: CS 1 and MA 5

COURSE OUTLINE

The same remarks apply to this course as to CS 17.
TOPICS

A. Floating Point Arithmetic. Basic concepts of float-
ing point number systems. Implications of finite pre-
cision. Illustrations of errors due to roundoff. (15 %)

159

B. Use of Mathematical Subroutine Packages. (5 %)
C. Direct Methods for Linear Systems of Equations.

Gaussian elimination. Operational counts. Imple-
mentation, including pivoting and scaling. Direct fac-
torization methods. (20%)

D. Error Analysis and Norms. Vector norms and mat-
rix norms. Condition numbers and error estimates.
Iterative improvement. (15 %)

E. lterative Methods. Jacobi's method. Gauss-Seidel
method. Acceleration of iterative methods. Overre-
laxation. (15%)

F. Computation of Eigenvalues and Eigenvectors. Basic
theorems. Error estimates. The power method. Ja-
cobi's method. Householder's method. (15 %)

G. Related Topics. Numerical solution of boundary
value problems for ordinary differential equations.
Solution of nonlinear systems of algebraic equations.
Least-squares solution of overdetermined systems.
(1 0 2)

H. Examinations. (5%)

3.4 Special Topics
The special topics courses should be offered when-

ever departmental resources are sufficient to do so. Thus
content and prerequisites may vary each time they are
offered because the available material is changing rapidly
and different faculty members may have widely differing
opinions of what should be included in a course. Most
importantly, the material should be current and topical.
In time, some of the material should be integrated into
courses previously specified or may replace entire courses
in the curriculum. Monitoring of this phase of the pro-
gram should be a continuing activity of individual de-
partments and C3S.

Examples of special topics courses include:
A. Microcomputer Laboratory
B. Minicomputer Laboratory
C. Performance Evaluation
D. Telecommunications/Networks/Distributed

Systems
E. Systems Simulation
F. Advanced Systems Programming
G. Graphics
H. Compiler Writing Laboratory
I. Structured Programming
J. Topics in Automata Theory
K. Topics in Computability
L. Topics in Formal Language Theory
M. Simulation and Modeling

4. The Undergraduate Program

4.1 Introduction
Outlines of eighteen computer science courses are

included in previous sections. Eight of the courses indi-
cate one of the ways in which the core material might be
presented. Ten courses along with thirteen topics courses

Communications Marcia 1979
of Volume 22
the ACM Number 3

Fig. 2. Recommended computer science and mathematics courses.

Fq

I
I

. . . . _ J

illustrate the kind of elective material to be offered at an
advanced level.

The eighteen computer science courses are as fol-
lows:
CS 1. Computer Programming I
CS 2. Computer Programming II
CS 3. Introduction to Computer Systems
CS 4. Introduction to Computer Organization
CS 5. Introduction to File Processing
CS 6. Operating Systems and Computer

Architecture I
CS 7. Data Structures and Algorithm Analysis
CS 8. Organization of Programming Languages
CS 9. Computers and Society
CS 10. Operating Systems and Computer

Architecture II
CS 11. Database Management Systems Design
CS 12. Artificial Intelligence
CS 13. Algorithms
CS 14. Software Design and Development
CS 15. Theory of Programming Languages
CS 16. Automata, Computability, and Formal

Languages
CS 17. Numerical Mathematics: Analysis
CS 18. Numerical Mathematics: Linear Algebra

The structure of these courses is given in Figure 2.
The following set of mathematics courses is included in
the structure for completeness and because of its rele-
vance to an undergraduate program in computer science:
MA 1. Introductory Calculus
MA 2. Mathematical Analysis I
MA 2A. Probability
MA 3. Linear Algebra
MA 4. Discrete Structures
MA 5. Mathematical Analysis II
MA 6. Probability and Statistics

Their role and the extent to which they conform to
the needs of a computer science major are discussed in
Section 4.3.

Solid and dashed lines represent, respectively, abso-
lute and recommended prerequisites. The shaded area
depicts the core curriculum in computer science and re-
quired mathematics courses.

4.2 Computer Science Requirements and Electives
The computer science major will consist of the eight

courses of the core material plus four additional courses
selected from the recommended computer science ad-
vanced electives with no more than two in any one spe-
cific subfield of the disciplines. Within the requirements
for the four elective courses, the special topics courses
specified in Section 3.4 should also be considered as pos-
sible electives for the major.

It should be noted that as students proceed through
the computer science portion of the program, they begin
at a very practical level and as they progress the work
becomes more conceptual and theoretical. At the junior
level the program is strongly conceptual while in the
senior year the program may be fully theoretical, or in-
volve a significant amount of theory supplemented with
laboratory activities.

4.3 Mathematics Requirements
An understanding of and the capability to use a num-

ber of mathematical concepts and techniques are vitally
important for a computer scientist. Analytical and alge-
braic techniques, logic, finite mathematics, aspects of
linear algebra, combinatorics, graph theory, optimization
methods, probability, and statistics are, in various ways,
intimately associated with the development of computer
science concepts and techniques. For example, probabil-
ity and statistics develop the required tools for measure-

160 Communications March 1979
of Volume 22
the ACM Number 3

ment and evaluation of programs and systems, two
important aspects of computer science. Analysis, as
commonly contained in calculus courses, gives the math-
ematical bases for important concepts such as sets, rela-
tions, functions, limits, and convergence. Discrete struc-
tures provides the bases for semigroups, groups, trees,
graphs, and combinatorics, all of which have applica-
tions in algorithms analysis and testing, as well as in data
structure design. Thus mathematics requirements are in-
tegral to a computer science curriculum even though
specific courses are not cited as prerequisites for most
computer science courses. Unfortunately, the kind and
amount of material needed from these areas for com-
puter science usually can only be obtained, if at all, from
the regular courses offered by departments of mathe-
matics for their own majors.

Ideally, computer science and mathematics depart-
ments should cooperate in developing courses concen-
trating on discrete mathematics which are appropriate to
the needs of computer scientists. Such courses, however,
if offered by mathematics departments, would substan-
tially increase their service course load and would con-
stitute a heavy additional commitment of their resources.
On the other hand, these course offerings could consti-
tute an applied mathematics component which, in turn,
might provide attractive alternatives for some mathe-
matics departments. Suitable computer oriented math-
ematics course offerings constitute an important topic
which should be explored more thoroughly both on local
(i.e. individual institutions) and national levels. Specific
course recommendations, however, are outside the do-
main of this report.

Until such time as suitable courses become readily
available, it will be necessary to rely on the most com-
monly offered mathematics courses for the mathematical
background needed by computer science majors. One
set of such courses was recommended in 1965 by the
Committee on Undergraduate Programs in Mathematics
(CUPM) of the Mathematical Association of America.
Courses MA 1, 2, 2A, 3, 5, and 6 in the structure in-
cluded in Section 4.1 are intended to be CUPM recom-
mended courses. Details on course contents can be found
in the CUPM report [5].

MA 4 represents a more advanced course in discrete
structures than that given in "Curriculum '68". The
course will build on concepts developed by the study of
calculus and linear algebra and will emphasize applica-
tions of discrete mathematics to computer science. In
particular, if techniques in probability are not included
in an earlier course, some emphasis should be given to
them in this course. A number of examples of suitable
outlines for this course have appeared in the literature,
primarily in the SIGCSE Bulletin [6, 7, 8, 9, 10].

If courses of the type cited above are the only kind
of mathematics courses available, then MA 1, MA 2,
MA 2A, MA 3, and MA 4 should be required of all
computer science majors. In addition, MA 5 or MA 6
may be required depending on which advanced level

161

computer science electives are selected. If more appro-
priate courses are provided as a result of interaction be-
tween computer science and mathematics departments,
then the specification of required mathematics courses
and the prerequisite structure should be reconsidered.

4.4 Other Requirements and Electives
As specified in this report, the minimum require-

ments are 36 semester hours in computer science and 15
semester hours in mathematics. This is certainly less than
half of the required hours of a typical undergraduate de-
gree program.

Additional requirements and electives will vary with
the requirements of the individual institutions and hence
only the most general of recommendations can be given.

It is certainly recognized that writing and communi-
cation skills must be emphasized throughout the pro-
gram. This must be accomplished by requiring appropri-
ate courses in the humanities, and also by emphasis on
these skills in the courses within the computer science
program itself. Surveys of employers stress the need for
these skills as a requirement for employment.

Science and engineering departments represent fruit-
ful areas for support of a computer science program. For
those institutions with access to an engineering program,
courses such as switching circuits and digital logic should
be utilized. Within the science departments, a number of
options are available to meet general university require-
ments. In addition to courses in fields such as physics, it
should be noted that the increasing emphasis on comput-
ing in the biological and environmental sciences offers
additional options for students.

A large portion of the job market involves work in
business oriented computer fields. As a result, in those
cases where there is a business school or related depart-
ment, it would be most appropriate to take courses in
which one could learn the technology and techniques
appropriate to this field. For those students choosing this
path, business courses develop the background necessary
to function in the business environment.

The general university requirements in the social
sciences, with careful advising, will generally be ade-
quate, although it should be recognized that increasing
use of computers in these fields may make it appropriate
for some students to devise a minor in such an area if
that is within their interests.

In consideration of this entire area of general re-
quirements and electives, it must be recognized that a
person who is going into the computer job market at the
bachelor's level will, in all likelihood, initially be a sys-
tems, scientific, engineering, or business programmer. As
a result, the student is well advised to work out a pro-
gram with an advisor that will provide a meaningful and
thorough background in the area of the student's inter-
est. The general liberal arts requirements of the institu-
tion will give the necessary breadth to the program. A
well developed concentration in an area other than com-

Communications March 1979
of Volume 22
the ACM Number 3

puter science will put the student in a position to develop
and grow in that area as well as in computer science.

5. Service Courses

5.1 Introduction
There is a great need and demand for computer sci-

ence material by students who do not intend to major in
computer science. Faculty of computer science depart-
ments must be willing to offer different courses for those
students than for majors when that is appropriate. Service
courses should be offered by computer science faculty
rather than by faculty in other departments. This, of
course, implies that the courses must be made appealing
by providing appropriate computer science content in a
manner that is attuned to the needs, levels, and back-
grounds of the students taking such courses.

There is some possibility that certain courses can be
team-taught by faculty from computer science and from
one or more other disciplines, but it must be recognized
that this approach is difficult. Heads of departments must
make difficult decisions regarding how much of the de-
partment's teaching resources is to be used for majors
and how much is to be used for students in other dis-
ciplines. In making these decisions, it is essential that
the department and institution properly acknowledge
and reward faculty who are working in this area, if the
courses are to maintain a high level of excellence.

A variety of service courses must be considered to
satisfy the diverse needs of groups of students. Among
the categories of undergraduate level courses are the fol-
lowing: (a) liberal arts or general university require-
ments; (b) supporting work for majors in other dis-
ciplines; and (c) continuing education.

5.2 General Service Courses
Students taking a course to satisfy a requirement

such as a general university requirement may come from
any discipline other than computer science. Some of the
science, engineering, or mathematics oriented students
may profit most by taking the same first course recom-
mended for computer science students (CS 1). This has
an immediate advantage for students who become inter-
ested enough in computing to want additional computer
science courses. They will have the prerequisite for the
second (and subsequent) courses for the computer sci-
ence major. Those students who stop after one or two of
these courses at least have excellent basic programming
techniques to apply to computer oriented work in their
discipline.

Other students will require more specialized study
than that listed in CS 1. For many of these students the
courses listed in the section on elementary computer sci-
ence electives may be more appropriate.

It must still be recognized that a different course (or
courses) must be provided for majors in the fields men-
tioned above as well as for majors in business oriented

162

fields, social sciences, education, and humanities. Service
courses for these students normally should include a
combination of computer appreciation, programming,
applications, and societal impact. Different mixes of
these broad areas should be considered for different
groups, and the amount of each is best determined by
each institution. Topics within each area should be as
pertinent to the group served as possible, especially in
the language chosen to illustrate programming. To meet
this goal, feedback from students is important and com-
munication between computer science and other depart-
ments, including periodic review of the courses, is essen-
tial. The course should have no prerequisites and it
should be made clear to the students that the course is
not intended for those who want additional work in
computer science. If local conditions warrant, the ma-
terial could be presented in two semesters rather than
one.

Though as indicated, full specification of such courses
is impossible, an example can be given to illustrate the
kind of course under consideration:

CSS 1. Computer Applications and Impact (3-0-3)
COURSE OUTLINE

A survey of computer applications in areas such as
file management, gaming, CAI, process control, simula-
tion, and modeling. Impact of computers on individuals
and society. Problem solving using computers with em-
phasis on analysis, formulation of algorithms, and pro-
gramming. Projects chosen from various application
areas of studen't interest.

ToPics (percentages dependent on local situations)

A. Computer Systems: Batch and interactive, real time,
information management, networks. Description of
each system, how it differs from the others, and kinds
of applications for which each system is best suited.

B. Databases: Establishment and use. Data definition
and structures.

C. Errors: Types, effects, handling.
D. Social Implications: Human-machine interface. Pri-

vacy. Moral and legal issues.
E. Future Social Impact: Checkless society. CAI. Na-

tional data banks.
F. Languages: As appropriate, introduction to a busi-

ness oriented language, a symbol manipulation lan-
guage, and/or a procedure oriented language. Brief
exposition of characteristics which make these lan-
guages appropriate for particular classes of problems.

G. Concepts and Techniques Used in Solving Problems:
Selected from appropriate application areas such as
CAI, data management, gaming, information re-
trieval, and simulation.

H. Projects and Examinations.

5.3 Supporting Areas
A number of students will choose computer science

as a supporting (or minor) area. Various possibilities

Communications March 1979
of Volume 22
the ACM Number 3

for sets of courses should be available. One of the ways
to achieve this by using the same courses as taken by a
computer science major is to require courses CS 1 and
CS 2; at least two of the courses CS 3, CS 4, CS 5; and at
least two of the courses CS 6, CS 7, CS 8. Additional
courses could then be taken as student interest and pro-
gram requirements would allow. Computer science fac-
ulty should communicate with faculty from other depart-
ments to determine the needs of the other departments
and to indicate how certain courses or course combina-
tions might satisfy the needs.

In those cases where existing courses are not appro-
priate as supporting work for other majors, new courses
should be created, probably to be offered as upper divi-
sion level courses. Two alternatives for establishing sets
of courses for use as supporting work are as follows: (a)
CS 1 and CS 2, one course combining material from CS 5
and CS 7, and one course combining material from CS 3,
CS 4, and CS 6; and (b) CS 1 and CS 2, one course
combining material from CS 3 and CS 5, and one course
combining material from CS 4, CS 6, and CS 7. Alterna-
tive (a) attempts to combine similar topics from differ-
ent levels while alternative (b) attempts to combine
different topics from similar levels. It should be recog-
nized that students who complete either of the latter two
alternatives may not be well enough prepared to take a
more advanced computer science course for which any
of the courses CS 6, CS 7, or CS 8 are prerequisite.

5.4 Continuing Education
Continuing education is an area which has grown so

rapidly and includes such a large variety of interests that
it is virtually impossible to specify course possibilities.
Nevertheless, computer science departments must ad-
dress the needs appropriate to their local situations.
Some of the possibilities which should be considered are:
(a) adult education courses, probably versions of the
courses suggested to meet general university require-
ments; (b) professional development seminars, usually
consisting of one day to several weeks devoted to a spe-
cific topical area (e.g. minicomputers, database manage-
ment systems); and (c) courses offered in the evenings
or on weekends (on or off campus), possibly regular
course offerings or modifications of them primarily for
employed persons who need to acquire or enhance their
computer science background. The latter possibility
would include full-scale baccalaureate or master's degree
programs.

6. Other Considerations

6.1 Introduction
Implementation of the computer science curriculum

recommendations given in this report implies more than
the development of a coherent program of courses. Ar-
ticulation with other educational institutions and with
employers of graduates of such programs must be given

163

serious attention, and a commitment must be made to
provide and maintain these resources. In most cases,
such commitments go well beyond the boundaries of
computer science departments.

Specific requirements involving such areas as staff,
equipment, and articulation will vary among institutions
depending on such things as size, location, capability,
and mission of the school and program. As a result,
specific recommendation in these areas cannot be given.
However, in this section, general guidelines for imple-
mentation in these areas are discussed.

6.2 Facilities
In order to implement the full set of recommenda-

tions contained in this report, a wide range of computing
facilities will be required. Equipment such as data entry
devices, microcomputers, minicomputers, and medium
or large-scale computer systems all play separate and
important roles in the development of the computer
scientist.

Data entry devices such as card punches, teletype-
writers, and display terminals should be provided for
program preparation and communication between stu-
dent and computer. Such equipment should be con-
veniently located and in a large enough area for both
easy and convenient student access and use. This equip-
ment may be provided and maintained by the central
computing facility at the institution for general student
and faculty use, or, if enrollments in the computer sci-
ence program and demands for service warrant, the
equipment may be located and maintained by the de-
partment with some restriction on the use by other de-
partments. To implement successfully an adequate pro-
gram that insures easy and ready access to such facilities,
close cooperation and planning is necessary that will
involve the computer science department, the computer
center, and, perhaps, other departments which use these
computer facilities.

Microcomputers are quite desirable in teaching de-
tails of computer architecture previously only attainable
by extensive programming of "hypothetical computers,"
simulators, or textbook discussions. They have provided
a relatively inexpensive and highly versatile resource
which can be used in a variety of ways including com-
bining several such units into reasonably sophisticated
and powerful computer systems. Their use is becoming
so widespread that in addition to using microcomputers
in a systems course, under some circumstances, con-
sideration may be given to offering a laboratory course
in which each student, or a group of students in the
course, would purchase a suitable kit and construct a
computer.

The availability of one or more minicomputers in a
department allows the students to obtain "hands-on" ex-
perience as well as the opportunity to utilize interactive
systems and programming languages which may not be
available, or practical, on a medium or large-scale com-
puter system. This kind of equipment also allows the

Communications March 1979
of Volume 22
the ACM Number 3

student to work on software development projects, and
other projects that might not be possible due to restric-
tions on the use of the central facility. It is desirable that
the department maintain and schedule such minicom-
puter facilities in such a way that student usage and
software development can proceed in an orderly fashion
through laboratory course work and individual projects.

A medium or large-scale computer, normally op-
erated and maintained as a central facility at the institu-
tion for use by all departments, should provide appropri-
ate hardware and software support for the major pro-
gram. Auxiliary memory is required in order to store
files so that access methods specified in the core courses
can be implemented and tested. Suitable input/output
devices and system facilities are needed so that rapid
turnaround of student jobs is possible, interactive com-
puting is available, and programming languages used in
the cUrriculum are supported.

Regardless of what specific items of computer equip-
ment are available to support a curriculum in computer
science, effective teaching and research in the field re-
quire laboratory facilities. Computer science is in part
an empirical science which involves implementing pro-
cedures as well as studying theoretically based processes.
Because systems, algorithms, languages, and data struc-
tures are created, studied, and measured via combina-
tions of hardware and software, it is essential that ap-
propriate laboratory facilities be made available that are
comparable to those necessary in the physical and bio-
logical sciences and engineering disciplines. This implies
that appropriate laboratory facilities are available for
student and faculty use, and may imply that additional
laboratory space is required by certain faculty and stu-
dents for special purposes. The initial budgetary support
for establishing these laboratories may be substantial,
and continuing regular budgetary support is essential for
successful implementation of a program.

While we have thus far stressed the hardware facili-
ties necessary for the recommended curriculum, equal
attention must also be given to software. In order for
the student to master the material in the core and elec-
tive courses, sufficient higher level languages must be
available. Additionally, special purpose systems such as
statistical systems, database management systems, infor-
mation storage and retrieval systems, and simulation sys-
tems should be available for student use. It must be
recognized in planning that many of these systems re-
quire a significant initial and continuing investment on
the part of the institution. Where possible, fast turn-
around or interactive systems should be considered in
order to provide as much access as possible for the
student.

In addition to the computer related facilities required
for the recommended curriculum, there is also a require-
ment for those resources of a university that are normally
associated with any discipline. Adequate library facili-
ties, including significant holdings of periodicals are ab-

164

solutely necessary, and the implementor of this report
is referred to the basic library list [4] for a basis of
establishing a library collection to support the instruc-
tional program.

While traditional library support is essential to the
computer science program, it must be recognized that
the field requires some additional resources that may
not be necessary in other disciplines. Specifically, the
student of computer science must have available, in some
form, language, programming, and systems manuals as
well as documentation for programs and other materials
directly related to the development and use of systems.
This material must be easily and conveniently available
to the student at all times.

6.3 Staff
Insofar as it is possible, the vast majority of faculty

members in departments offering the curriculum that has
been recommended in this report should have their pri-
mary academic training in computer science. At the
same time, it remains the case that demand exceeds sup-
ply for these individuals and it is often necessary, and
in some cases desirable, to acquire faculty with degrees
in other disciplines, but who have experience in com-
puting through teaching or employment in government,
business, or industry.

The size of the department will depend on available
resources, required teaching loads, commitments to of-
fering service courses, and commitments to continuing
education programs. Approximately six full-time equiva-
lent faculty members are necessary to offer a minimal
program that would include the core courses as well as
a selection of elective and service courses. Most of these
faculty members should be capable of offering all of the
core courses in addition to elective courses in their areas
of specialization. Additional continuing instructional
support may be available from the computer center, and
from other departments such as mathematics which may
offer numerical analysis or other applied mathematics
courses that could be cross-listed by both departments.
In addition, adjunct faculty from local government, busi-
ness, or industry are valuable additions in many cases.
Such individuals are often able to bring a different per-
spective to the program; however, care must be taken
to insure that the program does not become overly de-
pendent on individuals who may be unable to perform
continuing service.

Because of the rapid growth of this field, considera-
tion must be given to providing ongoing opportunities
for faculty development, such as a sabbatical leave pro-
gram, opportunities to attend professional development
seminars, and interchange programs with industry.

A department which operates its own laboratory fa-
cilities should consider obtaining a full-time staff mem-
ber to maintain such systems, be responsible for neces-
sary documentation and languages, and coordinate other
activities connected with the laboratory. Such a staff

Communications March 1979
of Volume 22
the ACM Number 3

member would provide continuity in the development of
the laboratory resource.

The field is still developing rapidly, and as was indi-
cated earlier, is at least in part empirical in nature. As a
result faculty will be required to devote a great deal of
time to course development, software development, de-
velopment of laboratory resources, and development of
service offerings. To provide for continuing excellence
in these areas, it must be recognized that they are essen-
tial contributions to the program and profession, and as
such should be considered within the context of the re-
ward structure of the institution.

6.4 Articulation
I t is imperative that departments offering computer

science programs keep in close contact with secondary
schools, community and junior colleges, graduate
schools, and prospective employers of their graduates.
This requires a continuing, time consuming effort. Pri-
mary responsibility for this effort could be placed with
one faculty member, whose teaching load should then
be reduced. Experience has shown that person-to-person
contact on a continuing basis is necessary for successful
articulation.

Usually, a central office in a four-year institution
has direct contact with secondary schools. With comput-
ing becoming more prevalent at that level, however, it
is highly useful and appropriate for a departmental rep-
resentative to maintain contact with those local second-
ary schools which offer, or desire to offer, courses in
computing.

Articulation agreements exist in many areas between
four-year institutions and community and junior col-
leges. These agreements need to be updated frequently
as programs or courses change, and personal contact
between departments is necessary to keep abreast of
these changes. Transfer programs in community and
junior colleges are often geared to programs at four-year
institutions. As a result, proposed changes in the four-
year program which influence transfer programs should
be promulgated as soon as possible so that the com-
munity and junior colleges can incorporate such changes,
thereby reducing the lag between programs to the bene-
fit of transfer students.

Some of the graduates of the recommended program
will continue academic work in computer science in
graduate school, but most will seek employment upon
graduation. Departments must be aware of the graduate
school requirements so that their programs prepare stu-
dents adequately for advanced work in the field, but
they must also maintain communication with employers
in order to know what job requirements exist so that
the faculty can advise students more effectively. Feed-
back from recent graduates of the program is quite use-
ful in this regard and should be encouraged as much as
possible. In order to most effectively implement this
aspect of the program, faculty members should have

165

available to them graduate school brochures, Civil Serv-
ice Commission documents, and whatever else can come
from personal contacts with employees in government
and industry, as well as from the professional societies.

References
I. Curriculum Committee on Computer Science (C3S). Curric-
ulum '68, recommendations for academic programs in computer
science. Comm. A C M 11, 3 (March 1968), 151-197.
2. Austing, R.H., Barnes, B.H., and Engel, G.L. A survey of the
literature in computer science education since Curriculum '68.
Comm. A C M 20, 1 (Jan. 1977), 13-21.
3. Education Committee (Model Curriculum Subcommittee)
of the IEEE Computer Society. A curriculum in computer sci-
ence and engineering. Committee Report, IEEE Pub. EH0119-8,
January 1977.
4. Joint Committee of the ACM and the IEEE Computer
Society. A library list on undergraduate computer science-com-
puter engineering and information systems. Committee Report,
IEEE Pub. EH0131-3, 1978.
5. Committee on the Undergraduate Program in Mathematics.
A general curriculum in mathematics for colleges. Rep. to Math.
Assoc. of America, CUPM, Berkeley, Calif., 1965.
6. Special Interest Group on Computer Science Education.
SIGCSE Bulletin, (ACM) 5, 1 (Feb. 1973).
7. Special Interest Group on Computer Science Education.
SIGCSE Bulletin, (ACM) 6, 1 (Feb. 1974).
8. Special Interest Group on Computer Science Education.
SIGCSE Bulletin, (ACM) 7, 1 (Feb. 1975).
9. Special Interest Group on Computer Science Education.
SIGCSE Bulletin, (ACM) 8, 1 (Feb. 1976).
10. Special Interest Group on Computer Science Education.
SIGCSE Bulletin, (ACM) 8, 3 (Aug. 1976).

Appendix
Contributors to the C35 Report

Robert M. Aiken, University of Tennessee
Michael A. Arbib, University of Massachusetts
Julius A. Archibald, SUNY at Plattsburgh
William Atchison, University of Maryland
Richard Austing, University of Maryland
Bruce Barnes, National Science Foundation
Victor R. Basili, University of Maryland
Barry Bateman, Southern Illinois University
Della T. Bonnette, University of Southwestern Louisiana
W.P. Buckley, Aluminum Company of America
Frank Cable, Pennsylvania State University
Gary Carlson, Brigham Young University
B.F. Caviness, Rensselaer Polytechnic Institute
Donald Chand, Georgia State University
Sam Conte, Purdue University
William Cotterman, Georgia State University
Daniel Couger, University of Colorado
John F. Dalphin, Indiana University-Purdue University at

Fort Wayne
Gene Davenport, John Wiley and Sons
Charles Davidson, University of Wisconsin
Peter Denning, Purdue University
Ed Desautels, University of Wisconsin
Benjamin Diamant, IBM
Karen A. Duncan, MITRE Corporation
Gerald Engel, Old Dominion University
Michael Faiman, University of Illinois
Patrick Fischer, Pennsylvania State University
Arthur Fleck, University of Iowa
John Gannon, University of Maryland
Norman Gibbs, College of William and Mary
Malcolm Gotterer, Florida International University
David Gries, Cornell University

(Appendix continued on next page)

Communications March 1979
of Volume 22
the ACM Number 3

(Appendix continued]rom preceding page)
H.C. Gyllstrom, Univac
Douglas H. Haden, New Mexico State University
John W. Hamblen, University of Missouri-Rolla
Preston Hammer, Grand Valley State Colleges
Richard Hamming, Naval Postgraduate School
Thomas R. Harbron, Anderson College
Stephen Hedetniemi, University of Oregon
Alex Hoffman, Texas Christian University
Charles Hughes, University of Tennessee
Lawrence Jehn, University of Dayton
Karl Karlstrom, Prentice-Hall
Thomas Keenan, National Science Foundation
Sister M.K. Keller, Clarke College
Douglas S. Kerr, The Ohio State University
Rob Kling, University of California, Irvine
Joyce C. Little, Community College of Baltimore
Donald Loveland, Duke University
Robert Mathis, Old Dominion University
Daniel McCracken, President, ACM
Robert McNaughton, Rensselaer Polytechnic Institute
M.A. Melkanoff, University of California, Los Angeles
John Metzner, University of Missouri-Rolla
Jack Minker, University of Maryland
Howard Morgan, University of Pennsylvania
Abbe Mowshowitz, University of British Columbia
Michael Mulder, Bonneville Power Administration
Anne E. Nieberding, Michigan State University
James Ortega, North Carolina State University
F.G. Pagan, Memorial University of Newfoundland
John L. Pfaltz, University of Virginia
James Powell, North Carolina State University
Vaughn Pratt, Massachusetts Institute of Technology
Anthony Ralston, SUNY at Buffalo
Jon Rickman, Northwest Missouri State College
David Rine, Western Illinois University
Jean Sammet, IBM
John F. Schrage, Indiana University-Purdue University at

Fort Wayne
Earl Schweppe, University of Kansas
Sally Y. Sedelow, University of Kansas
Gary B. Shelly, Anaheim Publishing
James Snyder, University of Illinois
Theodor Sterling, Simon Fraser University
Gordon Stokes, Brigham Young University
Alan Tucker, SUNY at Stony Brook
Ronald C. Turner, American Sign and Indicator Corporation
Brian W. Unger, The University of Calgary
James Vandergraft, University of Maryland
Peter Wegner, Brown University
Patrick Winston, Massachusetts Institute of Technology
Peter Worland, Gustavus Adolphus College
Marshall Yovits, The Ohio State University
Marvin Zelkowitz, University of Maryland

C o m p u t e r D. Siewiorek,
Systems Edi tor

FOCUS
Microcomputer
Number System
Albert D. Edgar and Samuel C. Lee
The University of Oklahoma

FOCUS is a number system and supporting
computational algorithms especially useful for
microcomputer control and other signal processing
applications. FOCUS has the wide-ranging character of
floating-point numbers with a uniformity of state
distributions that give FOCUS better than a twofold
accuracy advantage over an equal word length floating-
point system. FOCUS computations are typically five
times faster than single precision fixed-point or integer
arithmetic for a mixture of operations, comparable in
speed with hardware arithmetic for many applications.
Algorithms for 8-bit and 16-bit implementations of
FOCUS are included.

Key Words and Phrases: number representation,
logarithmic arithmetic, computational speed, compu-
tational accuracy, microcomputer applications

CR Categories: 3.24, 3.80, 4.0, 4.22, 5.11

I. Introduction

Sophis t ica t ion o f r equ i rements in systems des ign has
pressed digi ta l systems into rea l - t ime signal processing.
In add i t i on to the usua l sof tware techniques [14], m a n y
h a r d w a r e techniques are act ively pu r sued [4, 7, 8, 10,
17]. Besides, me thods o f represent ing a quan t i ty and
cri t ical pe r iphe ra l in fo rmat ion , such as s ignif icant ar i th-
metic, u n n o r m a l i z e d ar i thmet ic , er ror es t imat ion in com-
pu te r ca lcula t ion, etc., are o f vi ta l concern in this f ield
[1, 6, 11-13]. This p a p e r presents a d ig i ta l n u m b e r system
prov id ing speed and accuracy for d igi ta l s ignal process-
ing us ing a mic rocompute r .

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Authors' address: School of Electrical Engineering and Computer
Science, University of Oklahoma, 202 West Boyd, Room 219, Norman,
OK 73019.
© 1979 ACM 0001-0782/79/0300-0166 $00.75

Communications March 1979
of Volume 22
the ACM Number 3

