
Final Project Ideas for CSCI181o
Students are encouraged to work in pairs on the final project. The project

consists of building a computational model of some linguistics phenomenon. You
will make a 20 minute presentation of your project during the last few weeks
of the semester as well as turning in a substantial paper (10 pages or more)
describing your contributions. The computer program will be included as an
appendix to the final paper.

While I have listed some suggestions below, I urge you to think of projects
on your own. Another source of ideas are the last chapters of the text. Chapters
12 and 13, in particular, introduce some interesting ideas. While we will be at
least surveying the ideas in those chapters, there are many ways in which you
can go deeper and find interesting projects that build on these ideas.

The following projects are just suggestions. Feel free to approach me with
your own ideas. All projects should cite appropriate literature in (computa-
tional) linguistics and describe the current state of the art, as well as your own
contributions.

By Monday, April 4, each group will need to turn in a one page description
of their project, listing two or more references for current work relevant to your
topic, and indicating who will be involved in the group.

Topics

1. Computational model for intensional logic as a basis for games: It
is not too difficult to construct a computational system representing terms
of intensional predicate logic and its possible world semantics. Construct
a mystery game which helps players deduce the perpetrator from a variety
of clues that allow players to reduce the possible worlds to one in which
the perpetrator is determined. Make the game as user friendly as possible.
In particular, make sure the system responds to a variety of user queries
that a player might want to make.

2. Question answering systems: Our text talks a bit about question an-
swering systems, but it is fairly limited. Develop a way of representing
information and responding to natural-language questions. Perhaps add a
deduction system so that you can figure out if a statement really answers
a question. In general this can be quite tricky. E.g., ”Will John be here
soon?” with a reply of ”John is stuck working late tonight” or ”John got
a flat tire”. However, you should be able to do something interesting.

3. Following directions: We would like to create robots that can follow
directions. Build a system that converts a set of English-language direc-
tions into commands for a robot. A good test bed might be following
the directions in a cookbook. You can make up your own set of primitive
commands that a robot can follow, and then construct a software system
that translates natural language commands into robot commands. There
are lots of interesting challenges to this project.

1



4. Common knowledge During the course of a conversation, each partici-
pant typically asserts statements that the other is unaware of. When the
listener nods or says ”OK” or gives some other positive response, that
statement is added to the common knowledge.

5. Presuppositions: When we speak, our expressions depend on the con-
text around us. When we say “the dog”, for instance, we are assuming
that we are in a context in which there is only one relevant dog. As
another example, saying ”Whomever invented calculus has caused gener-
ations of students great pain”, involves the presupposition that there is
someone who invented calculus. If you are listening to that sentence then
your normal reaction is to assume there is such a person (though it’s also
possible to raise a question about the presupposition). Model this in a
system with common knowledge. In particular, pick out the presupposi-
tions implied by a sentence and determine whether the presupposition is
already true in the context or whether the listener must add it to their
common knowledge in order to accept the sentence.

6. Extending semantics: Extend (and implement) the parser and semantics
provided to a much richer fragment of English or of another language.

7. Discourse Representation Structures: Chapter 12 of our text dis-
cusses extending the computational model to discourse representation
structures, a popular method of representing semantics and dealing with
references via pronouns. Learn about DRS and extend the ideas in the
text.

8. Semantic filtering: We all know about spam filters that attempt to
recognize and reject annoying e-mail. If our system is better at under-
standing words, we can be smarter about what we can recognize. Abusive
e-mail is hard to recognize if you don’t understand the text (just looking
for abusive words is not sufficient). Write a program that detects abu-
sive language in a collection of sentences. You may assume that the text
arrives already parsed or you can enhance a parser to provide more help.

9. Model checkers are tools used to verify hardware and software systems in
computer science. Information about the states of the system are repre-
sented in specialized tense logics (a form of intensional logic), for example
in varieties of temporal logics. Investigate model checkers and either im-
plement one or take one or more existing model checkers (e.g., Spin) and
use it to verify a complex computing system. [Some model checkers may
not involve tense logics. Please focus on those that are related to the
material in this course.]

2


