
P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using
Lazy Functional Programming

Richard A. Frost

University of Windsor

The construction of natural language interfaces to computers continues to be a major challenge. The need
for such interfaces is growing now that speech recognition technology is becoming more readily available,
and people cannot speak those computer-oriented formal languages that are frequently used to interact with
computer applications. Much of the research related to the design and implementation of natural language
interfaces has involved the use of high-level declarative programming languages. This is to be expected as
the task is extremely difficult, involving syntactic and semantic analysis of potentially ambiguous input. The
use of LISP and Prolog in this area is well documented. However, research involving the relatively new lazy
functional programming paradigm is less well known. This paper provides a comprehensive survey of that
research.

Categories and Subject Descriptors: A.1 [Introductory and Survey]; D.l.l [Programming Techniques]:
Applicative (Functional) Programming; J.5 [Arts and Humanities]: Linguistics; I.2.1 [Artificial Intelli-
gence]: Applications and Expert systems—Natural language interfaces; H.5.2 [Information Interfaces
and Presentation]: User Interfaces—Natural language; I.2.7 [Artificial Intelligence]: Natural Lan-
guage Processing—Language models; Language parsing and understanding; F.4.2 [Mathematical Logic
and Formal Languages]: Grammars and Other Rewriting Systems—Grammar types; Parsing; D.3.1 [Pro-
gramming Languages]: Formal Definitions and Theory—Semantics; Syntax; F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Denotational semantics; Partial evaluation; H.2.4
[Database Management]: Systems—Query processing

General Terms: Languages, Human factors

Additional Key Words and Phrases: Natural-language interfaces, lazy functional programming, higher-order
functions, computational linguistics, Montague grammar

ACM Reference Format:
Frost, R. A. 2006. Realization of natural language interfaces using lazy functional programming. ACM Com-
put. Surv. 38, 4, Article 11 (Dec. 2006), 54 pages. DOI = 10.1145/1177352.1177353 http://doi.acm.org/10.1145/
1177352.1177353

The Natural Science and Engineering Research Council of Canada (NSERC) provided financial support for
this work.
Author’s address: University of Windsor; email: rfrost@cogeco.ca.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝2006 ACM 0360-0300/2006/12-ART11 $5.00 DOI: 10.1145/1177352.1177353 http://doi.acm.org/10.1145/

1177352.1177353.

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

2 R. A. Frost

1. INTRODUCTION

The range of expressions that can be analyzed using linguistic theories of natural
language is far larger than the range of expressions that can be processed by currently
available computer-based natural language interfaces (NLIs). The challenge of building
computer programs to implement linguistic theories remains and will continue as new
theories are developed to accommodate even more aspects of natural language.

Research on NLIs has a long history. Much of the work has involved the use of high-
level declarative languages such as LISP and Prolog. That work is well documented in
research publications, textbooks, and university course material. The more recent use
of lazy functional programming (LFP) in this problem area is less well known and is
the subject of this survey.

A functional program consists of a set of function definitions. Execution involves
applying functions to their arguments. In pure functional programming, function com-
position and function application are the only forms of control construct. There are no
for loops, while loops, or gotos, and iteration can only be achieved through recursive
function calls. There is no updateable state and no notion of imperative command such
as changing the value of a variable. The advocates of pure functional programming
argue that these constraints lead to highly-modular programs that are easy to analyze,
transform, and reuse.

One form of pure functional programming is called lazy functional programming
(LFP). Informally, the evaluation of arguments to functions in a lazy language is delayed
until those values are required. This is equivalent to normal-order evaluation in the
lambda calculus. LFP languages are usually polymorphically strongly typed and come
with automatic static type checkers.

Several papers discussing the features, implementation, and application of the LFP
paradigm appeared in a special issue of The Computer Journal edited by Wadler [1989].
Since then, over 45 researchers have investigated and published results on the use of
lazy functional programming in natural language interface design and implementation.
Their work appears to have been prompted by recognition of the similarities between
some theories that have been proposed for natural language processing and the theories
on which LFP is based and also by recognition of the potential that LFP has in this
difficult problem area.

Some of the researchers are affiliated with groups at the Department of Computing
Science at Chalmers University in Gothenburg, the CWI Research Institute in the
Netherlands, the Department of Computer Science at the University of Durham in the
U.K., the Department of Computer Engineering at the Middle East Technical University
in Ankara, the School of Computer Science at the University of Windsor in Canada,
and the Department of Computer Science at Yale. Collectively, these researchers have
published over 60 papers in journals and refereed conference proceedings, which are
directly related to the use of LFP in NLP. Other researchers have published an equal
number of papers on developments in LFP which have important consequences for
NLIs (such as the implementation of generalized LR parsers).

This survey provides a comprehensive review of research in this area. It is intended
to be read by Computer Scientists and Computational Linguists. In order to make the
descriptions accessible to both groups, the survey begins with background descriptions
and references; Section 2 contains a discussion of the difficulties in building natural
language interfaces; Section 3 contains brief descriptions of those theories of natural
language that have been developed by linguists and which have been referred to in the
use of LFP in NLIs; and Section 4 contains a brief introduction to the notation and
features of LFP languages. Parts of this introductory material can be skipped by those
who are already familiar with them. The latter part of the survey contains relatively

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 3

detailed descriptions of research on the use of lazy functional programming in the
design and implementation of natural language interfaces.

Throughout the survey, we use longer forms of definitions of logical expressions and
program code than would be used by experts in the area. We have chosen to do this in
order to make the survey more widely accessible. In particular, we have used only the
basic syntax of the Haskell programming language in our examples. Although this may
be a little frustrating for some, it does allow the definitions to be easily read by others
with less experience of this particular lazy functional programming.

2. THE CHALLENGE OF BUILDING NATURAL LANGUAGE INTERFACES (NLIS)

Natural language interfaces are found in many applications for example, database
query and information retrieval systems, language translation systems, Web search
engines, dictation systems, and command and control systems. We begin by discussing
the difficulty of building natural language database query processors.

Consider evaluating the query “How many students with a g.p.a. greater than 12 are
enrolled in course 60–454?” One approach is to translate the query to an expression of
a formal query language such as SQL and subsequently execute the query against a
database. This approach has limited application owing to an inability to handle nega-
tion, modality, and intensionality in queries such as “Does John believe that the Prime
Ministers of England and Australia have never met?”.

A potentially more-powerful approach is to analyze the user input and compose a
response from the meanings of its component substructures (rather than translating
it into another language). In applications where a large number of expressions are
possible, the rules that are used to compute the response are often applied according to
the syntactic structure of the input. Such syntax-directed evaluation is regularly used in
the processing of programming and other formal languages. However, application of this
technique to natural language is not straightforward. Consider the simple queries “Does
Phobos spin?” and “Does every moon spin?”. One approach is for proper nouns, such as
“Phobos” to denote entities, and intransitive verbs and common nouns such as “spin”
and “moon” to denote sets of entities. The two queries above could then be evaluated
using rules such as the following, where ∥x∥ represents the denotation (meaning) of x:

query ::= Does proper noun intransitive verb
answer = True, if ∥proper noun∥ ∈ ∥intransitive verb∥

= False, otherwise

query::= Does every common noun intransitive verb
answer = True, if ∥common noun∥ ⊆ ∥intransitive verb∥

= False, otherwise

Now consider extending these rules to accommodate queries such as “Does Phobos
and every planet spin?” Do we need to define a new rule for this and every other new
type of query? If so, we will need hundreds of rules for even a relatively small NL query
language. The solution is to find a small grammar that covers the query language, and
a matching semantic theory which assigns a single semantic rule to each of the syntax
rules in the grammar. This is not an easy task even for NL query interfaces to first-order
relational databases.

The difficulty of building adequate sets of syntactic and associated semantic rules is
compounded by 1) ambiguity in phrases such as “Is every planet orbited by a moon?”
and “Is Mary a beautiful dancer?”, 2) intensionality in queries such as “Did the prime
ministers of England and Australia ever meet?”, 3) modality in queries such as “Does

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

4 R. A. Frost

John believe that Phobos orbits Venus?”, and 4) negation in queries such as “Is Mars
orbited by no moon”.

Many natural language database query processors have been developed over the last
forty years. A good survey of the work, up to 1995, is given in Androutsopoulos et al.
[1995]. Since 1995, there has been an annual conference on applications of natural
language interfaces to databases, for instance, Meziane and Metais [2004].

Despite the difficulty of constructing comprehensive natural language database-
query processors as discussed previous, they are arguably, the simplest type of NLI due
to the fact that the data which is to be used in interpreting queries is circumscribed
by the first-order relational format and content of the database. Information retrieval
systems, on the other hand, have equally complex natural language input that has to
be interpreted with respect to knowledge represented in a variety of formats, including
ambiguous poorly structured text. Natural language translation is also significantly
more difficult as it involves conversion between two languages where the input lan-
guage may consist of expressions that do not contain all of the information necessary
to produce an expression in the target language. For example, when translating from
English to German, additional gender information may have to be deduced or added by
human intervention.

Review of the literature shows that existing NLIs can only accommodate a small
subset of the expressions that can be explained by existing linguistic theories. One of
the reasons for this is that efficient implementation of those theories is a nontrivial
task, and much work remains to be done. The objective of this survey is to show how
lazy functional programming is contributing to this task.

3. RELEVANT THEORIES OF NATURAL LANGUAGE

Three major goals of linguistic theories are: 1) to explain why some sequences of words
constitute expressions (sentences or phrases) of a natural language, whereas other se-
quences do not, 2) to make explicit the syntactic (grammatical) structure of expressions,
and 3) to explain how semantic values (meanings) can be ascribed to expressions.

Good linguistic theories are compositional in the sense that they can accommodate
large subsets of natural language with as few and as simple rules as possible. The
rules are chosen to be highly orthogonal in the sense that they are applicable in many
contexts. A principle of correspondence between syntax and semantics is often adopted
in which expressions of the same syntactic category denote semantic values of the same
type. Also, a principle of rule-to-rule correspondence is often used in which there is a
homomorphism between the rules which show how composite expressions are formed
from their components, and the rules which show how the meanings of those composite
expressions are computed from the meanings of their components. (A homomorphism
is a many-to-one structure-preserving function). Such compositionality is also the goal
of the denotational semantics approach to the specification of programming languages
[Stoy 1977].

Numerous linguistic theories have been proposed, and the literature on the subject
is immense. In this section, we review only those theories that have been referred to
extensively in research on the use of LFP in NLIs: Finite state automata, context-free
and context-sensitive grammar, Categorial Grammar, Montague Grammar, Combina-
tory Categorial Grammar, type-logical grammar, and type-theoretic grammar. Other
theories that have been developed are summarized later in sections which describe
their implementations in LFP. Note that we capitalize first letters of some grammar
names and not others according to common usage.

The descriptions are necessarily brief and are intended only to provide readers with
sufficient background for the discussions in sections 5, 6, 7, and 8. References to more

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 5

complete accounts are given in the text. In addition, the book Type-Logical Semantics
[Carpenter 1998] is recommended for comprehensive coverage of both the linguistic
and mathematical theories referred to in this survey.

3.1. Finite State Automata, Context-Free and Context-Sensitive Grammar

We begin with a short review of topics that are familiar to computer scientists: finite-
state automata (FSA) and context-free grammar (CFG). Although these systems are
not of great interest to linguists (for various reasons, some of which are mentioned
later), they serve as a reference in describing other approaches that are discussed later
in this section. In addition, CFGs are used extensively in the construction of NLIs
where their limitations in explaining a wide range of natural language features are
counterbalanced by the ease with which CFG processors can be implemented.

A finite automaton consists of an input alphabet (set of symbols), a start state, a set
of accept states, and a transition function which defines the rules for moving from one
state to another when an input symbol is read. A string of input symbols is accepted by
an FSA if, when reading that string, the FSA moves from the start state to one of the
accept states. The language of an FSA is the set of all strings that it accepts. FSAs have
various uses in computational linguistics [Roche and Schaber 1997] including analy-
sis of morphology (i.e., the structure of words), information extraction from text, and
part-of-speech tagging. However, they are not well suited for defining the syntax and
semantics of expressions of natural language. One reason is that, although FSAs can
determine (recognize) if a string belongs to a language, they do not facilitate generation
of the syntactic structure of that string. Other reasons are discussed in, for example,
Copestake [2005].

Context-free grammar was first used to define the syntax of natural languages by
Chomsky [1957]. It was also discovered independently and applied to the definition
of programming languages by Backus [1959] and Naur et al. [1960]. A context-free
grammar consists of four components:

T, a set of terminals - words of the language.
N, a set of non-terminals - names for syntactic categories.
P, a set of production rules of the form n::= y, where n is a single

non-terminal and y is a sequence of zero or more symbols from T ∪ N.
S, a start symbol - a member of N.

Sequences of terminals can be derived from any nonterminal by repeatedly applying
the production rules as left-to-right rewrite rules until the derived sequence contains
no nonterminals. Any sequence of terminals that can be derived from the start symbol
is called a sentence. The set of sentences so derived is the language generated by the
grammar. The following is an example of a CFG for a tiny fragment of English, where
x ::= y | z is shorthand for the two rules x ::= y and x ::= z. In this and subsequent
examples, we use italics for words in the language being defined.

sentence ::= termphrase verbphrase
termphrase ::= propernoun | determiner noun
propernoun ::= Mars | Phobos | Deimos | Hall | Kuiper
determiner ::= every | a
noun ::= moon | planet | person
verbphrase ::= transverb termphrase | intransitiveverb
transverb ::= discovered | orbits
intransitiveverb ::= spin | exist

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

6 R. A. Frost

The following is an example derivation, proving that “Hall discovered Phobos” is a
sentence in the language defined by the previous grammar:

sentence => termphrase verbphrase => propernoun verbphrase
=> Hall verbphrase => Hall transverb termphrase
=> Hall discovered termphrase => Hall discovered propernoun
=> Hall discovered Phobos

In addition to their generative capability, CFGs can be used to recognize (determine)
if sequences of terminals are sentences of a language and also to parse (syntactically
analyze) sequences of terminals and assign a structure to them in the form of syntax
trees which contain nonterminals as well as terminals. For example, the following is a
syntax tree for “Hall discovered Phobos”:

sentence
/ \

termphrase verbphrase
| / \

propernoun transverb termphrase
| | |

Hall discovered propernoun
|

Phobos

CFGs have the advantage of simplicity, and they can also be readily extended to
accommodate semantic processing either by annotating the syntax trees with semantic
values and then evaluating those trees, or by associating semantic functions directly
with the production rules and applying those functions during the parsing process,
resulting in what are commonly called syntax-directed evaluators.

However, CFGs also have limitations with respect to the explanation and anal-
ysis of natural language. For example, in order to accommodate agreement (such
that the expressions “Phobos spins” and “Phobos and Deimos spin” are admitted, but
“Phobos spin” is rejected), we would have to subdivide the nonterminal termphrase
into singular-termphrase and plural-termphrase, subdivide the nonterminal verbphrase
likewise (and further subdivide these and other categories to accommodate other
forms of agreement), and then replace the single rule, that a sentence consists of a
termphrase followed by a verbphrase by a set of rules which admits only those com-
binations of subdivisions of categories that agree. The grammar would become even
larger in order to accommodate long distance agreement which is necessary to ad-
mit “Which moons did you say were discovered by Hall?” but reject “Which moon
did you say were discovered by Hall?”. Similarly, in order to deal with the fact that
transitive verbs have different numbers of arguments (e.g., “Hall discovered Pho-
bos” and “Hall gave Kuiper a telescope”), we would have to subdivide the nontermi-
nal transverb. This would have a multiplicative effect on the size, resulting in huge
grammars.

Context-free grammar has also been criticized for its independence from semantics
in the sense that the syntactic categories can be chosen independently of semantic
concerns leading to difficulties when semantic values and evaluation functions are
associated with the production rules.

An additional difficulty with CFG is that it is widely, though not unanimously, ac-
cepted that natural language is not context free. Various sublanguages have been

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 7

identified which, it is claimed, cannot be generated by CFG. For example,

—the language of reduplicated expressions of the form awa, where a and w are sequences
of words, for example, “a state within a state” and “a church within a church”, etc.

—the language of multiple-agreement expressions or counting dependencies of the form
anbncn, such as “John, Sue and James, a widower, widow and widower, subsequently
married Paula, Christopher, and Isabelle”.

—the language of cross-serial dependencies of the form xambnycmdnz found in Dutch and
Swiss German, such as, “Jan sait das mer d’chind em Hans es huus haend wele laa
halfe aastriiche”. (Jan said that we wanted to let the children help Hans paint the
house.).

More comprehensive discussion of the non-context-freeness of natural language can
be found in [Shieber 1985], Savitch [1989], and Kudlek et al. [2003] from which the
cited examples were derived.

The noncontext-free sublanguages discussed can be generated by context-sensitive
grammar, which is similar to CFG except that production rules are of the form: xAy ::=
xay, where A is a single nonterminal, x and y are (possibly empty) strings of terminals
and nonterminals, and a is a nonempty string of terminals and nonterminals. The name
context-sensitive comes from the fact that the context defined by x and y determines
that A can be replaced by a.

Context-sensitive grammar, however, has two shortcomings with respect to natural
language analysis: 1) it is too expressive in the sense that it can also generate sublan-
guages that do not occur in natural language, and 2) all known algorithms for parsing
context-sensitive languages have exponential time dependency. Consequently, the no-
tion of mildly context-sensitive grammar has been developed. This grammar is only
slightly more powerful than CFG; there is a limit on the depth of instantiations of
cross-serial dependencies; and the recognition problem is solvable in polynomial time.
Mildly context-sensitive grammar also captures many context-free linguistic features
more succinctly than CFG.

In the following, we include some comparison of grammars with each other and with
context-free and context-sensitive grammar. Two grammars are said to be weakly equiv-
alent if they generate the same language. Two grammars are strongly equivalent if they
assign the same syntax trees to their sentences (ignoring differences in the identifiers
used to denote the nonterminals in the two grammars).

3.2. Categorial Grammar

One of the first formal approaches to linguistics, developed by Ajdukiewicz [1935] and
Bar-Hillel [1953], is based on the notion that linguistic structures can be complete or
incomplete and that grammatical composition is the process of completing incomplete
structures. For example, in the sentence “Phobos spins”, the proper noun “Phobos”
might be deemed to have a simple complete meaning, that is, the moon Phobos. How-
ever, the verb “spins” might be deemed to be incomplete in that its meaning is part of
a proposition which requires a subject to become complete. Categorial Grammar (CG)
is based on this notion and considers syntactic constituents as functions which com-
bine with each other to form composite structures. Expressions are assigned categories
which specify how they combine with expressions of other categories to create larger
expressions. Analysis of an expression involves the application of inference rules to the
categories assigned to its component parts in order to determine the category of the
whole expression. In CG, the set CAT of categories is defined as follows, where B is the

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

8 R. A. Frost

set of basic categories:

if X ∈ B then X ∈ CAT
if X,Y ∈ CAT then X/Y,X\Y ∈ CAT there are no other categories

In basic CG, categories are combined using two rules, one for right and one for left
function application:

X/Y, Y =>right X Y, Y\X =>left X

For example, given B = {S, N, T} denoting the categories of sentence, noun, and
termphrase respectively, we can define the following lexicon:

Hall, Kuiper, Phobos, Deimos ∈ T
moon ∈ N spins ∈ T\S
every ∈ T/N discovered ∈ (T\S)/T

We can now use these categories in the analysis of expressions. For example, to show
that “every moon spins” and “Hall discovered Phobos” are sentences:

every moon spins Hall discovered Phobos
----- ---- ----- ---- ---------- ------
T/N N T\S T (T\S)/T T
--------=>right ---------=>right

T T\S T T\S
---------------=>left ------------=>left

S S

Note that in Categorial Grammar, the rules are written as accepting rules, indicating
how smaller components can be combined to create larger expressions, unlike context-
free grammar where the rules are written as producing rules that, when used from
left-to-right, generate expressions of the language. As such, CG is lexicalized in that
only a small number of rules of composition are used, and most of the syntactic features
of the language are derived from syntactic features of individual words in the lexicon.

Lambek [1958] formalized the concept of syntactic categories by defining a calculus
consisting of a set of axioms and rules which can be used to deduce the category to
which an expression belongs. In Lambek calculus, \ and / are treated as forms of logical
implication.

One of the advantages claimed for Categorial Grammar is the ease with which com-
positional semantic theories can be associated with it. The assignment of categories to
words in CG is strongly motivated by semantic considerations. The category not only
determines the syntactic property of the word, it usually determines the semantic type
of the word’s denotation. Given an appropriate formalism for representing semantic
values (e.g., the typed lambda calculus), the rules for semantic composition follow di-
rectly from the rules for syntactic composition, thereby complying with the principle of
rule-to-rule correspondence and contributing to the compositionality of the approach.

In 1960, Bar-Hillel [1953] proved that basic CG is weakly equivalent to CFG, and
a similar proof was given for the Lambek calculus. These discoveries led to a wane in
interest in these approaches. However, interest was reawakened in the mid 70s after
Montague [1970, 1973] developed a type-based approach to semantics and associated
it with a grammar that was similar to CG (see Section 3.3).

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 9

In addition to the fact that basic Categorial Grammar is weakly equivalent to CFG,
it has other shortcomings as discussed in Baldridge and Kruijff [2004] who discuss the
following phrases: team that defeated Germany, team that Brazil defeated, the team
that I thought that you said defeated Germany easily yesterday. Words in these phrases
would have to be assigned several different categories to provide a categorial analysis.
The resulting categorial ambiguity causes the grammars to become unwieldy.

Basic CG has been extended in various ways to overcome its shortcomings. One
approach is to add more rules of composition, resulting in Combinatorial Categorial
Grammar discussed in Section 3.4. Another approach was to develop the Lambek cal-
culus resulting in, for example, categorial type logic [Moortgat 1997] and type-theoretic
grammar [Ranta 1994] discussed in Section 3.6.

3.3. Montague Grammar

One of the most influential approaches to natural language interpretation was devel-
oped in the late sixties and early seventies by Richard Montague. That work is de-
scribed in a number of densely-packed papers, for example, Montague [1970, 1973] and
Thomason [1974], in more accessible form in a comprehensive paper written by Partee
[1975] and in a book by Dowty et al. [1981]. An early collection of papers written in
the Montague framework is given in Partee [1976]. Historical overviews of Montague’s
approach, which compare it with other linguistic theories, are available in Partee and
Hendricks [1997] and Partee [2001].

The following is a brief and highly-limited introduction to some of Montague’s ideas.
In particular, we will say nothing about modal or intensional aspects of natural lan-
guage, as these topics require substantial background discussion. More complete de-
scriptions can be found in the references just given and in the numerous papers written
by Partee and other linguists who have contributed to the development of Montague-
like compositional theories.

Central to Montague’s approach is his claim that there is no intrinsic difference
between natural and formal languages and that natural language can be described in
terms of a formal syntax and an associated compositional semantics. The relationship
between the syntax and semantics is similar to that in the denotational semantics
approach to the formal specification of programming languages with the exception that
expressions of natural language have first to be disambiguated before interpretation.
Such disambiguation involves mapping natural language expressions to one or more
unambiguous expressions in a syntactic algebra. These expressions are then mapped
to expressions in a semantic algebra through a homomorphism.

Montague Grammar is similar to Categorial Grammar in some respects: categorial-
like names are used for syntactic categories, and semantic types are similar to those
in CG. It should be noted, however, that Montague Grammar is not strictly a Cate-
gorial Grammar as it includes transformation rules to move, delete, and substitute
syntactic components. In Montague Grammar, each disambiguated syntactic expres-
sion denotes a function in a function space constructed over a set of entities, the Boolean
values true and false, and a set of states each of which is a pair consisting of a pos-
sible world and a point in time. The function space is described using the notation of
lambda calculus. Each syntactic category is associated with a single semantic type.
Each syntax rule, which shows how composite expressions in a category are created
from their syntactic constituents, is associated with a semantic rule, which shows how
the meanings of those composite expressions are computed from the meanings of their
components. The primary rule for syntactic composition is juxtaposition (phrases be-
ing placed next to each other). The primary rule for semantic composition is function
application.

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

10 R. A. Frost

In Montague’s Proper Treatment of Quantification, (PTQ) he developed a specific
syntax and semantics for a fragment of English [Montague 1973]. In PTQ (ignoring in-
tensional aspects which involve states), nouns such as “planet” and intransitive verbs
such as “spins” denote predicates over the set of entities, that is, characteristic func-
tions of type Entity -> Bool, where x -> y denotes the type of functions whose input is
a value of type x and whose output is of type y. Proper nouns do not denote entities di-
rectly. Rather, they denote functions defined in terms of those entities. For example, the
proper noun “Mars” denotes the function λp p Mars where Mars denotes the entity Mars.
According to the rules proposed by Montague, the phrase “Mars spins” is interpreted
as follows, where x => y indicates that y is the result of evaluating x. Note that the
denotation of words such as “spins”, is given in nonitalic computer font. For example,
spins p, is shorthand for “the predicate associated with the word spins”:

(λp p Mars) spins p => spins p Mars

Quantifiers (also called determiners) such as “every”, and “a” denote higher-order
functions of type (Entity -> Bool) -> (Entity -> Bool) -> Bool. For example, the
quantifier “every” denotes the function:

λpλq ∀x (p x) → (q x)

where → is logical implication. Accordingly, the phrase “every planet spins” is inter-
preted as follows:

(λpλq ∀x p(x)→q(x)) planet p spins p
=>(λq ∀x planet p(x)→q(x)) spins p
=> ∀x planet p(x)→spins p(x)

Constructs of the same syntactic category denote functions of the same semantic type.
For example, the phrases “Mars” and “every planet”, which are of the same syntactic
category, both denote functions of type (Entity -> Bool) -> Bool. Montague’s approach
is highly orthogonal; many words that appear in differing syntactic contexts denote a
single polymorphic function thereby avoiding the need to assign different meanings
in these different contexts. For example, the word “and”, which can be used to conjoin
nouns, verbs, term-phrases, etc., denotes the polymorphic function: λgλfλx (g x) & (f
x). Using these denotations, the phrase “Phobos and Deimos spin” is interpreted as
follows:

=> (and (Phobos Deimos)) spins p
=> ((λgλfλx (g x) & (f x)) (λp p Phobos) (λp p Deimos)) spins p
=> ((λx ((λp p Phobos) x) & ((λp p Deimos) x))) spins p
=> ((λp p Phobos) spins p) & ((λp p Deimos) spins p)
=> (spins p Phobos) & (spins p Deimos)
=> True

Montague’s semantics for transitive verbs is somewhat complex. This appears to be
a consequence of the fact that, although he defined the denotation of proper nouns
as, for example, λp p Phobos, he viewed these denotations and the denotations of other
term-phrases as being of type (Entity -> Bool) -> Bool. This creates a difficulty when
attempting to define a denotation for transitive verbs which can work in phrases such
as“Hall (discovered Phobos)” (note that we use brackets to illustrate the order in which
the functional denotations would be applied). The denotation of “discovered” would

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 11

have to be of type:((Entity ->Bool) ->Bool) -> (Entity -> Bool) in order to accept
the Montague-typed denotation of “Phobos” as input and return an appropriately-typed
value for input to the Montague-typed denotation of “Hall”. Montague appears not to
have developed such a denotation. Instead, he used an approach in which transitive
verbs are left uninterpreted, while the phrase in which they appear is converted to an
intermediate form, at which point a somewhat convoluted syntactic manipulation takes
place converting the expression to a form which involves the binary predicate associated
with the verb. An example of this complex process can be found in Dowty et al. [1981,
p. 216]. Frost and Launchbury [1989] and Frost [2006] have noted, however, that the
type of denotations of proper nouns, such as λq q Phobos is not: (Entity -> Bool) ->
Bool, but: (Entity -> a) -> a, where a denotes any type. From this, we can derive a
direct denotation of transitive verbs by working backwards from the required result. For
example, according to Montague, the denotation of “Hall (discovered Phobos)” should
be discover pred(Hall, Phobos). Therefore:

(λq q Hall) (discover (λp p Phobos)) => discover pred(Hall, Phobos)

one solution of which is discover (λp p Phobos) = λx discover pred(x, Phobos) and one
solution to this is discover = λz(z λxλy discover pred(y,x)). The following is an example
application of this denotation in interpreting the sentence “Hall discovered Phobos”
illustrating the polymorphic type of the denotations of “Hall” and “Phobos”:

(λp p Hall) ((λz z(λxλy discover pred(y,x))) (λq q Phobos))
=> (λp p Hall)((λq q Phobos)(λxλy discover pred(y,x)))
=> (λp p Hall) ((λxλy discover pred(y,x)) Phobos)
=> (λp p Hall) (λy discover pred(y,Phobos))
=> (λy discover pred(y,Phobos)) Hall
=> discover pred(Hall,Phobos)

Although this denotation for transitive verbs is not well known, it has been sug-
gested by others, especially in the logic programming community, for example, Black-
burn and Bos [2005] who attribute it to Robin Cooper at the University of Göteborg.
Also, in a personal communication, Barbara Partee, who is arguably the foremost au-
thority on Montague Semantics, has pointed out that, although the previous treatment
of transitive verbs is not standard in linguistics, Angelika Kratzer, at the University of
Massachusetts, has done something similar under the label of “argument identifica-
tion”, and that Hendricks [1993] has proposed type-lifting to achieve a similar result
in a comprehensive analysis of categories and types.

The reason for including the aforementioned account is that it exemplifies the use
of a well-known functional-programming tactic to easily and systematically develop a
solution which might otherwise not be immediately apparent. As such it is the first of
several examples discussed in this survey of the application of LFP to NLI.

In addition to the direct interpretation of natural language summarized in this sec-
tion, Montague also defined an indirect approach in which disambiguated expressions
of natural language are translated into expressions of a higher-order modal intensional
logic called IL. Montague claimed that the use of IL as an intermediate form is dispens-
able and serves only to help explain the relationship between syntax and semantics.
However, one of the criticisms of Montague’s theory is that it cannot explain some lin-
guistic features without recourse to analysis of the structure of the IL intermediate
representation. For example, Pereira [1990] has noted that Montague grammar needs
to invoke constraints on intermediate intensional logical forms to explain why sen-
tences such as “A woman who saw every man disliked him” are ungrammatical, and

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

12 R. A. Frost

why, in sentences such as “Every man saw a friend of his”, the “every” phrase has a
wider scope than the “a” phrase. Pereira states that such reliance on the logical form
rather than the semantic interpretation goes against the spirit of compositionality, and
that it also belies the notion that the intermediate IL representation was a dispensable
part of Montague’s framework.

The major advantages of Montague’s approach are the homomorphism from syntax
to semantics, the orthogonality of the semantic values and rules, and the resulting
compositionality. During the 70’s, Montague’s approach was slowly accepted by the
linguistic community, largely owing to researchers such as Partee [1975, 1976] and
Dowty [1979] who, with others, extended the approach to accommodate a wider range
of linguistic features.

3.4. Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) is a form of Categorial Grammar in which
the two basic rules of right and left function application are augmented with additional
rules for combining categories [Steedman 1991, 2004; Steedman and Baldridge 2003].

Pure Categorial Grammar is weakly equivalent to context-free grammar, whereas
CCG is mildly context sensitive. The rules of CCG correspond to the combinators iden-
tified by Curry and Feys [1958], and hence its name. The additional rules include a rule
of coordination: X conj X =>conj X, a rule of forward composition: X/Y Y/Z =>compose X/Z,
and a rule of subject-type raising: T =>raise S/(T\S), an example of which is:

Hall discovered and Kuiper discovered

T (T\S)/T conj T (T\S)/T
=>raise =>raise
S/(T\S) S/(T\S)
--------=>compose ---------=>compose

S/T S/T
--------------------------=>conj

S/T

Use of the rules of CCG are constrained by three principles called adjacency, con-
sistency, and inheritance. It is claimed that the rules and principles not only provide
an explanation for many features of English (and Dutch) but that they also capture
certain features that are common to all natural languages.

As in Montague, each grammatical category is associated with a single semantic
type, and the semantic values are functions represented as lambda terms. A princi-
ple of, combinatory transparency determines how semantic values are computed. This
principle states that the semantic interpretation of a category that is created using one
of the rules is determined by interpreting “/” and “\” as mappings between two sets.
For example, the following is the rule of forward composition with semantics, where
C:s indicates that s is the semantic value of the phrase C:

X/Y:f Y/Z:g => X/Z:λx f(g x)

One advantage claimed for CCG [Steedman 1994] is that it is easy to relate the gram-
mar to a compositional semantics by assigning semantic values to the lexical entries
and semantic functions to the combinatory rules such that no intermediate represen-
tation is required. Steedman [1999] has also shown how quantifier-scope ambiguities

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 13

can be accommodated in this framework without recourse to rules for changing the
structure of an intermediate representation.

3.5. Type-Logical Grammar

During the 1980s, a deductive form of Categorial Grammar was developed by van
Benthem [1986] and Moortgat [1987]. This approach began with the Lambek calcu-
lus. Subsequently, van Benthem [1987; 1991] extended the Lambek calculus with a
compositional semantics, using simply-typed lambda terms to represent formulas of
predicate calculus. According to the Curry-Howard isomorphism [Girard et al. 1988],
simply-typed lambda terms are proofs in intuitionistic logic which embeds the Lambek
calculus. Van Benthem used this correspondence to establish a relationship between
the Lambek calculus and Montague semantics. Moortgat [1988; 1990] also investigated
the relationship of the Lambek calculus to logical semantics and discussed Montague’s
theory from this perspective. A review of research on logical aspects of computational
linguistics up to the mid 1990s is given in Blackburn et al. [1997].

3.6. Type-Theoretical Grammar

In CFG and CG, the rules for creating expressions from their constituents depend only
on their course-grained syntactic categories. For example, consider the following, where
S is the category of sentences, PN the category of proper nouns, VP the category of verb
phrases, and TV the category of transitive verbs:

S ::= PN VP PN ::= Hall | Phobos
VP ::= TV PN TV ::= discovered

Both of the sentences “Hall discovered Phobos” and “Phobos discovered Hall” can be
derived, even though the latter could be thought of as being ill-typed in the sense that
moons cannot discover anything. In order to deal with this (and also to accommodate
other forms of agreement), type-theoretic grammar was developed to place constraints
on the domains of categories at the level of abstract syntax [Ranta 1994]. This process
can be thought of as adding more fine-grained syntax to context-free and Categorial
Grammar without having to subdivide rules and substantially increase the size of the
grammar.

The first step is to make explicit the structures which are being created by application
of the derivation rules. For the concrete syntax, the rules are rewritten as follows, where
x::X indicates that x is of category X, and x ++ y is the string obtained by appending x
to the front of y.

a:: PN b::VP c:: TV d:: PN
---------------- --------------
a ++ b :: S c ++ d :: VP

Rules for abstract syntax are formulated in a similar way. For example.

a:: PN b::VP c:: TV d:: PN
---------------- --------------
SUBJ(a,b) :: S OBJ(c,d) :: VP

where the SUBJ and OBJ are value constructors. The abstract syntax for “Hall discovered
Phobos” is the tree: SUBJ(Hall, OBJ(discovered, Phobos))

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

14 R. A. Frost

Concrete representations can be obtained from the abstract syntax through a process
of linearization which applies rules such as

lin Hall = "Hall" lin SUBJ(x,y) = lin x ++ " " ++ lin y

The next steps are to subdivide the basic categories in the abstract syntax to reflect the
different semantic domains of their denotations, and then to define a type hierarchy on
those subdivisions:

PN(humans) ::= Hall | etc. PN(moons)::= Phobos | etc.
TV(humans,things)::= discovered | etc. moons ⊆ things, etc.

The rules of the abstract grammar are then modified to make explicit the requirement
for type matching. For example, S ::= PN(A) VP(A) meaning that the types of the proper
noun and the verb phrase must be compatible. Another example is VP(A) ::= TV(A,B)
PN(B), meaning that a verb phrase of type A is constructed from a transitive verb with
a subject of type A and an object of type B, and a proper noun whose type is compatible
with B.

Note that not all type constraints can be defined in context-free rules. However, due
to the fact that the abstract syntax trees are terms of a formal type theory, context-
sensitive type-checking of these terms can be used to enforce a wide range of constraints.

3.7. The Differing Roles of Linguistic Theories in NL Explanation and NLI Development

The inability of a linguistic theory to explain all features of natural language is impor-
tant from a linguistic perspective but less so with respect to its use in implementing
NLIs. There are three reasons for this.

—The state-of-the-art in NLI is far behind that of linguistics in terms of the range of
expressions that can be accommodated. The full power of existing theories of language
has yet to be employed. For example, there would appear to be no NLI which can
accommodate intensionality.

—The efficiency with which a theory can be implemented is irrelevant from a linguistic
perspective but is of importance in the creation of NLIs. In many applications, some
reduction in expressibility may be acceptable for an appropriate improvement in
response time.

—The linguistic concern that a theory admits expressions that do not occur in a natural
language and is therefore faulty in its explanation of that language, is of less impor-
tance in NLI. It usually does not matter if the system can accommodate expressions
that are grammatically ill formed provided that the response is sensible. In fact, such
robustness is considered to be an advantage in many applications.

Consequently, theories that have shortcomings from a linguistic point of view may
still be of interest to those who are building NLIs. We shall see throughout this survey
that much of the research on the use of LFP in NLIs has been based on relatively-simple
subsets of the theories previously discussed, and that there remains much to be done
before the full potential of those theories can be exploited.

4. LAZY FUNCTIONAL PROGRAMMING

In the introduction, we gave a brief definition of what lazy functional programming is. In
this section, we provide a short introduction to some LFP languages, the notation that

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 15

we will use throughout this survey, and a discussion of the features of LFP. Readers who
are familiar with lazy functional programming can skip this section and move directly
to Section 5.

4.1. Examples of LFP Languages

Miranda1 [Turner 1979; 1985; 1986] was one of the earliest lazy functional program-
ming languages to be relatively widely used, especially for teaching. Miranda has had
an important influence on the development of other LFP languages. More information
on Miranda is available from http://miranda.org.uk

LML is a lazy variant of the functional programming language ML. LML was devel-
oped by Johnson and Augustsson at Chalmers University around 1984 and was used
to implement the first Haskell compiler.

Id [Nikhil 1993] is a lazy functional dataflow programming language designed in the
‘80s for execution in a parallel computing environment.

Hope is a pure functional programming language that was also developed in the
mid ‘80s. It was one of the first programming languages to use call-by pattern. The
original version used eager evaluation, but there are versions with lazy lists and lazy
constructors, see http://www.soi.city.ac.uk/ ross/Hope/

Clean is a lazy functional language which was first described by Brus et al. [1987].
The current version of Clean uses uniqueness typing to allow destructive update of data
structures and, arguably, a more natural interface between declarative functional pro-
grams and the imperative environments in which they execute. This feature facilitates
the use of Clean in the development of window-based and distributed applications.
More information on Clean is available from http://www.cs.ru.nl/ clean/

Haskell is the product of a committee that was established in 1987 with the objective
of creating a standard LFP language. The first version, Haskell 1.0, was defined in
the late eighties and is described in Hudak et al. [1992]. The latest version, Haskell
98, is described in detail in Peyton-Jones [2003]. The current Haskell report, together
with links to resources and descriptions of applications built in the language, can be
obtained from http://www.haskell.org/

Haskell has replaced Miranda as a teaching language at many sites due to the fact
that it is freely available, has been ported to many platforms, and has good technical
support.

4.2. The Notation of Haskell

We use the following subset of Haskell in our examples.

(1) f = e defines f to be a function which returns the value of the expression e.
(2) The notation for function application is simply juxtaposition as in f x. Function

application has higher precedence than any operator.
(3) Function application is left associative. For example, f x y is parsed as (f x) y,

meaning that the result of applying f to x is a function which is then applied
to y. Round brackets are used to override the left-associative order of function
application. For example, f (x y).

(4) f a1 ... an = e can be read as defining f to be a function of n arguments whose
value is the expression e. However, in higher-order languages, functions can be
passed as parameters and returned as results. Every function of two or more ar-
guments is actually a higher-order function, and the correct reading of f a1 ... an

1Miranda is a trademark of Research Software Ltd.

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

16 R. A. Frost

= e is that it defines f to be a higher-order function which, when partially applied
to input i, returns a function f’ such that f’ a2 ... an = e’, where e’ is e with the
substitution of i for a1. For example, consider the function add defined as follows:
add x y = x + y. The function incr, which adds one to its input, can be defined
in terms of the partial application of add as follows: incr = add 1, such that incr
4 => 5.

(5) x ‘f‘ y allows f to be used as an infix operator.
(6) Functions can be composed with the dot operator, for example, (f . g) x = f (g x)

(7) In a function definition, the applicable equation is chosen through pattern match-
ing on the left-hand side in order from top-to-bottom together with the use of
guards, for instance, in a long form of the definition of the absolute function:

abs 0 = 0
abs n | n > 0 = n

| otherwise = -n

(8) Round brackets with commas are used to create tuples, for example, (x, y) is a
binary tuple. Square brackets and commas are used to create lists, for instances, [x,
y, z]. The empty list is denoted by [], and x : y denotes the list obtained by adding
the element x to the front of the list y. Lists are apended with ++. The representation
of strings enclosed in double quotes is shorthand for lists of characters, such as,
"abc" = [’a’,’b’,’c’].

(9) Lists can also be created using the list-comprehension construct which has the
general form [values | generators, conditions] For example,

[x^2 | x <- [1..10], odd x] => [1, 9, 25, 49, 81]

(10) T1 -> T2 is the type of functions with input type T1 and output type T2. The dec-
laration f :: T states that f is of type T, and T1 = T2 declares T1 and T2 to be type
synonyms.

(11) New types can be defined using the data construct. For example data Colour = Red |
Blue | Green introduces the user-defined type Color and three nullary constructors.

(12) Haskell supports parametric polymorphic types which involve type variables that
are universally quantified over all types. Type variables begin with an uncapital-
ized letter to distinguish them from specific types such as Integer. For example,
consider the function length which returns the length of lists of elements of various
types. Its type is [a] -> Integer, where a is a type variable.

4.3. Features of LFP Languages

In the introduction, we defined LFP languages by describing those programming con-
structs which they do not have. However, as John Hughes [1989] has elegantly argued,
it is not what lazy functional programming languages lack that gives them their real
power, it is what they have. In the following, we summarize some of the advantages of
LFP.

—A lazy functional program is declarative in the sense that it consists of a set of defi-
nitions which can be presented in any order, simplifying program development and
allowing equational reasoning to be used in program analysis and transformation to
more efficient forms.

—Higher-order functions can be defined which take functions as arguments and/or
return functions as results. Higher-order functions can be used to capture frequently

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 17

used patterns of computation. For example, suppose that we start with the function
sumlist which is not higher-order:

sumlist [] = 0
sumlist (n:ns) = n + sumlist ns

An example application is sumlist [5,8,2] => 15. The structure of this program can
be abstracted out and encapsulated in the higher-order function foldr defined as
shown below. Now, sumlist, productlist, and other list processing functions can be
defined by partial application of foldr to two of its arguments:

foldr op unit [] = unit sumlist = foldr (+) 0
foldr op unit (n:ns) productlist = foldr (*) 1
= n ‘op‘ foldr op unit ns concatlist = foldr (++) []

This ability to define higher-order functions enables a new kind of modularity which
is more difficult to achieve in other programming languages.

—Higher-order functions can be defined as infix operators and partially applied to their
arguments, allowing programs to be built with structures (form) that closely follows
the specification of what they are intended to do (their function). These higher-order
infix operators are often referred to as combinators. A well-established example of
this is the use of parser combinators to build parsers whose structures are closely
related to the grammars defining the languages to be parsed. For example, a parser
for a possibly empty sequence of adjectives can be defined as follows, where the com-
binators term, orelse, and then1 have been appropriately defined.

adj = (term "red") ‘orelse‘ (term "blue") ‘orelse‘ ...
adjs = empty ‘orelse‘ (adj ‘then1‘ adjs)

The identifier then1 is used due to the fact that then is a reserved word in Haskell.
We discuss the definition and use of parser combinators in detail in Section 5.

—LFP languages are strongly typed meaning that all values have a type, and the
language prevents the programmer from applying a function to a value of the
wrong type. It is impossible to inadvertently convert a value of one type to another
type.

—LFP languages are statically typed. This means that the language infers types auto-
matically, checks for type mismatch, and catches type errors at compile time.

—LFP languages are polymorphic and automatically infer the most general type. For
example, the type of foldr is inferred to be: (a->b->b)->b->[a]-> b, which can be
read as follows: foldr takes as argument a binary operator, whose input values can
be of any types a and b and whose output value is of type b, and returns as its result
a function f’ which takes a value of type b as input and which returns as its result a
function f’’ which takes a list of values of type a as input, and which returns as its
result a value of type b. The type of foldr returned by the type system indicates that
the function is more general than suggested by the examples given earlier of its use in
defining sumlist, productlist, and concatlist (in each of which a and b are of the same
type). The inferred type of foldr shows that it can also be used to define functions
where the input types of its first operator argument are different. For example, the
following is a definition of a function reverse which reverses the order of elements in
a list given as argument:

reverse = foldr put_on_end [] where put_on_end x r = r ++ [x]

—Lazy evaluation does not compute arguments to functions until, and unless, they are
required. This provides a form of modularity that is difficult to achieve in other types

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

18 R. A. Frost

of programming: the ability to separate the generation and use of data structures that
are potentially infinite in size. For example, consider the following program which
returns the squares of the first three natural numbers (assuming that the function
take 3 has been defined elsewhere):

first_three_squares = take_3 [x^2 | x <- [1..]]

The comprehension following take 3 is a reusable component that generates the infi-
nite list of squares.

—It should be noted that Haskell does not have any built-in support for unification as
does the logic programming language Prolog. However, van Eijck [personal commu-
nication] notes that unification is easy to implement in Haskell and gives an example
in his forthcoming book Computational Semantics with Type Theory
http://www.cwi.nl/ jve/cs/.

4.4. A Note on Haskell Types and Classes

Haskell augments parametric polymorphic typing with ad hoc polymorphism. We ex-
plain this feature in the following using an example derived from Hudak et al. [2000].

With parametric polymorphism, when a function’s type is defined using an expression
involving a type variable a, the a is intended to mean any type. However, there are
situations where the type should be restricted. For example, in

equal_fsts:: [a] -> [a] -> Bool
equal_fsts (x:xs) (y:ys) = x == y
equal_fsts n m = False

The type declaration states that the function can be applied to two lists whose ele-
ments can be of any type a, provided they are of the same type. However, the func-
tion is really only applicable to lists containing elements which can be tested for
equality using ==. This is not the case for functions for which the equality test is,
in general, computationally intractable, and an attempt to apply equal fsts to lists of
functions would cause a runtime error. In Haskell, this problem is addressed through
the introduction of an additional kind of polymorphism, called ad hoc polymorphism,
in which type classes are defined together with associated overloaded operators. For
example,

class Eq a where (==) :: a -> a -> Bool

This definition states that, if a type a is an instance of the class Eq, then there is
an operator (==) of type a -> a -> Bool associated with it. The definition can also be
thought of as constraining the type of == as follows, where (Eq a) is called the context
in which == has type a -> a -> Bool:

(==) :: (Eq a) => a -> a -> Bool

(Note the different meaning of => in this context). Now we can define instances of
the class Eq, together with associated behaviors for ==, as, for example, in the following,
where integerEq and floatEq are built-in Haskell operators.

instance Eq Integer where x == y = x ‘integerEq‘ y
instance Eq Float where x == y = x ‘FloatEq‘ y

Now we can constrain the type of equal fsts to apply only to lists containing elements
for which == has been defined: equal fsts::(Eq a)=>[a]->[a]->Bool

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 19

Classes can be extended as, for example, in the following where the class Eq is said
to be a superclass of Ord:

class (Eq a) => Ord a where (),(=),(>=),(>):: a -> a -> Bool
max, min :: a -> a -> a

The advantages of this are that, the context (Ord a) can now be used in type decla-
rations rather than (Eq a, Ord a), and operations from the superclasses Eq can be used
in definitions of instances of the subclass Ord.

New classes may also be defined in terms of more than one superclass as in the
following that creates a class New that inherits operations from Eq and Conv (assumed to
have been defined elsewhere): class (Eq a,Conv a) => New a.

4.5. Monads

According to Wadler [1990], monads were introduced to computing science by Moggi
[1989] who noticed that reasoning about pure functional programs which involve han-
dling of state, exceptions, I/O, or nondeterminism can be simplified if these features are
expressed using monads. Inspired by Moggi’s ideas, Wadler proposed monads as a way
of systematically adding such features to algorithms. The main idea behind monads
is to distinguish between the type of values and the type of computations that deliver
those values.

A monad is a triple (M, unit, bind) where M is a type constructor, and unit and bind
are polymorphic functions. M is a function on types that maps the type of values into
the type of computations producing those values. unit is a function that takes a value
and returns a corresponding computation. The type of unit is a -> M a. The function
bind enables sequencing of two computations where the value returned by the first
computation is made available to the second (and possibly subsequent) computation.
The type of bind is M a -> (a -> M b) -> M b

In order to use monads to provide a structured method for adding a new computa-
tional feature to a functional program, we begin by identifying all functions that will be
involved in the new feature. We then replace those functions, which can be of any type
a -> b, by functions of type a -> M b. Function applications are then replaced by the
function bind which is used to apply a function of type a -> M b to a computation of type
M a. Those values which are not involved in the new feature are converted by applying
unit to them into computations that return the value but do not contribute to the new
feature. As an example, discussed further in Section 5.4, this process can be used to
add a memo table to top-down parsers implemented as purely functional programs.
The memo table is threaded through all component parser applications and allows re-
sults to be reused if the parser is ever reapplied to the same input. This reduces time
complexity for recognition from exponential to polynomial for highly ambiguous gram-
mars and also allows left recursive grammars to be directly implemented as modular
top-down parsers. Another use of monads, discussed in Section 8.3, is to systematically
extend theories of natural language to accommodate additional linguistic features.

A more complete account of monads can be found in Wadler [1990; 1995] and in the
tutorial by Hudak et al. [2000].

5. USE OF LFP IN SYNTACTIC ANALYSIS

Later in the article, we discuss the use of LFP in systems which integrate the syntactic
and semantic analysis of natural language. However, before we discuss those systems,
we review the use of LFP in syntactic and semantic analysis separately in this and the
next section, respectively.

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

20 R. A. Frost

5.1. Summary of Techniques for Language Recognition and Parsing

We begin with a brief overview of techniques for the automatic recognition and parsing
of languages. Readers who are familiar with this material can skip this section and
move directly to Section 5.2.

In Section 3, we defined a language as the set of sentences that can be generated from
a grammar using the production rules as left-to-right rewrite rules. It follows, therefore,
that if we are given a sequence of terminals, we can analyze that sequence with respect
to a given grammar. One question that we could ask is whether or not the sequence
belongs to the language defined by the grammar. This form of syntactic analysis is
called recognition and is decidable for context-sensitive and context-free grammars.
The second form of syntactic analysis involves showing how a sentence might be derived
from a given grammar. This involves providing a structure which links the terminals
of the sentence to the start symbol through reference to the nonterminals involved in
the derivation. This form of analysis is called parsing.

The structure produced by a parser is often represented in what is called a syntax
tree or parse tree, as illustrated in Section 3.1. In some cases, more than one syn-
tax tree can be generated for a single sentence with respect to a single grammar. For
example, consider the following simple grammar, where termph is an abbreviation for
termphrase:

sentence ::= termph spin
termph ::= propernoun | termph and termph
propernoun ::= Mars | Phobos | Deimos

The sentence “Mars and Phobos and Deimos spin” has two syntax trees: t

sentence
/ \

termph spin
/ | \

termph and termph
/ | \ |

termph and termph propernoun
| | |

propernoun propernoun Deimos
| |

Mars Phobos

and

sentence
/ \

termph spin
/ | \

termph and termph
| / | \

propernoun termph and termph
| | |

Mars propernoun propernoun
| |

Phobos Deimos

The first tree corresponds to a left-most derivation of the sentence and the second
tree corresponds to a right-most derivation of the sentence. Left-most and right-most

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 21

refer to the order in which the nonterminals on the right-hand side of a production
would expanded to generate the sentence.

Parsers differ in many ways as shown by the following examples.

—They can differ in the direction in which the tree is built. They can build the tree
from the top down, reaching to the terminals in the input sequence by creating a tree
with the start symbol at the top and then recursively predicting which right-hand
sides of rules to apply and by expanding nonterminal nodes in the tree appropriately.
Alternatively, they can build the tree from the bottom up by shifting input terminals
into a workspace, and then reducing sequences of terminals and nonterminals on the
fringe of the tree to nonterminals at a higher level in the tree. Efficient bottom-up
parsers make use of a table which is generated from the grammar before parsing
commences. The table contains information which is used by the parser to determine
whether to shift or reduce, and on reduce, which rule to use. Some parsers use a
combination of top-down and bottom-up techniques.

—They can use a depth-first strategy in which a complete branch is constructed from the
start symbol to a terminal (in top-down construction) or from a terminal to the start
symbol (in bottom-up). Alternatively, they can use a breadth-first strategy in which
all nodes at a particular level are constructed before any node in the next (lower level
in top-down, and upper level in bottom-up) are built. Or they can use a combination
of depth-first and breadth-first.

—They can differ in the order in which terminal symbols are attached to the tree. In
nondirectional methods, the terminals are attached in an arbitrary order. In left-
and right-directional methods, the terminals are attached to the tree in the order or
reverse order in which they appear in the input sequence.

—They can differ in the order in which the nonterminals on the right-hand side of
a production are expanded in the tree. For instance, the first tree in the previous
example could be produced by a parsing strategy which first expands the left-most
nonterminal in the rule termph ::= termph and termph whereas the second tree could
be produced by a parser which expands the right-most nonterminal first.

—They can be deterministic or nondeterministic. A deterministic parser always makes
its choice of next move depending on information that it has about the grammar, the
status of the tree constructed so far, and knowledge of the remaining terminals to be
absorbed into the tree. It never needs to undo a move. Alternatively, a nondetermin-
istic parser may choose a move and possibly add some structure to the tree which
might subsequently have to be undone by backtracking if it leads to a situation where
the tree cannot be completed.

—Deterministic parsers can differ in the amount of lookahead required as measured
by the number of terminals symbols that must be examined before the next move can
be determined.

—Depending on the combination of properties just presented, parsers can differ in the
type of grammars for whose sentences they can be guaranteed to produce a syntax
tree. For example, a simplistic implementation of top-down depth-first left-directional
left-most expanding parsers cannot parse all sentences with respect to a grammar
containing left-recursive production rules such as t ::= t and t as the parser would
continue to expand the left-most t indefinitely (unless there is a mechanism to detect
such looping and curtail it as discussed in Section 5.4). General parsers can accom-
modate any context-free grammar.

—Depending on the combination of properties, parsers can differ in their ability to
generate all parses of ambiguous sentences.

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

22 R. A. Frost

—Depending on the combination of properties, parsers can have differing time and
space complexities.

The programming language community has primarily been interested in linear deter-
ministic parsers for analysis of unambiguous programming and command languages.
Such parsers include the family LL(k), of top-down left-directional left-most expanding
parsers with k-terminal lookahead, the family of deterministic bottom-up operator-
precedence parsers, and the family of LR and LALR deterministic bottom-up left-
directional top-down-constrained right-most reducing parsers.

On the other hand, the natural language processing community has primarily been
interested in general nondeterministic parsers including the family of nondeterminis-
tic CYK bottom-up nondirectional parsers, the family of nondeterministic early-type
top-down constrained dynamic programming parsers, the family of nondeterministic
bottom-up Kilbury-like chart parsers, and Tomita’s nondeterministic generalized GLR
bottom-up breadth-first parser, which creates an efficient representation of multiple
syntax trees in graph form [Tomita 1985].

A highly readable and comprehensive description of parsing techniques, which in-
cludes all of those just mentioned, is in the book by Grune and Jacobs [1990], an ex-
panded version of which is expected to become available by the end of 2006. A theoretical
treatment of parsing is given in the book by Hopcroft et al. [2000].

5.2. Use of LFP in the Implementation of Conventional Parsers for NL Analysis

Leermakers [1993] has provided an integrated treatment of deterministic and general
parsing techniques in a purely functional framework. In Leermakers’ approach, there
is no notion of parse stack or parse matrix (the updateable data structures which are
used to store control information in deterministic and general parsing techniques, re-
spectively). The resulting purely functional treatment enables a unified view of the
techniques used by the programming language and natural language communities.
Leermakers shows how general recursive-ascent LR parsers can be implemented in a
purely functional way and claims that there are few reasons why anyone should use
anything other than recursive parsing algorithms. Although Leermaker’s approach
would appear to have application to the construction of natural language parsers, no
one has yet made use of it.

Ljunglof [2002a, 2004] provides a comprehensive analysis of the implementation of
a wide variety of deterministic and nondeterministic parsing algorithms in LFP. The
algorithms include CYK parsers, Kilbury chart parsers, and LR and generalized LR
parsers (leading to an approximation to Tomita’s parser [Tomita 1985]). Ljunglof also
provides an extensive treatment of functional parser combinators (such combinators
are discussed later in Section 5.3). Ljunglof claims that lazy evaluation enables elegant
and readable coding of parsing algorithms and also provides additional efficiency in that
evaluation of semantic values is delayed until a complete parse has been identified.

Medlock [2002] and Callaghan [2005] have developed a GLR extension to the Haskell
Happy parser generator [Marlow 2005], based on Tomita’s algorithm. The extension
can parse ambiguous grammars and produces a directed acyclic graph representing
all possible parses. The extension began as Medlock’s undergraduate project [Medlock
2002], which made use of a number of Ljunglof ’s ideas, and was subsequently sig-
nificantly improved by Callaghan. The extension implements a GLR algorithm which
can accommodate hidden as well as explicit left recursion. The Happy parser and the
GLR extension both allow monadic state to be threaded through the parser, thereby
accommodating languages with context dependencies. Some tests were carried out by
Medlock using his version of the GLR extension on the English grammar used in the

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 23

LOLITA system (see Section 7.2 for a discussion of LOLITA). One conclusion was that
efficiency would have to be improved for large parse tables. Callaghan’s [2005] im-
proved extension includes semantics and has been analyzed with respect to potential
application in gene-sequence analysis, rhythmic structure in poetry, compilers, robust
parsing of ill-formed input, and natural language. Callaghan and Medlock claim that
the functional GLR parser is more concise, clear, and maintainable than procedural
implementations. The GLR parser has been used by other researchers and is currently
available as part of the Happy parser generator tool. There does not yet appear to be
any extensive investigation of its use in NLI work.

Fernandes [2004] has also developed a GLR tool called HaGLR for creating parsers
in pure functional programming. In this approach, the user begins by defining a gram-
mar using a new datatype, the grammar is then passed as an argument to a function
which generates the parse table, which is then passed as argument to a GLR-parsing
function. Memoization is used to implement state merging. The approach is based on
Tomita’s original algorithm [1985], and therefore can accommodate explicit, but not
hidden left recursion. Fernandes claims that lazy evaluation avoids the creation of all
possible parses if they are not required. Fernandes also claims that HaGLR is faster
than other implementations for ambiguous grammars and notes that GLR parsers are
more compositional than LR parsers. With LR, when two parsers for two grammars are
to be integrated, the combined grammar has to be manipulated before the integrated
parser can be generated. This is required in order to avoid conflicts. The process is made
more difficult if semantic actions are associated with the original grammars. GLR, on
the other hand, allows the grammars to be combined directly. Fernandes states that
this helps designers build language processors incrementally. Although HaGLR would
appear to have value in building NLIs, such use has not yet been investigated in depth.

5.3. Parser Combinators

In the previous section, we described research in which LFP has been used in a con-
ventional way to implement a range of parsers that have already been implemented
in other programming languages. In this section, we describe an approach to parser
construction which is unique to functional programming. The approach involves the
definition and use of parser combinators. We describe this approach in detail as it has
been used by a number of researchers to build natural language processors.

The use of parser combinators was first proposed by Burge in 1975, although he did
not use the term parser combinator. The idea is to construct more complex language
processors from simpler processors by combining them using higher-order functions
(the parser combinators). This approach was developed further by Wadler [1985] who
suggested that recognizers and parsers should return a list of results. Multiple entries
in the list are returned for ambiguous input, and an empty list of successes denotes
failure to recognize the input. Fairburn [1986] promoted combinator parsing by using
it as an example of a programming style in which form follows function: a language
processor that is constructed using parser combinators has a structure which is very
similar to the grammar defining the language to be processed (as illustrated in the
example given later in this section).

The simplest implementations of the use of combinators results in a top-down depth-
first recursive-descent parser, with or without backtracking. We begin by describing
the approach with respect to the construction of language recognizers. A is defined as
a function from a sequence of input tokens to a list of sequences of output tokens. For
these examples, we assume that a token is a character string.

type Token = [char] type Recognizer = [Token]->[[Token]]

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

24 R. A. Frost

If a parser for a sequence of tokens t succeeds in recognizing t at the front of the
input sequences (t ++ r), it returns the remaining tokens r as an element of the output
list. If the recognizer fails to recognize t at the front of the input sequence, the output
list is empty. If the input can be recognized in more than one way, the output list will
contain multiple results. The following are two examples of application of a recognizer
rec every, which has been defined to recognize the single token “every” at the beginning
of the input sequence.

rec_every ["every", "moon", "spins"] => [["moon","spins"]]
rec_every ["a","moon"] => []

Three combinators are used to build recognizers.

(1) term is used to construct basic recognizers. The following is an example definition
and use.

Recog = Recognizer
term :: token -> Recog
term w [] = []
term w (t:ts) | w ==t = [ts]

| otherwise = []

rec_every = term "every" rec_spins = term "spins"

(2) orelse is used as an infix operator to build alternate recognizers.

orelse :: Recog -> Recog -> Recog
(p ‘orelse‘ q) inp = (p inp) ++ (q inp)

rec_pnoun = (term "Phobos") ‘orelse‘ (term "Deimos") ‘orelse‘ ...

(3) then1 is used to create a recognizer from two recognizers used in sequence.

then1:: Recog -> Recog -> Recog
(p ‘then1‘ q) inp = apply_to_all q (p inp)

where apply_to_all q [] = []
apply_to_all q (r:rs) = (q r) ++ (apply_to_all q rs)

rec_pnoun_spins = rec_pnoun ‘then1‘ rec_spins

(4) The empty recognizer, which always succeeds, is defined as empty x = [x].

These combinators can now be used to define recognizers for simple subsets of natural
language. For example, consider the following recognizer for a tiny language which
includes the sentences “Phobos spins”, “Phobos and every moon spin”, “Mars and Phobos
and Deimos spin”, etc.

rec_sentence = rec_termphrase ‘then1‘ rec_verbphrase
rec_termphrase = rec_simpletermphrase

‘orelse‘
(rec_simpletermphrase

‘then1‘ rec_join ‘then1‘ rec_termphrase)
rec_join = (term "and") ‘orelse‘ (term "or")
rec_simpletermphrase = rec_pnoun ‘orelse‘ rec_detphrase
rec_pnoun = (term "Phobos")‘orelse‘(term "Deimos")‘orelse‘(term "Mars")
rec_detphrase = rec_det ‘then1‘ rec_noun
rec_det = (term "every") ‘orelse‘ (term "a")

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 25

rec_noun = (term "moon") ‘orelse‘ (term "planet")
rec_verbphrase = (term "spin") ‘orelse‘ (term "spins")

Note that precedences for the combinators could have been set to avoid the use of
brackets. Also, the combinator definitions given above are highly inefficient and were
chosen for clarity. More efficient implementations, which, for example, remove duplicate
results, and/or use memoization to avoid repeating work, can be found in the references
given later. The following are example applications of these recognizers.

rec_sentence ["every","moon","and","every","planet","spins","."] => [["."]]
rec_sentence ["every", "spins"] => []
rec_termphrase ["Mars","and","every","moon","spin"]

=> [["and","every","moon","spin"], ["spin"]]

The first succeeds, the second fails, and the third succeeds with two results, correspond-
ing to the two ways in which subsequences at the front of the input can be recognized
as a termphrase: ["Mars"] and ["Mars","and","every","moon"].

A number of advantages result from building language processors in this way.

—The combinators can be easily extended to generate parse trees and to accommodate
the definition of semantic values and semantic-evaluation functions. Lazy evaluation
allows semantic functions to be closely associated with the executable syntax rules
without incurring huge computational overhead. This is a result of the fact that lazy
evaluation only requires the semantic functions to be applied when a successful parse
has been identified, not during the search process. Examples of such integration are
described later in this article.

—Programs that are built using parser combinators have structures that are closely
related to the structure of the grammars defining the languages to be processed. This
facilitates investigation of grammars and semantic theories of language.

—The use of top-down backtracking search, which is implemented by the combinators
presented earlier, leads to highly-modular parsers. Consequently, component parsers
can be tested independently as illustrated by the application of rec termphrase. This
facilitates experimentation and reuse of components.

—The equational nature of the definitions facilitates theoretical analysis.

5.4. Improving Complexity and Accommodating Left Recursion

The combinator parsers described have two shortcomings for use in NLIs 1) they have
exponential behavior for ambiguous grammars, and 2) they cannot be used to directly
implement parsers corresponding to grammars containing left-recursive productions.

Frost and Szydlowski [1995] and Szydlowski [1996] have shown how complexity can
be improved through memoization using a technique similar to that proposed by Norvig
[1991] for building efficient top-down parsers in LISP. However, instead of having a
global memo table, the table is threaded through function applications thereby main-
taining pure functionality and modularity. Rather than making such threading explicit
with consequent opportunity for error, the threading is hidden in a state monad as
described in Frost [2003]. The monad encapsulates all aspects of the computation con-
cerning the memoization process with minimal effect on the code which defines the
language processors.

The problem with left recursion has been solved by Frost and Hafiz [2006] who
have shown how combinator parsing can be modified to accommodate ambiguous left-
recursive grammars while maintaining polynomial time complexity. The solution in-
volves adding another table to the state which is threaded through all calls of all

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

26 R. A. Frost

functions implementing the component parsers. The new table counts the number of
times each parser is applied to the same input. For nonleft-recursive parsers, this count
will be at most one as the memotable lookup will prevent such parsers from ever be-
ing applied to the same input twice. However, for left-recursive parsers, the count is
increased on recursive descent (owing to the fact that the memotable is only updated
on the recursive ascent). Application of a parser N to an input inp is failed whenever
the application count exceeds the length of the remaining input plus 1. When this hap-
pens, no parse is possible (other than spurious parses which could occur with circular
grammars). As illustration, consider the following branch created during the parse of
two remaining tokens on the input:

N
/ \
N A

/ \
N B
/ \

P C
/

Q
/
N

where N, P, Q are nonterminals, A, B, C are sequences of terminals and nonterminals,
and the left-recursive grammar is of the form

N := N A | N B | P C | .. P := Q .. | .. Q := N .. | ..

The last call of N should be failed owing to the fact that, irrespective of what A, B, and
C are, either they must require at least one input token, or else they must rewrite to
empty. If they all require a token, then the parse cannot succeed. If any of them rewrite
to empty, then the grammar is circular (N is being rewritten to N), and the last call should
be failed.

Notice that simply failing a parse when a branch is longer than the length of the
remaining input is incorrect as this can occur in a correct parse if recognizers are
rewritten into other recognizers which do not have token requirements to the right.
For example, the parse should not be failed at P or Q as these could rewrite to empty
without indicating circularity.

A major advantage results from this approach, namely, the memotable is a compact
polynomial representation of the potentially exponential number of parse trees. This
compact representation is similar to the graphical data structure generated by Tomita’s
algorithm [1985]. However, as discussed in Frost and Hafiz [2006], an additional ad-
vantage of using LFP is that lazy evaluation allows the memotable to be built only as
needed for the question at hand. For example, if the question concerns just the location
of term phrases in the input, then the parser only generates begin and end points in
the memotable. If the first parse tree is the just one required to be made explicit, then
the memotable will contain just those subtrees that are needed.

The approach developed by Frost and Hafiz [2006] was influenced by the methods
proposed by Kuno [1965], Shiel [1976], Lickman [1995], and Johnson [1995] for dealing
with left recursion in top-down parsing.

5.5. A Short History of Parser Combinators and Their Use in NLIs

Parser combinators have a long history.

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 27

Burge [1975] was the first to suggest the use of higher-order functions to create
complex language processors from simpler components.

The use of lists to accommodate failure or multiple successful solutions in search
problems appears to have been first proposed by Turner [1981]. Wadler [1985] was the
first to apply this method to parsing and introduced the notion of failure as an empty
list of successes which is central to the definition of parser combinators.

Fairburn [1986] used parser combinators as an example in advocating a programming
style in which form follows function.

Frost [1992] defined combinators which enable the construction of language proces-
sors as executable specifications of attribute grammars.

Hutton [1992] provided a comprehensive description of parser combinators and
demonstrated their use in the construction of a parser for program code.

Fokker [1995] demonstrated how parser combinators can be used to analyze arith-
metic expressions.

Hill [1996] defined parser combinators for expressions with precedences and asso-
ciativities.

Panitz [1996] provided a proof of termination for combinator parsers using as an
example the combinators of Frost and Launchbury [1989].

Frost and Szydlowski [1995] and Szydlowski [1996] demonstrated how memoization
can be used to reduce the complexity of combinator parsers for ambiguous grammars.

Patridge and Wright [1996] defined combinators which can be used to build efficient
predictive parsers which return values that are either parse trees or an indication of
the cause of a parsing error.

Swierstra and Duponcheel [1996] defined combinators which produce error-
correcting parsers for LL(1) grammars. However, the approach is incompatible with
the use of a monadic interface. Hughes [2000] suggests a potential solution to this
deficiency by introducing arrows as a generalization of monads.

Hutton and Meijer [1998] wrote a tutorial on a monadic approach to the definition of
parser combinators and discussed the advantages which result from this approach.

Koopman and Plasmeijer [1999] showed how the efficiency of combinator parsers
can be substantially increased by use of continuations to avoid the creation of in-
termediate data structures and the introduction of an exclusive orelse combinator
to be used to limit backtracking where it is known that only one alternative can
succeed.

Leijen and Meijer [2001] developed Parsec, a library of monadic parser combina-
tors built in Haskell. Parsec can be used to build industrial-strength language proces-
sors, including compilers which have appropriate efficiency and error handling. Leijen
and Meijer also state that an advantage of monadic parser combinators is that they
can parse context-sensitive grammars, whereas the earlier parser combinators are re-
stricted to context-free grammars.

Ford [2002] developed the Packrat parser which parses LL(k) and LR(k) grammars
in linear time.

Frost [2003] demonstrated how the somewhat-error-prone method of memoizing
parser combinators developed by Frost and Szydlowski can be systematized through a
process of monadic memoization.

Frost and Hafiz [2006] used monadic memoization to accommodate left recursion in
top-down parser combinators (see Section 5.4).

Parser combinators have received significant attention from the functional program-
ming community and have been used extensively in programming-language prototyp-
ing. Their use in natural language processing has been more limited. The following is
a summary of the use of parser combinators in NLI. More information is given later in
the article.

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

28 R. A. Frost

Frost and Launchbury [1989] defined parser combinators to implement a natural
language database-query processor based on a set-theoretic version of Montague se-
mantics. The combinators were subsequently extended to allow language processors
to be constructed as executable specifications of attribute grammars (that work is de-
scribed in more detail in Section 7.2).

A significantly extended version of the combinators of Frost and Launchbury [1989]
was used in an early implementation of the LOLITA natural language processing sys-
tem [Garigliano et al. 1992] which is described in more detail in Section 7.1.

Lapalme and Lavier [1990, 1993] defined parser combinators to build a workbench
for investigating Montague-like theories of language (described in Section 7.3).

Ljunglof [2002b] published a brief argument supporting the use of LFP in natural
language processing. As an example, he developed what he refers to as a Montague-
style parser for a mini NL language using a set of parser combinators. The processor
takes NL phrases and returns expressions of first-order predicate calculus. For example,
parse sentence (words "sas serves every city in Europe") returns: forall x (city,x) &
in(x,Europe) => serves(sas,x).

Van Eijck [2003] defined new parser combinators that can be used to build parsers
which can accommodate phrases containing dislocation phenomena such as left ex-
traction in natural language. Left extraction occurs when a component of a phrase is
missing and some other component to the left of it contains the missing part. For ex-
ample, relative clauses contain left extraction, for example, “I knew the man that the
woman sold the house to”. One of van Eijck’s combinators, expectDPgap, is such that, for
example, when it is applied to the parser for sentences, will return a parser for relative
clauses. The approach can also create parsers for queries such as “What did they break
it with?” and “With what did they break it?”. Van Eijck [2004] has also implemented
a “deductive” Early-like general parser in Haskell but provides no discussion of its use
in natural language processing.

Pace [2004] defined parser combinators to accommodate use of context in natural
language parsing. The combinators are implemented in Haskell and make use of the
built-in monad support. Pace uses his combinators to build parsers for Maltese, where,
for example, the rules for constructing a term phrase from a determiner (e.g., “the”)
and a noun are more complicated than in English, involving morphological rules to aid
pronunciation of the words with grammatical rules which do not have a straightforward
compositionality. The context is represented in a state monad which is threaded through
the component parsers. Pace appears to be the first to use monadic combinators to
implement context-sensitive parsers for natural language.

5.6. Use of LFP in Grammar Analysis

Jeuring and Swierstra [1994] have formally specified a number of bottom-up grammar
analysis problems, and then systematically derived LFP programs for bottom-up gram-
mar analysis from the specifications. One example problem is to determine if a given
nonterminal derives the empty string.

5.7. LFP and the Construction of Morphologies

A morphology is a system which explains the internal structure of words. Regular
nouns have relatively simple morphological structure. For example, “cat”, “cat”++”s”,
and “cat”++”‘”++”s”, whereas irregular nouns and verbs have more complex morphology.
The morphology of a particular language can be defined using a set of inflection tables.
For example, for the Latin word “rosa”, meaning rose,

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 29

Singular Plural Singular Plural
Nominative rosa rosae Vocative rosa rosae
Accusative rosam rosas Genitive rosae rosarum
Dative rosae rosis Ablative rosa rosis

Writing out a table for every word in a language would result in hundreds of thou-
sands of entries. Consequently, more efficient representations are required. One ap-
proach is to create tables for some words, which are then used as paradigms for the
definition of the morphology of other words.

The conventional approach to morphological recognition is to compile the tables into
finite state automata, and then to parse words as regular expressions. As an alternative,
Pembeci [1995] has built a morphological analyzer for Turkish using parser combinators
implemented in Miranda and claims that the analyzer can parse approximately 99%
of all word forms in Turkish. Pembeci also claims that all morphological processes
have been implemented, and that a number of advantages result from use of parser
combinators, including clarity and modifiability of the code.

Forsberg [2004], and Forsberg and Ranta [2004] have developed an alternative ap-
proach, called Functional Morphology which is implemented in Haskell. It is based
on Huet’s toolkit, Zen, [Huet 2003, 2004] which Huet used to build a morphology for
Sanskrit. In this approach, inflection parameters are defined using algebraic data types,
and paradigm tables are implemented as finite functions defined over these types. As
illustration, consider the following example given in Forsberg and Ranta [2004].

data Number = Sing | Plural
data Case = Nominative|Vocative|Accusative|Genitive|Dative|Ablative
data NounForm = NounForm Number Case
type Noun = NounForm -> String

rosa :: [(NounForm, String)]
rosa =
[(NounForm Sing Nominative, "rosa"), (NounForm Sing Vocative, "rosa"),
(NounForm Sing Accusative, "rosam"),(NounForm Sing Genitive, "rosae"),
(NounForm Sing Dative, "rosae"),(NounForm Sing Ablative, "rosa"),
(NounForm Plural Nominative, "rosae") ...

rosaParadigm :: String -> Noun
rosaParadigm rosa (NounForm n c) =
let rosae = rosa ++ "e"

rosis = init rosa ++ "is"
in case n of Singular -> case c of Accusative -> rosa ++ "m"

Genitive -> rosae
Dative -> rosae
_ -> rosa

Plural -> case c of Nominative -> rosae
Vocative -> rosae
Accusative -> rosa ++ "s"
Genitive -> rosa ++ "rum"
_ -> rosis

One advantage of using functions is that the morphology of other words can now be
defined succinctly in terms of the paradigms. For example,

dea :: Noun
dea nf = case nf of NounForm Plural Dative -> dea

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

30 R. A. Frost

NounForm Plural Ablative -> dea
_ -> rosaParadigm dea nf

where dea = "dea"

Lists are used to accommodate free variation in which two or more words that have the
same meaning are spelled differently, for instance, “domus” and “domos” (home) as well
as missing forms corresponding to tables which have missing values. Haskell’s string-
handling capabilities are used to accommodate features that are difficult to define using
regular expressions. For example, dropping one of the letters when the last letter of a
word and the first letter of an ending coincide.

Functional Morphology has been used to define morphologies for a number of lan-
guages including Italian [Ranta 2001], Spanish [Andersson and Soderberg 2003],
Russian [Bogavac 2004], Swedish and Latin [Forsberg and Ranta 2004].

6. USE OF LFP IN SEMANTIC ANALYSIS

6.1. Implementing Montague-Like Semantics in LFP

We begin, in this section, by illustrating the ease with which computationally-tractable
versions of Montague-like semantic theories can be implemented in LFP by the direct
encoding of the higher-order functional semantics. This is analogous to the use of Prolog
to encode first-order semantic theories.

The approach borrows many insights from Montague, but differs in that common
nouns and phrases which denote characteristic functions of sets in Montague denote the
sets themselves, and all other denotations are modified accordingly. This is necessary
in order to efficiently compute answers when queries are evaluated with respect to a
database. For example, in a direct implementation of Montague semantics, evaluation
of the query “Does every moon spin?” would involve application of the characteristic
functions denoted by “moon” and “spin” to each entity in the universe of discourse. In
the set-theoretic version, “moon” and “spin” denote the sets of entities directly, and the
query is evaluated by determining if the first set is a subset of the second.

The following illustrates how the set-theoretic semantics can be used as the basis for
a small query processor implemented in Haskell. The implementation begins by intro-
ducing the internal representations of entities through a user-defined type as follows,
where the code deriving (Eq, Show) causes Entity to inherit properties of Eq, enabling
use of == for testing equality, and of Show for printing.

data Entity = Earth | Mars| Phobos | Deimos |... deriving (Eq, Show)

Next, the denotations of common nouns and intransitive verbs are represented as
lists of entities. For example,

spins, planet, moon, person :: [Entity]
spins = [Mars, Earth, Phobos, .. planet = [Mars, Earth, Mercury, ..
moon = [Luna, Phobos, Deimos, .. person = [Hall, Kuiper, ..

Next, the denotations of proper nouns are represented as functions from entity sets to
booleans, using the built-in function elem which tests for membership in a list. Note that
lower case is used for identifiers representing the denotation of words and an initial
upper-case letter for identifiers of the internal representation of entities. For example,
“Mars” is the word in the concrete syntax, mars is its semantic value (a function), and
Mars is the internal representation of the entity associated with the word “Mars” (see
the following). Denotations of quantifiers are represented as higher-order functions.
For example, assuming that subset and intersect have been defined appropriately,

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 31

mars, phobos :: [Entity] -> Bool
mars s = Mars ‘elem‘ s phobos s = Phobos ‘elem‘ s ...

every, a :: [Entity]->[Entity]->Bool
every s t = s ‘subset‘ t a s t = s ‘intersect‘ t /= []

These definitions can be used directly in composite semantic expressions, which can
be entered at the command line. For example, mars spins => True and every planet
spins => False

A more complex definition is required for the denotation of the word “and”.

(f ‘and‘ g) = h where h s = (f s) && (g s)

The value of an expression f ‘and‘ g is a function h which takes a list of entities s as
input and which returns the Boolean value of the result returned by forming the logical
conjunction && of the values of (f s) and (g s). Hence, (mars‘and‘(every moon)) spins =>
True The denotation of the word “or” can be defined similarly using disjunction in place
of conjunction, and the word “that” has the denotation that = intersect. Conversion of
the denotation of the transitive verb “discovered” given in Section 3.3 to a set-theoretic
version yields the denotation discovered defined as follows:

discovered p = [x | (x, image_x) <- collect discover_rel, p image_x]
where discover_rel=[(Hall, Phobos),(Hall, Deimos),(Kuiper, Nereid)...

The collect function is defined such that it returns a new binary relation containing
one binary tuple (x, image x) for each member of the projection of the left-hand column
of discover rel, where image x is the image of x under the relation discover rel. Example
applications of collect and discovered are:

collect discover_rel => [(Hall,[Phobos,Deimos]),(Kuiper,[Nereid...])...
discovered phobos

=> [x |(x,image_x) <- [(Hall, [Phobos, Deimos]),
(Kuiper,[Nereid...])
...], phobos image_x]

=> [Hall]

Passive forms of verbs such as was discovered by can be accommodated by defining them
as just presented except that the order of the values in the tuples in the associated
binary relation is reversed.

The resulting minisemantics is highly compositional in the sense that the only rule
of composition is function application, and the order of application is determined by the
syntactic structure of the query. Example query and subquery evaluations are:

(Hall ‘and‘ Kuiper) (discovered (a moon)) => True
(moon ‘that‘ (was_discovered_by

(Hall ‘or‘ Kuiper)))
=> [Phobos,Deimos,Nereid...

((a moon) ‘and‘ (every planet))
(was_discovered_by (a person)) => False

every moon => <function>

Note that the denotation of the phrase “every moon” is of the same type as the de-
notation of the proper noun “Mars”, given earlier. This is consistent with Montague’s
approach which dictates that words and phrases of the same syntactic category should
denote semantic values of the same type. Note also that denotations of words can be
defined in terms of the meaning of other words and phrases. For example,

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

32 R. A. Frost

discoverer = person ‘that‘ (discovered ((a moon) ‘or‘ (a planet)))

One of the problems with the semantics described so far is that it cannot accommo-
date sentences such as “Phobos orbits and Deimos orbits Mars”. The reason is that the
phrases “Phobos orbits” and “Deimos orbits” cannot be given straightforward denota-
tions using function application because the type of the denotations of “Phobos” and
“Deimos” is [Entity] -> Bool, which cannot be applied to the denotations of “orbits”
which is of type ([Entity] -> Bool) -> [Entity]. The rules of Combinatory Categorial
Grammar described in Section 3.5 suggests the following solution to this problem: 1) in-
troduce a new syntactic category termphrase transverb ::= termphrase transverb, 2) con-
struct the denotation of a termphrase transverb by composing the denotations of the two
components on the right of the rule: denotation of termphrase . denotation of transverb
As an example, consider the sentence “Phobos orbits and Deimos orbits Mars”. The ad-
ditional grammar rule, together with other rules which refer to the new category, would
cause the sentence to be parsed as follows: ((Phobos orbits) and (Deimos orbits)) Mars,
and the semantic rule would result in the following interpretation.

((phobos . orbits) ‘and‘ (deimos . orbits)) mars
=> ((phobos . orbits) mars) ((deimos . orbits) mars)
=> (phobos (orbits mars)) (deimos (orbits mars))
=> True

This is not an entirely satisfactory solution as we need function composition in ad-
dition to prefix and infix function application. However, the approach accommodates
a wide range of sentences such as “Hall discovered and Mars is orbited by Phobos”,
“Phobos orbits and Deimos orbits and Miranda orbits a planet”, etc.

The semantics that has been presented in this section is linguistically simple, yet
it serves to illustrate the ease with which efficient versions of Montague-like theories
can be represented in LFP. An implementation of this semantics was first presented
by Frost and Launchbury [1989] who integrated it with parser combinators, written
in Miranda, in order to create an efficient natural language database-query processor.
Independently, and around the same time, Lapalme and Lavier [1990, 1993] imple-
mented a subset of Montague grammar in Miranda using parser combinators in order
to create a framework for experimentation. These two projects are described in more
detail in Sections 7.2 and 7.3, respectively. In both cases, the researchers claimed that
higher-order functions and lazy evaluation facilitated the creation of highly modular
systems.

6.2. Use of LFP to Investigate and Extend Semantic Theories of Natural Language

In addition to implementing theories, researchers have also used LFP to investigate
extensions to those theories for use in NLIs.

6.2.1. Efficient Accommodation of Arbitrary Negation. Despite comprehensive analysis of
negation by linguists, for example, [Iwanska 1992], the creation of a computationally-
tractable compositional method for accommodating arbitrary negation in NLIs has
proven to be difficult. The problem can be illustrated by considering the following
queries with respect to a relational database containing data about which moons orbit
which planets: “Does Luna not orbit Mars?” and “Does Sol not orbit Mars?” Montague-
like compositional semantic theories, such as those described in Section 6.1, will return
the correct answer for the first query but the wrong answer for the second query (with
respect to the closed-world assumption, which is appropriate for many applications).
This is because the orbits relation does not contain Sol in its left-hand column due to

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 33

the fact that Sol does not orbit anything. Therefore, Sol is not returned in the list of
entities which is the interpretation of “not orbit Mars”. One solution to this problem
is to extend the orbit relation to include (x, "nothing") for all entities x in the domain
of discourse which do not occur in the left-hand column. This is clearly impractical for
all but very small databases and is useless for databases with infinite domains. Frost
and Boulos [2002] have developed a solution to this problem and have implemented
an example in LFP. The basic idea is that potentially huge or infinite sets denoted by
constructs involving negation are represented using set-complement notation in which
the type CSET is defined as follows: data CSET = SET [ENTITY] | COMP [ENTITY].

The basic set operators are redefined, as exemplified in the following, and the deno-
tations of words are redefined accordingly. For example,

c_intersect (SET s) (SET t) = SET (s ‘intersect‘ t)
c_intersect (SET s) (COMP t) = SET (s -- t)
c_intersect (COMP s) (SET t) = SET (t -- s)
c_intersect (COMP s) (COMP t) = COMP (s ‘unite‘ t)

no s t = s ‘c_intersect‘ t == []

non (SET s) = COMP s
non (COMP s) = SET s

The approach accommodates arbitrarily nested quantification and negation.

every (thing ‘that‘ (orbits (no moon))) (orbits (no planet)) => False
a (non moon) (orbits Sol) => True
every moon (orbits (no moon)) => True
Sol (orbits (a (non moon))) => False
not (every moon) (is_orbited_by Phobos) => True
a (moon ‘that‘(was_discovered_by Hall)) (does (not (orbit Earth))) => True
moon ‘that‘ (was_discovered_by Hall) => SET [Phobos, Deimos]
orbits (no planet) => COMP [Phobos,Deimos, Nereid...]

6.2.2. Accommodating Transitive Verbs of Arity Greater Than 2. The semantic theory de-
scribed in Section 6.1 can only accommodate transitive verbs of arity two. It cannot
handle queries such as “When, and with what, did Hall discover Phobos?”. Montague
gives little help in this respect. Roy [2005] and Roy and Frost [2005] have developed an
approach which goes some way towards solving this problem for queries that are inter-
preted with respect to first-order nonmodal nonintensional databases. The basic idea
is that atomic semantic values (entities, etc.) are represented as attributes of the same
type by applying user-defined value constructors to them (such constructors include
SUBJ, OBJ, IMPLEMENT, TIME etc.) Relations are represented as lists of lists of attributes.
Consequently, all relations are of the same type irrespective of arity. All denotations
are modified accordingly such that phrases denote lists of attributes rather than sim-
ply truth values or lists of entities, etc. For example, interpretation of the phrase “Hall
discovered a moon” returns the list

[[SUBJ Hall,OBJ Phobos,IMPL Telescope, TIME ...],[SUBJ Hall,OBJ Deimos...

Phrases such as “when did” and “with what did” are then used as filters to return
answers to specific questions.

6.2.3. A Uniform Treatment of Adjectives. Despite their simple syntactic form, adjective-
noun combinations seem to have no straightforward semantic method that parallels

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

34 R. A. Frost

the simplicity of their syntax. For example, consider the phrases “beautiful dancer”,
“fake gun”, “tall jockey”, and “former senator”. One view is that adjectives belong to a
semantically motivated hierarchy. This has the consequence that a uniform treatment
of adjectives is difficult. In contrast to this view, Abdullah and Frost [Abdullah 2003;
Abdullah and Frost 2005] have developed a uniform semantics based on typed sets.
Entities belong to a set only when associated with a type. For example, the set beautiful
= {Mary:woman, Jane:dancer} states that Mary is beautiful as a woman and Jane dances
beautifully. The semantics makes use of typed-set operators to ensure that only valid
deductions can be made. For example, even if Mary is also in the set of dancers, it would
not follow that she “dances beautifully”. Phrases that involve privative adjectives, such
as “fake gun” are dealt with by treating fake guns as belonging to the set of guns but
lacking some intrinsic properties so that the denotation of such phrases is obtained
by a modified form of intersection. In this approach, regular adjectives such as “red”,
“angry”, or “skillful” and privative adjectives such as “fake” or “former” have one thing
in common: they both constrain the domain denoted by the noun that follows it. They
differ in the means of doing it, regular adjectives highlight some properties of the
noun, while privative adjectives mask some properties. This approach was developed
through experimentation in Miranda and a small database-query processor has been
implemented to demonstrate its viability.

6.2.4. Dealing with Dynamic Contexts. Various compositional theories have been devel-
oped to model dynamic context in interpreting natural language constructs, such as
“Some student studied hard for some subject; he did well in it it.”, “Few students go
on to doctoral studies; they are highly motivated”, and “Few students completed the
assignment; they are very lazy”, which involve pronominal reference, anaphoric link-
ing, and dynamic scoping. The theories attempt to develop an interpretation of the
first phrase, which is then merged with the interpretation of the second phrase. Most
of these theories replace the static variable-binding scheme of predicate logic with a
dynamic binding such that interpretations involve relations between variable states
in the model. Van Eijck [2001] has developed an alternative theory, called incremen-
tal dynamics (ID), which differs from other theories in that it uses a variable-free
representation of quantifiers. The approach appears to have been motivated by com-
binatory logic, a variable-free representation of lambda calculus which is used as a
theoretical basis for the implementation of some LFP languages. The basic idea be-
hind ID is that variables are replaced by indices into contexts where a context can
be thought of as a data structure representing information on entities, etc., gathered
from some subcomponent of the phrase. Existential quantifiers push entities into con-
texts and pronouns select entities from contexts. Anaphora resolution involves us-
ing syntactic clues to determine where to search in a set of contexts. Van Eijck and
Nouwen [2002] have developed an example implementation of an ID-based natural lan-
guage interpreter in Haskell, making particular use of polymorphic types to represent
contexts.

6.3. Use of Types to Analyze Natural Language

Universal Applicative Grammar (AUG) is a linguistic theory which was developed by
Shaumyan [1987]. The structures and rules which define a particular language such as
English, are called a phenotype. The universal structures and laws which underlie all
natural languages are collectively called the genotype. From a computer science per-
spective, the genotype is in some ways analogous to abstract syntax and the phenotype
to concrete syntax. The genotype is defined in terms of predicates, terms, predicate
modifiers, term modifiers, and rules of combination which are based on combinatory

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 35

logic. These rules are constrained by a set of semiotic principles which are intended to
explain universal linguistic features.

For example, the passive form of the sentence “Hall discovered Phobos” is created by
application of a rule in the phenotype of English which reverses the order of Hall and
Phobos and adds “was” and “by”, giving “Phobos was discovered by Hall”. This rule of
passivization does not hold in languages such as Russian or Latin where passivization
is achieved by use of case endings. In AUG, a universal law of passivization is stated
in terms of operations on the structures of the genotype.

In AUG, phenotype and genotype grammars are defined in terms of types and op-
erator/operand relations, corresponding to categories and function/argument relations
in Categorial Grammar, using a notation analogous to that of Categorial Grammar in
which a phrase of type Oxy combines with a phrase of type x to generate a phrase of
type y.

In Section 5, we described systems in which grammars are used to direct the syntactic
analysis of the natural language input. However, in some applications, it may not be
feasible to define a grammar that covers all of the ways in which users might phrase
their input, and, in some applications, the system may be required to be sufficiently
robust to be able to process input that would usually be regarded as being grammatically
incorrect. One solution to this problem which is based on AUG is to use types to parse
natural language [Jones et al. 1995; Shaumyan and Hudak 1997]. For example, consider
the phrase “my friend lives in Boston”. The word “friend” might be of type T (for term)
and “my” might be of type OTT meaning that it takes a phrase of type T and returns
a phrase of type T. The assignment of a particular order of function application to a
phrase can be thought of as a parse of that sentence. For example,

in Boston
[OTOOTSOTS] [T]

my friend lives ________/
[OTT] [T] [OTS] [OOTSOTS]
________/ _____________/

[T] [OTS]
___________________/

[S]

Parsing may now be thought of as identifying all well-typed tree structures for adja-
cent phrases in the input. The advantage of this approach is that it does not require a
grammar, and it can accommodate queries with less constrained word order. A disad-
vantage is the exponential size of the search space. However, Jones et al. [1995] have
shown how memoization can be used to improve the efficiency of the process. The ap-
proach has been implemented in Haskell and is being used to investigate the inference
of types for words not already in the dictionary, use of punctuation, and other aspects
of NL processing. More comprehensive descriptions of AUG can be found in Shaumyan
[1987], Sypniewski [1999], and Shaumyan and Segond [1994], which include compar-
isons of AUG with Combinatory Categorial Grammar.

6.4. Use of LFP to Model Semantic Ontologies

In addition to the use of LFP to represent compositional theories of language, it has also
been proposed as a means for modeling ontologies. An ontology is a collection of defi-
nitions of related semantic concepts. Ontologies are necessary to support the analysis
and reasoning that is required in, for example, advanced natural language informa-
tion retrieval systems. WordNet, which is a lexical reference system developed at The
Cognitive Science Laboratory at Princeton University (http://wordnet.princeton.edu/)

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

36 R. A. Frost

is a widely-used ontology. In WordNet, English words are grouped into synonym sets
representing underlying lexical concepts which are related through various semantic
functions.

Kuhn [2002] has noted that, although ontologies that are based on hierarchies such
as Wordnet can approximate human similarity judgments, they fail to represent other
semantic relationships. He gives as example the relationship between boathouses and
houseboats. After simplification, Kuhn derives the following subhierarchies from Word-
Net:

boathouse-(at edge of river or ... houseboat-(a barge that is ...
=>barge-(a boat with a flat ... =>boat-(a small vessel for travel ..
=>house-(a building in which ... =>vessel-(a craft designed for ...
=>building-(a structure that ... =>craft-(a vehicle designed ...
=>structure-(a thing constructed . =>vehicle-(a conveyance that ...
=>artifact-(a man-made object) =>conveyance-(something that ...
=>object-(a physical ... =>instrumentality-(an ...
=>entity-(anything that exists =>artifact-(a man-made ...

=>object-(a physical ...
=>entity-(anything ...

A commonly-used measure of similarity is the number of steps separating two con-
cepts from a common node in the hierarchy. Using this, boathouse would be 12 steps
away from the concept of houseboat, with artifact as the common node. Kuhn argues
that this measure does not adequately capture the similarity/dissimilarity of these two
concepts with respect to their sheltering function and their relationship with people and
water. As a solution, Kuhn proposes the use of a technique called conceptual integration
and its formalization using Haskell class declarations. The basic idea behind concep-
tual integration is that semantic entities belong to conceptual categories by virtue of
admitting certain operations. For example, an entity is in the category house if it affords
(Kuhn’s terminology) shelter to other concepts.

In order to formalize the representation of his ontology, Kuhn uses Haskell type
classes (as discussed in Section 4.4) together with Haskell multiparameter class defini-
tions, which are supported by some implementations of Haskell, to represent semantic
categories whose members share behavior. He begins by specifying examples of image
schemata.

class Containers a b where class Contacts a b where
insert :: b -> a b -> a b attach :: b -> a b -> a b
remove :: b -> a b -> a b detach :: b -> a b -> a b
whatsin :: a b -> [b] whatsAt :: a b -> [b]

class Surfaces a b where class Paths a b c where
put :: b -> a b -> ab move :: c -> a b c -> a b c
takeoff :: b -> a b -> a b origin,destination :: a b c -> b
whatsOn :: a b -> [b] whereIs :: a b c -> c -> b

The operations afforded by the types in the class are described through their signa-
tures. For example, the insert operation puts a thing of type b into a container of type
a b and returns a container holding that thing. Query functions return lists of things
contained, supported, or attached.

Next, three auxiliary concepts are defined: People (as house inhabitants and boat
passengers), HeavyLoads (as defining the capacity of barges), and navigable WaterBodies
(as transportation media) which are constrained to be subclasses of Surfaces. The fi-
nal part of the formalization is the specification of all concepts above houseboats and

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 37

boathouses in the modified WordNet hierarchies:

class People p
class Surfaces w o => WaterBodies w o
class HeavyLoads l

class Containers h o => Houses h o
class (Surfaces v o, Paths a b (v o) => Vehicles v o a b
class (Vehicles v o a b, WaterBodies w (v o)) => Vessels v o a b w
class (Vessels v p a b w, People p) => Boats v p a b w
class (Boats v p a b w, HeavyLoads p) => Barges v p a b w

Now, BoatHouses can be defined as Houses which are used to store Boats and which are
located at the edge of a body of water on which the boats can move, and HouseBoats can
be defined as barges used as houses for people.

class (Houses h (v p), Boats v p a b w, Contacts w (h (v p)))
=> BoatHouses h v p a b w

class (Barges v p a b w, Houses v p, People p) => HouseBoats v p a b w

One advantage claimed for this approach is that the ontology can be checked for errors
using the Haskell type-checking system. Kuhn also claims that with instantiations of
types of classes and with operations defined on those classes, semantic properties can
be determined. As example, he states that, in the previous ontology, it can be shown
that a passenger on a boat in a boathouse cannot be said to be an inhabitant, whereas
a passenger on a houseboat can. However, Kuhn does not give details of how such
reasoning could be automated nor does he compare his proposed approach to existing
ontologies such as WordNet.

Frank [2001] has also used Haskell to implement a model of a tiered ontology for a
geographical information system but makes no comment on the advantages of using
the LFP paradigm.

7. NLI SYSTEMS BUILT USING LFP

7.1. LOLITA

LOLITA is a Large-scale, Object-based, Linguistic Interactor, Translator and Analyzer
that was under development from 1986 up to 1989 by Roberto Garigliano and other
members of the Natural Language Engineering Group at the University of Durham.
LOLITA is based on three main capabilities: 1) conversion of English text to an internal
semantic network called SemNet, 2) inferences in SemNet, and 3) conversion of parts
of SemNet to natural language output.

LOLITA was originally built in Miranda [Garigliano et al. 1992]. However, it is now
implemented in over 50,000 lines of Haskell and 6,000 lines of C. It is one of the largest
programs written in an LFP language. LOLITA was entered in DARPA’s Message Un-
derstanding Conference Competitions MUC-6 [Morgan et al. 1995] and MUC-7, and
participated successfully. The results of MUC-6 are reported and comprehensively an-
alyzed in Callaghan’s doctoral thesis [Callaghan 1997]. According to Callaghan, the
parser for LOLITA, prior to the MUC-6 competition, was developed from the parser com-
binators of Frost and Launchbury [1989] with considerable extensions. Subsequently,
it was replaced by a more comprehensive natural language parser written in C which
generated compact graph-based representations of parse trees similar in some ways to
those generated by Tomita’s algorithm [Tomita 1985]. The parser translates English

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

38 R. A. Frost

text to one or more disambiguated structures which are then processed and added to
the graph-based semantic network.

LOLITA’s semantic net serves many purposes and is used to represent ontological
hierarchies and lexical information (from WordNet), prototypical events, general knowl-
edge, and knowledge gained from previous analysis of natural language input [Short
et al. 1996]. A type-theoretic semantics for SemNet has been developed [Shiu et al. 1996;
Shiu 1997]. LOLITA provides various forms of reasoning in order to make inferences
from its semantic network. These inferences are used to support parsing and other nat-
ural language processing tasks. This reasoning includes 1) inheritance, in which nodes
in the net can gain information from their neighbors, 2) analysis of semantic distance,
which is used to determine where to place new nodes, and 3) analogy, which supports
inference based on similarity of semantic structures [Long and Garigliano 1994].

A number of prototype applications have been built using LOLITA. These include an
information-extraction system which summarizes text [Garigliano et al. 1993], a Chi-
nese tutoring system [Wang 1994], a natural language generation system for English
[Smith et al. 1994; Smith 1997] and for Spanish [Fernandez 1995], a metaphor proces-
sor [Heitz 1996], a discourse planner [Reed et al. 1997], a natural language database-
query processor, and an information-extraction system for equity derivatives trading
[Constantino 1999].

Not only has LOLITA demonstrated the viability of LFP for building large systems,
it has also demonstrated the suitability of LFP for rapid prototyping, which is neces-
sary in the continually evolving natural language research domain. Lazy evaluation
was found to be essential for performance in that it allowed only the best semantic
subnets to be evaluated—the input was first decoded by the parser which constructed
the parse graph only as required to generate the results. Maintaining this laziness was
one of the challenges faced when LOLITA was successfully parallelized by Loidl et al.
[1997].

7.2. Attribute-Grammar Programming Environments

An attribute grammar (AG) is a context-free grammar augmented with associated se-
mantic rules. Attribute grammars can be compiled into programs which parse and eval-
uate their input according to the grammar specification. As an alternative to compiling
AGs, extended parser combinators can be defined so that language processors can be
constructed as executable attribute grammars directly in the programming language.
A comprehensive survey of attribute grammars and attribute grammar programming
environments is given in Paakki [1995].

Johnsson [1987] was the first to provide support for attribute grammar programming
in LFP. He added a new case-like structure to a lazy functional language to express
attribute dependencies over data structures. The approach used lazy evaluation to hide
the two-pass aspect of many tree-processing problems (e.g., scanning a parse tree to
build a context, and then subsequently scanning the tree again to make use of that
context). Around the same time, Udderborg [1988] built a purely functional parser
generator which accepts specifications of a general class of attribute grammars as input
and which returns language processors coded in LML as output. Udderborg claimed
that lazy evaluation was necessary to accommodate certain types of circular attribute
dependencies. A third approach was investigated by Augusteijn [1990] who developed
the Elegant attribute grammar programming language. The name is an acronym for
Exploiting Lazy Evaluation for the Grammar Attributes of Non-Terminals. Elegant
started as a compiler generator based on attributed grammars but grew to become a
complete programming language. The design of Elegant was inspired by the abstraction
mechanisms found in lazy functional programming languages.

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 39

Although attribute grammars are clearly relevant to the specification and con-
struction of natural language interfaces, Johnsson, Udderborg and Augusteijn did
not discuss the potential use of their functional attribute grammar systems in such
work.

Frost and Launchbury [1989] appear to have been the first to consider the use of
functional attribute grammars in NLIs. They defined a set of parser combinators, sim-
ilar to those described in Section 5.3 but which allow a single attribute to be associated
with each production rule in the grammar. The resulting simple form of executable at-
tribute grammar was used to implement a natural language database-query processor
based on a set-theoretic version of Montague semantics, similar to that described in
Section 6.1.

The combinators of Frost and Launchbury were extended to accommodate dependen-
cies between inherited and synthesized attributes in a system called the Windsor At-
tribute Grammar Programming Environment (W/AGE) constructed in Miranda [Frost
2002]. The environment allows syntax and semantic rules to be defined together in a
form that closely resembles attribute grammar notation.

As example of the use of W/AGE, consider the following extracts (converted to
Haskell) from an 800–line Miranda program which can answer hundreds of thousands
of simple queries such as “Who discovered a moon that orbits a planet that is orbited
by Phobos or Nereid?”. The program begins with a declaration of the types of semantic
attributes that are to be computed for different syntactic categories. For example, in
the following, where Es stands for entity set:

data Attribute = SENT_VAL Bool
| NOUNCLA_VAL Es
| ADJ_VAL Es
| TERMPHRASE_VAL (Es -> Bool) ...

A dictionary is then created defining the vocabulary of the input language. For each
word, the entry indicates the syntactic category and its meaning. Words can also be
defined in terms of other words or phrases. Basic interpreters are then defined in terms
of the dictionary entries. For example,

dictionary = [("moon", cat_cnoun, [NOUNCLA_VAL set_of_moons])...
("discoverer", cat_cnoun, meaning_of nounclause "person

who discovered something")...
cnoun = dictionary_category cat_cnoun

Two attribute grammar combinators ‘orelse‘ and structure are then used to define
the syntax and associated semantic rules. For example, the following rule for simple
noun clauses states that a simple noun clause is either a common noun or else a list of
adjectives followed by a common noun.

snouncla = cnoun ‘orelse‘ (structure (s1 adjs ++ s2 cnoun)
[a_rule 1(NOUNCLA_VAL‘of‘ lhs) EQ intrsct1

[ADJ_VAL‘of‘s1,NOUNCLA_VAL‘of‘s2]])

The attribute rule a rule 1 states that the NOUNCLA VAL value of the left-hand side of the
syntax rule (i.e., the simple noun clause snouncla) is obtained by applying the semantic
operator intrsct1 to the ADJ VAL of the list of adjectives s1 adjs with the NOUNCLA VAL of
the common noun s2.

The semantic functions are then defined as shown, where intersect is a predefined
function. The database is also defined (within the program for prototyping or in external
files). For example,

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

40 R. A. Frost

intrsct1 [ADJ_VAL x, NOUNCLA_VAL y] = NOUNCLA_VAL (x ‘intersect‘ y)

set_of_moon = [Phobos, Deimos...]
orbit_rel = [(Phobos, Mars), (Deimos, Mars) ...

Interpreters that are built in W/AGE are modular, and component evaluators can be
used independently. For example,

snouncla (tokenize "red planet spins")
=>[[[NOUNCLA_VAL [Mars]],[WORD "spins"]]]

The W/AGE environment has been used to create natural language database-
query interfaces which are hyperlinked in a Public-Domain SpeechWeb [Frost 2005]
and which can be accessed through speech recognition interfaces running on remote
lightweight end-user devices.

7.3. A Workbench for Experimenting with Montague-Like Grammars

Lapalme and Lavier [1990, 1993] developed a workbench in Miranda for experiment-
ing with implementations of Montague-like approaches to natural language processing.
Their implementation consists of four components which Montague claimed are neces-
sary for a truth-conditional semantics:

First, a set of semantic values (these are entities, truth values, and functions con-
structed from them) are defined through a parameterized user-defined type:

data Semantic_value a b
= E a -- entities | FeFet (a -> a -> b)
| T b -- truth values | Ftt (b -> b)
| Fet (a -> b) ... | FtFtt (b -> b -> b) ...

The constructor FeFet indicates a function from an entity to a function from an entity to
a truth value. The type Semantic value can be instantiated for a specific set of individuals
and truth values as illustrated in the following:

data People = Margaret | Elizabeth | Robert etc.
Sem_people = Semantic_value People Bool

Next, the type Semantic value is parameterized so that different types of value can
be used for entities and truth values. This seems a little odd at first but is used by
Lapalme and Lavier to easily convert the interpreter to a processor which returns
parse trees. For their example of an allocation stating the type of semantic value that
is to be assigned to expressions of each syntactic category. Lapalme and Lavier choose
the following assignment:

Cat. Constr. Type Cat. Constr. Type
N E People Conj FtFtt Bool -> Bool -> Bool
Vi Fet People -> Bool Neg Ftt Bool -> Bool
Vt FeFet People -> People -> Bool S T Bool

Next, a set of semantic rules are defined, stating how the semantic values of composite
expressions are computed from the semantic values of their components. Lapalme and
Lavier define these rules in a single function appff:

appff (Fet a) (E b) = T (a b) appff (Ftt a) (Ftt b) = Ftt (b . a)
appff (Ftt a) (T b) = T (a b) ...

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 41

The first line states that the result of applying a function a of type People -> Bool to a
value b of type People is a value of type Bool, obtained by applying a to b.

Finally, semantic values are assigned to each of the basic expressions (words) in the
language. For example,

f0 "Maggie" = E Margaret f0 "sleeps" = Fet fs
f0 "Liz" = E Elizabeth where fs e = e == Margaret ||e == Robert
f0 "Bob" = E Robert f0 "and" = FtFtt (&&)

The assignment states that sleeps denotes a function fs which returns True when ap-
plied to the entities Margaret or Robert, and False when applied to any other entity. This
function, together with appff, is then integrated into a set of combinator parsers similar
to those described in Section 5.3. The resulting processor p is such that, for example, p
"Liz sleeps and Bob sleeps" => T False.

Lapalme and Lavier [1990, 1993] claim that Montague advocated for a clear sep-
aration between the semantic model and the syntactic analysis. They illustrate how
their approach achieves this separation by simply changing the parameters of the
type Semantic value as follows: Sem tree = Semantic value String tree String tree, where
String tree is a user-defined type whose values are character-string representations of
trees and redefining f0 so that the semantic values assigned to words are String-trees.
The values returned by the language processor are now String-trees which are trans-
formed to a more readable form by a pretty-print function as shown in the examples
that follow.

Lapalme and Lavier also show how variables can be incorporated into their processor
in order to deal with ambiguity resulting from quantifier scoping in sentences such as
“every man loves some woman”. They begin by modifying the previous parser so that
it translates the input to an intermediate form in which variables that range over the
denotations of noun phrases become bound by quantifiers such as “every”, “a”, etc. For
example,

p "every man snores" => variables = ["man"]
@ for every v1

@ v1
VI snores

This implements [Dowty et al. 1981, p. 69] where variables are introduced into the
intermediate representation. For example, the representation of “every man snores” as
∀v1{man}, v1 snores. The parser is further modified to generate all possible quantifier
scopings, so that, for example,

p "every man loves some woman"
=> variables ["man", "woman"] variables ["man", "woman"]

@ for some v2 @ for every v1
@ for every v1 @ for some v2

@ v1 @ v1
VT loves VT loves
v2 v2

Anaphoric sentences such as “Liz loves a man and that man sleeps” are accommo-
dated by reference to the list of variables that has been created at the point that the
word “that” is encountered. For example,

p "Liz loves a man and that man sleeps"
=> variables ["man"] @ for a v1

@@ N Liz

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

42 R. A. Frost

VT loves
v1

CONJ and
@ v1
VI sleeps

Lapalme and Lavier [1990, 1993] recognize that their approach for dealing with
quantifier scoping and anaphora is limited in its modeling of natural language. How-
ever, they claim that their examples illustrate the elegance with which the functional
approach allows these features to be incorporated into a natural language interpreter.

7.4. Question-Answering (QA) and Information-Retrieval (IR) Systems

SATELITE is a natural language question-answering system which provides access to
corporate information related to Telefonica de Espana, Madrid. It supports automatic
spelling correction, ellipsis, and anaphora. The system, which is implemented in the
lazy functional language NEL, was introduced in 1990 and, at one point, was responding
to 50 queries a day. Apart from an entry on a Web page containing a list of applications
of pure functional programming [Wadler 2005], there would appear to be no other
publication describing this system.

Funser [1995] is a server for textual information retrieval from a 700-megabyte col-
lection of full texts of French literature. Funser is implemented in the lazy functional
programming language Alfonzo, which was specially developed for this application. At
one time, Funser was accessed by over 500 users per month. The developers of Funser
claim that LFP was found to be a powerful and elegant tool, but that performance
results were mixed.

Rose et al. [2000] have developed a natural language interface for the retrieval of
captioned images. The system, called ANVIL (Accurate Natural-language Visual Infor-
mation Locator), uses a parser to extract information from the captions and the user
query. The system uses WordNet synsets as a form of thesaurus. Terms in the captions
and the user query are then expanded using the thesaurus and subsequently matched.
An early prototype of the system was built in Haskell. Rose et al. state that the Haskell
had a number of advantages as an implementation language specifically, the ability to
quickly code complex algorithms, and the robust code which resulted from the powerful
type system. However, the system was recoded in C++ because of a concern that the
product development group, who did not have experience with Haskell, might not be
able to provide long-term support.

Dalmas [2004] has Developed a Web question-answering system called Wee, and an
associated question-answering model called QAAM, in Haskell. Web snippets are shal-
low parsed, filtered, and ranked using answer patterns. Repeated phrases are identified
from the set of candidate sentences using a lazy longest-common-substring processor.
Extracted phrases are used to generate an answer model which is then processed to
discover relationships between the snippets from which the phrases were extracted.
The resulting graph is further processed and the results presented to the user. The
Wee system was entered at TREC-2004 [Ahn et al. 2004] as a stand-alone question-
answering system and also in conjunction with the QED system which used deeper
linguistic analysis and standard IR techniques. The results showed that Wee improved
the results for factoid questions but not for definition questions.

7.5. Grammatical Framework

Grammatical Framework (GF) is a large multipurpose natural language processing
system implemented in Haskell [Ranta 2004]. GF can be used to define grammars and

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 43

to perform various linguistic functions based on those grammars. Linguists can use GF
to experiment with syntactic and semantic theories of language. Developers can use
GF to create natural language processors of various kinds.

Central to GF is an abstract syntax which is based on type-theoretic grammar as
described in Section 3.6. Users can manipulate abstract syntax trees using a structure
editor (similar in some ways to the Cornel Synthesizer Generator). The abstract syntax
trees are terms in a typed lambda calculus. Dependent types are used to represent
semantic information such as gender, number, etc. A type-checker is used to determine
agreement and other semantic properties.

Concrete syntax can be generated from the abstract syntax trees through a process of
linearization. A single abstract syntax tree can be linearized in various ways generating
output in different languages. GF also provides the ability to generate parsers from
grammar definitions, allowing concrete syntax to be converted to one or more abstract
syntax trees. Different types of parsers can be generated depending on the application.

One of the goals of GF is to help users to build natural language components on
top of formal language processors, for example, GF provides that capability to build
a German interface on top of a software-specification editor by separating the specifi-
cation of formal problem-specific languages whose (sometimes complex mathematical)
semantics are represented in the abstract syntax from the specification of the natural
language features into which the abstract syntax is linearized. Experts in the problem
domain write the application grammars, and linguists write the natural language gram-
mars. The natural language grammars are called resource grammars and several have
been built for GF, including English, Finnish, German, Italian, Russian, and Swedish
[Khegai and Ranta 2004]. GF has been used in various applications. For example,

—multilingual document authoring. GF allows users to create and edit abstract syntax
trees in one language using the syntax-directed editor, while seeing how the document
evolves in another language. Amendments made to the document, such as changing
the gender of the recipient of a letter, are then permeated throughout the tree(s) so
that all translations are grammatically correct [Khegai et al. 2003].

—technical-document editing. GF has been used as a basis for a mathematical proof
text editor [Hallgreen and Ranta 2000] and an XML editing tool [Dymetman et al.
2000].

—dialogue generation. The GF syntax-directed editor has also been used as the basis
for a natural language dialogue system [Ranta and Cooper 2004].

—informal and formal requirements-specification tools [Hahnle et al. 2002] and trans-
lation from formal specifications to natural language [Burke and Johannisson 2005;
Johannisson 2005].

GF can also be used for natural language translation and provides a solution to one
of the major difficulties in this task, that is, the fact that the input source language
may not contain all semantic information necessary to produce grammatically correct
output in the target language. For example, when translating from English to German
where more gender information is often required than is available in the English input,
GF overcomes the problem by allowing the user to interact with the abstract syntax
trees which are created as an intermediate representation during translation. The
GF syntax-directed editor prompts the user to add additional semantic information as
required during the process.

An embedded interpreter for GF and a compiler from GF grammars to speech recog-
nition grammars have been implemented in Java by Bringert [2005]. The resulting
system can be used to build multilingual dialog and translation systems for both spo-
ken and written language.

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

44 R. A. Frost

8. USE OF LFP CONCEPTS IN NATURAL LANGUAGE ANALYSIS

So far, we have reviewed research that has involved the implementation of natural
language processors in lazy functional programming languages. In addition to this,
other researchers have considered how the principles and theories that are used to de-
fine and reason about lazy functional programming might provide insight into natural
language.

8.1. Combinatory Parsing and Categorial Grammar

One of the motivations for Combinatory Categorial Grammar (Section 3.4) is the
variable-free nature of the combinators which account for syntactic composition. It
has been argued that the primitive operations of left and right application, composi-
tion, type-raising, etc. have more psycho-linguistic plausibility than mechanisms which
involve variables. Bozsahin [1997] adds to this an argument that the associated seman-
tics should also be based on combinatory logic. He makes reference to Turner [1979] in
which a pure functional programming language is compiled into variable-free combi-
natory terms so as to obtain object code that can run more efficiently since it does not
require environment creation and deletion. Bozsahin suggests that there could be an
analogy with human cognitive processing.

Bozsahin uses his approach to explain word order variation in Turkish and argues
that by representing the semantics as combinatory terms, the relationship between
syntactic and semantic composition becomes easier to explain. As illustration, he shows
how type-raising, together with the associated combinatory semantics, can be used to
explain scrambling in Turkish (scrambling the variation in relative location of phrases
denoting subjects, verbs, and objects) and claims that his approach provides a simple
algebraic solution to word order variation. Although Bozsahin shows how his system
can model various features of natural language, he states that extensive research on
the cognitive aspects of the relationship between syntax and semantics needs to be
done to support the hypothesis that natural language is intrinsically combinatory.

8.2. Monads and NL Theories

One of the difficulties in developing a comprehensive compositional semantic theory is
that, as more complex aspects of natural language are added, the types and composition
rules in the evolving theory have to be redefined. In some cases, all constructs have to
be redefined even though only a few are affected by the added feature. According to
Shan [2001a], Barbara Partee refers to this as “generalizing to the worst case”. Shan
has proposed a method to solve this problem by using monads to extend Montague-
like semantic theories in order to accommodate additional aspects of language in a
manner analogous to the use of monads to add additional computational capabilities
to functional programs. To illustrate his proposed approach, Shan gives the following
examples.

—A variation of the state monad [Wadler 1995] could be used to thread variable as-
signments through the evaluation process. Term phrases could be modified to update
the variable assignment, and pronominals could be modified to refer to it. All other
expressions could be upgraded by simple application of the unit function as they have
no effect on variable assignment.

—A similar state monad could be used to thread representations of possible worlds
through the evaluation process. Intensional expressions, such “the president” could
be modified to refer to these worlds whereas words, such as “and” are not.

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 45

—The powerset monad could be used to accommodate ambiguity at the semantic level
(rather than disambiguating the expression and then semantically processing the
unambiguous forms).

8.3. Deep Types and Categorial Grammar

Deep types were developed in order to allow impure features to be added to pure func-
tional programming languages in a systematic way. (Shallow types specify the pro-
gram’s functional type, whereas deep types are used to specify its behavior with re-
spect to side effects). Korte [2004] has suggested that deep types could be added to
Categorial Grammar in order to explain linguistic counterparts of side effects, such as
intensionality, variable binding, quantification, interrogatives, focus or presupposition,
as described by Shan [2003] in his paper on linguistic side effects.

8.4. Continuations in Natural Language

Continuations have been used for many years by computer scientists, particularly by
functional programmers, as a tool for reasoning about control and order of evaluation
and as an advanced programming construct. A continuation is an additional parameter
which is given to a function and which is applied in that function’s body to the result
that would ordinarily be returned by the function. For example, consider the follow-
ing simple function: f x y = x + y . Adding a continuation gives: f’ x y c = c (x + y),
which can be read as the function f’ adds its two arguments and then the computa-
tion continues with the function c, taking the result of this addition as argument. A
number of advantages are claimed for the resulting continuation passing style (CPS) of
programming: flow of control is made explicit, the identification of certain types of pro-
gram transformation (e.g., to tail-recursive form) is facilitated, certain efficiencies can
be obtained when values need not be returned through the stack of recursive function
calls (e.g., in exception handling) and the ability to more easily compile a CPS program
into efficient code. In addition, other Computer Scientists have used CPS to analyze
programs and programming styles, for example, to model evaluation mechanisms such
as call-by-name and to prove properties of programs which provide users with access
to control flow as in the use of the back button in Web applications.

Shan and Barker [Shan 2001b; 2002; Barker 2002; Shan and Barker 2004] have
investigated the use of continuations to explain a variety of linguistic features. Barker
[2004] summarizes that work and gives, as examples focus quantifier ambiguity as
in “everyone loved someone”, in which emphasis is placed on one word in a sentence,
for example, “JOHN saw Mary” compared with “John saw MARY”, coordination in
paraphrases, such as “John left and slept” and “John left and John slept”, and misplaced
modifiers, as in “John drank a quiet cup of tea”. Barker notes that Montague also used
a mechanism which is similar to a form of continuation-passing in his formal grammar.

As illustration of Shan and Barker’s approach, we present a simplified description
of an example given in Barker [2004] in which continuations are used to explain am-
biguity in quantifier scoping. Consider the phrase “John saw everyone”, which could
be translated to ∀x saw(j, x). The word “everyone”, which is embedded in the phrase
“saw everyone”, takes scope over the entire expression. Barker claims that continua-
tions are useful in analyzing such phenomena as they have been used to provide formal
descriptions of programming languages in which deeply embedded operators take con-
trol over enclosing expressions. Barker shows how continuation-based interpretation of
ambiguous sentences such as “Someone saw everyone” can result in two denotations re-
sulting from different transforms being applied corresponding to the left-to-right and
right-to-left evaluation orders of the intermediate continuation-based interpretation

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

46 R. A. Frost

(cbi):

(Someone saw) everyone => cbi => transform => ∃x∀y (saw (x,y)
Someone (saw everyone) => cbi => transform => ∀y∃x (saw (x,y)

Other approaches do account for the two syntactic readings, but it appears that they
require arbitrary manipulation of the intermediate forms to derive the two denotations.
We have already referred in Section 3.3 to Pereira’s criticism of Montague’s approach
in this respect. A similar criticism can be directed at the analysis described in Section
6.1, which does allow the interpretation of “Someone saw everyone” as both ((someone
. saw) everyone) and (someone (saw everyone)).

Bozsahin, Shan, Korte and Barker appear to be motivated by the belief that the
theoretical tools that are widely used for analyzing functional programs may have
value in the analysis of natural language.

9. CONCLUDING COMMENTS

The research reviewed in this survey has shown that lazy functional programming can
be used to

—Implement
(1) many of the parsers that are used by the linguistic community;
(2) highly-modular top-down combinator parsers which can accommodate ambiguous

and left-recursive grammars in polynomial time and which are, therefore, ideally
suited for for rapid prototyping of NLIs;

(3) more advanced combinator parsers that can accommodate various NL phenomena
including dislocation, quantifier resolution, and some forms of context-sensitivity;

(4) robust type-directed parsers which can accommodate natural language expres-
sions with ungrammatical word order.

—Encode
(1) direct representations of Montague-like compositional semantics for experimen-

tation;
(2) efficient set-based versions of subsets of Montague semantics for use in natural

language database-query processors;
(3) compositional semantic theories to accommodate complex phenomena such as

dynamic quantifier scoping;
(4) large semantic nets for use in a variety of NL applications;
(5) type-theoretic semantics for use in the investigation of NL theories and imple-

mentation of NL applications;
(6) ontologies which can be automatically checked for errors.

—Construct
(1) large-scale NL systems based on semantic networks that can be used to build

various applications including information extraction, foreign language tutoring,
NL generation, metaphor processing, and discourse planning;

(2) executable attribute-grammar environments which can be used to build natural
language database-query processors as executable specifications;

(3) frameworks for investigation of Montague-like compositional semantics;
(4) large-scale environments based on type-theoretic grammars that can be used to

build various applications including multilingual document authoring, technical-
document editing, dialogue generation, and NL translation.

In addition to demonstrating the use of LFP in NLI through the implementation of
systems based on existing syntactic and semantic theories, other researchers have used

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 47

the LFP paradigm to investigate variations and extensions of these linguistic theories.
For example, to accommodate negation under the closed-world assumption, to provide a
uniform treatment of adjectives, to extend Montague semantics to accommodate transi-
tive verbs with arity greater than two. Others have considered how the LFP paradigm
might provide insight into natural language analysis. For example, in exploring the
relationship between combinatory parsing and Categorial Grammar, the extension of
Categorial Grammar with deep types, and the use of monads and continuations to
explain complex linguistic phenomena.

Various claims have been made regarding the value of LFP in NLI.

—Value in syntactic analysis.
(1) The LFP stateless paradigm provides a useful framework by which similarities

between various parsing strategies used in programming and natural language
analysis can be made more clear.

(2) Implementation of conventional parsers benefits from the modularity, declarative
nature, and lazy evaluation of LFP.

(3) Parser combinators, which are unique to LFP, allow language processors to be
built as elegant programs whose structures are very similar to the grammars
defining the languages to be processed. This facilitates implementation and ex-
perimentation with NLI design.

(4) The use of monads enables the construction of efficient parser combinators for
ambiguous grammars and the accommodation of left-recursive productions, while
maintaining the benefits of top-down search.

(5) The use of type classes facilitates the encoding and use of morphological specifi-
cations.

—Value in semantics.
(1) Many words in natural languages have denotations that are frequently defined by

linguists as higher-order functions. The ability to define such functions directly in
a LFP language and to pass them around as arguments facilitates the construction
of NLIs.

(2) Polymorphism, user-defined types, and the strong type-checking provided by LFP
languages facilitates the representation and investigation of semantic theories of
natural language, including the specification and checking of ontologies.

—Value in the integration of syntactic and semantic analysis.
(1) Lazy evaluation allows semantic computation to be closely related to syntactic

analysis without loss of efficiency. This is because lazy evaluation allows only those
parts of the potentially huge parse space (corresponding to successful parses) to
be evaluated by the semantic rules, resulting in modular and well-structured
processors that can be used in real-time NLIs.

(1) The declarative nature of LFP languages, together with lazy evaluation, allows
NLIs to be constructed piecewise as executable specifications of grammars which
are themselves order-independent.

The LFP paradigm also has value for explaining natural language: Some researchers
have argued that the theoretical tools that are used to analyze functional programs
can also be used to analyze natural language due to the fact that natural language is
inherently functional in nature.

Of course, such claims cannot be proven or disproven in any formal way. It is up to
the reader to decide if the evidence and arguments presented in the surveyed papers
substantiates them.

More needs to be done to determine the value of LFP in NLIs. More large-scale
systems need to be built and experimental results analyzed. In addition, although

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

48 R. A. Frost

many of the researchers have stated that lazy evaluation facilitated their work, little
explanation has been given. There is a need for a comprehensive theoretical study of
the benefits of lazy evaluation in natural language processing.

10. ACKNOWLEDGMENTS

I would like to thank the anonymous reviewers for their constructive suggestions, those
researchers who provided many useful and encouraging comments: Paul Callaghan,
Joao Fernandes, Paul Hudak, John Hughes, Graham Hutton, Barbara Partee, David
Turner, Jan van Eijck and Philip Wadler. In particular, Barbara Partee provided de-
tailed comments which significantly improved the description of Montague Grammar,
and Paul Callaghan was kind enough to give me a guided tour of Durham after an
extensive review of the introductory notes on LFP, and a demonstration of the of the
LOLITA system, the graduate students. Rahmatullah Hafiz, Fadi Hanna, and Nabil
Abdullah, who helped with proofreading.

REFERENCES

ABDULLAH, N. 2003. Two set-theoretic approaches to the semantics of adjective-noun combinations. M.S.
thesis, School of Computer Science, University of Windsor, Ontario, Canada.

ABDULLAH, N. AND FROST, R. A. 2005. Adjectives: A uniform semantic approach. In Proceedings of Advances
in Artificial Intelligence: the 18th Conference of the Canadian Society for Computational Studies of In-
telligence (AI’02). B. Kegl and G. Lapalme, Eds. Lecture Notes in Computer Science, vol. 3501. Springer-
Verlag, 330–341.

AHN, K., BOS, J., CLARK, S., CURRAN, J. R., DALMAS, T., LEIDNER, J. L., SMILLIE, M. B., AND WEBBER, B. 2004.
Question answering with QED and WEE at TREC-2004. In Proceedings of the 13th Text Retrieval Con-
ference (TREC’04). E. M. Voorhees and L. P. Buckland, Eds. U.S. National Institute of Standards and
Technology, (NIST), Gaithesburg, MD.

AJDUKIEWICZ, K. 1935. Die syntaktische konnexitat. Studia Philosophica 1, 1–27.
ANDERSSON, I. AND SODEREBERG, T. 2003. Spanish morphology implemented in a functional programming

language. M.S. thesis, Department of Computing Science Chalmers University of Technology and the
University of Gothenburg.

ANDROUTSOPOULOS, I., RITCHIE, G. D., AND THANISCH, P. 1995. Natural language interfaces to databases: An
introduction. J. Lang. Engin. 1, 1, 29–81.

AUGUSTEIJN, L. 1990. The elegant compiler generator system. In Proceedings of the International Conference
WAGA: Attribute Grammars and their Applications, P. Dransart and M. Jourdan, Eds. Lecture Notes in
Computer Science, vol. 461. Springer-Verlag, 238–254.

BALDRIDGE, J. M. AND KRUIJFF, G. M. 2004. Course notes on combinatorial categorial grammar.
http://esslli2004.loria.fr/content/readers/51.pdf.

BAR-HILLEL, Y. 1953. A quasi-arithmetical notation for syntactic description. Language 29, 47–58.
BARKER, C. 2002. Continuations and the nature of quantification. Natural Language Seman. 10, 211–242.
BARKER, C. 2004. Continuations in natural language. In Proceedings of the 4th ACM SIGPLAN Contin-

uations Workshop (CW’04), H. Thielecke, Ed. School of Computer Science, University of Birmingham,
1–11.

BENTHEM, J. V. 1986. Language in action: categories, lambdas and dynamic logic. Sudies in Logic and the
Foundation of Mathematics. D. Reidel Publishing.

BENTHEM, J. V. 1991. Language in action: categories, lambdas and dynamic logic. Sudies in Logic and the
Foundation of Mathematics, vol. 30. North-Holland.

BLACKBURN, P. AND BOS, J. 2005. Representation and Inference for Natural Language. A First Course in
Computational Semantics. CSLI Publications, Stanford University.

BLACKBURN, P., DYMETMAN, M., LECOMTE, A., RANTA, A., RETORE, C., AND DE LA CLERGERIE, E. V. 1997. Logical
aspects of computational linguistics: An introduction. In Logical Aspects of Computational Linguistics,
C. Retore, Ed. Lecture Notes in Computer Science, vol. 1328. Springer-Verlag, 1–20.

BOGAVAC, L. 2004. Functional morphology for Russian. M.S. thesis, Department of Computing Science,
Chalmers University of Technology and the University of Gothenburg.

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 49

BOSZAHIN, C. 1997. Combinatory logic and natural language parsing. Elektrik, Turkish J. of EE and CS 5, 3,
347–357.

BRINGET, B. 2005. Embedded grammars. M.S. thesis, Department of Computer Science and Engineering,
Chalmers University of Technology and Gothenburg University.

BRUS, T., EEKELEN, M. V., LEER, M. V., PLASMEIJER, M. J., AND BARENDREGT, H. P. 1987. CLEAN—A language for
functional graph rewriting. In Proceedings of Conference on Functional Programming Languages and
Computer Architecture (FPCA’87), Kahn, Ed. Lecture Notes in Computer Science, vol. 274. Springer-
Verlag, 364–384.

BURGE, W. H. 1975. Recursive Programming Techniques. Addison-Wesley Publishing Co., Reading, MA.
BURKE, D. A. AND JOHANNISSON, K. 2005. Translating formal software specifications to natural language/a

grammar based approach. In Proceedings of Logical Aspects of Computational Linguistics (LACL’05),
P. Blace, E. Stabler, J. Busquets, and R. Moot, Eds. Lecture Notes in Artificial Intelligence, vol. 3402.
Springer-Verlag, 52–66.

CALLAGHAN, P. C. 1998. An evaluation of LOLITA and related natural language processing systems. Ph.D.
thesis, Department of Computer Science, University of Durham.

CALLAGHAN, P. C. 2005. Generalized LR parsing. In The Happy User Guide (Chap. 3). Simon Marlow.
CARPENTER, R. 1998. Type-Logical Semantics. Bradford Books.
CONSTANTINO, M. 1999. IE-Expert: Integrating natural language processing and expert systems techniques

for real-time equity derivatives trading. J. Computat. Intell. Finance 7, 2, 34–52.
COPESTAKE, A. 2005. Natural language processing. Lecture Notes, Computer Laboratory, University of

Cambridge.
CURRY, H. AND FEYS, R. 1958. Combinatory logic. Studies in Logic, vol. 1. North Holland.
DALMAS, T. 2004. Wee/QAAM Manual. School of Informatics, University of Edinburgh.
DOWTY, D. 1979. Word Meaning and Montague Grammar. D. Reidel Publishing Co.
DOWTY, D. R., WALL, R. E., AND PETERS, S. 1981. Introduction to Montague Semantics. D. Reidel Publishing

Co.
DYMETMAN, M., LUX, V., AND RANTA, A. 2000. XML and multilingual document authoring: Convergent trends.

In Proceedings of the 18th International Conference on Computational Linguistics (COLING’00). Morgan
Kaufmann, 243–249.

EIJCK, J. V. 2001. Incremental dynamics. J. Logic, Language and Inform. 10, 3, 319–351.
EIJCK, J. V. 2003. Parser combinators for extraction. In Proceedings of the 14th Amsterdam Colloquium,

P. Dekker and R. van Rooy, Eds. 99–104.
EIJCK, J. V. 2004. Deductive parsing in haskell. Unpublished paper Uil-OTS/CWI/ILLC, Amsterdam and

Utrecht.
EIJCK, J. V. AND NOUWEN, R. 2002. Quantification and reference in incremental processing. Unpublished

paper, UiL-OTS/CWI/ILLC, Amsterdam and Utrecht.
FAIRBURN, J. 1986. Making form follow function: An exercise in functional programming style. Tech. rep. 89,

Computer Laboratory, University of Cambridge.
FERNANDES, J. 2004. Generalized LR parsing in Haskell. Tech. rep. DI-PURe-04.11.01, Departamento de

Informatica, da Universidade do Minho, Portugal.
FERNANDEZ, M. 1995. Spanish generation in the NL system LOLITA. M.S. thesis, Department of Computer

Science, University of Durham.
FOKKER, J. 1995. Functional parsers. In Advanced Functional Programming: 1st International Spring

School on Advanced Functional Programming Techniques, J. Jeuring and E. Meijer, Eds. Lecture Notes
in Computer Science, vol. 924. Springer-Verlag, 1–23.

FORD, B. 2002. Packrat parsing: Simple, powerful, lazy, linear time. In Procedings of the ACM SIGPLAN
ICFP, International Conference on Functional Programming. ACM Press, 36–47.

FORSBERG, M. 2004. Applications of functional programming in processing formal and natural languages.
Licentiate thesis, Department of Computer Science and Engineering. Chalmers University of Technology
and Gothenburg University.

FORSBERG, M. AND RANTA, A. 2004. Functional morphology. In Procedings of the 9th ACM SIGPLAN Inter-
national Conference on Functional Programming ICFP. ACM Press, 213–223.

FRANK, A. U. 2001. Tiers of ontology and consistency constraints in geographical information systems. Int.
J. Geograph. Inform. Science 15, 7, 667–678.

FROST, R. A. 1992. Constructing programs as executable attribute grammars. The Comput. J. 35, 4, 376–
389.

FROST, R. A. 1993. Guarded attribute grammars. Softw. Pract. Exper. 23, 10, 1139–1156.

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

50 R. A. Frost

FROST, R. A. 2002. W/AGE the windsor attribute grammar programming environment. In Proceedings of
IEEE Symposia on Human Centric Computing Languages and Environments (HCC’02). 96–99.

FROST, R. A. 2003. Monadic memoization: Towards correctness-preserving reduction of search. In Proceed-
ings of Advances in Artificial Intelligence: 16th Conference of the Canadian Society for Computational
Studies of Intelligence (AI’03), Y. Xiang and B. Chaib-draa, Eds. Lecture Notes in Artificial Intelligence,
vol. 2671. Springer-Verlag, 66–80.

FROST, R. A. 2005. A call for a public-domain speechweb. Comm. ACM 48, 11, 45–49.
FROST, R. A. 2006. Functional pearl; polymorphism and the meaning of transitive verbs. Tech. rep. 06-006,

School of Computer Science, University of Windsor, Ontario, Canada.
FROST, R. A. AND BOULOS, P. 2002. An efficient compositional semantics for natural language database

queries with arbitrarily-nested quantification and negation. In Proceedings of Advances in Artificial
Intelligence: 15th Conference of the Canadian Society for Computational Studies of Intelligence (AI’02).
R. Cohen and B. Spencer, Eds. Lecture Notes in Artificial Intelligence, vol. 2338. Springer-Verlag, 252–
267.

FROST, R. A. AND HAFIZ, R. 2006. Using monads to accommodate ambiguity and left recursion with parser
combinators. Tech. rep. 06-007, School of Computer Science, University of Windsor, Ontario, Canada.

FROST, R. A. AND LAUNCHBURY, E. J. 1989. Constructing natural language interpreters in a lazy functional
language. Comput. J. (Special issue on Lazy Functional Programming) 32, 2, 108–121.

FROST, R. A. AND SZYDLOWSKI, B. 1995. Memoizing purely-functional top-down backtracking language pro-
cessors. Science Comput. Program. 27, 263–288.

GARIGLIANO, R., MORGAN, R., AND SMITH, M. 1992. LOLITA: Progress report 1. Tech. rep. 12/92, Department
of Computer Science. University of Durham.

GARIGLIANO, R., MORGAN, R., AND SMITH, M. 1993. The LOLITA system as a contents scanning tool. In
Proceedings of the 13th International Conference on Artificial Intelligence, Expert Systems and Natural
Language Processing. Avignon, France.

GIRARD, J., LAFONT, Y., AND TAYLOR, P. 1988. Proofs and types. In Cambridge Tracts in Theoretical Computer
Science, vol. 7. Cambridge University Press.

GRUNE, G. AND JACOBS, C. J. H. 1990. Parsing Techniques; A Practical Guide. Ellis Horwood, Chichester,
England.

HAHNLE, R., JOHANNISSON, K., AND RANTA, A. 2002. An authoring tool for informal and formal requirements
specifications. In Proceedings of FASE Fundamental Approchaes to Software Engineering. R. D. Kutsche
and H. Weber, Eds. Lecture Notes in Computer Science, vol. 2306. Springer-Verlag, 233–248.

HALLGREEN, T. AND RANTA, A. 2000. An extensible proof text editor. In Proceedings of (LPAR’00). M. Parigot
and A. Voronkov, Eds. Lecture Notes in Artificial Intelligence, vol. 1955. Springer-Verlag, 70–84.

HEITZ, J. 1996. An investigation into figurative language in the LOLITA NLP system. M.S. thesis, Depart-
ment of Computer Science, University of Durham.

HENDRIKS, H. 1993. Studied flexibility: Categories and types in syntax and semantics. Ph.D. thesis, Uni-
versiteit van Amsterdam.

HILL, S. 1996. Combinators for parsing expressions. J. Funct. Program. 6, 3, 445–463.
HINRICHS, E. W. 1988. Tense, quantifiers, and contexts. Computat. Linguist. 14, 2, 3–14.
HOPCROFT, J. E., ULLMAN, J. D., AND MOTWANI, R. 2000. Introduction to Automata Theory, Languages, and

Computation, 2nd Ed. Addison Wesley.
HUDAK, P., PETERSON, J., AND FASEL, J. 2000. A gentle introduction to Haskell. www.Haskell.org.
HUDAK, P., PEYTON-JONES, S. L., WADLER, P., BOUTEL, B., FAIRBAIRN, J., FASEL, J. H., GUZMAN, M. M., HAMMOND, K.,

HUGHES, J., JOHNSSON, T., KIERBURTZ, R. B., NIKHIL, R. S., PARTAIN, W., AND PETERSON, J. 1992. Report on
the programming language Haskell, a non-strict, purely functional language. SIGPLAN Notices 27, 5,
R1–R164.

HUET, G. 2003. Zen and the art of symbolic computing: Light and fast applicative algorithms for computa-
tional linguistics. In Proceedings of Practical Aspects of Declarative Languages Symposium (PADL’03),
V. Dahl and P. Wadler, Eds. Lecture Notes in Artificial Intelligence, vol. 2562. Springer-Verlag, 252–267.

HUET, G. 2005. Transducers as lexicon morphisms, phonemic segmentation by euphony analysis, applica-
tion to a sanskrit tagger. J. Funct. Program. 15, 4, 573–614.

HUGHES, R. J. M. 1989. Why functional programming matters. Comput. J. (Special Issue on Lazy Functional
Programming). 32, 2, 98–107.

HUGHES, R. J. M. 2000. Generalizing monads to arrows. Science Comp. Program. 37, 67–111.
HUTTON, G. 1992. Higher-order functions for parsing. J. Funct. Program. 2, 3, 323–343.
HUTTON, G. AND MEIJER, E. 1998. Monadic parser combinators. J. Funct. Program. 8, 4, 437–444.

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 51

IWANSKA, L. 1992. A general semantic model of negation in natural language: Representation and inference.
Ph.D. thesis, Computer Science, University of Illinois at Urbana-Champaign.

JEURING, J. AND SWIERSTRA, S. D. 1994. Bottom-up grammar analysis. In Proceedings of Programming Lan-
guages and Systems, (ESOP’94), D. Sannella, Ed. Lecture Notes in Computer Science, vol. 788. Springer-
Verlag, 317–332.

JEURING, J. AND SWIERSTRA, S. D. 1995. Constructing functional programs for grammar analysis problems.
In Proceedings of Conference Record of FPCA’95, SIGPLAN-SIGARCH-WG2.8 Conference on Functional
Programming Languages and Computer Architecture. 259–269.

JOHANNISSON, K. 2005. Formal and informal software specifications. Ph.D. thesis, Department of Computer
Science and Engineering. Chalmers University of Technology and Gothenburg University.

JOHNSON, M. 1995. Squibs and discussions: Memoization in top-down parsing. Computat. Linguist 21, 3,
405–417.

JOHNSSON, T. 1987. Attribute grammars as a functional programming paradigm. In Functional Program-
ming Languages and Computer Architecture, G. Kahn, Ed. Lecture Notes in Computer Science, vol. 274.
Springer-Verlag, 154–173.

JONES, M. P. 1992. Introduction to gofer 2.20. Tech. rep., Programming Research Group, Oxford University.
JONES, M. P., HUDAK, P., AND SHUAMYAN, S. 1995. Using types to parse natural language. In Proceedings

of the Glasgow Workshop on Functional Programming. Workshops in Computer Science Series. (IFIP),
Springer-Verlag.

KHEGAI, J., NORDSTRM, B., AND RANTA, A. 2003. Multilingual syntax editing in GF. In Proceedings of the 4th
International Conference on Intelligent Text Processing and Computational Linguistics (CICLing’03),
A. F. Gelbukh, Ed. Lecture Notes in Computer Science, vol. 2588. Springer-Verlag, 453–464.

KHEGAI, J. AND RANTA, A. 2004. Building and using a Russian resource grammar in GF. In Proceedings of the
5th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing’04),
A. F. Gelbukh, Ed. Lecture Notes in Computer Science, vol. 2945. Springer-Verlag, 38–41.

KOOPMAN, P. AND PLASMEIJER, R. 1999. Efficient combinator parsers. In Proceedings of Implementation of
Functional Languages: Tenth International Workshop (IFL’98). K. Hammand, T. Davie, and C. Clack,
Eds. Lecture Notes in Computer Science, vol. 1595. Springer-Verlag, 122–138.

KORTE, L. 2004. Deep types for categorial grammar: A side effect analysis. In Proceedings of TAAL Post-
graduate Conference. Edinburgh University.

KUDLEK, M., MARTIN-VIDE, C., MATEESCU, A., AND MITRANA, V. 2003. Contexts and the concept of mild-context-
sensitivity. Linguist. Philos. 26, 703–725.

KUHN, W. 2002. Modelling the semantics of geographical categories through conceptual integration. In
GIScience. Lecture Notes in Computer Science, vol. 2478. Springer-Verlag, 108–118.

KUNO, S. 1965. The predictive analyzer and a path elimination technique. Comm. ACM 8, 7, 453–462.
LAMBEK, J. 1958. The mathematics of sentence structure. Amer. Mathemat. Month. 65, 154–170.
LAPALME, G. AND LAVIER, F. 1990. Using a functional language for parsing and semantic processing. Tech.

rep. 715a, Departement d’informatique et recherche operationelle, Universite de Montreal.
LAPALME, G. AND LAVIER, F. 1993. Using a functional language for parsing and semantic processing. Com-

putat. Intell. 9, 111–131.
LEERMAKERS, R. 1993. The Functional Treatment of Parsing. International Series in Engineering and Com-

puter Science. Kluwar Academic Publishers.
LEIJEN, D. AND MEIJER, E. 2001. Parsec: Direct style monadic parser combinators for the real world. Tech.

rep. UU-CS-2001-35, Department of Computer Science, University of Utrecht.
LICKMAN, P. 1995. Parsing with fixed points. M.S. thesis, University of Cambridge.
LJUNGLOF, P. 2002a. Functional programming and NLP. Tech. rep., Department of Computer Science,

Chalmers University.
LJUNGLOF, P. 2002b. Pure functional parsing-an advanced tutorial. Licentiate thesis, Department of Com-

puting Science, University of Gothenburg.
LJUNGLOF, P. 2004. Functional pearls: Functional chart parsing of context-free grammars. functional pearl.

J. Funct. Program. 14, 6, 669–680.
LOIDL, H., MORGAN, R., TRINDER, P., PORIA, S., COOPER, C., PEYTON-JONES, S., AND GARIGLIANO, R. 1997. Par-

allelising a large functional program, or: keeping LOLITA busy. In International Workshop on the Im-
plementation of Functional Languages, C. Clack, K. Hammond, and T. Davie, Eds. Lecture Notes in
Computer Science, vol. 1467. Springer-Verlag, 198–213.

LONG, D. AND GARIGLIANO, R. 1994. Analogy and Causality (A Model and Application). Ellis Horwood, Chich-
ester, UK.

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

52 R. A. Frost

MARLOW, S. 2005. The Happy User Guide. http://www.Haskell.org/happy/doc/html/index.html.
MARTIN-LOF, P. 1980. Intuitionistic type theory. Notes by Giovani Sambin of a series of lectures given in

Padua, Bibliopolis, Napoli.
MEDLOCK, B. 2002. A tool for generalized LR parsing in Haskell. Single honours C.S. project report, De-

partment of Computer Science, University of Durham.
MEZIANE, F. AND METAIS, E., Eds. 2004. Natural Language Processing and Information Systems: 9th Inter-

national Conference on Applications of Natural Language to Information Systems, (NLDB’04). Lecture
Notes in Computer Science, vol. 3136. Springer-Verlag.

MONTAGUE, R. 1970. Universal grammar. Theoria 36, 373–398. (Reprinted in Thomason 1974, 222–246.)
MONTAGUE, R. 1973. The proper treatment of quantification in ordinary English. In Approaches to Natural

Language, K. J. J. Hintikka, J. M. E. Moravcsik, and P. Suppes, Eds. D. Reidel Publishing Co., 221–
242.

MOORTGAT, M. 1988. Categorial Investigations. Logical and Linguistic Aspects of the Lambek Calculus.
Foris Publications, Dordrecht.

MORGAN, K., GARIGLIANO, R., CALLAGHAN, P., PORIA, S., SMITH, M., URBANOWICZ, A., COLLINGHAM, R., CONSTANTINO,
M., COOPER, C., AND THE LOLITA GROUP, UNIVERSITY OF DURHAM, U. 1995. Description of the LOLITA
system as used for MUC-6. In Proceedings of the 6th Message Understanding Conference (MUC6). NIST,
Morgan-Kaufmann.

NIKHIL, R. S. 1993. A multithreaded implementation of Id using P-RISC graphs. In Proceedings of Lan-
guages and Compilers for Parallel Computing LCPC , 6th International Workshop, U. Banerjee, D. Gel-
ernter, A. Nicolau, and D. A. Padua, Eds. Lecture Notes in Computer Science, vol. 768. Springer-Verlag
(1994), 390–405.

NORVIG, P. 1991. Techniques for automatic memoisation with applications to context-free parsing. Compu-
tat. Linguist. 17, 1, 91–98.

PAAKI, J. 1995. Attribute grammar paradigms—A high-level methodology in language implementation.
ACM Comput. Surv. 27, 2, 196–256.

PACE, G. 2004. Monadic compositional parsing with context using maltese as a case study. In Proceedings
of the Computer Science Annual Workshop (CSAW’04), University of Malta, G. Pace and J. Cordina, Eds.
60–70.

PANITZ, S. E. 1996. Termination proofs for a lazy functional language by abstract reduction. Tech. rep. 06,
J. W. Goethe-Universitat. citeseer.nj.nec.com/panitz96termination.html.

PARTEE, B. H. 1975. Montague grammar and transformational grammar. Linguis. Inquiry 6, 2, 203–300.
PARTEE, B. H., Ed. 1976. Montague Grammar. Academic Press, New York, NY.
PARTEE, B. H. 2001. Montague Grammar. In International Encyclopedia of the Social and Behavioral Sci-

ences, N. J. Smelser and P. B. Baltes, Eds. Elsevier.
PARTEE, B. H. AND HENDRICKS, L. W. 1997. Montague Grammar. In Handbook of Logic and Language, J. van

Benthem and A. ter Meulen, Eds. Elsevier, 5–91.
PARTRIDGE, A. AND WRIGHT, D. 1996. Predictive parser combinators need four values to report errors. J.

Funct. Program. 6, 2, 355–364.
PEMBECCI, I. 1995. A combinator parser for the morphological analysis of Turkish. Senior project report,

Department of Computer Engineering, Middle East Technical University, Ankara.
PEYTON-JONES, S. 2003. The Haskell 98 language. J. Funct. Program. 13, 1, 0–255.
RANTA, A. 1994. Type-Theoretical Grammar. Oxford University Press, Oxford, UK.
RANTA, A. 1995. Type-theoretical interpretation and generalization of phrase structure grammar. Bull. of

the IGPL 3, 2, 319–342.
RANTA, A. 2001. 1+n representations of Italian morphology. Essays dedicated to Jan von Plato on the

occasion of his 50th birthday.
RANTA, A. 2004. Grammatical framework. J. Funct. Program. 14, 2, 145–189.
RANTA, A. AND COOPER, R. 2004. Dialogue systems as proof editors. J. Logic, Language Inform. 13, 2, 225–

240.
REED, C., LONG, D., FOX, M., AND GARAGNANI, M. 1997. Persuasion as a form of inter-agent negotiation. In

Proceedings of Workshop on Distributed Artificial Intelligence (PRICAI’96). Lecture Notes in Computer
Science, vol. 1286. Springer-Verlag, 120–136.

ROCHE, E. AND SCHABES, Y. 1997. Finite-State Language Processing. Bradford Books.
ROSE, T., ELWORTHY, D., KOTCHE, A., CLARE, A., AND TSONIS, P. 2000. ANVIL: A system for the retrieval of

captioned images using NLP techniques. In Proceedings of Challenge of Image Retrieval (CIR’00). J. P.
Eakins and P. G. B. Enser, Eds. University of Brighton, UK.

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

Realization of Natural Language Interfaces Using Lazy Functional Programming 53

ROY, M. 2005. Extending a set-theoretic implementation of Montague Semantics to accommodate n-ary
trnasitive verbs. M.S. thesis, School of Computer Science, University of Windsor, Ontario, Canada.

ROY, M. AND FROST, R. 2004. Extending Montague Sematics for use in natural language database-query
processing. In Proceedings of Advances in Artificial Intelligence: The 17th Conference of the Canadian
Society for Computational Studies of Intelligences (AI’04). A. Tawfik and S. Goodwin, Eds. Lecture Notes
in Computer Science, vol. 3060. Springer-Verlag, 567–568.

SAVITCH, W. J. 1989. A formal model for context-free languages augmented with reduplication. Computat.
Linguist. 15, 4, 250–261.

SHAN, C. 2001a. Monads for natural language semantics. In Proceedings of the 13th European Summer
School in Logic, Language and Information.Student Session (ESSLLI’01), K. Striegnitz, Ed. Helsinki,
Finland, 285–298.

SHAN, C. 2001b. A variable-free dynamic semantics. In Proceedings of the 13th Amsterdam Colloquium,
R. van Rooy and M. Stokhof, Eds. Institute for Logic, Language and Computation, Universiteit van
Amsterdam, 204–209.

SHAN, C. 2002. A continuation semantics of interrogatives that accounts for baker’s ambiguity. In Seman-
tics and Linguistic Theory (SALT XII). B. Jackson, Ed. Cornell University Press, 246–265.

SHAN, C. 2003. Linguistic side effects. In Proceedings of the 18th Annual IEEE Symposium on Logic and
Computer Science (LICS’03) Workshop on Logic and Computational Linguistics. L. Libkin and G. Penn,
Eds. Ottawa, Canada.

SHAN, C. AND BARKER, C. 2004. Explaining crossover and superiority as left-to-right evaluation. In Worshop
on Semantic Approaches to Binding Theory (ESSLLI’04), the 16th European Summer School in Logic,
Language and Information. E. Keenan and P. Schlenker, Eds. Nancy, France.

SHAUMYAN, S. 1977. Applicational Grammar as a Semantic Theory of Natural Language. Edinburgh Uni-
versity Press.

SHAUMYAN, S. AND HUDAK, P. 1997. Linguistic, philosophical, and pragmatics aspects of type-directed natural
langugae. In Proceedings of Logical Aspects of Computational Linguistics: 2nd International Conference
(LACL’97). A. Lecomte, F. Lamarche, and G. Perrier, Eds. Lecture Notes in Computer Science, vol. 1582.
Springer-Verlag, 70–91.

SHAUMYAN, S. AND SEGOND, F. 1994. Long-distance dependencies and applicative universal grammar. In
Proceedings of the 15th International Conference on Computational Linguistics (COLING). Kyoto, Japan,
853–858.

SHIEBER, S. M. 1985. Evidence against the context-freeness of natural language. Linguist. Philos. 8, 333–
343.

SHIEL, B. A. 1976. Observations on context-free parsing. Tech. rep. TR 12-76, Center for Research in Com-
puting Technology, Aiken Computational Laboratory, Harvard University.

SHIU, S., LUO, Z., AND GARIGLIANO, R. 1996. Type theoretic semantics for SemNet. In Practical Reasoning:
International Conference on Formal and Applied Practical Reasoning (FAPR’96). D. Gabbay and H. J.
Ohlbach, Eds. Lecture Notes in Artificial Intelligence, vol. 1085. Springer-Verlag, 582–595.

SHIU, S. K. Y. 1997. Type theoretic semantics for semantic networks: An application to natural language
engineering. Ph.D. thesis, Department of Computer Science, University of Durham.

SHORT, S., SHIU, S., AND GARIGLIANO, R. 1996. Distributedness and non-linearity of LOLITA’s semantic net-
work. In Proceedings of the 16th International Conference on Computational Linguistics. Center for
Sprogteknologi, Copenhagen, 436–441.

SMITH, M. H. 1996. Natural language generation in the LOLITA system: An engineering approach. Ph.D.
thesis, Department of Computer Science, University of Durham.

SMITH, M. H., GARIGLIANO, R., AND MORGAN, R. 1994. Generation in the LOLITA system: An engineer-
ing approach. In Proceedings of the 16th International Natural Language Generation Workshop. 241–
244.

STEEDMAN, M. 1991. Type-raising and directionality in combinatory grammar. In Proceedings of the 29th
Annual Meeting of the Association for Computational Linguistics (ACL). Berkeley CA, 71–79.

STEEDMAN, M. 1996. A very short introduction to CCG. Unpublished paper. http://www.coqsci.ed.ac.uk/
steedman/paper.html

STEEDMAN, M. 1999. Alternating quantifier scope in CCG. In Proceedings of the 37th Annual Meeting of the
Association for Computational Linguistics (ACL). Morgan Kaufmann, 301–308.

STEEDMAN, M. AND BALDRIDGE, J. 2003. Combinatory categorial grammar. Unpublished tutorial, School of
Informatics, Edinburgh University. ftp://ftp.cogsci.ed.ac.uk/pub/steedman/ccg/manifesto.pdf.

STOY, J. E. 1977. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory.
MIT Press, Cambridge, MA.

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

P1: QBM

ACMJ215-01 ACM-CSUR November 25, 2006 2:11

54 R. A. Frost

SWIERSTRA, S. AND DUPONCHEEL, L. 1996. Deterministic, error-correcting combinator parsers. In Advanced
Functional Programmin, J. Launchbury, E. Meijer, and T. Sheard, Eds. Lecture Notes in Computer
Science, vol. 1129. Springer-Verlag, 184–207.

SYPNIEWSKI, B. P. 1999. An introduction to applicative universal grammar. Unpublished paper.
http://elvis.rowan.edu/ bps/ling/introAUG.pdf.

SZYDLOWSKI, B. 1996. Complexity analysis and monadic specification of memoized functional parsers. M.S.
thesis, School of Computer Science, University of Windsor.

THOMASON, R. H. 1974. Formal Philosophy: Selected Papers of Richard Montague. Yale University Press,
New Haven CT.

TOMITA, M. 1985. Efficient Parsing for Natural Language: A Fast Algorithm for Practical Systems. Kluwer
Academic Publishers.

TURNER, D. A. 1979. A new implementation technique for applicative languages. Softw. Pract. Exper. 9, 1,
31–49.

TURNER, D. A. 1981. Aspects of the implementation of programming languages. Ph.D. thesis, Oxford Uni-
versity, Oxford, UK.

TURNER, D. A. 1985. Miranda: a lazy functional programming language with polymorphic types. In Pro-
ceedings of the IFIP International Conference on Functional Programmiong Languages and Computer
Architecture. J. Jouannaud, Ed. Lecture Notes in Computer Science, vol. 201. Springer Verlag, 1–16.

TURNER, D. A. 1986. An overview of miranda. SIGPLAN Notices 21, 12, 158–166.
UDDERBORG, G. 1988. A functional parser generator. Licentiate thesis, Chalmers University of Technology,

Gothenburg.
VAN BENTHEM, V. 1987. Categorial grammars and lambda calculus. In Mathematical Logic and its Applica-

tions, D. Skordev, Ed. Plenum Press.
WADLER, P. J. 1985. How to replace failure by a list of successes. In Proceedings of the IFIP International

Conference on Functional Programmiong Languages and Computer Architecture, J. Jouannaud, Ed.
Lecture Notes in Computer Science, vol. 201. Springer-Verlag, 113–128.

WADLER, P. J. 1989. Special edition on lazy functional programming. Comput. J. 32, 2.
WADLER, P. J. 1990. Comprehending monads. In Proceedings of the ACM SIGPLAN/SIGACT/SIGART

Symposium on Lisp and Functional Programming. ACM Press, 61–78.
WADLER, P. J. 1994. Tech. rep., http://homepages.inf.ed.ac.uk/wadler/realworld/satelite.html.
WADLER, P. J. 1995. Monads for functional programming. In 1st International Spring School on Advanced

Functional Programming Techniques, J. Jeuring and E. Meijer, Eds. Lecture Notes in Computer Science,
vol. 924. Springer-Verlag, 24–52.

WANG, Y. 1994. An intelligent computer-based tutoring approach for the management of negative transfer.
Ph.D. thesis, Department of Computer Science, Durham University.

ZIFF, D. A., SPACKMAN, S. P., AND WACLENA, K. 1995. Funser: A functional server for textual information
retrieval. J. Funct. Program. 5, 3, 317–343.

Received July 2005; revised May 2006; accepted May 2006

ACM Computing Surveys, Vol. 38, No. 4, Article 11, Publication date: December 2006.

