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Some slide content taken from Unger and Michaelis

First: Finish Propositional 
Logic in Haskell

Syntax In Haskell
data Form =  P String | Ng Form | Cnj [Form] | Dsj [Form] 
            deriving Eq

instance Show Form where 
 show (P name) = name 
 show (Ng  f)  = '-': show f
 show (Cnj fs) = '&': show fs
 show (Dsj fs) = 'v': show fs

form1, form2 :: Form
form1 = Cnj [P p, Ng (P p)]  -- any # args
form2 = Dsj [P p1, P p2, P p3, P p4]

From FSynF.hs

Semantics in Haskell
-- Find all names in the formula
propNames :: Form -> [String]
propNames (P name) = [name]
propNames (Ng f)   = propNames f
propNames (Cnj fs) = (sort.nub.concat) (map propNames fs)
propNames (Dsj fs) = (sort.nub.concat) (map propNames fs)

-- Generate all valuation for given names
genVals :: [String] -> [[(String,Bool)]]
genVals [] = [[]]
genVals (name:names) = map ((name,True) :) (genVals names) 
                    ++ map ((name,False):) (genVals names)

-- List of all possible valuations for atoms in formula
allVals :: Form -> [[(String,Bool)]]
allVals = genVals . propNames 



Semantics in Haskell

-- eval takes valuation and formula and gives value
eval :: [(String,Bool)] -> Form -> Bool
eval [] (P c)    = error (no info about  ++ show c)
eval ((i,b):xs) (P c) 
     | c == i         = b 
     | otherwise = eval xs (P c) 

eval xs (Ng f)   = not (eval xs f)
eval xs (Cnj fs) = all (eval xs) fs
eval xs (Dsj fs) = any (eval xs) fs

From FSemF.hs line 64

Semantics in Haskell
- - Is formula a tautology or satisfiable or a contradiction
tautology :: Form -> Bool
tautology f = all (\ v -> eval v f) (allVals f)

satisfiable :: Form -> Bool
satisfiable f = any (\ v -> eval v f) (allVals f)

contradiction :: Form -> Bool
contradiction = not . satisfiable

- - Does first formula logically imply second
implies :: Form -> Form -> Bool
implies f1 f2 = contradiction (Cnj [f1,Ng f2])

-- If start with list of vals and formula F then returns sublist making F true 
update :: [[(String,Bool)]] -> Form -> [[(String,Bool)]]
update vals f = [ v | v <- vals, eval v f ]

Predicate Logic

Syntax

• Symbols needed include
• variables: x, y, ...

• constant symbols: c, d, ...

• k-ary function symbols: fk, gk, ... for all k

• k-ary predicate symbols: Pk, Qk, ... for all k

• parentheses: (, )

• quantifiers: ∃, ∀

• logical connectives: ¬, ∧, ∨, →

return values

are true or false



Terms & Formulas
• Atomic formulas are built by applying relation 

symbols to variables:
v ::= x | y | z | v’
c ::= c | d | c’ 

f ::= f | g | f’ 

t ::= c | v | f tlist 
tlist ::= [] | t: tlist 

R ::= P | R | S | R’

atom ::= R tlist

Terms & Formulas

• Formulas:
F ::= atom | (t = t) | (¬F) | (F∨F) | (F∧F) | (∀v. F) | (∃v. F)        

Examples

• Let D(x) stand for x is a dog, B(x,y) for x bites y,  
P(y) for y is a person, s for Sally, and f for Fido

• Fido bit someone
• ∃x.(P(x) ∧B(f, x))

• Every dog bit Sally
• ∀x.(D(x) → B(x,s))

• Some dog bit Sally
• ∃x.(D(x) ∧ B(x,s))

Examples

• Let L(x,y) stand for x loves y.

• Everybody loves somebody
• ∀x.(P(x) → ∃y.(P(y) ∧ L(x,y)))

• Someone loves everyone
• Ambiguous:  ∃x.(P(x) ∧ ∀y.(P(y) → L(x,y))) or  
∀y.(P(y) →  ∃x.(P(x) ∧ L(x,y)))

• Jane’s mother loves her
• L(mother(Jane),Jane) where mother() is a unary function



Limiting Domains

• Every person hates a wall
• ∀x. (P(x) → ∃y. H(x,y) ∧ W(y))

• ∀x. ∀y.(P(x) ∧ W(y) → H(x,y))   ????

• There is a wall that is hated by all people.
• ∃y. W(y) ∧ ∀x. (P(x) → H(x,y))

Free & Bound Variables

• Historically confusing! (But like lambda 
calculus)

• In Love(x,y) the variables x and y are free
• the meaning of the wff depends on the meaning of x,y

• In ∀x.∃y.L(x,y) occurrences of x and y are 
bound by the quantifiers.
• Meaning does not depend on meanings of x, y.

Free Variables

• An occurrence of x in φ is free in φ if it is a leaf 
node in the parse tree of φ such that there is 
no path upwards from that node x to a node ∀x 
or ∃x. 

• Otherwise, that occurrence of x is called 
bound. 

• For ∀xφ, or ∃xφ, we say that φ – minus any of 
φ’s subformulas ∃x ψ, or ∀x ψ – is the scope of 
∀x, respectively ∃x.

Examples

• (∀x.∃y.L(x,y)) ∧ H(x,y)
• Some occurrences free and some bound.



Substitution

• Define φ[t/x] to be the formula obtained by 
replacing each free occurrence of variable x in 
φ with t.
• Expect ∀x.φ(x) ⇒ φ[t/x] for every term t

• What about ∀x.∃y.L(x,y) ⇒ ∃y.L(y,y) ?

More Substitution

• Say that t is free for x in φ if no free x leaf in φ 
occurs in the scope of ∀y or ∃y for any variable 
y occurring in t.
• y not free for x in ∃y L(x,y)

• Only allow substitution φ[t/x] if t free for x in φ

• If t not free for x in φ, rename bound variables to make 
substitution legal.

Typed Predicate Calculus

• Variant where bound variables have types
• ∃x: T, ∀y: U

• Examples:

• Fido bit someone       ⇒    ∃x: Person. B(f, x))

• Every dog bites Sally ⇒    ∀x: Dog. B(x,s))

• Some dog bit Sally    ⇒     ∃x: Dog. B(x,s))

• Can be translated away

Questions?


