Lecture 9: Predicate Logic

CS 1810
Spring 2016
Kim Bruce

Some slide content taken from Unger and Michaelis

First: Finish Propositional
Logic in Haskell

Syntax In Haskell

data Form = P String | Ng Form | Cnj {Form} | Dsj {Form}
deriving Eq

instance Show Form where
show (P name) = name
show (Ng f) ='-'": show
show (Cnj fs) = '&": show fs
show (Ds;j fs) = 'v': show fs

formi, formz :: Form
formr = Cnj [P p, Ng (P p)} -- any # args
formz = Dsj [P p1, P p2, P p3, P p4l

From FSynF.hs

Semantics in Haskell

-- Find all names in the formula

propNames :: Form -> {String}

propNames (P name) = [name}

propNames (Ng f) = propNames f

propNames (Cnj fs) = (sort.nub.concat) (map propNames fs)
propNames (Ds;j fs) = (sort.nub.concat) (map propNames fs)

-- Generate all valuation for given names

genVals :: {String} -> {{(String,BooD1}

genVals {1 = {1}

genVals (name:names) = map ((name, True) :) (genVals names)
++ map ((name,False):) (genVals names)

-- List of all possible valuations for atoms in formula
allVals :: Form -> {{(String,BooD11
allVals = genVals . propNames




Semantics in Haskell

- eval takes valuation and formula and gives value
eval :: {(String,Bool)} -> Form -> Bool
eval [} (P ¢) = error (no info about ++ show ¢)
eval ((i,b):xs) (P ¢

lc==1i =b

| otherwise = eval xs (P c)

eval xs (Ng ) = not (eval xs f)
eval xs (Cnj fs) = all (eval xs) fs

eval xs (Ds;j fs) = any (eval xs) fs

From ¥SemF.hs line 64

Semantics in Haskell

- - Is formula a tautology or satisfiable or a contradiction

tautology :: Form -> Bool
tautology f = all (\ v -> eval v f) (allVals f)

satisfiable :: Form -> Bool
satisfiable f = any (\ v -> eval v f) (allVals f)

contradiction :: Form -> Bool
contradiction = not . satisfiable

- - Does first formula logically imply second
implies :: Form -> Form -> Bool
implies 1 f2 = contradiction (Cnj {fr,Ng 2D

- If start with list of vals and formula F then returns sublist making F true
update :: {[(String,BooD1} -> Form -> [[(String,BooD]}

update vals f={ v|v <-vals, eval v f }

Predicate Logic

Syntax

* Symbols needed include
e variables: x, y ...
e constant symbols: c, d, ...
o kary function symbols: fk, gk, ... forallk —— return values
e k-ary predicate symbols: Pk, Q¥, ... for all k «—— gre true or false
e parentheses: (,)
e quantifiers: 3, V

e logical connectives: -, A, v, —




Terms & Formulas

 Atomic formulas are built by applying relation
symbols to variables:
vi=xlylzIv
cu=cldle
fi-flglf
tu=clv|ftlist
tlist ::={} | t: tlist
R:=PIRISIR
atom := Rtlist

Terms & Formulas

e Formulas:
F:=atom|(t=t) | F) | (FvF) | FAF) | (Vv.F) | Qv. F)

Examples

e Let D stand for x is a dog, B(x,y) for x bites y,
P(y) fory is a person, s for Sally, and f for Fido

¢ Fido bit someone
e Ix.(P&) AB(f, x))

 Every dog bit Sally
e Vx.(D&) — B(x,s))

e Some dog bit Sally
* Ix.(DX A Bx,s))

Examples

* Let L(x,y) stand for x loves y.

 Everybody loves somebody
e Vx.(P& — Iy (P(y) A Lx,y))

* Someone loves everyone

o Ambiguous: Ix.(P& A Vy.(P(y) — Lx,y) or
Vy.(P(y) — Ix.(P&) A Lx,y))

* Jane’s mother loves her

¢ L(mother(Jane) Jane) where mother( is a unary function




Limiting Domains

 Every person hates a wall
e Vx. (Px) — Iy Hix,y) A W(y)
e Vx. Vy(P&) A W(y) — H(xy) ?22?

e There is a wall that is hated by all people.
o Iy W(y) A Vx. (P — Hx,y)

Free & Bound Variables

e Historically confusing! (But like lambda
calculus)

e In Love(x,y) the variables x and y are free

e the meaning of the wif depends on the meaning of x,y

e In Vx.3yL(x,y) occurrences of x and y are
bound by the quantifiers.

¢ Meaning does not depend on meanings of x, .

Free Variables

* An occurrence of x in ¢ is free in ¢ if it is a leaf
node in the parse tree of ¢ such that there is
no path upwards from that node x to a node Vx
or Ix.

e Otherwise, that occurrence of x is called

bound.

* For Vx¢, or Ix}, we say that ¢ — minus any of
¢’s subformulas Ix P, or Vx 1 —is the scope of
Vx, respectively Ix.

Examples

e (Vx.3yLkx,y) » Hkx,y)

e Some occurrences free and some bound.




Substitution

* Define ¢p[t/x] to be the formula obtained by
replacing each free occurrence of variable x in

¢ with t.
o Expect Vx.¢&) = ¢lt/x} for every term t
e What about Vx.3yL(x,y) = JyL(yy) ?

More Substitution

e Say that ¢ 7s free for x in ¢ if no free x leaf in ¢
occurs in the scope of Vy or dy for any variable
y occurring in t.

¢ ynot free for x in Iy L(x,y)

¢ Only allow substitution ¢p{t/x} if t free for x in ¢

¢ If t not free for x in ¢, rename bound variables to make
substitution legal.

Typed Predicate Calculus

e Variant where bound variables have types
e IxxT,Vy: U

e Examples:
e Tido bit someone = 3Jx: Person. B(f, x))
e Every dog bites Sally = Vx: Dog. B(x,s))

e Some dogbit Sally = 3Ix: Dog. B(x,s))

e Can be translated away

Questions?




