Lecture 8: Semantics of
Propositional Logic

CS 1810
Spring 2016
Kim Bruce

Some slide content taken from Unger and Michaelis

Pig Latin in Haskell

pigLatin :: String -> String
pigLatin {} =
pigLatin str = if (isVowel (head str))
then str ++ yay
else if (not (isVowel (head(tail(str)))))
then ((tail(tail str))) ++ [(head sto)} ++ [(head(tail str))} ++ ay
else (tail sto)++[(head stp)}++ay

—-Check if string is a vowel
isVowel :: Char -> Bool

isVowel v=v ‘elem" ['a','e",'i','0','u']

toPigLatin str = unwords (map pigLatin (words str))

Finish Balanced Parens

Balanced Parens

* Every propositional formula F has equal
numbers of left and right parentheses. ¥/
Moreover every proper prefix of F has more
left parentheses then right parentheses.

* Proof: Did base case, inductive case left

Balanced Parens (2)

* Induction step: S’pose all proper prefixes of F have more left
than right parens, then show for (-F).

¢ What are proper prefixes of (-F): (, (-, (=P, and (-F
e Are there more left than right parens in each?

o Last 2 cases: (<P has more left than right because P
is a proper prefix of F & therefore has more left than
right. (=P has even one more, so fine.

e (-F We know F has same number of left as right, so
(=F has one more left than right.

e The cases for (FvF) and (FAF) are similar, but a bit more
complex.

Proofs on Propositional Logic

* Proof in text for Prop 4.3 is incomplete. Can you see
why?

e Structural induction principle should guide you
in writing recursive algorithms on formulas of
propositional logic.

Semantics of Propositional
Logic

* Meaning of formula depends on meaning of
propositional letters.

e Start with valuation fcn V: Prop Letters — {true,false}

o Extend to V*: Prop Logic Formulas — {true,false} by
o V+(p) = V(p) if p is propositional letter
o Vo) - false iff V) = true
e Vv = true iff V+(¢) = true or V+(y) = true (or both)
o VH(pAy) = true iff V+(¢) = true and V+(y) = true

o VH¢p—>y) = false iff V*(¢) = true and V*(y) = false

Truth Tables

~P |PAQ | PvQ |P—Q| P3|

SRR R
R R
i
=
=
=
—

T F F T T

Each row corresponds to different valuation

Categories of WEFs

* A formula ¢ is valid, or a tautology, if for all
valuations V, we have V+(¢) = true.

* A formula ¢ is satisfiable if for some valuation V,
we have V+(¢) = true.

* A formula ¢ is contingent if for some valuation
V, we have V+(¢) = false.

* A formula ¢ is unsatisfiable, or a contradiction, if
for all valuations V , we have V+(¢) = false.

Semantic Entailment

* ¢y ..., On = Y iff for every valuation V s.t.
V*(dy) = ... = V¥(¢n) = true, then V() = true

e Example: PEQ — P

* Read ¢y, ..., Oa E P as Qy, ..., On logically implies

e Hence, F 1 iff 1 is a tautology.

o Show: G, .., Gy G = P iff By, ooy G =D — Y

Propositional Logic

* Definition of well-formed formulas of prop
logic:
Use ::= in place of —
for productions to avoid
e F:= atom|(F) | (FvF) | (FAF) confusion when expand

e atom:=plqlrlatom’

* Parens help build unique parse trees for
formulas.

Syntax In Haskell

data Form = P String | Ng Form | Cnj {Form} | Dsj {Form}
deriving Eq

instance Show Form where
show (P name) = name
show (Ng) ='-": show f
show (Cnj fs) = '&': show fs
show (Ds;j fs) = 'v': show fs

formi, formz :: Form
formr = Cnj [P p, Ng (P p)} -- any # args
formz = Dsj {P p1, P p2, P p3, P p4l

From FSynF.hs

Semantics in Haskell

-- Find all names in the formula

propNames :: Form -> {String}

propNames (P name) = [namel

propNames (Ng f) = propNames f

propNames (Cnj fs) = (sort.nub.concat) (map propNames fs)
propNames (Ds;j fs) = (sort.nub.concat) (map propNames fs)

-- Generate all valuation for given names

genVals :: [String} -> {{(String,BooD1}

genVals {1 = {{11

genVals (name:names) = map ((name, True) :) (genVals names)
++ map ((name,False):) (genVals names)

-- List of all possible valuations for atoms in formula
allVals :: Form -> {{(String,BooD11
allVals = genVals . propNames

Semantics in Haskell

- eval takes valuation and formula and gives value
eval :: {(String,Bool)} -> Form -> Bool
eval {1 (P ¢) = error (no info about ++ show ¢)
eval ((i,b):xs) (P ¢

lc=1i =b

| otherwise = eval xs (P c)

eval xs (Ng) = not (eval xs f)
eval xs (Cnj fs) = all (eval xs) fs
eval xs (Dsj fs) = any (eval xs) fs

From FSemF.hs

Semantics in Haskell

- - Is formula a tautology or satisfiable or a contradiction
tautology :: Form -> Bool

tautology f = all (\ v -> eval v f) (allVals f)

satisfiable :: Form -> Bool
satisfiable f = any (\ v -> eval v f) (allVals)

contradiction :: Form -> Bool
contradiction = not . satisfiable

- - Does first formula logically imply second

implies :: Form -> Form -> Bool

implies 1 f2 = contradiction (Cnj {fr,Ng 2D

- If start with list of vals and formula F then returns sublist
-- making F true

update :: {{(String,BooD1} -> Form -> {[(String,BooD1}
update vals f={ v|v <-vals, eval v f }

Predicate Logic

