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Some slide content taken from Unger and Michaelis

Pig Latin in Haskell
pigLatin :: String -> String
pigLatin [] = 
pigLatin str = if (isVowel (head str)) 
               then str ++ yay
                    else if (not (isVowel (head(tail(str))))) 
                    then ((tail(tail str))) ++ [(head str)] ++ [(head(tail str))] ++ ay
                        else (tail str)++[(head str)]++ay

--Check if string is a vowel
isVowel :: Char -> Bool
isVowel v = v `elem` ['a','e','i','o','u']

toPigLatin str = unwords (map pigLatin (words str))

Finish Balanced Parens

Balanced Parens

• Every propositional formula F has equal 
numbers of left and right parentheses.  
Moreover every proper prefix of F has more 
left parentheses then right parentheses.

• Proof:  Did base case, inductive case left 

✔



Balanced Parens (2)
• Induction step: S’pose all proper prefixes of F have more left 

than right parens, then show for (¬F). 

• What are proper prefixes of (¬F):    (, (¬, (¬P, and (¬F

• Are there more left than right parens in each?

• Last 2 cases: (¬P  has more left than right because P 
is a proper prefix of F & therefore has more left than 
right.  (¬P has even one more, so fine.

• (¬F  We know F has same number of left as right, so 
(¬F has one more left than right.

• The cases for (F∨F) and (F∧F) are similar, but a bit more 
complex.

Proofs on Propositional Logic

• Proof in text for Prop 4.3 is incomplete.  Can you see 
why?

• Structural induction principle should guide you 
in writing recursive algorithms on formulas of 
propositional logic.

Semantics of Propositional 
Logic

• Meaning of formula depends on meaning of 
propositional letters.

• Start with valuation fcn V: Prop Letters → {true,false}

• Extend to V+: Prop Logic Formulas → {true,false} by

• V+(p) = V(p) if p is propositional letter

• V+(¬φ) = false iff V+(φ) = true

• V+(φ∨γ) = true iff V+(φ) = true or V+(γ) = true (or both)

• V+(φ∧γ) = true iff V+(φ) = true and V+(γ) = true 

• V+(φ→γ) = false iff V+(φ) = true and V+(γ) = false

Truth Tables

P Q ¬P P∧Q P∨Q P→Q P↔Q

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T

Each row corresponds to different valuation



Categories of WFFs

• A formula φ is valid, or a tautology, if for all 
valuations V, we have V+(φ) = true. 

• A formula φ is satisfiable if for some valuation V, 
we have V+(φ) = true. 

• A formula φ is contingent if for some valuation 
V, we have V+(φ) = false. 

• A formula φ is unsatisfiable, or a contradiction, if 
for all valuations V , we have V+(φ) = false. 

Semantic Entailment

• φ1, ..., φn ⊨ ψ iff for every valuation V s.t.  
V*(φ1) = ... = V*(φn) = true, then V*(ψ) = true

• Example:  P ⊨ Q → P

• Read φ1, ..., φn ⊨ ψ as φ1, ..., φn logically implies ψ

• Hence,  ⊨ ψ iff ψ is a tautology.

• Show: φ1, ..., φn, φ ⊨ ψ iff φ1, ..., φn  ⊨ φ → ψ

Propositional Logic

• Definition of well-formed formulas of prop 
logic:
• atom := p | q | r | atom’

• F ::=  atom | (¬F) | (F∨F) | (F∧F) 

• Parens help build unique parse trees for 
formulas.

Use ::= in place of  →
for productions to avoid
confusion when expand

Syntax In Haskell
data Form =  P String | Ng Form | Cnj [Form] | Dsj [Form] 
            deriving Eq

instance Show Form where 
 show (P name) = name 
 show (Ng  f)  = '-': show f
 show (Cnj fs) = '&': show fs
 show (Dsj fs) = 'v': show fs

form1, form2 :: Form
form1 = Cnj [P p, Ng (P p)]  -- any # args
form2 = Dsj [P p1, P p2, P p3, P p4]

From FSynF.hs



Semantics in Haskell
-- Find all names in the formula
propNames :: Form -> [String]
propNames (P name) = [name]
propNames (Ng f)   = propNames f
propNames (Cnj fs) = (sort.nub.concat) (map propNames fs)
propNames (Dsj fs) = (sort.nub.concat) (map propNames fs)

-- Generate all valuation for given names
genVals :: [String] -> [[(String,Bool)]]
genVals [] = [[]]
genVals (name:names) = map ((name,True) :) (genVals names) 
                    ++ map ((name,False):) (genVals names)

-- List of all possible valuations for atoms in formula
allVals :: Form -> [[(String,Bool)]]
allVals = genVals . propNames 

Semantics in Haskell

-- eval takes valuation and formula and gives value
eval :: [(String,Bool)] -> Form -> Bool
eval [] (P c)    = error (no info about  ++ show c)
eval ((i,b):xs) (P c) 
     | c == i    = b 
     | otherwise = eval xs (P c) 

eval xs (Ng f)   = not (eval xs f)
eval xs (Cnj fs) = all (eval xs) fs
eval xs (Dsj fs) = any (eval xs) fs

From FSemF.hs

Semantics in Haskell
- - Is formula a tautology or satisfiable or a contradiction
tautology :: Form -> Bool
tautology f = all (\ v -> eval v f) (allVals f)

satisfiable :: Form -> Bool
satisfiable f = any (\ v -> eval v f) (allVals f)

contradiction :: Form -> Bool
contradiction = not . satisfiable

- - Does first formula logically imply second
implies :: Form -> Form -> Bool
implies f1 f2 = contradiction (Cnj [f1,Ng f2])
-- If start with list of vals and formula F then returns sublist 
-- making F true 
update :: [[(String,Bool)]] -> Form -> [[(String,Bool)]]
update vals f = [ v | v <- vals, eval v f ]

Predicate Logic


