Lecture 8: Semantics of Propositional Logic

CS 181O Spring 2016 Kim Bruce

Some slide content taken from Unger and Michaelis

Pig Latin in Haskell

--Check if string is a vowel isVowel :: Char -> Bool isVowel v = v `elem` ['a','e','i','o','u']

toPigLatin str = unwords (map pigLatin (words str))

Finish Balanced Parens

Balanced Parens

- Every propositional formula F has equal numbers of left and right parentheses.
 Moreover every proper prefix of F has more left parentheses then right parentheses.
- Proof: Did base case, inductive case left

Balanced Parens (2)

- *Induction step:* S'pose all proper prefixes of **F** have more left than right parens, then show for (¬**F**).
 - What are proper prefixes of $(\neg F)$: $(, (\neg, (\neg P, and (\neg F))))$
 - Are there more left than right parens in each?
 - Last 2 cases: (¬P has more left than right because P is a proper prefix of F & therefore has more left than right. (¬P has even one more, so fine.
 - (-F We know F has same number of left as right, so (-F has one more left than right.
- The cases for (**F** \lor **F**) and (**F** \land **F**) are similar, but a bit more complex.

Proofs on Propositional Logic

- Proof in text for Prop 4.3 is incomplete. Can you see why?
- Structural induction principle should guide you in writing recursive algorithms on formulas of propositional logic.

Semantics of Propositional Logic

- Meaning of formula depends on meaning of propositional letters.
 - Start with valuation fcn V: Prop Letters \rightarrow {true,false}
 - Extend to V⁺: Prop Logic Formulas \rightarrow {true, false} by
 - $V^{+}(p) = V(p)$ if p is propositional letter
 - $V^{+}(\neg \phi)$ = false iff $V^{+}(\phi)$ = true
 - $V^*(\varphi \lor \gamma)$ = true iff $V^*(\varphi)$ = true or $V^*(\gamma)$ = true (or both)
 - $V^*(\varphi \wedge \gamma)$ = true iff $V^*(\varphi)$ = true and $V^*(\gamma)$ = true
 - $V^*(\varphi \rightarrow \gamma)$ = false iff $V^*(\varphi)$ = true and $V^*(\gamma)$ = false

Truth Tables

Р	R R	$\neg P$	P∧Q_	PvQ	P→Q	P⇔Q,
Т	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	F	F
F	Т	Т	F	Т	Т	F
F	F	Т	F	F	Т	Т

Each row corresponds to different valuation

Categories of WFFs

- A formula φ is *valid*, or a *tautology*, if for all valuations V, we have V⁺(φ) = true.
- A formula φ is *satisfiable* if for some valuation V, we have V⁺(φ) = true.
- A formula φ is *contingent* if for some valuation
 V, we have V⁺(φ) = false.
- A formula φ is *unsatisfiable*, or a *contradiction*, if for all valuations V, we have V⁺(φ) = false.

Semantic Entailment

- $\phi_{I}, ..., \phi_{n} \models \psi$ iff for every valuation V s.t. V*(ϕ_{I}) = ... = V*(ϕ_{n}) = true, then V*(ψ) = true
 - Example: $P \vDash Q \rightarrow P$
 - Read $\varphi_{I},...,\varphi_{n}\vDash\psi$ as $\varphi_{I},...,\varphi_{n}$ logically implies ψ
- Hence, $\models \psi$ iff ψ is a tautology.
- Show: $\phi_{I}, ..., \phi_{n}, \phi \vDash \psi$ iff $\phi_{I}, ..., \phi_{n} \vDash \phi \rightarrow \psi$

Propositional Logic

- Definition of well-formed formulas of prop logic:
 - atom := p |q| r |atom'

• $F ::= atom | (\neg F) | (F \lor F) | (F \land F)$

- Use ::= in place of \rightarrow for productions to avoid confusion when expand
- Parens help build unique parse trees for formulas.

Syntax In Haskell

data Form = P String | Ng Form | Cnj [Form] | Dsj [Form] deriving Eq

instance Show Form where show (P name) = name show (Ng f) = '-': show f show (Cnj fs) = '&': show fs show (Dsj fs) = 'v': show fs

form1, form2 :: Form form1 = Cnj [P p, Ng (P p)] - *any* # *args* form2 = Dsj [P p1, P p2, P p3, P p4]

From FSynF.hs

Semantics in Haskell

-- Find all names in the formula propNames :: Form -> [String] propNames (P name) = [name] propNames (Ng f) = propNames f propNames (Cnj fs) = (sort.nub.concat) (map propNames fs) propNames (Dsj fs) = (sort.nub.concat) (map propNames fs)

-- Generate all valuation for given names genVals :: [String] -> [[(String,Bool)]] genVals [] = [[]] genVals (name:names) = map ((name,True) :) (genVals names) ++ map ((name,False):) (genVals names)

-- List of all possible valuations for atoms in formula allVals :: Form -> [[(String,Bool)]] allVals = genVals . propNames

Semantics in Haskell

-- eval takes valuation and formula and gives value eval :: [(String,Bool)] -> Form -> Bool eval [] (P c) = error (no info about ++ show c) eval ((i,b):xs) (P c) | c == i = b | otherwise = eval xs (P c)

eval xs (Ng f) = not (eval xs f) eval xs (Cnj fs) = all (eval xs) fs eval xs (Dsj fs) = any (eval xs) fs

From FSemF.hs

Semantics in Haskell

- - Is formula a tautology or satisfiable or a contradiction tautology :: Form -> Bool tautology f = all (\ v -> eval v f) (allVals f)

satisfiable :: Form -> Bool
satisfiable f = any (\ v -> eval v f) (allVals f)

contradiction :: Form -> Bool contradiction = not . satisfiable

- Does first formula logically imply second implies :: Form -> Form -> Bool implies ft f2 = contradiction (Cnj [f1,Ng f2])
- If start with list of vals and formula F then returns sublist
- making F true update :: [[(String,Bool)]] -> Form -> [[(String,Bool)]] update vals f = [v | v <- vals, eval v f] Predicate Logic