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Some slide content taken from Unger and Michaelis

First: Laziness in Haskell

Lazy Lists
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

fibList = f 1 1
where f a b = a : f b (a+b)

fastFib n = fibList!!n

fibs = 1:1:[ a+b | (a,b) <- zip fibs (tail fibs)]

primes = sieve [ 2.. ]
       where
         sieve (p:x) = p : 
              sieve [ n | n <- x, n `mod` p > 0]

complexity O(fib n) ~ O(2n)

complexity O(n)

Monads Later

• Because Haskell is a purely functional language 
no function can have a side effect.

• Unfortunately input and output is a side effect 
period

• To cope with input and output Haskell has a 
new language construct known as a monad.

• We will discuss monads later in the course.



Formal Syntax and 
Propositional Logic

A Fragment of English

• S → NP VP

• NP → Snow White | Alice | Dorothy | Goldilocks | 
             DET CN | DET RCN

• DET → the | every | some | no

• CN → girl | boy | princess | dwarf | giant | sword | dagger

• RCN → CN that VP | CN that NP TV

• VP → laughed | cheered | shuddered | TV NP | DV NP NP

• TV →  loved | admired | helped | defeated | caught

• DV → gave

Derivation

• S ⇒ NP VP ⇒ Snow White VP  
⇒ Snow White TV NP 
⇒ Snow White admired NP 
⇒ Snow White admired DET CN 
⇒ Snow White admired the CN 
⇒ Snow White admired the dwarf

• Draw parse tree

• Every girl admired the dwarf.

In Haskell
data Sent = Sent NP VP deriving Show
data NP   = SnowWhite  | Alice  | Dorothy | Goldilocks
          | NP1 DET CN | NP2 DET RCN deriving Show
data DET  = The | Every | Some | No  deriving Show
data CN   = Girl   | Boy   | Princess | Dwarf | Giant 
          | Sword | Dagger deriving Show 
data RCN  = RCN1 CN That VP | RCN2 CN That NP TV
          deriving Show
data That = That deriving Show
data VP   = Laughed | Cheered | Shuddered 
          | VP1 TV NP | VP2 DV NP NP deriving Show 
data TV   = Loved   | Admired | Helped | Defeated | Caught
          deriving Show 
data DV   = Gave deriving Show



Example

• More details in file FSynF.hs

• “Snow White admired the dwarf”  becomes
• s:: Sent

• s = Sent SnowWhite (VP1 Admired  (NP1 The Dwarf))

• We will show later how to parse a sentence into 
a Haskell formula.

Logic

• Context free language designed for expressing 
Boolean-valued statements

• Translate assertions in English into logic and 
determine if true in model.

• Meanings expressed in lambda calculus built from logic 
base.

• Start simple & work up in complexity.

Propositional Logic

• Definition of well-formed formulas of prop logic:

• atom := p | q | r | atom’

• F ::=  atom | (¬F) | (F∨F) | (F∧F) 

• Parens help build unique parse trees for formulas.

Use “::=” in place of  “→”
for productions to avoid
confusion when expand

Propositional Logic

• Expand with abbreviations

• A → B for ¬A ∨ B

• A ↔ B for (A → B) ∧ (B → A)

• Often (informally) drop parentheses around terms

• Precedence: ¬, ∧, ∨, →

• ∧ and ∨ are left associative; → is right associative.

• Sometimes add ⊤ for true and ⊥ for false.



Induction on Formulas

• Principle of Structured Induction: Every formula 
of propositional logic has property P provided:

• Basic step:  every atom has property P

• Induction step: if F has property P then so 
does ¬F; if F1 and F2 have property P then so 
do (F1 ∧ F2) and (F1 ∨ F2).

Balanced Parens

• Every propositional formula F has equal 
numbers of left and right parentheses.  
Moreover every proper prefix of F has more 
left parentheses then right parentheses.

• Proof: 

• Basic step: An atom has 0 left parentheses 
and 0 right parentheses, so they are equal. It 
also has no proper prefixes.

Balanced Parens (2)

• Proof (cont.): 

• Induction step: S’pose F has = parens, then so 
does (¬F).  If F1 and F2 each have = parens 
then so do (F1 ∧ F2) and (F1 ∨ F2).

• Show for prefixes on board in class

• Proof in text for Prop 4.3 is incomplete.  Can you see 
why?

Semantics of Propositional 
Logic

• Meaning of formula depends on meaning of 
propositional letters.

• Start with valuation fcn V: Prop Letters → {true,false}

• Extend to V+: Prop Logic Formulas → {true,false} by

• V+(p) = V(p) if p is propositional letter

• V+(¬φ) = false iff V+(φ) = true

• V+(φ∨γ) = true iff V+(φ) = true or V+(γ) = true (or both)

• V+(φ∧γ) = true iff V+(φ) = true and V+(γ) = true 

• V+(φ→γ) = false iff V+(φ) = true and V+(γ) = false



Truth Tables

P Q ¬P P∧Q P∨Q P→Q P↔Q

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T

Each row corresponds to different valuation

Categories of WFFs

• A formula φ is valid, or a tautology, if for all 
valuations V, we have V+(φ) = true. 

• A formula φ is satisfiable if for some valuation V, 
we have V+(φ) = true. 

• A formula φ is contingent if for some valuation 
V, we have V+(φ) = false. 

• A formula φ is unsatisfiable, or a contradiction, if 
for all valuations V , we have V+(φ) = false. 

Semantic Entailment

• φ1, ..., φn ⊨ ψ iff for every valuation V s.t.  
V*(φ1) = ... = V*(φn) = true, then V*(ψ) = true

• Example:  P ⊨ Q → P

• Read φ1, ..., φn ⊨ ψ as φ1, ..., φn logically implies ψ

• Hence,  ⊨ ψ iff ψ is a tautology.

• Show: φ1, ..., φn, φ ⊨ ψ iff φ1, ..., φn  ⊨ φ → ψ

Questions?


