Lecture 6: Formal Syntax &
Propositional Logic

CS 1810
Spring 2016
Kim Bruce

Some slide content taken from Unger and Michaelis

First: LLaziness in Haskell

Lazy Lists

fib 0 = 1

fib 1 = 1 complexity O(fib n - 0G")

fib n = fib (n-1) + fib (n-2)

fibList = £ 1 1 complexity om)
where f a b = a : £ b (atb)

fastFib n = fibList!!n

fibs = 1:1:[a+b | (a,b) <- zip fibs (tail fibs)]

primes = sieve [2..]
where
sieve (p:x) = p :
sieve [n | n <- X, n "mod” p > 0]

Monads Later

* Because Haskell is a purely functional language
no function can have a side effect.

* Unfortunately input and output is a side effect
period

¢ To cope with input and output Haskell has a
new language construct known as a monad.

e We will discuss monads later in the course.

A Fragment of English

S—=NPVP

* NP — Snow White | Alice | Dorothy | Goldilocks |

Formal Syntax and DET CN | DETRCN
e DET — the | every | some | no

PI’OpOSltIOI‘lal LOgIC e CN — girl | boy | princess | dwarf | giant | sword | dagger

e RCN — CN that VP | CN that NP TV

e VP — laughed | cheered | shuddered | TV NP | DV NP NP
* TV — loved | admired | helped | defeated | caught

e DV — gave

Derivation In Haskell

data Sent = Sent NP VP deriving Show
data NP =SnowWhite | Alice | Dorothy | Goldilocks

* $= NP VP = Snow White VP | NP1 DET CN | NP2 DET RCN deriving Show

= Snow White TV NP data DET =The | Every | Some | No deriving Show

= Snow White admired NP data CN =Girl |Boy |Princess | Dwarf| Giant

= Snow White admired DET CN | Sword | Dagger deriving Show

= Snow White admired the CN data RCN =RCNi1 CN That VP | RCN2 CN That NP TV

deriving Show

data That = That deriving Show

data VP = Laughed | Cheered | Shuddered
| VP1' TV NP | VP2 DV NP NP deriving Show

° EVCI‘y girl admired the dwarf, dataTV =Loved |Admired|Helped|Defeated | Caught
deriving Show

data DV = Gave deriving Show

= Snow White admired the dwarf

* Draw parse tree

Example

* More details in file FSynF.hs

e “Snow White admired the dwarf” becomes
e s:: Sent

e s =Sent SnowWhite (VP1 Admired (NP1 The Dwarf))

* We will show later how to parse a sentence into
a Haskell formula.

Logic

* Context free language designed for expressing
Boolean-valued statements

* Translate assertions in English into logic and
determine if true in model.

* Meanings expressed in lambda calculus built from logic
base.

e Start simple & work up in complexity.

Propositional Logic

* Definition of well-formed formulas of prop logic:

Use “:=" in place of “—”
for productions to avoid
e F:= atom|(F) | (EvF) | (FAF) confusion when expand

e atom:=plqlrlatom’

* Parens help build unique parse trees for formulas.

Propositional Logic

* Expand with abbreviations
e A—>Bfor-AvB

e A<>Bfor(A—=B ArB—A)

 Often (informally) drop parentheses around terms
e Precedence: -, A, v, —

e A and v are left associative; — is right associative.

e Sometimes add T for true and L for false.

Induction on Formulas

* Principle of Structured Induction: Every formula
of propositional logic has property P provided:

* Basic step: every atom has property P

* Induction step: if F has property P then so
does -F; if F; and F, have property P then so
do (F; A F) and (F, v F)).

Balanced Parens

* Every propositional formula F has equal
numbers of left and right parentheses.
Moreover every proper prefix of F has more
left parentheses then right parentheses.

* Proof:

* Basic step: An atom has o left parentheses
and o right parentheses, so they are equal. It
also has no proper prefixes.

Balanced Parens (2)

* Proof (cont.):

o Induction step: S’pose F has = parens, then so
does (-F). If F; and F, each have = parens
then so do (F; A F,) and (F, v F,).

* Show for prefixes on board in class

* Proof in text for Prop 4.3 is incomplete. Can you see
why?

Semantics of Propositional
Logic

* Meaning of formula depends on meaning of
propositional letters.

e Start with valuation fcn V: Prop Letters — {true,false}
o Extend to V*: Prop Logic Formulas — {true,false} by
o V#(p) = V(p) if p is propositional letter
o Vi) = false iff V() = true
o VH(¢pvy) = true iff V+($) = true or V*(y) = true (or both)
o VHpay) = true iff V+(¢) = true and V+(y) = true

o V) = false iff V+(¢) = true and V*(y) = false

Truth Tables Categories of WEFs

p Q, | -P | PAQ | PvQ |P—Q|P<Q * A formula ¢ is valid, or a tautology, if for all
valuations V, we have V+(¢) = true.
T T F T T T T
* A formula ¢ is satisfiable if for some valuation V,
T F F F T F F we have V+(¢) = true.
F T T F T T F * A formula ¢ is contingent it for some valuation
V, we have V+(¢) = false.
F F T F F T T e A formula ¢ is unsatisfiable, or a contradiction, if

Each row corresponds to different valuation for all valuations V', we have V(@) = false.

Semantic Entailment

* dy, ..., On = Y iff for every valuation V s.t.
V¥ = ... = V¥(dn) = true, then V*() = true

e Example: P=Q — P QUCSUOI‘IS?
* Read ¢y, ..., Gn E Y as Oy, ..., Gn logically implies

* Hence, F v iff 1 is a tautology.
* Show: ¢, ..., Pn, PE Y iff Gy, ..., Pu E P — Y

