Lecture 6: Formal Syntax & Propositional Logic

CS 181O Spring 2016 Kim Bruce

Some slide content taken from Unger and Michaelis

First: Laziness in Haskell

Lazy Lists

```
fib 0 = 1

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

fibList = f 1 1

where f a b = a : f b (a+b)

fastFib n = fibList!!n

fibs = 1:1:[ a+b | (a,b) <- zip fibs (tail fibs)]

primes = sieve [ 2.. ]

where

sieve (p:x) = p :

sieve [ n | n <- x, n `mod` p > 0]
```

Monads Later

- Because Haskell is a purely functional language no function can have a side effect.
- Unfortunately input and output is a side effect period
- To cope with input and output Haskell has a new language construct known as a monad.
- We will discuss monads later in the course.

Formal Syntax and Propositional Logic

A Fragment of English

- $S \rightarrow NP VP$
- NP → Snow White | Alice | Dorothy | Goldilocks | DET CN | DET RCN
- DET \rightarrow the | every | some | no
- CN → girl | boy | princess | dwarf | giant | sword | dagger
- RCN \rightarrow CN that VP | CN that NP TV
- VP → laughed | cheered | shuddered | TV NP | DV NP NP
- TV → loved | admired | helped | defeated | caught
- $DV \rightarrow gave$

Derivation

- $S \Rightarrow NP VP \Rightarrow Snow White VP$
 - \Rightarrow Snow White TV NP
 - \Rightarrow Snow White admired NP
 - \Rightarrow Snow White admired DET CN
 - \Rightarrow Snow White admired the CN
 - \Rightarrow Snow White admired the dwarf
- Draw parse tree
- Every girl admired the dwarf.

In Haskell

data Sent = Sent NP VP deriving Show data NP = SnowWhite |Alice |Dorothy|Goldilocks |NPI DET CN | NP2 DET RCN deriving Show data DET = The |Every|Some | No deriving Show data CN = Girl |Boy |Princess|Dwarf|Giant |Sword|Dagger deriving Show data RCN = RCNI CN That VP | RCN2 CN That NP TV deriving Show data That = That deriving Show data VP = Laughed | Cheered | Shuddered |VPI TV NP | VP2 DV NP NP deriving Show data TV = Loved |Admired |Helped | Defeated | Caught deriving Show data DV = Gave deriving Show

Example

- More details in file FSynF.hs
- "Snow White admired the dwarf" becomes
 - s:: Sent
 - s = Sent SnowWhite (VP1 Admired (NP1 The Dwarf))
- We will show later how to parse a sentence into a Haskell formula.

Logic

- Context free language designed for expressing Boolean-valued statements
- Translate assertions in English into logic and determine if true in model.
 - Meanings expressed in lambda calculus built from logic base.
- Start simple & work up in complexity.

Propositional Logic

- Definition of well-formed formulas of prop logic:
 - atom := p | q | r | atom'

Use "::=" in place of " \rightarrow " for productions to avoid confusion when expand

- $F ::= atom | (\neg F) | (F \lor F) | (F \land F)$
- Parens help build unique parse trees for formulas.

Propositional Logic

- Expand with abbreviations
 - $A \rightarrow B$ for $\neg A \lor B$
 - $A \Leftrightarrow B$ for $(A \rightarrow B) \land (B \rightarrow A)$
- Often (informally) drop parentheses around terms
 - Precedence: \neg , \land , \lor , \rightarrow
 - \land and \lor are left associative; \rightarrow is right associative.
- Sometimes add \top for true and \perp for false.

Induction on Formulas

- *Principle of Structured Induction*: Every formula of propositional logic has property P provided:
 - Basic step: every atom has property P
 - Induction step: if F has property P then so does ¬F; if F₁ and F₂ have property P then so do (F₁ ∧ F₂) and (F₁ ∨ F₂).

Balanced Parens

- Every propositional formula F has equal numbers of left and right parentheses. Moreover every proper prefix of F has more left parentheses then right parentheses.
- Proof:
 - *Basic step:* An atom has 0 left parentheses and 0 right parentheses, so they are equal. It also has no proper prefixes.

Balanced Parens (2)

- Proof (cont.):
 - Induction step: S'pose F has = parens, then so does (¬F). If F₁ and F₂ each have = parens then so do (F₁ ∧ F₂) and (F₁ ∨ F₂).
 - Show for prefixes on board in class
- Proof in text for Prop 4.3 is incomplete. Can you see why?

Semantics of Propositional Logic

- Meaning of formula depends on meaning of propositional letters.
 - Start with valuation fcn V: Prop Letters \rightarrow {true,false}
 - Extend to V⁺: Prop Logic Formulas \rightarrow {true, false} by
 - $V^{*}(p) = V(p)$ if p is propositional letter
 - $V^*(\neg \phi) = \text{false iff } V^*(\phi) = \text{true}$
 - $V^{*}(\phi \lor \gamma)$ = true iff $V^{*}(\phi)$ = true or $V^{*}(\gamma)$ = true (or both)
 - $V^*(\phi \land \gamma)$ = true iff $V^*(\phi)$ = true and $V^*(\gamma)$ = true
 - $V^*(\varphi \rightarrow \gamma)$ = false iff $V^*(\varphi)$ = true and $V^*(\gamma)$ = false

Truth Tables

Р	R	$\neg P$	P∧Q_	PvQ_	P→Q	P⇔Q
Т	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	F	F
F	Т	Т	F	Т	Т	F
F	F	Т	F	F	Т	Т

Each row corresponds to different valuation

Categories of WFFs

- A formula φ is *valid*, or a *tautology*, if for all valuations V, we have V⁺(φ) = true.
- A formula φ is *satisfiable* if for some valuation V, we have V⁺(φ) = true.
- A formula φ is *contingent* if for some valuation
 V, we have V⁺(φ) = false.
- A formula φ is *unsatisfiable*, or a *contradiction*, if for all valuations V, we have V⁺(φ) = false.

Semantic Entailment

- $\phi_{I}, ..., \phi_{n} \vDash \psi$ iff for every valuation V s.t. V*(ϕ_{I}) = ... = V*(ϕ_{n}) = true, then V*(ψ) = true
 - Example: $P \vDash Q \rightarrow P$
 - Read ϕ_I , ..., $\phi_n \vDash \psi$ as ϕ_I , ..., ϕ_n logically implies ψ
- Hence, $\vDash \psi$ iff ψ is a tautology.
- Show: $\varphi_I, ..., \varphi_n, \varphi \vDash \psi$ iff $\varphi_I, ..., \varphi_n \vDash \varphi \rightarrow \psi$

