
Lecture 6: Formal Syntax &
Propositional Logic

CS 181O
Spring 2016
Kim Bruce

Some slide content taken from Unger and Michaelis

First: Laziness in Haskell

Lazy Lists
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

fibList = f 1 1
where f a b = a : f b (a+b)

fastFib n = fibList!!n

fibs = 1:1:[a+b | (a,b) <- zip fibs (tail fibs)]

primes = sieve [2..]
 where
 sieve (p:x) = p :
 sieve [n | n <- x, n `mod` p > 0]

complexity O(fib n) ~ O(2n)

complexity O(n)

Monads Later

• Because Haskell is a purely functional language
no function can have a side effect.

• Unfortunately input and output is a side effect
period

• To cope with input and output Haskell has a
new language construct known as a monad.

• We will discuss monads later in the course.

Formal Syntax and
Propositional Logic

A Fragment of English

• S → NP VP

• NP → Snow White | Alice | Dorothy | Goldilocks | 
 DET CN | DET RCN

• DET → the | every | some | no

• CN → girl | boy | princess | dwarf | giant | sword | dagger

• RCN → CN that VP | CN that NP TV

• VP → laughed | cheered | shuddered | TV NP | DV NP NP

• TV → loved | admired | helped | defeated | caught

• DV → gave

Derivation

• S ⇒ NP VP ⇒ Snow White VP  
⇒ Snow White TV NP 
⇒ Snow White admired NP 
⇒ Snow White admired DET CN 
⇒ Snow White admired the CN 
⇒ Snow White admired the dwarf

• Draw parse tree

• Every girl admired the dwarf.

In Haskell
data Sent = Sent NP VP deriving Show
data NP = SnowWhite | Alice | Dorothy | Goldilocks
 | NP1 DET CN | NP2 DET RCN deriving Show
data DET = The | Every | Some | No deriving Show
data CN = Girl | Boy | Princess | Dwarf | Giant
 | Sword | Dagger deriving Show
data RCN = RCN1 CN That VP | RCN2 CN That NP TV
 deriving Show
data That = That deriving Show
data VP = Laughed | Cheered | Shuddered
 | VP1 TV NP | VP2 DV NP NP deriving Show
data TV = Loved | Admired | Helped | Defeated | Caught
 deriving Show
data DV = Gave deriving Show

Example

• More details in file FSynF.hs

• “Snow White admired the dwarf” becomes
• s:: Sent

• s = Sent SnowWhite (VP1 Admired (NP1 The Dwarf))

• We will show later how to parse a sentence into
a Haskell formula.

Logic

• Context free language designed for expressing
Boolean-valued statements

• Translate assertions in English into logic and
determine if true in model.

• Meanings expressed in lambda calculus built from logic
base.

• Start simple & work up in complexity.

Propositional Logic

• Definition of well-formed formulas of prop logic:

• atom := p | q | r | atom’

• F ::= atom | (¬F) | (F∨F) | (F∧F)

• Parens help build unique parse trees for formulas.

Use “::=” in place of “→”
for productions to avoid
confusion when expand

Propositional Logic

• Expand with abbreviations

• A → B for ¬A ∨ B

• A ↔ B for (A → B) ∧ (B → A)

• Often (informally) drop parentheses around terms

• Precedence: ¬, ∧, ∨, →

• ∧ and ∨ are left associative; → is right associative.

• Sometimes add ⊤ for true and ⊥ for false.

Induction on Formulas

• Principle of Structured Induction: Every formula
of propositional logic has property P provided:

• Basic step: every atom has property P

• Induction step: if F has property P then so
does ¬F; if F1 and F2 have property P then so
do (F1 ∧ F2) and (F1 ∨ F2).

Balanced Parens

• Every propositional formula F has equal
numbers of left and right parentheses.
Moreover every proper prefix of F has more
left parentheses then right parentheses.

• Proof:

• Basic step: An atom has 0 left parentheses
and 0 right parentheses, so they are equal. It
also has no proper prefixes.

Balanced Parens (2)

• Proof (cont.):

• Induction step: S’pose F has = parens, then so
does (¬F). If F1 and F2 each have = parens
then so do (F1 ∧ F2) and (F1 ∨ F2).

• Show for prefixes on board in class

• Proof in text for Prop 4.3 is incomplete. Can you see
why?

Semantics of Propositional
Logic

• Meaning of formula depends on meaning of
propositional letters.

• Start with valuation fcn V: Prop Letters → {true,false}

• Extend to V+: Prop Logic Formulas → {true,false} by

• V+(p) = V(p) if p is propositional letter

• V+(¬φ) = false iff V+(φ) = true

• V+(φ∨γ) = true iff V+(φ) = true or V+(γ) = true (or both)

• V+(φ∧γ) = true iff V+(φ) = true and V+(γ) = true

• V+(φ→γ) = false iff V+(φ) = true and V+(γ) = false

Truth Tables

P Q ¬P P∧Q P∨Q P→Q P↔Q

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T

Each row corresponds to different valuation

Categories of WFFs

• A formula φ is valid, or a tautology, if for all
valuations V, we have V+(φ) = true.

• A formula φ is satisfiable if for some valuation V,
we have V+(φ) = true.

• A formula φ is contingent if for some valuation
V, we have V+(φ) = false.

• A formula φ is unsatisfiable, or a contradiction, if
for all valuations V , we have V+(φ) = false.

Semantic Entailment

• φ1, ..., φn ⊨ ψ iff for every valuation V s.t.  
V*(φ1) = ... = V*(φn) = true, then V*(ψ) = true

• Example: P ⊨ Q → P

• Read φ1, ..., φn ⊨ ψ as φ1, ..., φn logically implies ψ

• Hence, ⊨ ψ iff ψ is a tautology.

• Show: φ1, ..., φn, φ ⊨ ψ iff φ1, ..., φn ⊨ φ → ψ

Questions?

