Lecture 6: More Haskell

CSC 181
Spring, 2016

Kim Bruce

According to Larry Wall
(designer of PERL):
... a language by geniuses
for geniuses

He’s wrong — at least about the latter part
though you might agree when we talk about monads

Defining New 'Types

* Type abbreviations
- type Point = (Integer, Integer)
- type Pair a = (a,2)

e data definitions
- create new type Wlth constructors as tags.

- generative

e data Color = Red | Green | Blue

See more complex examples later

Type Classes Intro

* Specify an interface:

- class Eq a where
(==) :a->a->Bool - specify ops
(/=) ::a->a-> Bool

x==y=not (x/=y) - optional implementations

x /=y =not (x==Yy)

- data TrafficLight = Red | Yellow | Green
instance Eq TrafficLight where
Red == Red = True
Green == Green = True
Yellow == Yellow = True
===False

Common Type Classes

* Eq, Ord, Enum, Bounded, Show, Read

- See http://www.haskell.org/tutorial/stdclasses.html

e data defs pick up default if add to class:
- data ... deriving (Show, Eq)

¢ Can redefine:

- instance Show TrafficLight where
show Red = "Red light"
show Yellow = "Yellow light"
show Green = "Green light"

More Type Classes

e class (Eq @) => Num a where ...
- instance of Num a must be Eq a
* Polymorphic function types are often prefixed
w/type class specification
- testxy =x <y has type (Ord a) => a -> a -> Bool

- Can be used w/ x, y of any Ord type.

o More later ...

- Error messages often refer to actual parameter needing to be
instance of a class - to bave an operation.

Higher-Order Functions

* Functions that take function as parameter
- Ex: map:: (a — b) — ({a} = [bD)
- map double {1,2,3,4,51
- filter:: (a — Bool) — ([al — {aD)
- filter isEven {1,2,3,4,51
- filter \n -> n “mod"” 2 == 0) {1,2,3,4,5}

* Comprehension syntax

- {double n | n <- [1,2,3,4,51, isEven nl

Higher-Order Functions

e any, all:: (a -> Bool) -> {al -> Bool where

- any p Ist = or (map p Ist) all?
- anyp=or.mapp alternative def

e Build new control structures

- listify oper identity {1 = identity
listify oper identity (fst:rest) =
oper fst (listify oper identity rest)

- sum' = listify (+) o
mult' = listify () 1
and' = listify (&&) True
or' = listify () False

Quicksort

partition (pivot, []) = ([1,[1])
partition (pivot, first : others) =
let
(smalls, bigs) = partition(pivot, others)
in
if first < pivot
then (first:smalls, bigs)
else (smalls, first:bigs)

Type is:

partition :: (Ord a) => (a, [a]) -> ([a], [a])

Quicksort

gsort [] = []

gsort [singleton] = [singleton]
gsort (first:rest) =
let
(smalls, bigs) = partition(first,rest)
in

gsort(smalls) ++ [first] ++ gsort(bigs)
Type is:

gsort :: (Ord t) => [t] -> [t]

Recursive Datatype Examples

¢ data Int'Tree = Leaf Integer |
Interior (IntTree,IntTree)
deriving Show

- Example values: Leaf 3, Interior(Leaf 4,Leaf -5), ...

e data Tree a = Niltree |
Maketree (a, Tree a, Tree a)

Written like grammar productions — not an accident!!

Binary Search Using Irees

insert new Niltree = Maketree(new,Niltree,Niltree)
insert new (Maketree (root,l,r)) =
if new < root
then Maketree (root, (insert new 1l),r)
else Maketree (root,l,(insert new r))

buildtree [] = Niltree
buildtree (fst : rest) =
insert fst (buildtree rest)

Binary Search Tree

find elt Niltree = False
find elt (Maketree (root,left,right)) =
if elt == root
then True
else if elt < root then find elt left
else find elt right -- elt > root

bsearch elt list = find elt (buildtree list)

CODE URITTEN IN HASKELL
1S5 GUARANTEED TO HAVE
NO SIDE EFFECTS.

... BECAUSE NO ONE
WILL EVER RUN IT?

Al

Haskell is Lazy!

Lazy vs. Eager Evaluation

 Eager: Evaluate operand, substitute operand
value in for formal parameter, and evaluate.

* Lazy: Substitute operand for formal parameter
and evaluate body, evaluating operand only
when needed.

- Each actual parameter evaluated either not at all or
only once! (Essentially cache answer once computed)

- Like left-most outermost, but more efficient

Lazy evaluation

e Compute f(i/0,17) where f(x,y) =y

* Computing head(gsort[5000,4999..1}) is faster
than gsort{5000,4999..1}

e Compare time of computations of:
- fib 32
- dble (fib 32) where dble x = x + x

* Computations based on graph reduction

- like tree rewriting, except w/computation graphs - sharing

Lazy Lists Monads Later
£ib 0 = 1 _
EE r11 _ iib (n-1) + £ib (n-2) complezity O(fibn) - O") * Because Haskell is a purely functional language
no function can have a side effect.
fibList = £ 1 1 complexity O(n)) . .
where f a b = a : £ b (a+b) Py * Unfortunately input and output is a side effect
fastFib n = fibList!!n period
fibs = 1:1:[atb | (a,b) <- zip fibs (tail fibs)] * To cope with input and output Haskell has a
primes = sieve [2..] new language construct known as a monad.
where . . .
sieve (pix) = p : e We will discuss monads later in the course.
sieve [n | n <- x, n "mod” p > 0]

A Fragment of English

S—=NPVP

e NP — Snow White | Alice | Dorothy | Goldilocks |

Formal Syntax and DET CN | DETRCN

Propositional Logic

e DET — the | every | some | no

CN — girl | boy | princess | dwarf | giant | sword | dagger
RCN — CN that VP | CN that NPTV

VP — laughed | cheered | shuddered | TV NP | DV NP NP
TV — loved | admired | helped | defeated | caught

e DV — gave

Derivation

e S= NP VP = Snow White VP
= Snow White TV NP
= Snow White admired NP
= Snow White admired DET CN
= Snow White admired the CN
= Snow White admired the dwarf

* Draw parse tree

e Every girl admired the dwarf.

In Haskell

data Sent = Sent NP VP deriving Show

data NP =SnowWhite | Alice | Dorothy | Goldilocks
| NP1 DET CN | NP2 DET RCN deriving Show

data DET =The | Every | Some | No deriving Show

data CN =Girl |Boy |Princess | Dwarf| Giant

| Sword | Dagger deriving Show
data RCN =RCN1 CN That VP | RCN2 CN That NP TV
deriving Show
data That = That deriving Show
data VP = Laughed | Cheered | Shuddered
| VP1 TV NP | VP2 DV NP NP deriving Show
dataTV =Loved |Admired|Helped|Defeated | Caught
deriving Show
data DV = Gave deriving Show

Example

* More details in file FSynF.hs

e “Snow White admired the dwarf” becomes

® s:: Sent

e s =Sent SnowWhite (VP1 Admired (NP1 The Dwarf))

* We will show later how to parse a sentence into

a Haskell formula.

Questions?

