
Lecture 6: More Haskell
CSC 181

Spring, 2016

Kim Bruce

According to Larry Wall
(designer of PERL):  

… a language by geniuses
for geniuses

He’s wrong — at least about the latter part
though you might agree when we talk about monads

Defining New Types

• Type abbreviations
- type Point = (Integer, Integer)

- type Pair a = (a,a)

• data definitions
- create new type with constructors as tags.

- generative

• data Color = Red | Green | Blue
See more complex examples later

Type Classes Intro
• Specify an interface:
- class Eq a where  

 (==) :: a -> a -> Bool -- specify ops 
 (/=) :: a -> a -> Bool  
 x == y = not (x /= y) -- optional implementations 
 x /= y = not (x == y)

- data TrafficLight = Red | Yellow | Green 
instance Eq TrafficLight where  
 Red == Red = True  
 Green == Green = True  
 Yellow == Yellow = True  
 _ == _ = False

Common Type Classes

• Eq, Ord, Enum, Bounded, Show, Read
- See http://www.haskell.org/tutorial/stdclasses.html

• data defs pick up default if add to class:
- data ... deriving (Show, Eq)

• Can redefine:
- instance Show TrafficLight where  

 show Red = "Red light"  
 show Yellow = "Yellow light"  
 show Green = "Green light"

More Type Classes

• class (Eq a) => Num a where ...
- instance of Num a must be Eq a

• Polymorphic function types are often prefixed
w/type class specification
- test x y = x < y has type (Ord a) => a -> a -> Bool

- Can be used w/ x, y of any Ord type.

• More later ...
- Error messages often refer to actual parameter needing to be

instance of a class -- to have an operation.

Higher-Order Functions
• Functions that take function as parameter
- Ex: map:: (a → b) → ([a] → [b])

- map double [1,2,3,4,5]

- filter:: (a → Bool) → ([a] → [a])

- filter isEven [1,2,3,4,5]

- filter (\n -> n `mod` 2 == 0) [1,2,3,4,5]

• Comprehension syntax
- [double n | n <- [1,2,3,4,5], isEven n]

Higher-Order Functions
• any, all:: (a -> Bool) -> [a] -> Bool where
- any p lst = or (map p lst) all?

- any p = or . map p alternative def

• Build new control structures
- listify oper identity [] = identity  

listify oper identity (fst:rest) =  
 oper fst (listify oper identity rest)

- sum' = listify (+) 0 
mult' = listify (*) 1 
and' = listify (&&) True 
or' = listify (||) False

Quicksort
partition (pivot, []) = ([],[])
partition (pivot, first : others) =
 let
 (smalls, bigs) = partition(pivot, others)
 in
 if first < pivot
 then (first:smalls, bigs)
 else (smalls, first:bigs)

Type is:

partition :: (Ord a) => (a, [a]) -> ([a], [a])

Quicksort
qsort [] = []
qsort [singleton] = [singleton]
qsort (first:rest) =
 let

 (smalls, bigs) = partition(first,rest)
in
 qsort(smalls) ++ [first] ++ qsort(bigs)

Type is:

qsort :: (Ord t) => [t] -> [t]

Recursive Datatype Examples

• data IntTree = Leaf Integer |  
 Interior (IntTree,IntTree)  
 deriving Show
- Example values: Leaf 3, Interior(Leaf 4,Leaf -5), ...

• data Tree a = Niltree |  
 Maketree (a, Tree a, Tree a)

Written like grammar productions — not an accident!!

Binary Search Using Trees

insert new Niltree = Maketree(new,Niltree,Niltree)
insert new (Maketree (root,l,r)) =
if new < root
 then Maketree (root,(insert new l),r)
 else Maketree (root,l,(insert new r))

buildtree [] = Niltree
buildtree (fst : rest) =
 insert fst (buildtree rest)

Binary Search Tree

find elt Niltree = False
find elt (Maketree (root,left,right)) =
if elt == root

 then True
 else if elt < root then find elt left
 else find elt right -- elt > root

bsearch elt list = find elt (buildtree list)

Haskell is Lazy!

Lazy vs. Eager Evaluation

• Eager: Evaluate operand, substitute operand
value in for formal parameter, and evaluate.

• Lazy: Substitute operand for formal parameter
and evaluate body, evaluating operand only
when needed.
- Each actual parameter evaluated either not at all or

only once! (Essentially cache answer once computed)

- Like left-most outermost, but more efficient

Lazy evaluation

• Compute f(1/0,17) where f(x,y) = y

• Computing head(qsort[5000,4999..1]) is faster
than qsort[5000,4999..1]

• Compare time of computations of:
- fib 32

- dble (fib 32) where dble x = x + x

• Computations based on graph reduction
- like tree rewriting, except w/computation graphs - sharing

Lazy Lists
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

fibList = f 1 1
where f a b = a : f b (a+b)

fastFib n = fibList!!n

fibs = 1:1:[a+b | (a,b) <- zip fibs (tail fibs)]

primes = sieve [2..]
 where
 sieve (p:x) = p :
 sieve [n | n <- x, n `mod` p > 0]

complexity O(fib n) ~ O(2n)

complexity O(n)

Monads Later

• Because Haskell is a purely functional language
no function can have a side effect.

• Unfortunately input and output is a side effect
period

• To cope with input and output Haskell has a
new language construct known as a monad.

• We will discuss monads later in the course.

Formal Syntax and
Propositional Logic

A Fragment of English

• S → NP VP

• NP → Snow White | Alice | Dorothy | Goldilocks | 
 DET CN | DET RCN

• DET → the | every | some | no

• CN → girl | boy | princess | dwarf | giant | sword | dagger

• RCN → CN that VP | CN that NP TV

• VP → laughed | cheered | shuddered | TV NP | DV NP NP

• TV → loved | admired | helped | defeated | caught

• DV → gave

Derivation

• S ⇒ NP VP ⇒ Snow White VP  
⇒ Snow White TV NP 
⇒ Snow White admired NP 
⇒ Snow White admired DET CN 
⇒ Snow White admired the CN 
⇒ Snow White admired the dwarf

• Draw parse tree

• Every girl admired the dwarf.

In Haskell
data Sent = Sent NP VP deriving Show
data NP = SnowWhite | Alice | Dorothy | Goldilocks
 | NP1 DET CN | NP2 DET RCN deriving Show
data DET = The | Every | Some | No deriving Show
data CN = Girl | Boy | Princess | Dwarf | Giant
 | Sword | Dagger deriving Show
data RCN = RCN1 CN That VP | RCN2 CN That NP TV
 deriving Show
data That = That deriving Show
data VP = Laughed | Cheered | Shuddered
 | VP1 TV NP | VP2 DV NP NP deriving Show
data TV = Loved | Admired | Helped | Defeated | Caught
 deriving Show
data DV = Gave deriving Show

Example

• More details in file FSynF.hs

• “Snow White admired the dwarf” becomes
• s:: Sent

• s = Sent SnowWhite (VP1 Admired (NP1 The Dwarf))

• We will show later how to parse a sentence into
a Haskell formula.

Questions?

