
Lecture 5: Haskell
CS 181

Spring 2016
Kim Bruce

Some slide content taken from Unger and Michaelis

Types in Linguistics

• Categorial Grammars introduced by Montague.

• Def: CAT, the set of categories is the smallest
set such that:
1. S, CN, and IV are in CAT
2. If A and B are in CAT, so is A/B

• Intuition for type A/B is a term that, if
provided with one of type B, would result in a
term of type A.

Categorial Definitions:
Definition Description Expressions

S Sentences
CN Common nouns man, woman, ball, …
IV Intransitive verb phrases walk, talk, sleep, …

T = S/IV Terms (noun phrases) John, Mary, he, she, …
TV = IV/T Transitive verb phrases love, take, throw, …

IV/S Sentential complement verbs believe that, know that
IV/IV Infinital complement verbs try to, wish to,

CN/CN Prenominal adjectives red, small, fat, …
S/S Sentence-modifying adverbs necessarily, …

T/CN Determiners every, some, the, one, …

Rephrase as Function Types

• A/B = B → A

• For example:
• T = IV → S

• TV = T → IV = (IV → S) → IV

• Adj = CN → CN

• Det = CN → T

• …

• Use to classify phrases

Why Types?

• Types help us to interpret linguistic phrases
• as well as to rule some out as ill-formed

• If types make sense, then can provide
tremendous help in specifying semantics and
figuring out meaning.

• To help, want to write programs to compute
meanings of phrases.

• Best if language reflects formal model

Haskell for Semantics

• Purely functional (& lazy) language created
about 1990 to further research in functional
programming (as well as writing applications)

• Built on ideas of Miranda© and ML.

• Statically and strongly typed.
• Same type inference as ML.

Functional Thinking
• Identifiers refer to immutable values.

• No variables or assignments.

• Obtain results by pushing values through
pipeline of transformations.

• Main program is function with program’s input
as argument.

• The main function is defined as a composition
of helper functions which are themselves
defined from other functions.

Why Haskell

• Haskell is a good choice for this course because
we will be defining the semantics of complex
language expressions as higher-order functions.

• Haskell is also based on lambda calculus.
Therefore the shift from formal semantics to
implementation is very small.

Getting Started

• You can get started by downloading the Haskell
platform from https://www.haskell.org/
platform/. We will be using Haskell 7.10.3 in
this class.

• Installing this package will provide you with
the Glascow Haskell compiler and its
associated libraries.

Starting Haskell

• The ghci command can be used to run a
Haskell interpreter.

Prelude> 2 + 3
5
Prelude> True && False
False
Prelude> (3+7) * 5
50

• Functions are best written in a separate file.

• Write the following code to a text file and save
it as first.hs:  
 
 

• Inside GHCi, you can load the program with  
 :load first.hs

Writing Programs

double :: Int -> Int
double n = 2 * n

Using GHC

• to enter interactive mode type: ghci
- :load myfile.hs -- :l also works

- after changes type :reload myfile.hs

- Type :q or Control-d to exit

- :set +t -- prints more type info when interactive

- “it” is result of expression

May need to add /Library/Haskell/bin to Path

Using a program

• Once loaded you can use a program as you like
• double 17

• double (5×3)

• double (double 17)

• You can use :t to inquire as to an expression’s
type:
• :t double  

double :: Num a => a -> a

• :q exits from the interactive environment.

Learning Haskell

• Recommend the online text Learn you a
Haskell for greater good.
• The title is stupid but the text is actually quite good.

• I also recommend “10 things you should know
about Haskell syntax”

Built-in data types
• Unit has only ()

• Bool: True, False with not, &&, ||

• Int: 5, -5, with +, -, *, ^, =, /=, <, >, >=, ...
- div, mod defined as prefix operators (`div` infix)

- Int fixed size (usually 64 bits)

- Integer gives unbounded size

• Float, Double: 3.17, 2.4e17 w/ +, -, *, /, =, <, >, >=,
<=, sin, cos, log, exp, sqrt, sin, atan.

More Basic Types

• Char: ‘n’

• String = [Char], not really primitive
- "hello"++" there", length

- No substring, but `isInfixOf` for all lists

- Also ‘isPrefixOf`, `isSuffixOf ’

Prefix op w/out `!

import Data.List

list of Char

Interactive Programming
with ghci

• Type expressions and run-time will evaluate

• Define abbreviations with “let”
- let double n = n + n

- let seven = 7

• “let” not necessary at top level in programs
loaded from files

• Comments start w/ -- and go to end of line

Lists

• Lists
- [2,3,4,9,12]: [Integer]

- [] -- empty list

- Must be homogenous

- Functions: length, ++, :, map, rev

• also head, tail, but normally don’t use!

Polymorphic Types

• [1,2,3]:: [Integer]

• [“abc”, “def”]:: [[Char]], ...

• []:: [a]

• map:: (a → b) → ([a] → [b])

• Use :t exp to get type of exp

Pattern Matching

• Decompose lists:
- [1,2,3] = 1:(2:(3:[]))

• Define functions by cases using pattern
matching:

prod [] = 1  
prod (fst:rest) = fst * (prod rest)

Pattern Matching

• Desugared through case expressions:
- head' :: [a] -> a  

head' [] = error "No head for empty lists!"  
head' (x:_) = x

• equivalent to

- head' xs = case xs of  
 [] -> error "No head for empty lists!"  
 (x:_) -> x  

Type constructors

• Tuples
- (17,”abc”, True) : (Integer , [Char] , Bool)

- fst, snd defined only on pairs

• Records exist as well
- read about on your own

More Pattern Matching

• (x,y) = (5 `div` 2, 5 `mod` 2)

• hd:tl = [1,2,3]

• hd:_ = [4,5,6]
- “_” is wildcard.

Questions?

