Lecture 4: Typed Lambda
Calculus

CS 181
Spring 2016
Kim Bruce

Some slide content taken from Unger and Michaelis

Office hours today: 11 - 12:30

Computation Rules

e Reduction rules for lambda calculus:

(@) Ax. M —¢ Ay {y/xl M), if y & FV(M).

change name of parameters if new not capture old

B Ox. M) N —¢ [N/x} M.

computation by substituting function argument for formal parameter
(1) Ax. (M%) —y M.

Optional rule to get rid of excess N’s

Keeping Out of Trouble!

e Use variable convention: In a term M, ensure:

e all bound variables are distinct from all free ones, and
e all lambdas bind different variables
* E.g. if have (A\x.(y Oiy:(x (y (hy:(x y)))))), rewrite as:

.y Ov(u v w.(u w)))))) using a-equivalence before
doing any reductions.




Normal Forms

e A term M is in normal form if no reduction
rules apply, even after applications of a.

* Not all terms have normal forms

- 0= (0x xx)0x. xx)

How to evaluate

* Many strategies:

- (x.x+32)(Qwy*3) 9= OAx x+32) 15 =47 Inside-out

- versus
- O0x.x+32)(v.v*3) 9 = (v y*3) ) +32 = 47 Outside-in

e Confluence: If M can be reduced to a normal
form, then there is only one such normal form.

e However, not all strategies give a normal form:

- (Ox. 47 Q

Types

e Types are a way of classifying expressions
according to their use.

e Typically indicate operations available.

e Start with one or more base types & build
more complex types

Type Expressions

e T:u=bl(T—>1)
o Specified as context free grammar!!
e where b represents one or more basic types (e.g., Integer,
String, Boolean, etc.)
e and T'—7 represents functions with domain v’ & range T.




Typed Expressions

e Idea: Every identifier introduced has an
associated type. Two options:

1. Every type has its own (potentially infinite) set of
identifiers with that type.

2. There is a (potentially infinite) collection of shared
variables. When introduced, they are provided with a
type annotation.

e Traditionally (& in the text) use the first.

e ] use the second, as it is more flexible with
richer languages.

Typed Lambda Calculus

* Terms of typed lambda calculus
“-M=vyIMM) | Ave1t. M
- Also add primitive terms/operations on types
e Examples:
- v~ Integer. v + 2 has type Integer — Integer

- Ax ~ Integer. Ay ~ Integer. Az - Integer. x *y + z
has type Integer — Integer — Integer — Integer

- M~ Integer — Integer. Ax ~ Integer. f(f(x)) has type
(Integer — Integer) — Integer — Integer

Typzng Expressions

* Need to record types of variables in a symbol
table, written E, which is a set of pairs
associating variables with their types.

e E.g, E={x~ Integer, y » Integer — Integer, z ~ Bool}
o No duplicate entries for variables.
* Aslong as E records types of all free variables

in a term, then can determine the type of the
term or determine that it has no type.

Typing Rules
eifx—TisinE,
thenEFx:t

eif E-FM:t—=T7Tand E- M T,
then EF M M): v

cif EUlx» 1+ M: T,
thenEFH x>t M:tT— 7

e Say M is well-typed with respect to E if can
derive E -~ M: 1 for some T




What are the types?

® cond = Ab ~ Boolean. At = e. Mf - e.
if b then t else f

¢ (cond true)
* csum = Am ~ Integer. An ~ Integer. sum (m,n)
* (csum 7)

e (csum 7 2)

Questions?




