
Lecture 4: Typed Lambda 
Calculus

CS 181
Spring 2016
Kim Bruce

Some slide content taken from Unger and Michaelis

Office hours today: 11 - 12:30

Computation Rules

• Reduction rules for lambda calculus:
    (α) λx. M  →α λy. ([y/x] M), if y ̸∉ FV(M).

change name of parameters if new not capture old

    (β) (λx. M) N →β [N/x] M. 
computation by substituting function argument for formal parameter

    (η) λx. (M x)  →η M.     
Optional rule to get rid of excess λ’s

Keeping Out of Trouble!

• Use variable convention:  In a term M, ensure:
• all bound variables are distinct from all free ones, and

• all lambdas bind different variables

• E.g. if have (λx.(y (λy.(x (y (λy.(x y))))))), rewrite as: 
(λu.(y (λv.(u (v (λw.(u w))))))) using α-equivalence before 
doing any reductions.



Normal Forms

• A term M is in normal form if no reduction 
rules apply, even after applications of α.

• Not all terms have normal forms
- Ω = (λx. (x x))(λx. (x x))

How to evaluate

• Many strategies:
- (λx. x + 32)((λy. y * 3) 5) ⇒ (λx. x + 32) 15 ⇒ 47

- versus

- (λx. x + 32)((λy. y * 3) 5) ⇒ ((λy. y * 3) 5) + 32  ⇒ 47

• Confluence:  If M can be reduced to a normal 
form, then there is only one such normal form.

• However, not all strategies give a normal form:

-  (λx. 47) Ω

Inside-out

Outside-in

• Types are a way of classifying expressions 
according to their use.

• Typically indicate operations available.

• Start with one or more base types & build 
more complex types

Types Type Expressions

• τ ::= b | (τ→τ)
• Specified as context free grammar!!

• where b represents one or more basic types (e.g., Integer, 
String, Boolean, etc.)

• and τ’→τ represents functions with domain τ’ & range τ.



Typed Expressions

• Idea: Every identifier introduced has an 
associated type.  Two options:
1. Every type has its own (potentially infinite) set of 

identifiers with that type.

2. There is a (potentially infinite) collection of shared 
variables.  When introduced, they are provided with a 
type annotation.

• Traditionally (& in the text) use the first.

• I use the second, as it is more flexible with 
richer languages.

Typed Lambda Calculus

• Terms of typed lambda calculus

- M := v | (M M) | λv ↦ τ. M

- Also add primitive terms/operations on types

• Examples:

- λv ↦ Integer. v + 2 has type Integer → Integer

- λx ↦ Integer. λy ↦ Integer. λz ↦ Integer. x * y + z 
has type Integer → Integer → Integer → Integer

- λf ↦ Integer → Integer. λx ↦ Integer. f(f(x)) has type 
(Integer → Integer) → Integer → Integer

Typing Expressions

• Need to record types of variables in a symbol 
table, written E, which is a set of pairs 
associating variables with their types.
• E.g., E = {x ↦ Integer, y ↦ Integer → Integer, z  ↦ Bool}

• No duplicate entries for variables.

• As long as E records types of all free variables 
in a term, then can determine the type of the 
term or determine that it has no type.

Typing Rules

• if x ↦ τ is in E,  
then E ⊢ x: τ

• if E ⊢ M: τ → τ’ and E ⊢ M’: τ,  
then  E ⊢ (M M’): τ’

• if E ∪ {x ↦ τ} ⊢ M: τ’,  
then E ⊢ λx ↦ τ. M: τ → τ’

• Say M is well-typed with respect to E if can 
derive E ⊢ M: τ for some τ



What are the types?

• cond = λb ↦ Boolean. λt ↦ e. λf ↦ e. 
                                          if b then t else f

• (cond true)

• csum = λm ↦ Integer. λn ↦ Integer. sum (m,n)

• (csum 7)

• (csum 7 2)

Questions?


