Lecture 4: Typed Lambda Calculus

CS 181 Spring 2016 Kim Bruce

Some slide content taken from Unger and Michaelis

Office hours today: 11 - 12:30

Computation Rules

- Reduction rules for lambda calculus:
 - (a) λx . M $\rightarrow_{\alpha} \lambda y$. ([y/x] M), if $y \notin FV(M)$.

change name of parameters if new not capture old

(β) (λx . M) N \rightarrow_{β} [N/x] M.

computation by substituting function argument for formal parameter

 $(\eta) \ \lambda x. \ (M \ x) \ \twoheadrightarrow_\eta M.$

Optional rule to get rid of excess λ 's

Keeping Out of Trouble!

- Use variable convention: In a term M, ensure:
 - all bound variables are distinct from all free ones, and
 - all lambdas bind different variables
 - E.g. if have (λx.(y (λy.(x (y (λy.(x y)))))), rewrite as: (λu.(y (λv.(u (v (λw.(u w))))))) using α-equivalence before doing any reductions.

Normal Forms

- A term M is in normal form if no reduction rules apply, even after applications of α.
- Not all terms have normal forms
 - $\Omega = (\lambda x. (x x))(\lambda x. (x x))$

How to evaluate

- Many strategies:
 - $-(\lambda x. x + 32)((\lambda y. y^* 3) 5) \Rightarrow (\lambda x. x + 32) 15 \Rightarrow 47 \qquad Inside-out$
 - versus
 - $(\underline{\lambda x. x + 32})((\underline{\lambda y. y^* 3}) 5) \Rightarrow ((\underline{\lambda y. y^* 3}) 5) + 32 \Rightarrow 47 \quad Outside-in$
- Confluence: If M can be reduced to a normal form, then there is only one such normal form.
- However, not all strategies give a normal form:
 - (λx. 47) Ω

Types

- Types are a way of classifying expressions according to their use.
- Typically indicate operations available.
- Start with one or more base types & build more complex types

Type Expressions

- τ ::= b | (τ→τ)
 - Specified as context free grammar!!
 - where b represents one or more basic types (e.g., Integer, String, Boolean, etc.)
 - and $\tau' \rightarrow \tau$ represents functions with domain τ' & range τ .

Typed Expressions

- Idea: Every identifier introduced has an associated type. Two options:
 - 1. Every type has its own (potentially infinite) set of identifiers with that type.
 - 2. There is a (potentially infinite) collection of shared variables. When introduced, they are provided with a type annotation.
- Traditionally (& in the text) use the first.
- I use the second, as it is more flexible with richer languages.

Typed Lambda Calculus

- Terms of typed lambda calculus
 - $M := v \mid (M \mid M) \mid \lambda v \mapsto \tau$. M
 - Also add primitive terms/operations on types
- Examples:
 - λ v → Integer. v + 2 has type Integer → Integer
 - $\lambda x \mapsto$ Integer. $\lambda y \mapsto$ Integer. $\lambda z \mapsto$ Integer. x * y + zhas type Integer → Integer → Integer
 - $^- λf ↦ Integer → Integer. λx ↦ Integer. f(f(x)) has type (Integer → Integer) → Integer → Integer$

Typing Expressions

- Need to record types of variables in a symbol table, written E, which is a set of pairs associating variables with their types.
 - E.g., E = {x \mapsto Integer, y \mapsto Integer \rightarrow Integer, z \mapsto Bool}
 - No duplicate entries for variables.
- As long as E records types of all free variables in a term, then can determine the type of the term or determine that it has no type.

Typing Rules

- if $x \mapsto \tau$ is in E, then $E \vdash x$: τ
- if $E \vdash M: \tau \rightarrow \tau'$ and $E \vdash M': \tau$, then $E \vdash (M M'): \tau'$
- if $E \cup \{x \mapsto \tau\} \vdash M: \tau'$, then $E \vdash \lambda x \mapsto \tau$. $M: \tau \rightarrow \tau'$
- Say M is well-typed with respect to E if can derive $E \vdash M$: τ for some τ

What are the types?

- cond = $\lambda b \mapsto Boolean$. $\lambda t \mapsto e$. $\lambda f \mapsto e$. if b then t else f
- (cond true)
- csum = $\lambda m \mapsto$ Integer. $\lambda n \mapsto$ Integer. sum (m,n)
- (csum 7)
- (csum 7 2)

