Lecture 3: Typed & Untyped Lambda Calculus

CS 181 Spring 2016 Kim Bruce

Some slide content taken from Unger and Michaelis

Lambda Calculus in Semantics

• Meanings of words and phrases will be functions, with meaning found by evaluating constituent parts and then using function application to determine meaning.

Lambda Calculus for Semantics

- Use higher-order functions that, when applied, return other functions.
- While could name the functions representing meanings of words, intermediate functions don't have name.
- Lambda calculus provides a way of writing the functions without naming them.

Pure Lambda Calculus

- Terms of pure lambda calculus
 - $M ::= v \mid (M \mid M) \mid \lambda v. M$ where v stands for a variable
 - Pure lambda calculus is Turing-complete
- Left associative: M N P = (M N) P.
- $\lambda x, y$. M abbreviates λx . λy . M
- Application has higher precedence than abstraction: λx. M N abbreviates λx. (M N)

When are functions the same?

- Which of these are the same?
 - $f_I(x) = (x + I)^2$
 - $f_2(y) = (y + I)^2$
 - $f_3(x) = x^2 + 2x + I$
 - $f_4(y) = y^2 + 2y + I$
 - All give the same answers for same inputs, but some represent different algorithms
 - Say $f_{\scriptscriptstyle \rm I}$ and $f_{\scriptscriptstyle 2}$ are the same, as are $f_{\scriptscriptstyle 3}$ and $f_{\scriptscriptstyle 4}$
- Formalize these ...

Free Variables

- First look at substitution.
 - Why?
 - Substitution easy to mess up!
- Def: If M is a term, then FV(M), the collection of free variables of M, is defined as follows:
 - $FV(x) = \{x\}$
 - $FV(M N) = FV(M) \cup FV(N)$
 - $FV(\lambda v. M) = FV(M) \{v\}$

Bound Variables

- In a formula λx. F, the lambda binds all occurrences of x in F that are not already bound by an occurrence of λx in F.
- Examples:
 - (λx. λy. (x z (λx. x w y))) y
 - First λx binds first two x's, next binds last two
 - λy binds first two y's
 - w, z, and last occurrence of y are free

Substitution

- Write [N/x] M to denote result of replacing all free occurrences of x by N in expression M.
- More carefully (& recursively):
 - [N/x] x = N,
 - [N/x] y = y, if $y \neq x$,
 - [N/x] (L M) = ([N/x] L) ([N/x] M),
 - [N/x] (λy . M) = λy . ([N/x] M), if $y \neq x$ and $y \notin FV(N)$,
 - [N/x] (λx . M) = λx . M. No substitution since no x is free!

Computation Rules

Reduction rules for lambda calculus:
(α) λx. M →_α λy. ([y/x] M), if y ∉ FV(M).

change name of parameters if new not capture old

(β) (λx . M) N \rightarrow_{β} [N/x] M.

computation by substituting function argument for formal parameter

 $(\eta) \lambda x. (M x) \rightarrow_{\eta} M.$

Optional rule to get rid of excess λ 's

Equivalences

- Generalize: Write $M =_{\alpha} N$ iff
 - I. $M \rightarrow_{\alpha} N$ or $N \rightarrow_{\alpha} M$, or
 - 2. There is an M' s.t. $M \rightarrow_{\alpha} M$ ' or $M' \rightarrow_{\alpha} M$, and $M' =_{\alpha} N$
- Equivalently, take reflexive, symmetric, and transitive closure of \rightarrow_{α}
- Similarly for M = $_{\beta}$ N and M = $_{\alpha\beta}$ N

Keeping Out of Trouble!

- Use variable convention: In a term M, ensure:
 - all bound variables are distinct from all free ones, and
 - all lambdas bind different variables
 - E.g. if have (λx.(y (λy.(x (y (λy.(x y)))))), rewrite as: (λu.(y (λv.(u (v (λw.(u w))))))) using α-equivalence before doing any reductions.

Computing w/Lambda Calculus

- Consider terms that are α -equivalent as the same, and compute using β (and η -) reduction.
- Let \rightarrow abbreviate $\rightarrow_{\beta\eta}$ and define \Rightarrow :
 - if $M \rightarrow M'$ then $M \Rightarrow M'$
 - if $M \Rightarrow M'$ then $(M N) \Rightarrow (M' N)$
 - if $N \Rightarrow N'$ then $(M N) \Rightarrow (M N')$
 - if $M \Rightarrow M'$ then $(M) \Rightarrow (M' N)$
- Called compatible closure and will be used when programming interpreter