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Some slide content taken from Unger and Michaelis

Lambda Calculus in 
Semantics

• Meanings of words and phrases will be 
functions, with meaning found by evaluating 
constituent parts and then using function 
application to determine meaning.

Example

• Ann petted Rover:
• I (Ann) = ann

• I (Rover) = rover

• I (petted) = λ0. λs. petted (s, o)

• where 
• ann, rover represent elements of the domain of the model, and

• petted(s,o) represents a binary relation on the model.

• Then I (petted rover) = (λ0. λs. petted (s, o)) rover 
                                            = λs. petted (s, rover)

• Then I (Ann petted Rover) = (λs. petted (s, rover)) ann 
                                                        = petted (ann, rover)

Ann petted Rover

Ann petted Rover

Roverpetted

Lambda Calculus for 
Semantics

• Use higher-order functions that, when applied, 
return other functions. 

• While could name the functions representing 
meanings of words, intermediate functions 
don’t have name.

• Lambda calculus provides a way of writing the 
functions without naming them.



Pure Lambda Calculus

• Terms of pure lambda calculus
- M ::= v | (M M) | λv. M    where v stands for a variable

- Pure lambda calculus is Turing-complete

• Left associative:  M N P = (M N) P.

• λx,y. M abbreviates λx. λy. M

• Application has higher precedence than 
abstraction: λx. M N abbreviates λx. (M N)

When are functions the 
same?

• Which of these are the same?
• f1(x) = (x + 1)2 

• f2(y) = (y + 1)2

• f3(x) = x2 + 2x + 1

• f4(y) = y2 + 2y + 1

• All give the same answers for same inputs, but some 
represent different algorithms

• Say f1 and f2 are the same, as are f3 and f4

• Formalize these …

Free Variables

• First look at substitution.  
- Why?

- Substitution easy to mess up!

• Def: If M is a term, then FV(M), the collection 
of free variables of M, is defined as follows: 
- FV(x) = { x } 

- FV(M N) = FV(M) ∪ FV(N) 

- FV(λv. M) = FV(M) - {v}

Bound Variables

• In a formula λx. F, the lambda binds all 
occurrences of x in F that are not already 
bound by an occurrence of λx in F.

• Examples:
• (λx. λy. (x z (λx. x w y))) y

• First λx binds first two x’s, next binds last two

• λy binds first two y’s

• w, z, and last occurrence of y are free



Substitution

• Write [N/x] M to denote result of replacing all 
free occurrences of x by N in expression M.

• More carefully (& recursively): 
- [N/x] x = N, 

- [N/x] y = y, if y ≠ x, 

- [N/x] (L M) = ([N/x] L) ([N/x] M), 

- [N/x] (λy. M) = λy. ([N/x] M), if y̸≠ x and y ̸∉ FV(N), 

- [N/x] (λx. M) = λx. M.  No substitution since no x is free! 

Computation Rules

• Reduction rules for lambda calculus:
    (α) λx. M  →α λy. ([y/x] M), if y ̸∉ FV(M).

change name of parameters if new not capture old

    (β) (λx. M) N →β [N/x] M. 
computation by substituting function argument for formal parameter

    (η) λx. (M x)  →η M.     
Optional rule to get rid of excess λ’s

Equivalences

• Generalize:  Write M =α N iff 
1. M →α N or N →α M, or

2. There is an M’ s.t. M →α M’ or M’ →α M, and M’ =α N 

• Equivalently, take reflexive, symmetric, and 
transitive closure of →α

• Similarly for M =β N and M =αβ N

Keeping Out of Trouble!

• Use variable convention:  In a term M, ensure:
• all bound variables are distinct from all free ones, and

• all lambdas bind different variables

• E.g. if have (λx.(y (λy.(x (y (λy.(x y))))))), rewrite as: 
(λu.(y (λv.(u (v (λw.(u w))))))) using α-equivalence before 
doing any reductions.



Computing w/Lambda 
Calculus

• Consider terms that are α-equivalent as the 
same, and compute using β- (and η-) reduction.

• Let → abbreviate →βη and define ⇒:
• if M → M’ then M ⇒ M’

• if M ⇒ M’ then (M N) ⇒ (M’ N)

• if N ⇒ N’ then (M N) ⇒ (M N’)

• if M ⇒ M’ then (M) ⇒ (M’ N)

• Called compatible closure and will be used 
when programming interpreter


