
Lecture 29:  
Discourse Representation

Theory
CS 181O

Spring 2016
Kim Bruce

Some slides based on those of Christina Unger

What is context?

• Context is sequence of entities w/constraints
• Manage as a stack: c1, c2, …, cn

• Context extension pushes new item on stack

• Context transitions are functions that convert
context to new context, represented as
characteristic function:
• λc λc’. body, where body returns true or false

• Type [c] → [c] → t

Operations on contexts

• If c is context, let c^x represent context where
add x to context c.

• Operations:
• ∃ = λc λc’. ∃x.(c^x = c’)

• ∃ c c’ is true iff c’ is extension of c.

• Let φ, ψ represent context transitions
• φ ; ψ = λc λc’. ∃c’’.(φ c c’’ ∧ ψ c’’ c’)

Operations on Contexts

• Example: Operator for “a” or “some”
• Let P, Q :: N → [e] → [e] → t

• Call the type of this K

• Pi applies P to the ith discourse reference

• Interpret some P are Q

• λP λQ λc (∃ ; Pi ; Qi) c where i = |c|
• Inserts new referent and asserts P, Q true of it

Expressing Negation

• ⫬ φ = λc λc’ (c = c’ ∧ ¬∃c’’. φ c c’’)
• Notice output context not include anything new

• φ⇒ψ = λc λc’ (c = c’ ∧ ∀c2. (φ c c2 → ψ c2 c3)
• Again output not include anything new

• Interpret “all” as
• λP λQ λc (∃ ; Pi ⇒ Qi) c where i = |c|

• or equivalently λP λQ λc ⫬(∃ ; Pi ; ⫬ Qi) c where i = |c|

More determiners

• Interpret “no” as
• λP λQ λc ⫬(∃ ; Pi ; Qi) c where i = |c|

Use Continuations

• Let φ be context transition: [c] → [c] → t
• Let P be property of output contexts

• Define G = λφ λc λP. ∃ c’.(φ c c’ ∧ P c’)

• Combine continuized contexts by
• λΦ λΨ λc λP. Φc (λc.Ψ c P)

Example

• [[A man slept]]:  
G(λc λc’. ∃x. (man(x) ∧ slept(x) ∧ c^x = c’) 
 = λc λP. ∃ c’.(∃x. man(x) ∧ slept(x)  
 ∧ c^x = c’ ∧ P c’) 
 = λc λP.(∃x. man(x) ∧ slept(x) ∧ P(c^x))

• [[A woman slept]]:  
 λc λP.(∃x. woman(x) ∧ slept(x) ∧ P(c^x))

Example

• [[A man slept]]:  
 λc λP.(∃x. man(x) ∧ slept(x) ∧ P(c^x))

• [[A woman slept]]:  
 λc λP.(∃x. woman(x) ∧ slept(x) ∧ P(c^x))

• Use combine function:
• λc λP. (λc λP. (∃x. man(x) ∧ slept(x) ∧ P(c^x))c 

 λc (λc λP. (∃x. woman(x) ∧ slept(x) ∧ P(c^x)))cP) =  
λc λP. (λP. (∃x. man(x) ∧ slept(x) ∧ P(c^x)) 
 λc (∃y. woman(y) ∧ slept(y) ∧ P(c^y))) =  
λc λP. (∃x. man(x) ∧ slept(x) ∧  
 (∃y. woman(y) ∧ slept(y) ∧ P(c^x^y)))

Representing in Haskell

• See DRAC.hs

• Need to raise unary and binary relations to
context change operations:
• Let A be unary: A◦ = λj λc λc’(c = c’ ∧ Ac[j])

• Let B be binary: B◦ = λj λj’ λc λc’(c = c’ ∧ Bc[j]c[j’])

• Context = [Entity]

• Prop = [Context]

• Trans = Context → Prop

Salience

• Anaphoric reference changes incrementally

• Determining reference of pronoun depends on:
• morphological and lexical factors

• gender, number

• syntactic properties of sentence that contains pronoun

• information contained in previous discourse

• background information (common ground) shared by
speaker and hearer.

Salience

• Syntactic properties of sentence that contains
pronoun
• Subject more salient than an object

• Mary kicked the ball to Sarah. She liked to play soccer.

• Sarah was kicked the ball by Mary. She liked to play
soccer.

Question

• What overall strategy should we use:
• Get accessible discourse referents

• Filter them according to constraints

• Rank the remaining ones wrt preferences

• At which stage does pronoun resolution apply?

How to represent salience?

• Consider reordering order of referents after a
sentence.
• Use an index to find actual referent (e.g. in sentence)

• But search through referents in an order that may be re-
ordered by each succeeding sentence.

• Let (i)c indicate moving item i to front of list

• Let d:c indicate adding new element d at front of list

Redefine basic operations

• Let ∃ = λc λc’. ∃x.(x:c = c’)

• Use to redefine determiners

• [[a girl]] = λQ. λc. λc’. ∃x. (girl(x) ∧ Qi(x:c)c’)
where i = |c|

Logical Inference

Where we are

• We saw how to construct first-order logical
representations for natural language sentences.
What can we use them for?
• Model checking: Check whether a formula is true w.r.t. a

model of the world.

• Model building: Check whether a formula is satisfiable,
i.e. whether there is a model in which the formula is
true.

• Inference: Check what follows from a given set of
formulas.

Motivation

• Knowing the meaning of a sentence also means
knowing what follows from it.
• Not all robots are intelligent. 
⇒ Some robots are not intelligent.

• Either Turing or Church invented the lambda calculus ⇏
Turing invented the lambda calculus.

Inferences Critical

• Inferences, often using world knowledge, play a
big role in understanding utterances.
• John ate the pudding with a fork.  

John ate the pudding with vanilla flavor.

• A: Would you like to come to the Keith Jarrett concert?
B: I hate Jazz!

Application: Question
Answering

• Was Erdös married?
• Apart from his family and old friends, Paul Erdös had no

interest in a relationship which was not founded in
shared intellectual curiosity and therefore he remained a
bachelor until his death.

• Did United win the Champions League?
• United failed to progress beyond the group stages of the

Champions League and trailed in the Premiership title
race, sparking rumours over its future.

