
Lecture 28:  
Discourse Representation

Theory Implemented
CS 181O

Spring 2016
Kim Bruce

Some slides based on those of Christina Unger

Donkey Sentences in DRS

• Every farmer who owns a donkey, feeds him

x, y
feed(x,u)

u = y
farmer(x)
donkey(y)
own(x,y)

u
⇒

∀x ∀y .((farmer(x) ∧ donkey(y) ∧ own(x , y)) → ∃u.(feed(x , u) ∧ u = y))

FOL ≣ DRT

• Provided functions
• º: DRS → FOL

• *: FOL → DRS

But want more …

• Provided static semantics,
• but want dynamic semantics: context change!

• Contexts are often seen also as information
states, i.e. as constituted by all the information
collected by the discourse so far, together with
a collection of salient individuals.

• Sentence interpreted as context change potential

Context Change Potential

• Need a mechanism for forming new contexts
from old.

• Text strays from classical DRS’s to make
compositional.

• Recall intuition, DRS is pair of discourse
references and conditions on them

Basic DRSs
• A DRS is a pair (V,C) for V a set of discourse

references and C a set of conditions.

• Basic DRSs:
• (∅, ∅), (∅, P(r0,…,rn-1)), (∅, ⊥), and ({r}, ∅)

• Merger of DRSs:
• If δ = (Vδ, Cδ) and δ’ = (Vδ’, Cδ’)  

then δ ● δ’ = (Vδ ∪ Vδ’, Cδ ∪ Cδ’)

• Implication of DRSs
• δ → δ’ is defined as (∅, {δ ⇒ δ’})

Semantics of DRS

• Let ℳ = (M, I) be model. Interpretation of
DRS will be a pair (V,ℑ) where V is set of
referents and ℑ is set of assignments of
referents to values in M

• Intuition:  
[({v1,...,vn},{C1,...,Cm})] :=({v1,...,vn},[C1]∩···∩[Cm]).

Semantics of DRS

• ⟦(∅, ∅)⟧ = (∅, MU)
• where MU is all functions f:U →M giving values to referents

• ⟦(∅, P(r0,…,rn-1))⟧ = (∅, {f ∈MU | ℳ ⊨f P(r0,…,rn-1))

• ⟦(∅, ⊥)⟧ = (∅, ∅)

• ⟦({r}, ∅)⟧ = ({r}, MU)

• ⟦δ ● δ’ ⟧ = ⟦δ⟧ ⊕ ⟦δ’⟧

• ⟦δ ⇒ δ’ ⟧ = ⟦δ⟧ → ⟦δ’⟧

Semantics

• Where
• (X,F) ⊕ (Y, G) = (X ∪ Y, F ∩ G)

• (X,F) → (Y, G) = (∅, {h ∈ MU | ∀f ∈ F, if h {X} f then  
 ∃g ∈ G with f [Y] g}
• where f[Y]g iff f(u) = g(u) for all u in Y.

• h is assignment agreeing w/both f & g on domains

Still not quite right!

• Merges when shouldn’t

x
woman(x)
sleep(x)

x
man(x)
sleep(x)

● =
x

man(x)
woman(x)

sleep(x)

Need to α-convert referents before combining!

Context changes

• Meaning of statement is function from existing
context to new context.

• See later tricky to keep track of order of
referents so most salient are found first
• Must match gender & number, focus (agent vs patient)

• Semantic info

What is context?

• Context is sequence of entities w/constraints
• Manage as a stack: c1, c2, …, cn

• Context extension pushes new item on stack

• Context transitions are functions that convert
context to new context, represented as
characteristic function:
• λc λc’. body, where body returns true or false

• Type [c] → [c] → t

Operations on contexts

• If c is context, let c^x represent context where
add x to context c.

• Operations:
• ∃ = λc λc’. ∃x.(c^x = c’)

• ∃ c c’ is true iff c’ is extension of c.

• Let φ, ψ represent context transitions
• φ ; ψ = λc λc’. ∃c’’.(φ c c’’ ∧ ψ c’’ c’)

Operations on Contexts

• Example: Operator for “a” or “some”
• Let P, Q :: N → [e] → [e] → t

• Call the type of this K

• Pi applies P to the ith discourse reference

• Interpret some P are Q

• λP λQ λc (∃ ; Pi ; Qi) c where i = |c|
• Inserts new referent and asserts P, Q true of it

Expressing Negation

• ⫬ φ = λc λc’ (c = c’ ∧ ¬∃c’’. φ c c’’)
• Notice output context not include anything new

• φ⇒ψ = λc λc’ (c = c’ ∧ ∀c2. (φ c c2 → ψ c2 c3)
• Again output not include anything new

• Interpret “all” as
• λP λQ λc (∃ ; Pi ⇒ Qi) c where i = |c|

Coordination
• A man slept. A woman slept

• [[a man]] = λQ λc λc’. ∃x. (man(x) ∧ Qi(c^x)c’)c where i = |c|

• [[a woman]] = λQ λc λc’. ∃x. (woman(x) ∧ Qi(c^x)c’)c where i = |c|

• [[slept]] = λj λc λc’. (c = c’ ∧ slept (c[j]) where 0 ≤ j < |c|

• [[a man slept]] = λc λc’. ∃x. (man(x) ∧ slept(c^x[i]) ∧ c^x = c’) 
 = λc λc’. ∃x. (man(x) ∧ slept(x) ∧ c^x = c’)

• [[a woman slept]] = λc λc’. ∃x. (woman(x) ∧ slept(x) ∧ c^x = c’)

• Combine using ; on next slide 

Combining

• [[a man slept]] ; [[a woman slept]] =  
 (λc λc’. ∃x. (man(x) ∧ slept(x) ∧ c^x = c’)) ;  
 (λc λc’. ∃x. (woman(x) ∧ slept(x) ∧ c^x = c’)) =  
 (λc λc’. ∃x. (man(x) ∧ slept(x) ∧ c^x = c’)) ;  
 (λc λc’. ∃y. (woman(y) ∧ slept(y) ∧ c^y = c’)) =  
 (λc λc’. ∃x. (man(x) ∧ slept(x) ∧ c^x = c’’)) ∧  
 ∃y. (woman(y) ∧ slept(y) ∧ c’’^y = c’)) =  
 (λc λc’. ∃x. (man(x) ∧ slept(x) ∧  
 ∃y. (woman(y) ∧ slept(y) ∧ c^x^y = c’))

• Correct interpretation!! 
 

Use Continuations

• Let φ be context transition: [c] → [c] → t
• Let P be property of output contexts

• Define G = λφ λc λP. ∃ c’.(φ c c’ ∧ P c’)

• Combine continuized contexts by
• λΦ λΨ λc λP. Φc (λc.Ψ c P)

