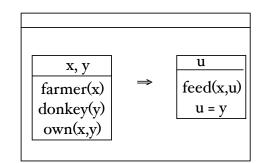
Lecture 28: Discourse Representation Theory Implemented

> CS 181O Spring 2016 Kim Bruce

Some slides based on those of Christina Unger

Donkey Sentences in DRS

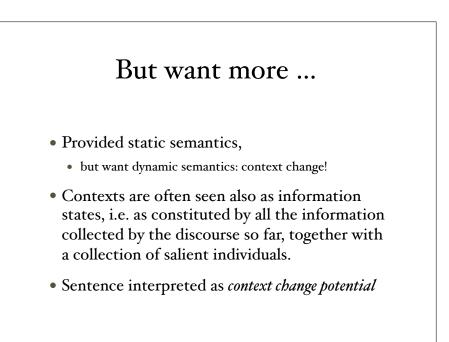
• Every farmer who owns a donkey, feeds him



 $\forall x \forall y .((farmer(x) \land donkey(y) \land own(x, y)) \rightarrow \exists u.(feed(x, u) \land u = y))$

FOL ≡ DRT

- Provided functions
 - °: DRS \rightarrow FOL
 - $*: FOL \rightarrow DRS$



Context Change Potential

- Need a mechanism for forming new contexts from old.
- Text strays from classical DRS's to make compositional.
- Recall intuition, DRS is pair of discourse references and conditions on them

Basic DRSs

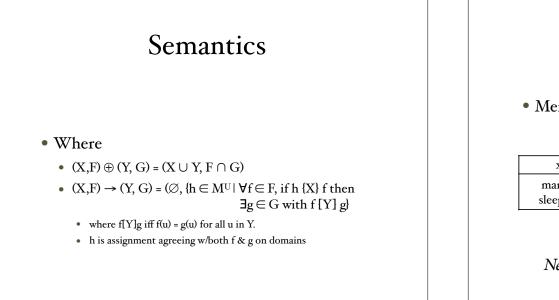
- A DRS is a pair (V,C) for V a set of discourse references and C a set of conditions.
- Basic DRSs:
 - $(\emptyset, \emptyset), (\emptyset, P(r_{\circ}, ..., r_{n-r})), (\emptyset, \bot), and (\{r\}, \emptyset)$
- Merger of DRSs:
 - If $\delta = (V_{\delta}, C_{\delta})$ and $\delta' = (V_{\delta'}, C_{\delta'})$ then $\delta \bullet \delta' = (V_{\delta} \cup V_{\delta'}, C_{\delta} \cup C_{\delta'})$
- Implication of DRSs
 - $\delta \rightarrow \delta'$ is defined as $(\emptyset, \{\delta \Rightarrow \delta'\})$

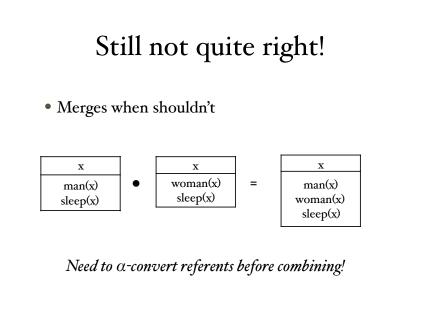
Semantics of DRS

- Let $\mathcal{M} = (M, I)$ be model. Interpretation of DRS will be a pair (V,3) where V is set of referents and 3 is set of assignments of referents to values in M
- Intuition: $[(\{v_1,...,v_n\},\{C_1,...,C_m\})]:=(\{v_1,...,v_n\},[C_1]\cap\cdots\cap [C_m]).$

Semantics of DRS

- $\bullet \ \llbracket (\varnothing, \varnothing) \rrbracket = (\varnothing, M^{\mathrm{U}})$
 - where $M^{\rm U}$ is all functions $f{:}U {\rightarrow} M$ giving values to referents
- $\bullet \ \llbracket (\varnothing, P(r_{\circ}, ..., r_{n^{-1}})) \rrbracket = (\varnothing, \{ f \in M^{\mathrm{U}} \mid \mathscr{M} \vDash_{\mathrm{f}} P(r_{\circ}, ..., r_{n^{-1}}))$
- $\bullet \ \llbracket (\varnothing, \bot) \rrbracket = (\varnothing, \varnothing)$
- $\bullet \hspace{0.1cm} \llbracket (\{r\}, \varnothing) \rrbracket = (\{r\}, \hspace{0.1cm} \mathrm{M}^{\mathrm{U}})$
- $\bullet \, \llbracket \delta \bullet \delta' \, \rrbracket = \llbracket \delta \rrbracket \oplus \llbracket \delta' \rrbracket$
- $\bullet \ \llbracket \delta \Rightarrow \delta' \ \rrbracket = \llbracket \delta \rrbracket \Rightarrow \llbracket \delta' \rrbracket$





Context changes

- Meaning of statement is function from existing context to new context.
- See later tricky to keep track of order of referents so most salient are found first
 - Must match gender & number, focus (agent vs patient)
 - Semantic info

What is context?

- Context is sequence of entities w/constraints
 - Manage as a stack: $c_1, c_2, ..., c_n$
 - Context extension pushes new item on stack
- Context transitions are functions that convert context to new context, represented as characteristic function:
 - $\lambda c \, \lambda c'$ body, where body returns true or false
 - Type $[c] \rightarrow [c] \rightarrow t$

Operations on contexts

- If c is context, let c^x represent context where add x to context c.
- Operations:
 - $\exists = \lambda c \lambda c'$. $\exists x.(c^x = c')$
 - \exists c c' is true iff c' is extension of c.
 - Let ϕ , ψ represent context transitions
 - ϕ ; ψ = $\lambda c \lambda c'$. $\exists c''.(\phi c c'' \wedge \psi c'' c')$

Operations on Contexts

- Example: Operator for "a" or "some"
 - Let P, Q :: $N \rightarrow [e] \rightarrow [e] \rightarrow t$
 - Call the type of this K
 - Pi applies P to the ith discourse reference
 - Interpret some P are Q
 - $\lambda P \lambda Q \lambda c$ (\exists ; Pi; Qi) c where i = |c|
 - Inserts new referent and asserts P, Q true of it

Expressing Negation

- $\neg \phi = \lambda c \lambda c' (c = c' \land \neg \exists c''. \phi c c'')$
 - Notice output context not include anything new
- $\phi \Rightarrow \psi = \lambda c \lambda c' (c = c' \land \forall c_2. (\phi c c_2 \rightarrow \psi c_2 c_3))$
 - Again output not include anything new
- Interpret "all" as
 - $\lambda P \lambda Q \lambda c$ (\exists ; $Pi \Rightarrow Qi$) c where i = |c|

Coordination

- A man slept. A woman slept
 - [[a man]] = $\lambda Q \lambda c \lambda c'$. $\exists x. (man(x) \land Qi(c^x)c')c$ where i = |c|
 - [[a woman]] = $\lambda Q \lambda c \lambda c'$. $\exists x. (woman(x) \land Qi(c^x)c')c$ where i = |c|
 - [[slept]] = $\lambda j \lambda c \lambda c'$. (c = c' \wedge slept (c[j]) where $0 \le j < |c|$
 - [[a man slept]] = $\lambda c \lambda c'$. $\exists x. (man(x) \land slept(c^x[i]) \land c^x = c')$ = $\lambda c \lambda c'$. $\exists x. (man(x) \land slept(x) \land c^x = c')$
 - [[a woman slept]] = $\lambda c \lambda c'$. $\exists x. (woman(x) \land slept(x) \land c^x = c')$
 - Combine using ; on next slide

Combining

• [[a man slept]] ; [[a woman slept]] = $(\lambda c \ \lambda c'. \exists x. (man(x) \land slept(x) \land c^x = c'))$; $(\lambda c \ \lambda c'. \exists x. (woman(x) \land slept(x) \land c^x = c')) =$ $(\lambda c \ \lambda c'. \exists x. (man(x) \land slept(x) \land c^x = c'))$; $(\lambda c \ \lambda c'. \exists y. (woman(y) \land slept(y) \land c^y = c')) =$ $(\lambda c \ \lambda c'. \exists x. (man(x) \land slept(x) \land c^x = c'')) \land$ $\exists y. (woman(y) \land slept(y) \land c''^y = c')) =$ $(\lambda c \ \lambda c'. \exists x. (man(x) \land slept(x) \land$ $\exists y. (woman(y) \land slept(x) \land$ $\exists y. (woman(y) \land slept(y) \land c^x \land y = c'))$

• Correct interpretation!!

Use Continuations

- Let ϕ be context transition: $[c] \rightarrow [c] \rightarrow t$
 - Let P be property of output contexts
- Define G = $\lambda \phi \lambda c \lambda P$. $\exists c'.(\phi c c' \land P c')$
- Combine continuized contexts by
 - $\lambda \Phi \lambda \Psi \lambda c \lambda P. \Phi c (\lambda c. \Psi c P)$