Lecture 24:
Continuations, continued

CS 1810
Spring 2016
Kim Bruce

Continuation

e Meaning of linguistic context of expression
called its continuation

» Expressions can have lots of continuations

o Hence we’ll make the continuation a parameter of the
meaning.

* We can think of providing an argument to a function

e ... or a function to an argument!

What is a continuation?

* Continuation is provided to an expression so
can get meaning of sentence.

* Continuation is function type returning type t
e Continuation of NP is of type e — t
* Continuation of intransitive verb is (¢ — t) = ¢

o Continuation of transitive verb is (e = e —t) = t

* Meaning functions will now take continuations
as an argument to get meaning,.

Computations

e Computations are functions that take a
continuation and give a meaning (of type 1)

e type Contar=a->r

e type Compar=Contar->r

e Examples:
e meaning of NP: (e —1t) =t
e meaning of IV,CN: (e = t) = ) =t
e meaningof TV:((e = e—0t) =0 —¢

e meaning of ADJ: ?




Continuation-Passing
Semantics

e Make all meaning take a continuation
parameter k
e Constant {[cl} = Ak. k c
e cpsConst::a->Comp ar
e cpsConstc=\k->kc

o Trick to check work: Get the original meaning by applying
to identity function
o (cpsConstc) (x>x)=0k->ko(x>x=(Wx->xc=c

Application?

¢ {[Dorothy cheeredll
* {[Dorothyl} = Ak:e — t. k dorothy:: Comp e t

o where Compet=(e—t) =t

* {[cheered}} = M\k’:(e = t) — t. k’ cheered:: Comp (e = ©) t
e where Comple—=tt=((—=t)—t—>t

e {[Dorothy cheeredl}: Comp t t

o where Comptt=(t—1t)—>t
o [[Dorothy cheered]} = Ak: t = t. ... 2?2

CpsApply

° cpsApply mn =2k . n (Ab. m (ha. k (a b))
e result is a function that takes a continuation k.

¢ To use k, must:
e evaluate n with a continuation that takes the value b of n, and then
o evaluates m with a continuation that takes the value a of m, and

o finally applies k to the result of evaluating (a b)

o Watch out, there is an alternative later!!

CpsApply

¢ intSent_CPS (Sent np vp) =
cpsApply (intVP_CPS vp) (intNP_CPS np)
e Given continuation k:
* Compute intNP_CPS np, call it b
e Compute intVP_CPS vp, call it a
e Applykto(ab)
o Work out intSent_CPS(Sent Dorothy Cheered)




Example

intSent_CPS(Sent Dorothy Cheered) =
cpsApply (intVP_CPS Cheered) (intNP_CPS Dorothy) =
cpsApply (A\k’:(e — t) — t. k’ cheered) (\k:e — t. k dorothy) =
(k™ . (\k:e = t. k dorothy) ((Ab. \k’:(e — ) — t. k’ cheered)

(ha. k” @@ b)) =

(k™ . (Ak:e — t. k dorothy) ((Ab.((Aa. k™ (a b)) cheered)))) =
(Ak” . (Ak:e — t. k dorothy) ((A\b.(k”” (cheered b))))) =
(\k” .k (cheered dorothy))

Example

intSent_CPS(Sent Dorothy Cheered) =
cpsApply (intVP_CPS Cheered) (intNP_CPS Dorothy) =
cpsApply (Ak’:. k’ cheered) (\k. k dorothy) =
(k™ . (\k. k dorothy) ((Ab. (Ak’. k’ cheered) (Aa. k™ (a b)) =
(Ak™ . (\k. k dorothy) ((Ab.((Aa. k™ (a b)) cheered)))) =
(k™ . (Ak. k dorothy) ((A\b.(k™ (cheered b))))) =
(k™ k (cheered dorothy))

More CPS

e What about quantifiers?
e {Jeveryonel} = Ak. Vx (Person x) — k x)
¢ {[someone}l = Ak. Ix (Person x) A k x)
o What is scope of x? Includes k!

e Abstract to quantifiers:
* {[everyll = Ak AP. k(MQ.Vx (Q x) — P x)
o {[somell = Ak \P. k(AQ.3Ix (Q® A Px)
o {[thell = Ak AP k(MQ.3Ix (.Qx) A Px)
e {Inoll = Ak AP kQAQ.-Ix (Qx A Px)

Example

[{every person}l
= Ak AP k(WQ.Vx ((Q ) — P x)))(K’. k’ Person)
= (A\P. (\K’. K’ Person)(MQ.Vx (Q x) — P %))
= OWPAQ.(Vx (Q x) — P x)Person)
= \P.((Vx (Person x) — P x)
bas type (e — 1) — ¢

Same value as everyone, as expected!




Transitive Verbs

intTV_CPS Helped = cpsConst help
= Ak .k helped
where helped: e = e — t

First argument is object, second is subject!

Scope Reversal

 Can use different apply function:
* cpsApply’ :: Comp (a->b) r-> Compar->Compbr
* cpsApply' m n =Ak. m (ha. n (Ab. k (a b)))

* Compared to original:
* cpsApply m n=Ak.n (Ab. m (Aa. k (a b))

* What does it mean in practice

* Everyone helped someone.

From the Text:

Using cpsApply:

{{everyonelt = Ak’.Vx. ((Person x) — (k’ %))
[{someonell = Ak’. Ix. (Person x) A (K’ x))

[[helped someonell = cpsApply ([helpedll)(someonell)
= Ak.(fsomeonell(\n. {[helped}(m.k (m n))))
= Ak.(@QK’. 3x. ((Person x) A (K’ x))(\n. {[helpedAm.k (m n))))

= Ak.@3x. ((Person x) A (An. {ThelpedtiGum .k (m n))x))
= Ak.(3x. ((Person x) A ({[helpedl}(Am.k (m x))))
= Ak.@3x. ((Person ) A (K. K help)im.k (m x))))

= Ak.(3x. ((Person x) A (um.k (m x)help))
= Mk.(@x. (Person x) A (k (help )

From the Text:

[feveryonell = Ak’.Vx. (Person x) — (k’ x))
[[someone]l = Ak’. Ix. (Person x) A (K’ x))

[Thelped someonell = Ak’.(Fy: (Person y) A (kK (help y)))

[[everyone helped someonell = cpsApply(I[helped someonelD{[everyonell)
= Mk.({everyonell(Ab. [Thelped someonell(\a.k (a b))
= Ak.Qk’.Vx. ((Person x) — k’ x)(Ab. [[helped someonell(ha.k (a b))
= Ak.(Vx. (Person x) —(b. {Thelped someonelt(ua.k (a b))x))
= Ak.(Vx. (Person x) —({[helped someonell(la.k (a X))
= Ak.(Vx. (Person x) — (Ak’.(3v. (Person v) A (k’ (help ) (hak (ax)))
= Ak.(Vx. (Person x) — @y. (Person y) A (ha.k (ax)) (help y)))
= Mk.(Vx. ((Person x) — @y. (Person y) A (k ((help y) x)))




From the Text:

Using cpsApply’:

[{everyonell = Ak’.Vx. (Person x) — (k’ x))
[{someonell = Ak’. Ix. (Person x) A (k’ %))

{Thelped someonell = cpsApply’ ({helpediD({someonelD
= Ak.(ThelpedH(\a.[{someonell(Ab.k (a b))))
= Ak.Ok’. k’ help)(Aa.[lsomeonell(\b.k (a b))
= MAk.(Aa{Isomeonell(Ab.k (a b)))help)
= Mk.(Isomeonell(b.k (help b))
= Mk.(AK. 3x. (Person x) A (k’ x))(Ab.k (help b))
= Ak.@3x. ((Person x) A ((Ab.k (help b)) x))
= Ak.@3x. (Person x) A (k (help %))
Exactly as before!

From the Text:

[{everyonell = Ak’.Vx. (Person x) — (k’ x))
[[someonell = Ak’. Ix. (Person x) A (K’ %))

[Thelped someonel} = Ak’.(y. (Person y) A (k’ (help y)))

[{everyone helped someonell = cpsApply’(Thelped someonelh({everyonell)
= Ak.(Thelped someonell(\aleveryonell(\b.k (a b))
= Ak QA.Qy. (Person y) A (K’ (help v)N(ha. [{everyonell(b.k (a b))
= Mk.(3y: (Person y) A(Aa. [[everyonell(Ab.k (a b))(help y))
= Mk.(3y. (Person y) A([{everyonell(Ab.k ((help ) b))))
= Ak.@y: (Person y) A (Ak’.Vx. (Person x) — (k’ x)) (\b.k ((help y) b))
= Ak.@y: (Person y) A (Vx. (Person x) — ((Ab.k ((help y) b))x)))
= Ak.@y: (Person y) A (Vx. (Person x) — (k ((help y) )

Bottom Line

* cpsApply expands subject first, with object
expanded inside.

* cpsApply’ does opposite

* Allows us to capture both expressions of
quantifiers.

More continuations

 Can be helpful in handling coordination

e Already know how to make sense of sentential
operators: and, or, not

e Interpreted in predicate logic with A, v, -

* But they also appear as operators on other
grammatical features




Coordination

e NP: John and Mary went to the store

* John went to the store and Mary went to the store

* V: Mary danced and sang all night
e Mary danced all night and Mary sang all night

e Adj: The ball was big and red

e VP: John kicked the ball and ran down the field
e John kicked the ball and John ran down the field

* Ann baked and Betty ate all the cookies.

Meaning via Continuations

e What is context around conjunctive phrase?
* Mary danced and sang all night
* k =Ax. Mary x all night
¢ k (danced and sang) = k(danced) and k(sang)

¢ intCON_CPS And = Ak Am An. k(m) A k(n)
intCON_CPS Or = Ak Am An. k(m) v k(n)

Still issues

e Chris and Betty met at the fair

 Chris met at the fair A Betty met at the fair????

e Different meaning of “and”

e Individuals or group

Questions?




