
Lecture 24:  
Continuations, continued

CS 181O
Spring 2016
Kim Bruce

Continuation

• Meaning of linguistic context of expression
called its continuation

• Expressions can have lots of continuations
• Hence we’ll make the continuation a parameter of the

meaning.

• We can think of providing an argument to a function

• … or a function to an argument!

What is a continuation?

• Continuation is provided to an expression so
can get meaning of sentence.

• Continuation is function type returning type t
• Continuation of NP is of type e → t

• Continuation of intransitive verb is (e → t) → t

• Continuation of transitive verb is (e → e →t) → t

• Meaning functions will now take continuations
as an argument to get meaning.

Computations

• Computations are functions that take a
continuation and give a meaning (of type r)
• type Cont a r = a -> r

• type Comp a r = Cont a r -> r

• Examples:
• meaning of NP: (e → t) → t

• meaning of IV, CN: ((e → t) → t) → t

• meaning of TV: ((e → e → t) → t) → t

• meaning of ADJ: ?

Continuation-Passing
Semantics

• Make all meaning take a continuation
parameter k
• Constant [[c]] ⇒ λk. k c

• cpsConst:: a -> Comp a r

• cpsConst c = \ k -> k c

• Trick to check work: Get the original meaning by applying
to identity function
• (cpsConst c) (\x -> x) = (\ k -> k c) (\x -> x) = (\x -> x) c = c

Application?

• [[Dorothy cheered]]
• [[Dorothy]] = λk:e → t. k dorothy:: Comp e t

• where Comp e t = (e → t) → t

• [[cheered]] = λk’:(e → t) → t. k’ cheered:: Comp (e → t) t
• where Comp (e → t) t = ((e → t) → t) → t

• [[Dorothy cheered]]: Comp t t
• where Comp t t = (t → t) → t

• [[Dorothy cheered]] = λk: t → t. … ???

CpsApply

• cpsApply m n = λk . n (λb. m (λa. k (a b)))
• result is a function that takes a continuation k.

• To use k, must:
• evaluate n with a continuation that takes the value b of n, and then

• evaluates m with a continuation that takes the value a of m, and

• finally applies k to the result of evaluating (a b)

• Watch out, there is an alternative later!!

CpsApply

• intSent_CPS (Sent np vp) =  
 cpsApply (intVP_CPS vp) (intNP_CPS np)
• Given continuation k:

• Compute intNP_CPS np, call it b

• Compute intVP_CPS vp, call it a

• Apply k to (a b)

• Work out intSent_CPS(Sent Dorothy Cheered)

Example

intSent_CPS(Sent Dorothy Cheered) =

cpsApply (intVP_CPS Cheered) (intNP_CPS Dorothy) =

cpsApply (λk’:(e → t) → t. k’ cheered) (λk:e → t. k dorothy) =

(λk’’’ . (λk:e → t. k dorothy) ((λb. (λk’:(e → t) → t. k’ cheered)

(λa. k’’’ (a b)))) =

(λk’’’ . (λk:e → t. k dorothy) ((λb.((λa. k’’’ (a b)) cheered)))) =

(λk’’’ . (λk:e → t. k dorothy) ((λb.(k’’’ (cheered b))))) =

(λk’’’ .k’’’ (cheered dorothy))

Example

intSent_CPS(Sent Dorothy Cheered) =

cpsApply (intVP_CPS Cheered) (intNP_CPS Dorothy) =

cpsApply (λk’:. k’ cheered) (λk. k dorothy) =

(λk’’’ . (λk. k dorothy) ((λb. (λk’. k’ cheered) (λa. k’’’ (a b)))) =

(λk’’’ . (λk. k dorothy) ((λb.((λa. k’’’ (a b)) cheered)))) =

(λk’’’ . (λk. k dorothy) ((λb.(k’’’ (cheered b))))) =

(λk’’’ .k’’’ (cheered dorothy))

More CPS
• What about quantifiers?

• [[everyone]] = λk. ∀x ((Person x) → k x)

• [[someone]] = λk. ∃x ((Person x) ∧ k x)

• What is scope of x? Includes k!

• Abstract to quantifiers:
• [[every]] = λk λP. k(λQ.∀x ((Q x) → P x)

• [[some]] = λk λP. k(λQ.∃x (Q x) ∧ P x)

• [[the]] = λk λP. k(λQ.∃x ((…Q x) ∧ P x)

• [[no]] = λk λP. k(λQ.¬∃x ((Q x) ∧ P x)

Example

[[every person]]

 = (λk λP. k(λQ.∀x ((Q x) → P x))))(λk’. k’ Person)

 = (λP. (λk’. k’ Person)(λQ.∀x ((Q x) → P x))

 = (λP.(λQ.(∀x (Q x) → P x)Person)

 = (λP.((∀x (Person x) → P x)

has type (e → t) → t

Same value as everyone, as expected!

Transitive Verbs

intTV_CPS Helped = cpsConst help

 = λk.k helped

where helped: e → e → t

First argument is object, second is subject!

Scope Reversal

• Can use different apply function:
• cpsApply’ :: Comp (a -> b) r -> Comp a r -> Comp b r

• cpsApply' m n = λk. m (λa. n (λb. k (a b)))

• Compared to original:
• cpsApply m n = λk . n (λb. m (λa. k (a b)))

• What does it mean in practice
• Everyone helped someone.

From the Text:

Using cpsApply:

[[everyone]] = λk’.∀x. ((Person x) → (k’ x))
[[someone]] = λk’. ∃x. ((Person x) ∧ (k’ x))

[[helped someone]] = cpsApply ([[helped]])(someone]])
 = λk.([[someone]](λn. [[helped]](λm.k (m n))))
 = λk.((λk’. ∃x. ((Person x) ∧ (k’ x))(λn. [[helped]](λm.k (m n))))
 = λk.(∃x. ((Person x) ∧ (λn. [[helped]](λm.k (m n)))x))
 = λk.(∃x. ((Person x) ∧ ([[helped]](λm.k (m x))))
 = λk.(∃x. ((Person x) ∧ ((λk’. k’ help)(λm.k (m x))))
 = λk.(∃x. ((Person x) ∧ (λm.k (m x))help))
 = λk.(∃x. (Person x) ∧ (k (help x)))

From the Text:

[[everyone]] = λk’.∀x. ((Person x) → (k’ x))
[[someone]] = λk’. ∃x. ((Person x) ∧ (k’ x))

[[helped someone]] = λk’.(∃y. (Person y) ∧ (k’ (help y)))

[[everyone helped someone]] = cpsApply([[helped someone]])([[everyone]])
 = λk.([[everyone]](λb. [[helped someone]](λa.k (a b))))
 = λk.(λk’.∀x. ((Person x) → k’ x)(λb. [[helped someone]](λa.k (a b))))
 = λk.(∀x. ((Person x) →(λb. [[helped someone]](λa.k (a b))x))
 = λk.(∀x. ((Person x) →([[helped someone]](λa.k (a x))))
 = λk.(∀x. ((Person x) → (λk’.(∃y. (Person y) ∧ (k’ (help y))))(λa.k (a x))))
 = λk.(∀x. ((Person x) → (∃y. (Person y) ∧ ((λa.k (a x)) (help y)))))
 = λk.(∀x. ((Person x) → (∃y. (Person y) ∧ (k ((help y) x)))))

From the Text:
Using cpsApply’:

[[everyone]] = λk’.∀x. ((Person x) → (k’ x))
[[someone]] = λk’. ∃x. ((Person x) ∧ (k’ x))

[[helped someone]] = cpsApply’ ([[helped]])([[someone]])
 = λk.([[helped]](λa.[[someone]](λb.k (a b))))
 = λk.(λk’. k’ help)(λa.[[someone]](λb.k (a b))))
 = λk.(λa.[[someone]](λb.k (a b)))help)
 = λk.([[someone]](λb.k (help b)))
 = λk.(λk’. ∃x. ((Person x) ∧ (k’ x))(λb.k (help b)))
 = λk.(∃x. ((Person x) ∧ ((λb.k (help b)) x)))
 = λk.(∃x. (Person x) ∧ (k (help x)))
Exactly as before!

From the Text:

[[everyone]] = λk’.∀x. ((Person x) → (k’ x))
[[someone]] = λk’. ∃x. ((Person x) ∧ (k’ x))

[[helped someone]] = λk’.(∃y. (Person y) ∧ (k’ (help y)))

[[everyone helped someone]] = cpsApply’([[helped someone]])([[everyone]])
 = λk.([[helped someone]](λa.[[everyone]](λb.k (a b))))
 = λk.(λk’.(∃y. (Person y) ∧ (k’ (help y))))(λa. [[everyone]](λb.k (a b))))
 = λk.(∃y. (Person y) ∧(λa. [[everyone]](λb.k (a b))(help y))
 = λk.(∃y. (Person y) ∧([[everyone]](λb.k ((help y) b))))
 = λk.(∃y. (Person y) ∧ (λk’.∀x. ((Person x) → (k’ x)) (λb.k ((help y) b))))
 = λk.(∃y. (Person y) ∧ (∀x. ((Person x) → ((λb.k ((help y) b))x)))
 = λk.(∃y. (Person y) ∧ (∀x. ((Person x) → (k ((help y) x)))))

Bottom Line

• cpsApply expands subject first, with object
expanded inside.

• cpsApply’ does opposite

• Allows us to capture both expressions of
quantifiers.

More continuations

• Can be helpful in handling coordination

• Already know how to make sense of sentential
operators: and, or, not
• Interpreted in predicate logic with ∧, ∨, ¬

• But they also appear as operators on other
grammatical features

Coordination

• NP: John and Mary went to the store
• John went to the store and Mary went to the store

• V: Mary danced and sang all night
• Mary danced all night and Mary sang all night

• Adj: The ball was big and red

• VP: John kicked the ball and ran down the field
• John kicked the ball and John ran down the field

• Ann baked and Betty ate all the cookies.

Meaning via Continuations

• What is context around conjunctive phrase?
• Mary danced and sang all night

• k = λx. Mary x all night

• k (danced and sang) = k(danced) and k(sang)

• intCON_CPS And = λk λm λn. k(m) ∧ k(n)

• intCON_CPS Or = λk λm λn. k(m) ∨ k(n)

Still issues

• Chris and Betty met at the fair
• Chris met at the fair ∧ Betty met at the fair????

• Different meaning of “and”
• Individuals or group

Questions?

