
Lecture 24:  
Continuations

CS 181O
Spring 2016
Kim Bruce

Midterm

• Lambda calculus
• Define semantics using lambda calculus

• Propositional & predicate logic
• Syntax & Semantics

• Natural language

• Intensional/Modal logic

• Parsing

• Extend programs

Midterm

• Pick up before Thursday (9 a.m - 5 p.m.)

• Due 24 hours after pick up, but no later than
Thursday at 5 p.m.

Ambiguity

• How do we interpret “someone saw everyone”
• (someone saw) everyone ⇒ ∃x ∀y (saw(x,y))

• someone (saw everyone) ⇒ ∀y ∃x (saw(x,y))

• Assuming domains is all persons, otherwise more complex!

• Examine using continuations
• Tool for understanding (and compiling) programming

languages.

• Applied to natural languages in early 2000’s by Barker
and Shan (independently).

Parse trees

• Harder:
• [[John saw everyone]] = [[John]]([[saw everyone]])

• [[John]]: (e → t) → t

• [[saw]]: e → e → t

• [[Everyone]]: (e → t) → t

• Now what???
• should be ∀x(saw(john,x) or

• ∀x (Person(x) → saw(john,x)

From noun phrases to …?

• Rather than interpreting NP’s as entities: e
• Instead as properties satisfying the entity: (e → t) → t

• Did it to make sense of quantifiers

• Why stop there?

• Do same with other grammatical forms!

Continuations

• Invented (many times) in computer science.

• Play a role in compiling functional
programming languages, especially exceptions.
• More recently replaced by A-normal form — bit simpler.

• Continuation passing style, do computation,
but keep track of context that will finish the
rest of the program.

Meanings

• Interpreted “Dorothy” as λP. (P d): (e → t) → t

• Interpret “Dorothy admired Alice”
• Context of “Dorothy” is “_ admired Alice”

• Context of “Alice” is “Dorothy admired _”
• Type of “Alice” is also (e → t) → t

• Context of “admired” is “Dorothy _ Alice”
• Interpret “Dorothy _ Alice” as λP. (P d a): (e → e → t) → t

• Thus interpret “admired” as λP. (P admired): ((e → e → t) → t) → t

Continuation

• Meaning of linguistic context of expression
called its continuation

• Expressions can have lots of continuations
• Hence we’ll make the continuation a parameter of the

meaning.

• We can think of providing an argument to a function

• … or a function to an argument!

What is a continuation?

• Continuation is provided to an expression so
can get meaning of sentence.

• Continuation is function type returning type t
• Continuation of NP is of type e → t

• Continuation of intransitive verb is (e → t) → t

• Continuation of transitive verb is (e → e →t) → t

• Meaning functions will now take continuations
as an argument to get meaning.

Computations

• Computations are functions that take a
continuation and give a meaning (of type r)
• type Cont a r = a -> r

• type Comp a r = Cont a r -> r

• Examples:
• meaning of NP: (e → t) → t

• meaning of IV, CN: ((e → t) → t) → t

• meaning of TV: ((e → e → t) → t) → t

• meaning of ADJ: ?

Continuation-Passing
Semantics

• Make all meaning take a continuation
parameter k
• Constant [[c]] ⇒ λk. k c

• cpsConst:: a -> Comp a r

• cpsConst c = \ k -> k c

• Trick to check work: Get the original meaning by applying
to identity function
• (cpsConst c) (\x -> x) = (\ k -> k c) (\x -> x) = (\x -> x) c = c

Application?

• [[Dorothy cheered]]
• [[Dorothy]] = λk. k dorothy:: Comp e t

• where Comp e t = (e → t) → t

• [[cheered]] = λk. k cheered:: Comp (e → t) t
• where Comp (e → t) t = ((e → t) → t) → t

• [[Dorothy cheered]]: Comp t t
• where Comp t t = (t → t) → t

• [[Dorothy cheered]] = λk. … ???

CpsApply

• cpsApply m n = λk . n (λb. m (λa. k (a b)))
• result is a function that takes a continuation k.

• To use k, must:
• evaluate n with a continuation that takes the value b of n, and then

• evaluates m with a continuation that takes the value a of m, and

• finally applies k to the result of evaluating (a b)

CpsApply

• intSent_CPS (Sent np vp) =  
 cpsApply (intVP_CPS vp) (intNP_CPS np)
• Given continuation k:

• Compute intNP_CPS np, call it b

• Compute intVP_CPS vp, call it a

• Apply k to (a b)

• Work out intSent_CPS(Sent Dorothy Cheered)

CpsApply

• (intDET_CPS Every) (intCN_CPS Boy)
• Given continuation k:

• Compute intNP_CPS np, call it b

• Compute intVP_CPS vp, call it a

• Apply k to (a b)

More CPS

• What about quantifiers?
• [[everyone]] = λk. ∀x ((Person x) → k x)

• [[someone]] = λk. ∃x ((Person x) ∧ k x)

• What is scope of x? Includes k!

• Abstract to quantifiers:
• [[every]] = λk λP. k(λQ.∀x ((Q x) → P x)

• [[some]] = λk λP. k(λQ.∃x (Q x) ∧ P x)

• [[the]] = λk λP. k(λQ.∃x ((…Q x) ∧ P x)

• [[no]] = λk λP. k(λQ.¬∃x ((Q x) ∧ P x)

Example

[[every person]]

 = (λk λP. k(λQ.∀x ((Q x) → P x))))(λk’. k’ Person)

 = (λP. (λk’. k’ Person)(λQ.∀x ((Q x) → P x))

 = (λP.(λQ.(∀x (Q x) → P x)Person)

 = (λP.((∀x (Person x) → P x)

has type (e → t) → t

Same value as everyone, as expected!

Questions?

