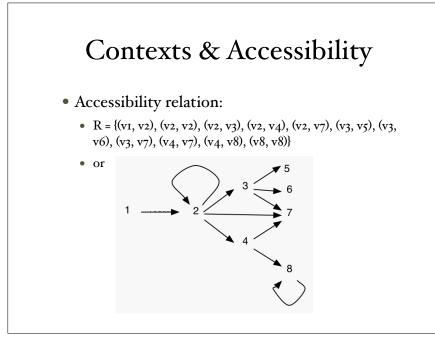
Lecture 23: Intensional Logic

CS 181O Spring 2016 Kim Bruce

Midterm


- Lambda calculus
 - Define semantics using lambda calculus
- Propositional & predicate logic
 - Syntax & Semantics
 - Natural language
- Intensional/Modal logic
- Parsing
- Extend programs

Midterm

- Pick up sometime Wednesday (10 a.m 5 p.m.)
- Due 24 hours after pick up

Models for Intensional Logic

- A (Kripke) model M consists of
 - a non-empty set W of contexts,
 - a binary relation R on W, the accessibility relation
 - A valuation function V which assigns a truth value $V_w(p)$ to every proposition letter p in each context w.
- Contexts referred to as possible worlds
- Combination of W,R called a "frame"

Truth in Intensional Propositional Logic

- Let M be model with W as set of possible worlds, R as accessibility relation, and V as valuation, then $V_{M,w}(\varphi)$, the truth value of φ in w given M is defined as follows:
- $V_{M,w}(p) = V_w(p)$ for all proposition letters p.
- $V_{M,w}(\neg \phi)$ = true iff $V_w(\phi)$ = false.
- $V_{M,w}(\phi \rightarrow \psi)$ = true iff $V_{M,w}(\phi)$ = false or $V_{M,w}(\psi)$ = true.
- ...
- $V_{M,w}(O\varphi)$ = true iff $\forall w' \in W \text{ s.t. } \langle w,w' \rangle \in R$, $V_{M,w'}(\varphi)$ = true.

Types

- Let s be type for set of worlds, with e and t as before. s can only be used as a domain of functions.
- The set of all types, T, is the smallest set such that
 - e, t \in T
 - if a, $b \in T$ then so is $a \rightarrow b$
 - if $a \in T$, then so is $s \rightarrow a$

See model in EAI.hs

- IBool = World \rightarrow Bool
- IEntity = World \rightarrow Entity
- iSent :: Sent \rightarrow IBool
- $iNP :: NP \rightarrow (IEntity \rightarrow IBool) \rightarrow IBool$
- $iVP :: VP \rightarrow (IEntity \rightarrow IBool)$
- $iCN :: CN \rightarrow (IEntity \rightarrow IBool)$
- iDet :: DET \rightarrow (IEntity \rightarrow IBool) \rightarrow (IEntity \rightarrow IBool) \rightarrow IBool

Example

- SnowWhite laughed.
- iSent (Sent SnowWhite Laughed) ⇒ iNP SnowWhite (iVP Laughed)
- \Rightarrow (λ p. p iSnowWhite)(λ x, w. iLaugh w (x w))
- \Rightarrow (λ x, w. iLaugh w (x w)) (iSnowWhite)
- $\Rightarrow \lambda w.((iLaugh w) (ISnowWhite w))$
- Determine truth once know which world

Modeling Intension

- Book's approach is over-simplified!
 - Do not model accessibility relation over worlds!
 - Plenty of room for improvement

Using Intentions

- What is a fake?
 - How can we use possible worlds to make sense of it?

Adjectives

- $iAdj :: ADJ \rightarrow (IEntity \rightarrow IBool) \rightarrow$ (IEntity \rightarrow IBool)
- p is (IEntity \rightarrow IBool), x is IEntity, i is World in
 - iADJ Fake = \ p x i -> not (p x i) && any (\ j -> p x j) worlds
- iAdj Fake Princess = \ x i -> not (Princess x i) && any (\ j -> Princess x j) worlds

Evaluating

- Is SnowWhite a fake princess in world 1?
- iRCN (RCN3 Fake Princess) iSnowWhite W1
- = iADJ Fake (iCN Princess) iSnowWhite W1
- = iADJ Fake (\x i -> iPrincess i (x i)) iSnowWhite W1
- = not ((iPrincess W1) (iSnowWhite W1)) && any ($j \rightarrow$ (iPrincess j) (iSnowWhite j)

Attitude Verbs

- Wants, Hopes, Believes, ...
- Necessarily true in all worlds
- Possibly true in some world

Intensionalization

• Take an extensional type and convert to corresponding intensional type

	extensional type	intensional type
sentence	t	$s \rightarrow t$
definite description	e	$s \rightarrow e$
noun	$e \rightarrow t$	$(s \rightarrow e) \rightarrow (s \rightarrow t)$
transitive verb	$e \rightarrow (e \rightarrow t)$	$(s \to e) \to ((s \to e) \to (s \to t))$

Intensionalization(1)

- The intensional counterpart of an extensional type τ is the type i₁(τ), where i₁ is a mapping that replaces each occurrence of an atomic type by its intensional counterpart, i.e. replaces type e by type s → e and type t by s → t.
 - Ex: $e \rightarrow (e \rightarrow t)$ replaced by $(s \rightarrow e) \rightarrow ((s \rightarrow e) \rightarrow (s \rightarrow t))$

Intensionalization(2)

- The intensional counterpart of an extensional type τ is s → i₂(τ), where i₂ is the following mapping:
 - $i_2(e) = e$ $i_2(t) = t$ $i_2(\tau \rightarrow \tau')=(s \rightarrow \tau) \rightarrow \tau'$
 - Ex: $e \rightarrow (e \rightarrow t)$ replaced by $s \rightarrow ((s \rightarrow e) \rightarrow ((s \rightarrow e) \rightarrow t))$
 - Same as previous if swap argument order

Intensionalization

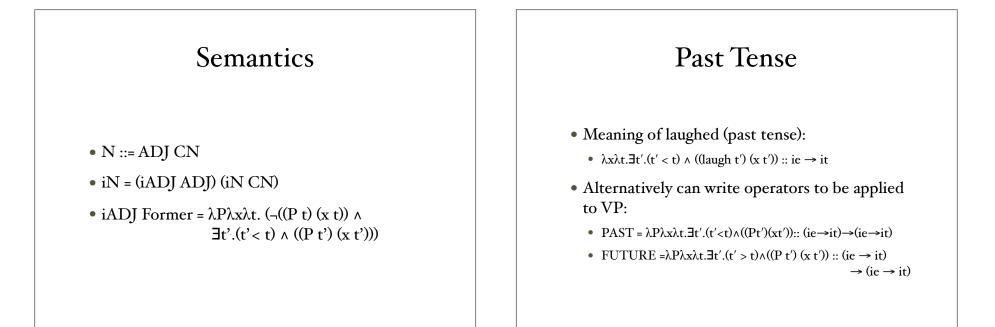
- Book introduces operations: ∩ and ∪ to raise and lower meanings
 - translate to intensionalized world

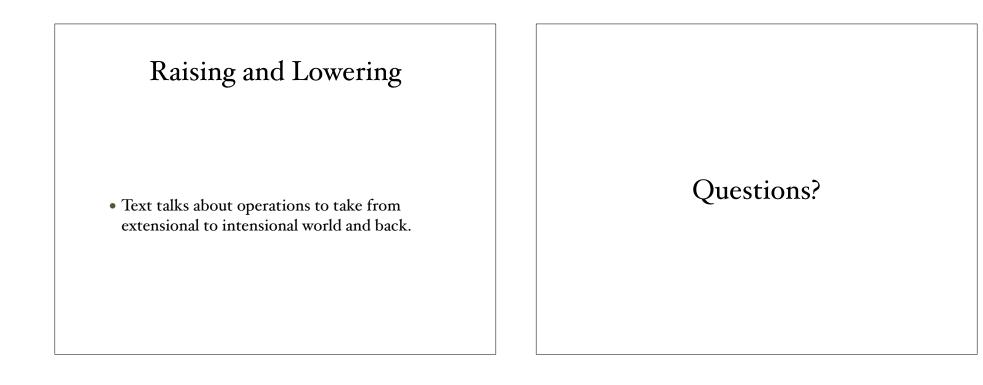
Meanings

- Kripke: Names are rigid identifiers meaning same in all worlds:
- Reference of other expressions varies
 - E.g., the Nobel prize winner can be different
- Therefore truth can vary in different worlds
 - Jane won the Nobel prize this year.

Time

- Treat times as possible worlds.
 - Captures time-dependent meanings
 - E.g. the president of the United States, the first person to enter class today.


Time-dependent Types


- Intensionalize as before:
 - Let i = domain of time instants

	extensional type	intensional type
sentence	t	i → t
definite description	e	i → e
noun	$e \rightarrow t$	$(i \rightarrow e) \rightarrow (i \rightarrow t)$
transitive verb	$e \rightarrow (e \rightarrow t)$	$(i \rightarrow e) \rightarrow$ $((i \rightarrow e) \rightarrow (i \rightarrow t))$

Quantifying over time

- Former
 - Example: former president of Pomona
 λtλx.¬((presPomona t) (x t)) ∧ ∃t'.(t' < t) ∧ ((presPomona t') (x t'))
- (Have to add < to our language.)

