Lecture 22: Intensional Logic

CS 181O Spring 2016 Kim Bruce

Extension vs Intension

- Opaque contexts
 - Eight is necessarily greater than seven. The number of planets in our solar system is necessarily greater than seven.
 - I believe that Jane talked to the President of Pomona. I believe that Jane talked to David Oxtoby.
 - Mary is looking for the President of Pomona. Mary is looking for David Oxtoby.
 - Since those sentences mean different things, meaning seems to be more than reference.
 - Truth depends on possible as well as actual worlds.

Intensional Operators

- Intensional models help interpret
 - adjectives like "fake", "former",
 - attitude verbs like "want", "hope"
 - "must", "may", "necessarily", "possibly"

Intensional Propositional Logic

- If p is a proposition letter, then p is a formula
- If φ and ψ are formulas then so are φ∧ψ, φ∨ψ, φ→ψ, ¬φ,and Oφ.
 - Meaning of $O\varphi$ will depend on the set of contexts that we are interested in
 - Necessarily $\varphi,$ always in the future $\varphi,$...

Models for Intensional Logic

- A (Kripke) model M consists of
 - a non-empty set W of contexts,
 - a binary relation R on W, the accessibility relation
 - A valuation function V which assigns a truth value $V_w(p)$ to every proposition letter p in each context w.
- Contexts referred to as possible worlds
- Combination of W,R called a "frame"

Contexts & Accessibility

- Accessibility relation:
 - R = {(v1, v2), (v2, v2), (v2, v3), (v2, v4), (v2, v7), (v3, v5), (v3, v6), (v3, v7), (v4, v7), (v4, v8), (v8, v8)}

Truth in Intensional Propositional Logic

- Let M be model with W as set of possible worlds, R as accessibility relation, and V as valuation, then $V_{M,w}(\varphi)$, the truth value of φ in w given M is defined as follows:
- $V_{M,w}(p) = V_w(p)$ for all proposition letters p.
- $V_{M,w}(\neg \varphi)$ = true iff $V_w(\varphi)$ = false.
- $V_{M,w}(\phi \rightarrow \psi)$ = true iff $V_{M,w}(\phi)$ = false or $V_{M,w}(\psi)$ = true.
- ...
- $V_{M,w}(O\varphi)$ = true iff $\forall w' \in W$ s.t. $\langle w,w' \rangle \in R$, $V_{M,w'}(\varphi)$ = true.

Modal Logic: Necessity

- Replace $O\phi$ by $\Box\phi$, dual $\Diamond\phi \equiv \neg\Box\neg\phi$
 - $\Box \varphi$ means "necessarily φ "
 - $\Diamond \phi$ means "possibly ϕ "
 - If φ stands for "you understand me", then translate: "It is possible that you understand me, but it isn't necessary" as ◊ φ ∧ ¬□φ

Structure & Truth

- With which accessibility relations are the following expressions always true?
 - $\Box \varphi \rightarrow \varphi$
 - $\Box(\phi \rightarrow \psi) \rightarrow (\Box \phi \rightarrow \Box \psi)$
 - $\Box\Box\phi \rightarrow \Box\phi$
 - $\Diamond \Box \phi \rightarrow \phi$

Other Modal Operators

- Operations on sentences:
 - must, may
 - lots of different senses, eg. "you must drive the speed limit" vs 1+1 must equal 2
 - knows
 - wants
 - hope
- Can also reason about time with modal operators:
 - always in the future, at some time in the future

Counterfactuals & Possible Worlds

- If I didn't come to Pomona, you would not be taking this course.
- If I didn't come to Pomona, you would be crying.
- Why is the first more plausible, even though they are both true in propositional logic?

Interpretations of Frames

- Interpreting "must" ("may is the dual")
 - Epistemic: w Epi_x w' iff w' conforms to what x knows in w.
 - Deontic: w Deo w' iff all the obligations are fulfilled in w' and w' is maximally similar to w otherwise.
 - $w \operatorname{Dox}_x w'$ iff w' conforms to what x believes in w to be the case.
 - Bouletic: w Bou_x w' iff w' conforms to what x desires in w for it to be the case

Types

- Let s be type for set of worlds, with e and t as before. s can only be used as a domain of functions.
- The set of all types, T, is the smallest set such that
 - e, t \in T
 - if a, $b \in T$ then so is $a \rightarrow b$
 - if $a \in T$, then so is $s \rightarrow a$

Predicate Modal Logic

• Add $\Box \phi$, $\Diamond \phi$ to predicate logic as well as

terms ^ φ and $^v\varphi$ to represent the intension of φ and interpreting φ in the current world.

Predicate Modal Logic

- Add \Box , \Diamond to predicate logic.
- Definition. A model consists of
 - a non-empty set W of worlds
 - A binary accessibility relation R on W.
 - A domain D
 - An interpretation function I which assigns
 - an entity I(c) to each constant c of L,
 - A non-empty subset $I_w\!(E)$ of D to E for each world w in W, and
 - for every world w in $W\!\!,$ a subset $I_w(R)$ of $D_w{}^n$ to each n-ary predicate symbol R of L

See model in EAI.hs

- IBool = World \rightarrow Bool
- IEntity = World \rightarrow Entity
- iSent :: Sent \rightarrow IBool
- $iNP :: NP \rightarrow (IEntity \rightarrow IBool) \rightarrow IBool$
- $iVP :: VP \rightarrow (IEntity \rightarrow IBool)$
- $iCN :: CN \rightarrow (IEntity \rightarrow IBool)$
- iDet :: DET \rightarrow (IEntity \rightarrow IBool) \rightarrow (IEntity \rightarrow IBool) \rightarrow IBool

Questions?