
Lecture 21:  
Parsing with Features

CS 181O
Spring 2016
Kim Bruce

Imposing Roles

• Syntactic rules impose features on components
when recognized.
• E.g., S → NP VP, imposes Nom on NP

• combine cat1 cat2 attempts to combine, but requires at
most one entry in each type of feature

• agree cat1 cat2 determines whether can combine 2 cats

• assign f oldCat tries to add feature f to oldCat.
• If compatible gives list with that new category

• If not compatible gives empty list

Lexicon

• lexicon :: String →[Cat]
• Associates words with the possible categorizations for them.

• Look through definitions in text & P.hs (P2.hs is subset)

• Esp, see pronouns, determiners (all vs every), verbs (esp
subcategorization lists)

• Examples:
• lexicon "i" = [Cat "i" "NP" [Pers,Fst,Sg,Nom] []]

• lexicon "kick" = [Cat "kick" "VP" [Infl] [Cat "_" "NP" [AccOrDat] [],  
 Cat "_" "PP" [With] []],  
 Cat "kick" "VP" [Infl] [Cat "_" "NP" [AccOrDat] []]]

Parsing Using Lexicon

prs :: String -> [ParseTree Cat Cat]
prs string = let ws = lexer string
 in [s | catlist <- collectCats lexicon ws,
 (s,[]) <- parseSent catlist]
— Grab lexicon entries for words in ws, parse the list to build a parse
tree for a sentence. For all parsers that use up all input, return parse trees

Building Parse Tree

• Top level function:
• > prs "I did love her” returns:

• [[.S[] [i NP[Sg,Fst,Nom,Pers], 
 [.VP[] [did AUX[],[.VP[Infl] [love VP[Infl],  
 her NP[Pers,Thrd,Sg,AccOrDat,Fem]]]]]]]]

• prs "I loved her” returns

• [[.S[] [i NP[Sg,Fst,Nom,Pers], 
 [.VP[Tense] [loved VP[Tense], 
 her NP[Pers,Thrd,Sg,AccOrDat,Fem]]]]]]

How do we build it?

Parsing with Categories

• Leaves and interior nodes will hold categories,
• Only leaves hold actual text in phon field

• ParseTree Cat Cat
• t2c:: ParseTree Cat Cat → Cat 

 returns category at root of tree

• agreeC t1 t2  
 returns if categories at roots of t1 and t2 compatible

• assignT f pts 
 adds feature f to roots of parse trees in its root

Parse trees with Categories
• Build parsers as before, but must respect

category compatibility.
• PARSER Cat Cat 

 = Parser Cat (ParseTree Cat Cat) 
 = [Cat] →[(ParseTree Cat Cat, [Cat])

• leafP lab input creates list of parse trees from first elt in input if
label matches lab, e.g. leafP “NP” cs grabs first noun phrase.

• leafP :: CatLabel → PARSER Cat Cat

• leafP label [] = []

• leafP label (c:cs) =  
 [(Leaf c, cs) | catLabel c == label}

Parsing Sentences
sRule :: PARSER Cat Cat
sRule = \ xs -> — xs is input cat list
 [(Branch (Cat "_" "S" [] []) [np',vp],zs) | — no features
 (np,ys) <- parseNP xs, — parse NP
 (vp,zs) <- parseVP ys, — then parse VP
 np' <- assignT Nom np, — make np’ nominative
 agreeC np vp, — make sure features compatible
 subcatList (t2c vp) == []] — make sure no subcat  
 — constraints left on vp
parseSent = sRule — because only one rule

Parsing Noun Phrases

npRule = \ xs ->
 [(Branch (Cat "_" "NP" fs []) [det,cn],zs) |
 (det,ys) <- parseDET xs, — parse determiner
 (cn,zs) <- parseCN ys, — then parse CN
 fs <- combine (t2c det) (t2c cn), — combine features
 agreeC det cn] — only create tree if features compatible
— recognize NP’s in input cats or Det-NP pairs
parseNP :: PARSER Cat Cat
parseNP = leafP "NP" <|> npRule

Prepositional Phrases

ppRule = \ xs ->
 [(Branch (Cat "_" "PP" fs []) [prep,np'],zs) |
 (prep,ys) <- parsePrep xs, — parse preposition
 (np,zs) <- parseNP ys, — parse noun phrase
 np' <- assignT AccOrDat np, — make np’ accusative
 fs <- combine (t2c prep) (t2c np')] — combine features

parsePP :: PARSER Cat Cat
parsePP = ppRule

More Parsing

• See code in P2.hs for remaining rules.

Parsing Using Lexicon

prs :: String -> [ParseTree Cat Cat]
prs string = let ws = lexer string
 in [s | catlist <- collectCats lexicon ws,
 (s,[]) <- parseSent catlist]
— Grab lexicon entries for words in ws, parse the list to build a parse
tree for a sentence. For all parsers that use up all input, return parse trees

Intensional Logic

Intension vs Extension

• Propositional and predicate logic: extensional
logics
• expressions with the same reference (or extension) may

be freely substituted for each other:  
 φ↔φʹ |=ψ↔ψ[φʹ/φ] 

• Variant: Leibniz’s law of the indiscernability of identicals:  
 s = t |= ψ ↔ ψ[t/s]  

Intension vs Extension

• Not always work!!
• “The morning star is the evening star” versus  

“The morning star is the morning star”.

• “John’s mother is looking for David Oxtoby” versus
“John’s mother is looking for the Pomona College
president.”

• “Intensions” of the phrases are distinct
• Frege: sense vs reference

• “sense” is how you get to the reference

• proposition it expresses vs. truth of proposition

Intension

• Frege:
• Expressions do not have their normal references in

intensional constructions, but refer instead to their
senses.

• They have an “indirect reference” which is to their
senses.

• Truth can depend on their context (including
time)
• Barack Obama is president of the USA.

Intension

• Contrast:
• The intension of a phrase is its conceptual content

• The extension comprises all that exemplifies the
conceptual content – i.e., all the elements satisfying the
intension.

• The intension of a phrase is a mapping from
the context to the extension in that context.

Why Care?

• Intensional models help interpret
• adjectives like “fake”, “former”,

• attitude verbs like “want”, “hope”

• “must”, “may”, “necessarily”, “possibly”

Intensional Propositional
Logic

• If p is a proposition letter, then p is a formula

• If φ and ψ are formulas then so are φ∧ψ, φ∨ψ,
φ→ψ, ¬φ,and Oφ.
• Meaning of Oφ will depend on the set of contexts that

we are interested in
• Necessarily φ, always in the future φ, …

Saul Kripke
• Research in modal logic

as a high school student
in Omaha.

• Published as a freshman
at Harvard.

• No advanced degrees.

• NYT: “the world’s
greatest living
philosopher, perhaps
the greatest since
Wittgenstein.”
http://www.nytimes.com/2006/01/28/books/28krip.html?_r=2&

Models for Intensional Logic

• A (Kripke) model M consists of
• a non-empty set W of contexts,

• a binary relation R on W, the accessibility relation

• A valuation function V which assigns a truth value Vw(p)
to every proposition letter p in each context w.

• Contexts referred to as possible worlds

• Combination of W,R called a “frame”

Contexts & Accessibility

• Accessibility relation:
• R = {(v1, v2), (v2, v2), (v2, v3), (v2, v4), (v2, v7), (v3, v5), (v3,

v6), (v3, v7), (v4, v7), (v4, v8), (v8, v8)}

• or

Truth in Intensional
Propositional Logic

• Let M be model with W as set of possible worlds, R as
accessibility relation, and V as valuation, then VM,w(φ),
the truth value of φ in w given M is defined as follows:

• VM,w(p) = Vw(p) for all proposition letters p.

• VM,w(¬φ) = true iff Vw(φ) = false.

• VM,w(φ → ψ) = true iff  
 VM,w(φ) = false or VM,w(ψ) = true.

• …

• VM,w(Oφ) = true iff ∀wʹ ∈ W s.t. ⟨w,wʹ⟩ ∈ R,  
 VM,wʹ(φ) = true.

Modal Logic: Necessity

• Replace Oφ by ☐φ, dual ♢φ≣ ¬☐¬φ

• ☐φ means “necessarily φ”

• ♢φ means “possibly φ”

• If φ stands for “you understand me”, then translate: 
“It is possible that you understand me, but it isn’t
necessary” as ♢φ ∧ ¬☐φ

Questions?

