
Lecture 2: Sets, Functions, &
Lambda Calculus

CS 181
Spring 2016
Kim Bruce

Some slide content taken from Unger and Michaelis

Mathematical Logic

• Propositional & predicate logic
• Can you translate from English to symbolic forms?

• John will work only if he is paid well.

• Everyone loves Mary

• John found a black cat.

• If little exposure to logic, see
• “Logic in Action”, free text on links page

• Especially chapters 2.1-2.6 & 4.1-4.2 (but you’ll find the other
sections in chapters 1 to 4 interesting as well)

Bureaucracy

• On-line syllabus, lecture notes, homework
• Turn in via Sakai

• Academic honesty

• Mathematicians use sets to model pretty much
everything.
• Set is unordered collection of elements with no

duplicates and where ordering is irrelevant.

• Specify as a list {1,3,5,7}  
or as “set comprehension” {n ∈ N | n is odd & 1 ≤ n ≤ 7}

• Set operations: ∪, ∩, -, and complement, written Ā.
• Usually specify against fixed universe, U. Then Ā = U - A

• A ⊆ B iff every element x ∈ A is also an element of B.

• Important theorem: A = B iff A ⊆ B and B ⊆ A.

The Joy of Sets

Set Products & Relations

• If A, B are sets,  
 then A × B = {(a,b) | a ∈ A, b ∈ B}

• Similarly for A × B × C, etc.
• Write A × A × … × A as An for n copies of A

• Unary relation on a set is subset of universe:
• I(Dog) = {d ∈ U | d is a dog} (where I means interpretation)

• Binary relation is a subset of the set of pairs
• I(<) = {(a,b) ∈ N2 | a is smaller than b}

Operations on Relations

• Suppose R ⊆ A × B and T ⊆ B × C, then
• R- = {(b,a) | (a,b) ∈ R} ⊆ B × A

• reverse of R

• R ∘ T = { (a,c) | ∃b s.t. (a,b) ∈ R and (b,c) ∈ T} ⊆ A × C
• composition of R and T

Properties of Binary
Relations

• Let R be a binary relation on set S, i.e., R ⊆ S × S.
• R is reflexive iff for all a in S, (a,a) ∈ R.

• R is symmetric iff for all a, b in R,  
 if (a,b) ∈ R then (b,a) ∈ R (i.e. R- = R)

• R is transitive iff for all a, b, c in R,  
 if (a,b) ∈ R and (b,c) ∈ R then (a,c) ∈ R 
 i.e., R ∘ R ⊆ R

• R is an equivalence relation if it is reflexive,
symmetric, and transitive.

Functions

• … are special binary relations R ⊆ A × B such
that if (a,b) ∈ R and (a,b’) ∈ R, then b = b’.
• Unique element of range associated to each element of

domain of R

• domain(R) = {a ∈ A | ∃c such that (a,c) ∈ R} ⊆ A

• range(R) = {b | ∃a such that (a,b) ∈ R} ⊆ B

• Typically write f(a) = b if (a,b) ∈ f and f: A → B

• Function composition defined similar to relations
• g ∘ f = {(a,c) | ∃b s.t. f(a) = b and g(b) = c}

Oops, actually reverse of definition for relations!

Functions are Key to
Computation

• Mathematicians define everything from sets,
computer scientists define everything from
functions, including sets.

• Let R ⊆ U be a set, then the characteristic
function of R, written fR, is a function from U
to Boolean s.t. fR(a) = true iff a ∈ R
• Easy to go back and forth between R and fR

• We’ll use relations at lowest levels, but use functions to
combine them!

A Different View of
Functions

• A function can be seen as instructions for
computation.

• In this view f(x) = (x + 1)2 is not the same as  
g(x) = x2 + 2x + 1

• They represent different algorithms that
nevertheless return the same value

• Extensional vs. intensional view

Lambda Calculus

Lambda Calculus

• Invented by Alonzo Church as model of
computation.
• Equivalent (& earlier than) Turing machines.

• Used as a tool to specify semantics of
programming languages
• … and as of 1970’s, natural language.

• We will use as a way of composing meanings in natural
languages.

Defining Functions

• In math and LISP and ML:

- f(n) = n * n

- (define (f n) (* n n))

- (define f (lambda (n) (* n n)))

- in ML: val f = fn n => n * n;

• In lambda calculus
- λn. n * n

- ((λn. n * n) 12) ⇒ 144

What Operations on
Functions?

• If f is a function, can apply f to an argument b
• f(b)

• If e is an expression then can form a function,
by abstracting out a variable: λx.e
• For example, λn. m + n, and then λm. λn. m + n

Questions?

