Lecture 2: Sets, Functions, & Lambda Calculus

CS 181 Spring 2016 Kim Bruce

Some slide content taken from Unger and Michaelis

Mathematical Logic

- Propositional & predicate logic
 - Can you translate from English to symbolic forms?
 - John will work only if he is paid well.
 - Everyone loves Mary
 - John found a black cat.
- If little exposure to logic, see
 - "Logic in Action", free text on links page
 - Especially chapters 2.1-2.6 & 4.1-4.2 (but you'll find the other sections in chapters 1 to 4 interesting as well)

Bureaucracy

- On-line syllabus, lecture notes, homework
 - Turn in via Sakai
- Academic honesty

The Joy of Sets

- Mathematicians use sets to model pretty much everything.
 - Set is unordered collection of elements with no duplicates and where ordering is irrelevant.
 - Specify as a list {1,3,5,7} or as "set comprehension" {n \in N | n is odd & 1 \leq n \leq 7}
 - Set operations: U, ∩, -, and complement, written Ā.
 Usually specify against fixed universe, U. Then Ā = U A
 - $A \subseteq B$ iff every element $x \in A$ is also an element of B.
 - Important theorem: A = B iff $A \subseteq B$ and $B \subseteq A$.

Set Products & Relations

- If A, B are sets, then A × B = {(a,b) | a ∈ A, b ∈ B}
- Similarly for A × B × C, etc.
 - Write $A \times A \times ... \times A$ as A^n for n copies of A
- Unary relation on a set is subset of universe:
 - $I(Dog) = \{d \in U \mid d \text{ is a dog}\}$ (where I means interpretation)
- Binary relation is a subset of the set of pairs
 - $I(<) = \{(a,b) \in N^2 \mid a \text{ is smaller than } b\}$

Operations on Relations

- Suppose $R \subseteq A \times B$ and $T \subseteq B \times C$, then
 - $R^- = {(b,a) | (a,b) \in R} \subseteq B \times A$
 - reverse of R
 - $R \circ T = \{ (a,c) \mid \exists b \text{ s.t. } (a,b) \in R \text{ and } (b,c) \in T \} \subseteq A \times C$
 - composition of R and T

Properties of Binary Relations

- Let R be a binary relation on set S, i.e., $R \subseteq S \times S$.
 - R is reflexive iff for all a in S, $(a,a) \in \mathbb{R}$.
 - R is symmetric iff for all a, b in R, if (a,b) ∈ R then (b,a) ∈ R (i.e. R⁻ = R)
 - R is transitive iff for all a, b, c in R, if (a,b) ∈ R and (b,c) ∈ R then (a,c) ∈ R i.e., R ∘ R ⊆ R
- R is an equivalence relation if it is reflexive, symmetric, and transitive.

Functions

- ... are special binary relations R ⊆ A × B such that if (a,b) ∈ R and (a,b') ∈ R, then b = b'.
 - Unique element of range associated to each element of domain of R
 - domain(R) = {a \in A | \exists c such that (a,c) \in R} \subseteq A
 - range(R) = {b | $\exists a \text{ such that } (a,b) \in R$ } $\subseteq B$
 - Typically write f(a) = b if $(a,b) \in f$ and $f: A \rightarrow B$
 - Function composition defined similar to relations
 - $g \circ f = \{(a,c) \mid \exists b \text{ s.t. } f(a) = b \text{ and } g(b) = c\}$

Oops, actually reverse of definition for relations!

Functions are Key to Computation

- Mathematicians define everything from sets, computer scientists define everything from functions, *including sets*.
- Let R ⊆ U be a set, then the characteristic function of R, written f_R, is a function from U to Boolean s.t. f_R(a) = true iff a ∈ R
 - Easy to go back and forth between R and f_{R}
 - We'll use relations at lowest levels, but use functions to combine them!

A Different View of Functions

- A function can be seen as instructions for computation.
- In this view $f(x) = (x + I)^2$ is *not* the same as $g(x) = x^2 + 2x + I$
- They represent different algorithms that nevertheless return the same value
- Extensional vs. intensional view

Lambda Calculus

Lambda Calculus

- Invented by Alonzo Church as model of computation.
 - Equivalent (& earlier than) Turing machines.
- Used as a tool to specify semantics of programming languages
 - ... and as of 1970's, natural language.
 - We will use as a way of composing meanings in natural languages.

Defining Functions

- In math *and* LISP *and* ML:
 - f(n) = n * n
 - (define (f n) (* n n))
 - (define f (<u>lambda (n) (* n n))</u>)
 - *in ML*: val $f = fn n \Rightarrow n * n$;
- In lambda calculus
 - $\lambda n. n * n$
 - (($\lambda n. n * n$) 12) \Rightarrow 144

What Operations on Functions?

- If f is a function, can apply f to an argument b
 f(b)
- If e is an expression then can form a function, by abstracting out a variable: $\lambda x.e$
 - For example, $\lambda n.$ m + n, and then $\lambda m.$ $\lambda n.$ m + n

Questions?