
Lecture 19:  
Features & Categories

CS 181O
Spring 2016
Kim Bruce

Features

• So far have ignored complexities due to
features, e.g., gender, number, person, case,
tense, …

• Can add features to cfg to require agreement

Modifying Grammar

• Replace S → NP VP by
• S∅ → NP{Sg} VP∅

• S∅ → NP{Sg} VP{Sg}

• S∅ → NP{Pl} VP∅

• S∅ → NP{Pl} VP{Pl}

• If start w/cfg, then end with cfg

Features

• Should group them, but simpler to include all
in same type.

data Feat = Masc | Fem | Neutr | MascOrFem — gender
 | Sg | Pl — number
 | Fst | Snd | Thrd — person
 | Nom | AccOrDat — case
 | Pers | Refl | Wh — pronoun type
 | Tense | Infl — tense
 | On | With | By | To | From — prep type
 deriving (Eq,Show,Ord)

type Agreement = [Feature]

Functions

• gender, number, person, … check for kind of
feature

• prune function eliminates redundancy
• Want at most one feature in each category

• Function combine lets add features together as long as at
most one in each group in final.

Category

• List of features associated with a lexical item
• data Cat = Cat Phon CatLabel Agreement [Cat]  

 deriving Eq

• type Phon = String — string representing word

• type CatLabel = String — part of speech

• Agreement is list of features

• Last arg is subcategorization list
• list of items can be combined with. E.g., transitive verb needs np

with feature AccOrDat, ditransitive also needs prep phrase with To
feature.

Extract Values from Cat

• phon :: Cat → String — Returns spelling

• catLabel :: Cat → String — returns POS

• fs :: Cat → String — returns features

• subcatList :: Cat → String

Imposing Roles

• Syntactic rules impose features on components
when recognized.
• E.g., S → NP VP, imposes Nom on NP

• combine cat1 cat2 attempts to combine, but requires at
most one entry in each type of feature

• agree cat1 cat2 determines whether can combine 2 cats

• assign f oldCat tries to add feature f to oldCat.
• If compatible gives list with that new category

• If not compatible gives empty list

Lexicon

• lexicon :: String →[Cat]
• Associates words with the possible categorizations for

them.

• Look through definitions in text & P.hs

• Esp, see pronouns, determiners (all vs every), verbs (esp
subcategorization lists)

Using the Lexicon

• lexer :: String -> Words

• lexer = preproc . words . (map toLower) . scan

• lexer puts white space before punctuation, converts to
lower case, breaks it into words, and then gets rid of
punctuation and combines/simplifies words

• e.g. “at most” becomes “at_most”

Using Lexicon

• lookUpWord db w — looks up cat for word in db

• collectCats db words — returns list of words and
their cats
• collectCats lexicon (words “he loved her”)  
[[he NP[Pers,Thrd,Sg,Nom,Masc],loved VP[Tense],her
NP[Pers,Thrd,Sg,AccOrDat,Fem]]]

Parsing Using Lexicon

prs :: String -> [ParseTree Cat Cat]

prs string = let ws = lexer string

 in [s | catlist <- collectCats lexicon ws,
 (s,[]) <- parseSent catlist]

— Grab lexicon entries for words in ws, parse the list to build a parse
tree for a sentence. For all parsers that use up all input, return parse trees

Building Parse Tree

• Top level function:
• > prs "I did love her” returns:

• [[.S[] [i NP[Sg,Fst,Nom,Pers], 
 [.VP[] [did AUX[],[.VP[Infl] [love VP[Infl],  
 her NP[Pers,Thrd,Sg,AccOrDat,Fem]]]]]]]]

• prs "I loved her” returns

• [[.S[] [i NP[Sg,Fst,Nom,Pers], 
 [.VP[Tense] [loved VP[Tense], 
 her NP[Pers,Thrd,Sg,AccOrDat,Fem]]]]]]

How do we build it?

Parsing with Categories

• Leaves and interior nodes will hold categories,
• Only leaves hold actual text in phon field

• ParseTree Cat Cat
• t2c:: ParseTree Cat Cat → Cat 

 returns category at root of tree

• agreeC t1 t2  
 returns if categories at roots of t1 and t2 compatible

• assignT f pts 
 adds feature f to roots of parse trees in its root

Parse trees with Categories
• Build parsers as before, but must respect

category compatibility.
• PARSER Cat Cat 

 = Parser Cat (ParseTree Cat Cat) 
 = [Cat] →[(ParseTree Cat Cat, [Cat])

• leafP lab input creates list of parse trees from items in input
whose label matches lab, e.g. leafP “NP” cs grabs noun phrases.

• leafP :: CatLabel → PARSER Cat Cat

• leafP label [] = []

• leafP label (c:cs) =  
 [(Leaf c, cs) | catLabel c == label}

Parsing Sentences

sRule :: PARSER Cat Cat

sRule = \ xs -> — xs is input cats
 [(Branch (Cat "_" "S" [] []) [np',vp],zs) | — no features

 (np,ys) <- parseNP xs, — parse NP

 (vp,zs) <- parseVP ys, — then parse VP
 np' <- assignT Nom np, — make np’ nominative

 agreeC np vp, — make sure features compatible

 subcatList (t2c vp) == []] — no subcat constraints on vp
parseSent = sRule — because only one rule

Parsing Noun Phrases

npRule = \ xs ->

 [(Branch (Cat "_" "NP" fs []) [det,cn],zs) |
 (det,ys) <- parseDET xs, — parse determiner

 (cn,zs) <- parseCN ys, — then parse CN

 fs <- combine (t2c det) (t2c cn), — combine features
 agreeC det cn] — only create tree if features compatible

— recognize NP’s in input cats or Det-NP pairs

parseNP :: PARSER Cat Cat
parseNP = leafP "NP" <|> npRule

Prepositional Phrases

ppRule = \ xs ->

 [(Branch (Cat "_" "PP" fs []) [prep,np'],zs) |
 (prep,ys) <- parsePrep xs, — parse preposition

 (np,zs) <- parseNP ys, — parse noun phrase

 np' <- assignT AccOrDat np, — make np’ accusative
 fs <- combine (t2c prep) (t2c np')] — combine features

parsePP :: PARSER Cat Cat
parsePP = ppRule

More Parsing

• See code in P2.hs for remaining rules.
Questions?

