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Last Time

• Saw how to recognize language
• Parser returned string of everything recognized, paired 

with the remaining input that wasn’t used

pS  = pNP <*> pVP
pNP = symbol "Alice"  <|> symbol "Dorothy" <|> (pD <*> pN)
pVP = symbol "smiled" <|> symbol "laughed"
pD  = symbol "every"  <|> symbol "some"    <|> symbol "no"
pN  = symbol "dwarf"  <|> symbol “wizard"

*P> pNP ["every","dwarf","laughed"]
[(“everydwarf",["laughed"])]

*P> pS ["every","dwarf","laughed"]
[("everydwarflaughed",[])]

Building Parse Tree

• Instead want to return parse tree (or AST)
-- f<$>p returns a parser that behaves like p, but transforms the
-- first argument of each pair returned by applying f to it.
(<$>) :: (a -> b) -> Parser s a -> Parser s b
(f <$> p) xs = [ (f x,ys) | (x,ys) <- p xs ]

digitize = f <$> digit    — digit is parser recognizing digits
  where f c = ord c - ord ‘0'

*P> digitize "57a"
[(5,"7a")]

Strategy

• Modify each parser to return part of parse tree 
with appropriate label as branch

data ParseTree a b =  Ep | Leaf a | Branch b [ParseTree a b] 
                   deriving Eq

type PARSER a b = Parser a (ParseTree a b)
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Preserved subtree structure!

Is generally simpler, but preserves structure

Strategy

• Build parse tree, then apply function to get 
AST (or, equivalently, term in Haskell)

Parse Trees

• A parse tree is either empty, or a leaf, or a 
branching node with information on its 
subtrees.  (Nodes and leaves can hold different info)

• data ParseTree a b = Ep | Leaf a |  
                             Branch b [ParseTree a b]  
       deriving Eq



Parse Trees

data Category = S | NP | VP | DET | N | V | ADJ

tree :: ParseTree String Category

tree = Branch S [Branch NP [Leaf "SnowWhite"],                   

             Branch VP [Branch TV [Leaf "admired"],

                       Branch NP

                             [Branch DET [Leaf "The"],

                             Branch N [Leaf "Dwarf"]]]] 

Leaf info type Branch info type Parsing

• In P2.hs defined 
• sent, np, vp, det, cn :: PPARSER

• where PPARSER = PARSER String Category 
              = Parser String (ParseTree String Category) 
              = [String] →[(ParseTree String Category, [String])

• Applying sent to list of words results in list of pairs of 
parse trees and remaining words of input.

• Want to take successful parses and write ADT
• e.g., element of type Sent

ParseTree ⇒ Sent

• See my file TreeToSyntax.hs in sample 
programs.
• stringToNP :: String → NP,  

stringToVP :: String -> VP,  
…  
converts words to primitives of appropriate type

• treeToSent :: ParseTree String Category -> Sent 
treeToNP :: ParseTree String Category -> NP 
… 
converts parse tree to Haskell rep of phrase

String → Sent

• Convert from input string to list of terms of 
type Sent, corresponding to different parses
• Function pts takes input and returns list of its parse 

trees.

• Function sentences takes input and returns list of  
elements of type Sent corresponding to parses.

• main program allows interactive input to translate 
sentences

• Leave to you (on next homework) to extend to full 
language (with adjectives!)

• Alternatively could translate to predicate logic.



Features and Categories

Features

• So far have ignored complexities due to 
features, e.g., gender, number, person, case, 
tense, …

• Can add features to cfg to require agreement

Modifying Grammar

• Replace S → NP VP by
• S∅ → NP{Sg} VP∅

• S∅ → NP{Sg} VP{Sg}

• S∅ → NP{Pl} VP∅

• S∅ → NP{Pl} VP{Pl}

• If start w/cfg, then end with cfg

Features

• Should group them, but simpler to include all 
in same type.

data Feat = Masc  | Fem  | Neutr | MascOrFem   — gender
          | Sg    | Pl                                                       — number
          | Fst   | Snd  | Thrd                                        — person
          | Nom   | AccOrDat                                      — case
          | Pers  | Refl | Wh                                          — pronoun type
          | Tense | Infl                                                   — tense
          | On    | With | By | To | From                       — prep type
          deriving (Eq,Show,Ord)

type Agreement = [Feature]



Functions

• gender, number, person, … check for kind of 
feature

• prune function eliminates redundancy
• Want at most one feature in each category

• Function combine lets add features together as long as at 
most one in each group in final.

Category

• List of features associated with a lexical item
• data Cat      = Cat Phon CatLabel Agreement [Cat]               

                              deriving Eq

• type Phon     = String     — string representing word

• type CatLabel = String   — part of speech

• Agreement is list of features

• Last arg is subcategorization list
• list of items can be combined with.  E.g., transitive verb needs np 

with feature AccOrDat, ditransitive also needs prep phrase with To 
feature.  

Imposing Roles

• Syntactic rules impose features on components 
when recognized.
• E.g., S → NP VP, imposes Nom on NP

• Function assign :: Feat Cat [Cat]

• assign f oldCat tries to add feature f to oldCat.
• If compatible gives list with that new category

• If not compatible gives empty list

Lexicon

• lexicon :: String →[Cat]
• Associates words with the possible categorizations for 

them.

• Look through definitions in text & P.hs

• Esp, see pronouns, determiners (all vs every), verbs (esp 
subcategorization lists)


