
Lecture 18:  
Building Parse Trees

CS 181O
Spring 2016
Kim Bruce

Last Time

• Saw how to recognize language
• Parser returned string of everything recognized, paired

with the remaining input that wasn’t used

pS = pNP <*> pVP
pNP = symbol "Alice" <|> symbol "Dorothy" <|> (pD <*> pN)
pVP = symbol "smiled" <|> symbol "laughed"
pD = symbol "every" <|> symbol "some" <|> symbol "no"
pN = symbol "dwarf" <|> symbol “wizard"

*P> pNP ["every","dwarf","laughed"]
[(“everydwarf",["laughed"])]

*P> pS ["every","dwarf","laughed"]
[("everydwarflaughed",[])]

Building Parse Tree

• Instead want to return parse tree (or AST)
-- f<$>p returns a parser that behaves like p, but transforms the
-- first argument of each pair returned by applying f to it.
(<$>) :: (a -> b) -> Parser s a -> Parser s b
(f <$> p) xs = [(f x,ys) | (x,ys) <- p xs]

digitize = f <$> digit — digit is parser recognizing digits
 where f c = ord c - ord ‘0'

*P> digitize "57a"
[(5,"7a")]

Strategy

• Modify each parser to return part of parse tree
with appropriate label as branch

data ParseTree a b = Ep | Leaf a | Branch b [ParseTree a b]
 deriving Eq

type PARSER a b = Parser a (ParseTree a b)

ParseTree

S

VPNP

NPTVSnowWhite

CNDETAdmired

The Dwarf

Abstract SyntaxTree

SENT

VP1

NP1
SnowWhite

Admired

The Dwarf

SENT SnowWhite (VP1 Admired (NP1 The Dwarf))

Preserved subtree structure!

Is generally simpler, but preserves structure

Strategy

• Build parse tree, then apply function to get
AST (or, equivalently, term in Haskell)

Parse Trees

• A parse tree is either empty, or a leaf, or a
branching node with information on its
subtrees. (Nodes and leaves can hold different info)

• data ParseTree a b = Ep | Leaf a |  
 Branch b [ParseTree a b]  
 deriving Eq

Parse Trees

data Category = S | NP | VP | DET | N | V | ADJ

tree :: ParseTree String Category

tree = Branch S [Branch NP [Leaf "SnowWhite"],

 Branch VP [Branch TV [Leaf "admired"],

 Branch NP

 [Branch DET [Leaf "The"],

 Branch N [Leaf "Dwarf"]]]]

Leaf info type Branch info type Parsing

• In P2.hs defined
• sent, np, vp, det, cn :: PPARSER

• where PPARSER = PARSER String Category 
 = Parser String (ParseTree String Category) 
 = [String] →[(ParseTree String Category, [String])

• Applying sent to list of words results in list of pairs of
parse trees and remaining words of input.

• Want to take successful parses and write ADT
• e.g., element of type Sent

ParseTree ⇒ Sent

• See my file TreeToSyntax.hs in sample
programs.
• stringToNP :: String → NP,  

stringToVP :: String -> VP,  
…  
converts words to primitives of appropriate type

• treeToSent :: ParseTree String Category -> Sent 
treeToNP :: ParseTree String Category -> NP 
… 
converts parse tree to Haskell rep of phrase

String → Sent

• Convert from input string to list of terms of
type Sent, corresponding to different parses
• Function pts takes input and returns list of its parse

trees.

• Function sentences takes input and returns list of
elements of type Sent corresponding to parses.

• main program allows interactive input to translate
sentences

• Leave to you (on next homework) to extend to full
language (with adjectives!)

• Alternatively could translate to predicate logic.

Features and Categories

Features

• So far have ignored complexities due to
features, e.g., gender, number, person, case,
tense, …

• Can add features to cfg to require agreement

Modifying Grammar

• Replace S → NP VP by
• S∅ → NP{Sg} VP∅

• S∅ → NP{Sg} VP{Sg}

• S∅ → NP{Pl} VP∅

• S∅ → NP{Pl} VP{Pl}

• If start w/cfg, then end with cfg

Features

• Should group them, but simpler to include all
in same type.

data Feat = Masc | Fem | Neutr | MascOrFem — gender
 | Sg | Pl — number
 | Fst | Snd | Thrd — person
 | Nom | AccOrDat — case
 | Pers | Refl | Wh — pronoun type
 | Tense | Infl — tense
 | On | With | By | To | From — prep type
 deriving (Eq,Show,Ord)

type Agreement = [Feature]

Functions

• gender, number, person, … check for kind of
feature

• prune function eliminates redundancy
• Want at most one feature in each category

• Function combine lets add features together as long as at
most one in each group in final.

Category

• List of features associated with a lexical item
• data Cat = Cat Phon CatLabel Agreement [Cat]  

 deriving Eq

• type Phon = String — string representing word

• type CatLabel = String — part of speech

• Agreement is list of features

• Last arg is subcategorization list
• list of items can be combined with. E.g., transitive verb needs np

with feature AccOrDat, ditransitive also needs prep phrase with To
feature.

Imposing Roles

• Syntactic rules impose features on components
when recognized.
• E.g., S → NP VP, imposes Nom on NP

• Function assign :: Feat Cat [Cat]

• assign f oldCat tries to add feature f to oldCat.
• If compatible gives list with that new category

• If not compatible gives empty list

Lexicon

• lexicon :: String →[Cat]
• Associates words with the possible categorizations for

them.

• Look through definitions in text & P.hs

• Esp, see pronouns, determiners (all vs every), verbs (esp
subcategorization lists)

