
Lecture 17:  
Parsing

CS 181O
Spring 2016
Kim Bruce

Parsing Problem

• Given a grammar G and a string s, the parsing
problem answers the question whether or not s
∈ L(G). If s ∈ L(G), the answer to this
question may include either a parse tree or a
derivation.

Parse Tree

• A parse tree for a grammar G is a tree where
• the root is the start symbol for G

• the interior nodes are the nonterminals of G and the
children of a node N correspond to the symbols on the
right hand side of some production rule for T in G

• the leaf nodes are the terminal symbols of G

• Every string generated by a grammar has a
corresponding parse tree that illustrates a
derivation for that string.  

A Fragment of English

• S → NP VP

• NP → Snow White | Alice | Dorothy | Goldilocks | 
 DET CN | DET RCN

• DET → the | every | some | no

• CN → girl | boy | princess | dwarf | giant | sword | dagger

• RCN → CN that VP | CN that NP TV

• VP → laughed | cheered | shuddered | TV NP | DV NP NP

• TV → loved | admired | helped | defeated | caught

• DV → gave

Derivation

• S ⇒ NP VP ⇒ Snow White VP  
⇒ Snow White TV NP 
⇒ Snow White admired NP 
⇒ Snow White admired DET CN 
⇒ Snow White admired the CN 
⇒ Snow White admired the dwarf

• Parse tree on next slide

ParseTree

S

VPNP

NPTVSnowWhite

CNDETAdmired

The Dwarf

Abstract SyntaxTree

SENT

VP1

NP1
SnowWhite

Admired

The Dwarf

SENT SnowWhite (VP1 Admired (NP1 The Dwarf))

Preserved subtree structure!

Is generally simpler, but preserves structure

Strategy

• Build parse tree, then apply function to get
AST (or, equivalently, term in Haskell)

Parse Trees

• A parse tree is either empty, or a leaf, or a
branching node with information on its
subtrees. (Nodes and leaves can hold different info)

• data ParseTree a b = Ep | Leaf a |  
 Branch b [ParseTree a b]  
 deriving Eq

Parse Trees

data Category = S | NP | VP | DET | N | V | ADJ

tree :: ParseTree String Category

tree = Branch S [Branch NP [Leaf "SnowWhite"],

 Branch VP [Branch TV [Leaf "admired"],

 Branch NP

 [Branch DET [Leaf "The"],

 Branch N [Leaf "Dwarf"]]]]

Leaf info type Branch info type

Showing tree

instance (Show a, Show b) => Show (ParseTree a b) where
 show Ep = "[]"
 show (Leaf t) = show t
 show (Branch l ts) = "[." ++ show l ++ " "
 ++ show ts ++ "]"

Parsing

• Want function parse:: String → [ParseTree a b]
• If result empty, then failed

• If more than one, then ambiguous.

• Generally hope for singleton list

• Problem: Stuff left over (not used)!
• When looking for S, first look for NP, then VP

• After finding NP, will be some input left over

Parser

• type Parser a b = [a] → [(b,[a])]
• where a is type of input, b is type of parse tree

• For us, input is a list of strings (tokens), while b
is ParseTree String Category.
• Want parser:: Parser String (ParseTree String Category)

• Equiv to [String] → [(ParseTree String Category,[String])]

• type PARSER a b = Parser a (parseTree a b)  
use PARSER as an abbreviation  
E.g., PARSER String Category

Example

Leaving out all Branch, Leaf tags:

[“All”, “Girls”, “Laugh”] ⇒

 [(DET “All”), [“Girls”, “Laugh”])] ⇒

 [(NP [(DET “All”),(CN “Girls”)], [“Laugh”])] ⇒

 [(S [NP [(DET “All”),(CN “Girls”)],

 VP [“Laugh”]], [])]

Parser Combinators

• Functions that combine parsers into a new
parser, or transform a parser into a different
parser.

• Start with parsers that recognize simple
languages and then build up more complex.

Parsing Context Free
Languages in P.hs

Start on line 151

Warning

• New Haskell prelude includes definitions of
<*> and <$>, which are also defined in P.hs.

• To eliminate conflicts MUST include: 
 import Prelude hiding ((<*>),(<$>)) 
at top of every file using those symbols!!

Input to parser

• Assume tokenizer has reduced input to list of
strings:  
“Hello there Joe” ⇒ [“Hello”, ”there”, ”Joe”]

• Parsers will have type Parser String String  
for now! I.e., not yet getting parse tree!
• We will get there!

Parser Combinators

• Simplest parsers: succeed, fails

• Recognize character: symbol c input  
looks to see if first item of input is c
• E.g., symbol “Alice” “AliceSally” ⇒ [(“Alice”,[”Sally”])]

• symbol “Alice” “DorothySally” returns []

• Recognize String: token cs input  
looks to see if first items in input match with cs

More Combinators

• (p1 <|> p2) input returns (p1 input) ++ (p2 input) 
I.e., return list of all parses with p1 or p2

• (p1 <*> p2) input returns  
 [(r1++r2,rest) | (r1, rest’) <- p1 input,  
 (r2, rest) <- p2 rest’]

Examples

• Let:
• p1 = (symbol "Alice" <|> symbol "Dorothy")

• p2 = p1 <*> (symbol “Sally”)

• Then
• p1 “AliceSally” = [(“Alice”,”Sally”)], p1 “MaryAnn” = [] 

p1 “DorothySally” = [(“Dorothy”,”Sally”)]

• p2 “AliceSallyMary” = [(“AliceSally”,Mary)]

Define Parser for English
pS, pNP, pVP, pD, pN :: Parser String String

pS = pNP <*> pVP

pNP = symbol "Alice" <|> symbol "Dorothy" <|>

 symbol "SnowWhite" <|> symbol "Goldilocks" <|>

 symbol "LittleMook" <|> symbol "Atreyu" <|>

 (pD <*> pN)

pVP = symbol "cheered" <|> symbol "laughed" <|> symbol "shuddered"
pD = symbol "every" <|> symbol "some" <|> symbol "no"

pN = symbol "dwarf" <|> symbol "wizard"

Examples

• pS [“every”,"dwarf","cheered"] ⇒  
 [(“everydwarfcheered",[])]

• But we want a parse tree!!

Questions?

