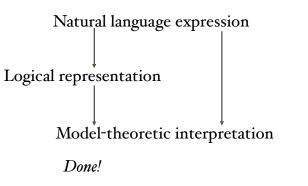
Lecture 15: Quantifiers & Typed Logic

CS 181O Spring 2016 Kim Bruce

Interpreting language

• Two options: indirect & direct



Conditions on Quantifiers

- Write D_EAB to stand for determiner expression (like those on previous slide) with E the domain of discourse, A the restriction and B its body.
 - E.g., "Every dog barked" has dog(x) as restriction and barked(x) as the body.
 - Similarly for "A dog barked" or "Most dogs barked"

Conditions on Quantifiers

- Require:
 - EXT: For all A, $B \subseteq E \subseteq E'$, $D_EAB \Leftrightarrow D_{E'}AB$
 - Extension
 - Expanding the domain makes no difference to truth if A, B fixed.
 - Really, only $A \cup B$ matters
 - CONS: For all A, $B \subseteq E \subseteq E'$, $D_EAB \Leftrightarrow D_{E'}A(A \cap B)$
 - Conservativity
 - For the body, only the elements in the body matter
 - Not hold of "Only dogs barked"
 - EXT + CONS \Rightarrow Only A-B and A \cap B matter in determining truth of D_EAB

Expressing Quantifiers

- Quantifiers can be expressed using only $|A \cap B|$ and |A B|
 - All A are $B \Rightarrow |A B| = 0$
 - Some A are $B \implies |A \cap B| > o$
 - Most A are $B \Rightarrow |A \cap B| > |A B|$

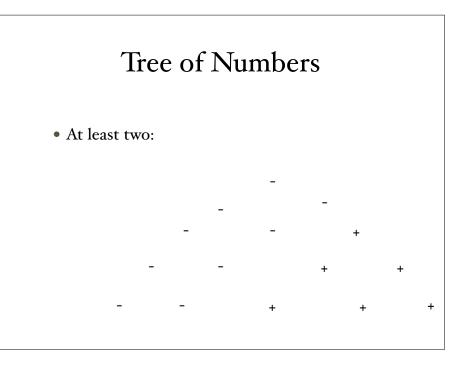
Further Conditions

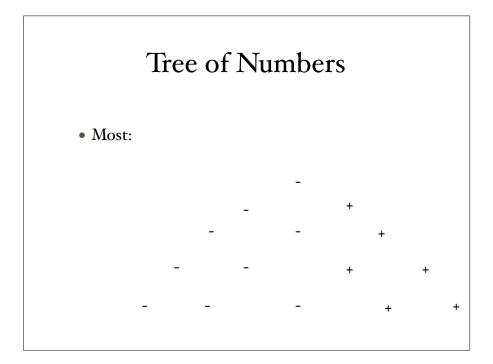
- For quantifiers on quantity:
 - ISOM: If f is a bijection from E to E', then $D_EAB \Leftrightarrow D_{E'}f[A] f[B]$
- A quantifier is a relation Q satisfying EXT, CONS, and ISOM
- Characterize according to |A-B| and $|A \cap B|$

Tree of Numbers

- Record pairs corresponding to |A-B| and $|A \cap B|$
- Structure:

A = 0				0,0				
A = 1			1,0		0,1			
A = 2		2,0	,	1,1		0,2		
A = 3	3,0)	2,1		1,2		0,3	
A = 4	4,0	3,1		2,2		1,3		0,4





Alternative representation

- λ -calculus in terms of m = |A B|, n = |A \cap B|
 - At least two: $\lambda m \lambda n$. $n \ge 2$
 - Most: $\lambda m \lambda n$. n > m
 - No: λm λn. n = 0

More Properties

- Reflexive: $\forall X. QXX$
 - holds of "all" and "exists" but not "no" or "not all"
- Symmetric: $\forall X \forall Y$. (Q X Y \Leftrightarrow Q Y X)
 - holds of "exists" and "no", but not "all" or "not all"
- Upward right monotonic: Q A B and B ⊆ B' implies Q A B'
 - holds of all, exists, at least n, but not "no"
- Downward right monotonic: Q A B and B'⊆ B implies Q A B'
 - holds of "not all" and "no"

Typed Logic

- Text shifts to typed logic (really typed lambda calculus) to help move directly to interpret natural language in a model.
 - Keep track of types of variables, constants, functions, and relations.
 - type ::= $e | t | (type \rightarrow type)$
 - exp ::= $c \mid vble \mid \lambda v$:type . exp \mid (exp exp)
- But expressions must be well typed!

Model

- Model M:
 - Start with domain $D_e,$ and then build up other domains using \rightarrow
 - Comes with interpretation function I for constants, functions, and relations interprets in the appropriate types.

Model

- Defining meaning in M with typed variable assignment g:
 - $[[c]]_g^M = I(c)$
 - $[[x]]_g^M = g(x)$
- $[[\lambda v : \tau.E]]_g^M = h$ where $h: D_\tau \to D_\tau$ is the function defined by $\lambda d: D_\tau.[[E]]_{g[v:=d]}^M$
 - $[[(E_1E_2)]]_g^M = [[E_1]]_g^M ([[(E_2)]]_g^M)$

What about logic?

- Logical operators just treated as constants in lambda calculus:
 - $[[\neg]] = h$ where $h = \lambda p$. not p
 - $[[\wedge]] = h$ where $h = \lambda p. \lambda q. p$ && q
 - [[v]] = h where $h = \lambda p$. λq . $p \parallel q$

 \forall and \exists are a bit trickier as they bind variables

Quantifiers Treat quantifiers as operators on functions: ∀x.E encoded as ∀(\x.E) and ∃x.E encoded as ∃(\x.E) [[∀]] = h where h: (e → t) → t is defined s.t. for f: e → t h(f) = True iff f(d) = True for all d in e, and = False otherwise [[∃]] = h where h: (e → t) → t is defined s.t. for f: e → t h(f) = False iff f(d) = False for all d in e, and = True otherwise Could add quantifiers for higher types, but won't bother for now.

Predicate Logic in Typed Logic

- All formulas encoded, e.g.
 - $P x \land Q y \equiv \land (P x) (Q y)$
 - $\forall x. P x \equiv \forall (\lambda x. P x)$
 - Usually write in infix anyway
- No longer have to worry about separate translation to predicate calculus and then interpret in model.

Computing Truth

- Use α -conversion, and $\beta \& \eta$ -reduction as before to compute values
- Define substitution (written E[x := s]) as before (see text).
- Note typos in book on definitions of α conversion and η-reduction.

Nice Properties

- Confluence: If M can be reduced to a normal form, then there is only one such normal form.
- Normal Form: Every expression of typed logic can be reduced to a normal form (*not true of untyped lambda calculus*)

Semantics

- Described in file TCOM.hs
- Returns value in given model (Model.hs)
- Most cases similar to before though return Bools rather than logical formulas.
- Big differences in determiners

