
Lecture 15:  
Quantifiers & Typed Logic

CS 181O
Spring 2016
Kim Bruce

Interpreting language

• Two options: indirect & direct

Natural language expression

Logical representation

Model-theoretic interpretation

Done!

Conditions on Quantifiers

• Write DEAB to stand for determiner
expression (like those on previous slide) with E
the domain of discourse, A the restriction and
B its body.
• E.g., “Every dog barked” has dog(x) as restriction and

barked(x) as the body.

• Similarly for “A dog barked” or “Most dogs barked”

Conditions on Quantifiers

• Require:
• EXT: For all A, B ⊆ E ⊆ E’, DEAB ⇔ DE’AB

• Extension

• Expanding the domain makes no difference to truth if A, B fixed.

• Really, only A ∪ B matters

• CONS: For all A, B ⊆ E ⊆ E’, DEAB ⇔ DE’A(A∩B)
• Conservativity

• For the body, only the elements in the body matter

• Not hold of “Only dogs barked”

• EXT + CONS ⇒ Only A-B and A∩B matter in
determining truth of DEAB

Expressing Quantifiers

• Quantifiers can be expressed using only |A ∩ B|
and |A - B|
• All A are B ⇒ |A - B| = 0

• Some A are B ⇒ |A ∩ B| > 0

• Most A are B ⇒ |A ∩ B| > |A - B|

Further Conditions

• For quantifiers on quantity:
• ISOM: If f is a bijection from E to E’,  

 then DEAB ⇔ DE’ f[A] f[B]

• A quantifier is a relation Q satisfying EXT,
CONS, and ISOM

• Characterize according to |A-B| and |A∩B|

Tree of Numbers

• Record pairs corresponding to |A-B| and |A∩B|

• Structure:

0,0
1,0

1,1 0,22,0
0,1

3,0

4,0

2,1 1,2 0,3

0,41,32,23,1

|A| = 0
|A| = 1
|A| = 2

|A| = 3

|A| = 4

Tree of Numbers

• At least two:

-
-

- +-
-

-

-

- + +

+++-

Tree of Numbers

• Most:

-
-

- +-
+

-

-

- + +

++--

Alternative representation

• λ-calculus in terms of m = |A - B|, n = |A∩B|
• At least two: λm λn. n ≥ 2

• Most: λm λn. n > m

• No: λm λn. n = 0

More Properties
• Reflexive: ∀X. QXX

• holds of “all” and “exists” but not “no” or “not all”

• Symmetric: ∀X∀Y. (Q X Y ⇔ Q Y X)
• holds of “exists” and “no”, but not “all” or “not all”

• Upward right monotonic: Q A B and B ⊆ B’
implies Q A B’
• holds of all, exists, at least n, but not “no”

• Downward right monotonic: Q A B and B’ ⊆ B
implies Q A B’
• holds of “not all” and “no”

Typed Logic

• Text shifts to typed logic (really typed lambda
calculus) to help move directly to interpret
natural language in a model.
• Keep track of types of variables, constants, functions,

and relations.

• type ::= e | t | (type → type)

• exp ::= c | vble | λv:type . exp | (exp exp)

• But expressions must be well typed!

Model

• Model M:
• Start with domain De, and then build up other domains

using →

• Comes with interpretation function I for constants,
functions, and relations — interprets in the appropriate
types.

Model

• Defining meaning in M with typed variable
assignment g:
•

•

•  
 

[[c]]Mg = I(c)

[[x]]Mg = g(x)

[[�v : ⌧.E]]Mg = h

where h : D⌧ ! D⌧ is the function defined by �d : D⌧ .[[E]]

M
g[v:=d]

[[(E1E2)]]
M
g = [[E1]]

M
g ([[(E2)]]

M
g)

What about logic?

• Logical operators just treated as constants in
lambda calculus:
• [[¬]] = h where h = λp. not p

• [[∧]] = h where h = λp. λq. p && q

• [[∨]] = h where h = λp. λq. p || q

∀ and ∃ are a bit trickier as they bind variables

Quantifiers

• Treat quantifiers as operators on functions:
• ∀x.E encoded as ∀(λx.E) and ∃x.E encoded as ∃(λx.E)

• [[∀]] = h where h: (e → t) → t is defined s.t. for f: e → t 
h(f) = True iff f(d) = True for all d in e, and = False otherwise

• [[∃]] = h where h: (e → t) → t is defined s.t. for f: e → t 
h(f) = False iff f(d) = False for all d in e, and = True otherwise

• Could add quantifiers for higher types, but won’t bother for
now.

Predicate Logic in Typed
Logic

• All formulas encoded, e.g.
• P x ∧ Q y ≣ ∧ (P x) (Q y)

• ∀x. P x ≣ ∀ (λx. P x)

• Usually write in infix anyway

• No longer have to worry about separate
translation to predicate calculus and then
interpret in model.

Computing Truth

• Use α-conversion, and β & η-reduction as
before to compute values

• Define substitution (written E[x := s]) as before
(see text).

• Note typos in book on definitions of α
conversion and η-reduction.

Nice Properties

• Confluence: If M can be reduced to a normal
form, then there is only one such normal form.

• Normal Form: Every expression of typed logic
can be reduced to a normal form (not true of
untyped lambda calculus)

Semantics

• Described in file TCOM.hs

• Returns value in given model (Model.hs)

• Most cases similar to before though return
Bools rather than logical formulas.

• Big differences in determiners

Questions?

