Lecture 15:
Quantifiers & Typed Logic

CS 1810
Spring 2016
Kim Bruce

Interpreting language

* Two options: indirect & direct

Natural language expression

Logical representation

Model-theoretic interpretation

Done!

Conditions on Quantifiers

e Write DEAB to stand for determiner
expression (like those on previous slide) with E
the domain of discourse, A the restriction and
B its body.

e E.g., “Every dog barked” has dog(x) as restriction and
barked(®) as the body:

e Similarly for “A dog barked” or “Most dogs barked”

Conditions on Quantifiers

* Require:

e EXT: ForallA,BCECE, DsAB < DpAB
o Extension
* Expanding the domain makes no difference to truth if A, B fixed.
o Really, only A U B matters

e CONS: Forall A, BCECFE, DeAB < DpA(ANB)
o Conservativity
e For the body, only the elements in the body matter

* Not hold of “Only dogs barked”

e EXT + CONS = Only A-B and ANB matter in
determining truth of DEAB

Expressing Quantifiers

* Quantifiers can be expressed using only |A N Bl

and |A - Bl

e AlAare B=1A-Bl=0

e SomeAare B =ANBI>o

e MostAare B=|ANBI>|A-Bl

Further Conditions

* For quantifiers on quantity:

e ISOM: If f is a bijection from E to E’,
then DgAB < Dg f[A] fIB}

A quantifier is a relation Q satisfying EXT]

CONS, and ISOM

* Characterize according to |A-Bl and IANBI

Tree of Numbers

* Record pairs corresponding to |A-Bl and [ANBI

e Structure:

Al =0 0,0
Al =1 1,0
Al =2 2,0 I,I
Al = 3 3,0 2,1

|Al'= 4 4,0 3, 2,2

1,2

0,2

Tree of Numbers

e At least two:

Tree of Numbers

e Most:

Alternative representation

e \-calculus in terms of m = |A - Bl, n = |ANBI
e Atleast two: \m An.n > 2
e Most: \m An.n >m

e No:AmAn.n=o0

More Properties

e Reflexive: VX. QXX

¢ holds of “all” and “exists” but not “no” or “not all”

e Symmetric: VXVY. QXY < QYX)

e holds of “exists” and “no”, but not “all” or “not all”

e Upward right monotonic: Q AB and BC B’
implies QA B’

¢ holds of all, exists, at least n, but not “no”

e Downward right monotonic: Q AB and B'C B
implies QA B’

¢ holds of “not all” and “no”

Typed Logic

e Text shifts to typed logic (really typed lambda
calculus) to help move directly to interpret
natural language in a model.

e Keep track of types of variables, constants, functions,
and relations.

* type :=eltl(type — type)
e exp ==clvblelAv:type . exp | (exp exp)

* But expressions must be well typed!

Model

e Model M:

e Start with domain D, and then build up other domains
using —

o Comes with interpretation function I for constants,
functions, and relations — interprets in the appropriate

types.

Model

* Defining meaning in M with typed variable
assignment g:

M
o [[elly” = 1(c)
o [[=))g" = g(2)
e [[Av: T.Eﬂéw =h
where h : D, — D, is the function defined by A\d : DT.[[E]]%,::d]

[(ErE)]]g" = [[B)y" ([(E2)]]g")

What about logic?

* Logical operators just treated as constants in
lambda calculus:

* {{-1}=h where h = Ap. not p
e [[All=hwhere h=Ap. Aq. p && q
e {Ivll=hwhereh=hp.Aq.pllq

Y and 3 are a bit trickier as they bind variables

Quantifiers

e Treat quantifiers as operators on functions:
¢ Vx.E encoded as Y(Ax.E) and 3x.E encoded as 3(Ax.E)

e [[V1l = h where h: (e — t) — t is defined s.t. for f: e = t
h(f) = True iff f(d) = True for all d in e, and = False otherwise

o {[A11 = h where h: (e = t) — tis defined s.t. forf:e = t
h(f) = False iff f(d) = False for all d in e, and = True otherwise

¢ Could add quantifiers for higher types, but won’t bother for

now.

Predicate Logic in Typed :
& yP Computing Truth
Logic
¢ All formulas encoded, e.g.
e PxAaQy=aPxQy
e Vx.Px=V (x.Px

* Use a-conversion, and 3 & n-reduction as
before to compute values

¢ Define substitution (written Efx := s} as before

e Usually write in infix anyway (see text)

* No longer have to worry about separate
translation to predicate calculus and then

interpret in model.

* Note typos in book on definitions of
conversion and N-reduction.

Nice Properties Semantics

e Described in file TCOM.hs

e Confluence: If M can be reduced to a normal

form, then there is only one such normal form. * Returns value in given model (Model hs)
* Normal Form: Every expression of typed logic * Most cases similar to before though return
can be reduced to a normal form (not true of Bools rather than logical formulas.

untyped lambda calculus)

* Big differences in determiners

Questions?

