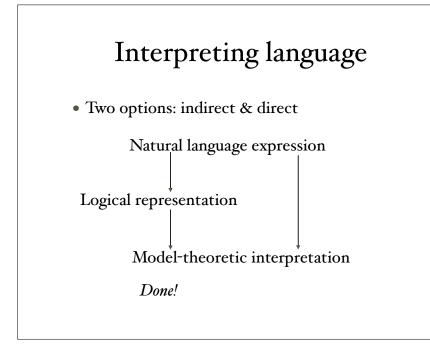
Lecture 13: Generalized Quantifiers

CS 181O Spring 2016 Kim Bruce

Summary


- IfSent:: Sent -> LF (= Formula Term)
 s1 = Sent(NP1 Some Boy) (VP1 Admired Goldilocks)
 - lfSent s1 = E x1 conj[boy[x1],admire[x1,Goldilocks]]
- evl:: Eq a => Evaluates formula in a model

 [a] -> Domain
 Interp a -> interpretation of relation symbols
 FInterp a -> interpretation of function symbols
 Lookup a -> interpretation of variables
 Formula Term -> Bool

Evaluating

- where
 - domain = entities = [A..Z,UnSpec]
 - into in MCWPL.hs gives values for all relation symbols
 - fint3 gives values for all constants (functions)
 - asso gives value for variables
- evl entities into fint3 asso (lfSent s1) returns meaning of s1 in model
- See code!!!

Direct Interpretation

Why do the second?

- Principle of compositionally:
 - Meaning of whole composed from meaning of parts
 - Want to preserve structure of sentences.
 - Every girl liked a dog
 - $\forall x (girl(x) \rightarrow \exists y(dog(y) \land liked(x,y)))$
 - Draw parse trees!
- Problems with general quantifiers

Generalized Quantifiers

- Approach due to Barwise & Cooper (1981)
- Quantifiers are binary relations over power set of domain of discourse.
 - Every dog barked: $\{x \mid dog(x)\} \subseteq \{x: barked(x)\}$
 - A dog barked: $\{x \mid dog(x)\} \cap \{x: barked(x)\} \neq \emptyset$
 - Most dogs barked: |{x | dog(x)}∩ {x: barked(x)}| > 0.5*|{x | dog(x)}

Conditions on Quantifiers

- Write D_EAB to stand for determiner expression (like those on previous slide) with E the domain of discourse, A the restriction and B its body.
 - E.g., "Every dog barked" has dog(x) as restriction and barked(x) as the body.
 - Similarly for "A dog barked" or "Most dogs barked"

Conditions on Quantifiers

- Require:
 - EXT: For all A, $B \subseteq E \subseteq E'$, $D_EAB \Leftrightarrow D_{E'}AB$
 - Extension
 - Expanding the domain makes no difference to truth if A, B fixed.
 - Really, only $A\cup B$ matters
 - CONS: For all A, $B \subseteq E \subseteq E'$, $D_EAB \Leftrightarrow D_{E'}A(A \cap B)$
 - Conservativity
 - For the body, only the elements in the body matter
 - Not hold of "Only dogs barked"
 - EXT + CONS \Rightarrow Only A-B and A \cap B matter in determining truth of D_EAB

Expressing Quantifiers

- Quantifiers can be expressed using only $|A \cap B|$ and |A B|
 - All A are $B \Rightarrow |A B| = 0$
 - Some A are $B \implies |A \cap B| > o$
 - Most A are $B \Rightarrow |A \cap B| > |A B|$

Further Conditions

• For quantifiers on quantity:

 ISOM: If f is a bijection from E to E', then D_EAB ⇔ D_{E'} f[A] f[B] Questions?