Lecture 13: Semantics of Predicate Logic & Generalized Quantifiers

> CS 181O Spring 2016 Kim Bruce

Some slide content taken from Unger and Michaelis

Semantics of Predicate Logic

- Now ready to show interpretations in a model.
- See file Model.hs (and Model2.hs) for examples of models of language in FSynF.hs
 - D = {A,B,C,...,Z,Unspec}
 - Because declared as Bounded, can refer to as [minBound..maxBound]
 - Associate constants with elements of D (= Entity)

Model Encoding

- Includes functions to convert from lists to oneplace characteristic functions (i.e., for unary relations)
 - Characteristic functions for binary and ternary relations are Curried (e.g., Entity -> Entity -> Bool)
 - Ignore passivize and self for now.

Semantics of Predicate Logic

- Interpretation Functions defined
 - int $_{\circ}$ takes relation name and list of entities and returns value (according to Model)
 - LookUp is type of assignments of values to variables
 - change update a variable assignment
 - Function eval takes a domain (list of elts), an interpretation of relational symbols, a variable assignment, and a formula and tells whether true or false.
 - eval does NOT handle functions, the only terms are variables!!! More later
 - Helper function eval' uses fixed model and interp of relations

From MCWPL.bs

Including Terms

- Function of type FInterp takes function name and list of args (from domain) and returns value in domain of model (*see fint1 plus*)
- liftLookUp takes assignment of meaning to function expressions, assignment of values to variables and a term, and returns its value.
- eval takes model domain, interpretation of relation symbols, interp of function symbols, & assignment of value to variables and formula and returns whether true or false.

Evaluating formulas

• After loading MCWPL:

*MCWPL> evl entities int3 fint2 ass1 formula3
False

*MCWPL> evl entities int3 fint2 ass1 formula4
True

Interpreting language

• Two options: indirect & direct

Natural language expression

Logical representation

Model-theoretic interpretation

Done!

Why do the second?

- Principle of compositionally:
 - Meaning of whole composed from meaning of parts
 - Want to preserve structure of sentences.
 - Every girl liked a dog
 - $\forall x (girl(x) \rightarrow \exists y(dog(y) \land liked(x,y)))$
 - Draw parse trees!
- Problems with general quantifiers

Generalized Quantifiers

- Approach due to Barwise & Cooper (1981)
- Quantifiers are binary relations over power set of domain of discourse.
 - Every dog barked: $\{x \mid dog(x)\} \subseteq \{x: barked(x)\}$
 - A dog barked: $\{x \mid dog(x)\} \cap \{x: barked(x)\} \neq \emptyset$
 - Most dogs barked: $|\{x \mid dog(x)\} \cap \{x: barked(x)\}| > 0.5^* |\{x \mid dog(x)\}$

Conditions on Quantifiers

- Write D_EAB to stand for determiner expression (like those on previous slide) with E the domain of discourse, A the restriction and B its body.
 - E.g., "Every dog barked" has dog(x) as restriction and barked(x) as the body.
 - Similarly for "A dog barked" or "Most dogs barked"

Conditions on Quantifiers

- Require:
 - EXT: For all A, $B \subseteq E \subseteq E'$, $D_EAB \Leftrightarrow D_{E'}AB$
 - Extension
 - Expanding the domain makes no difference to truth if A, B fixed.
 - Really, only $A \cup B$ matters
 - CONS: For all A, $B \subseteq E \subseteq E'$, $D_EAB \Leftrightarrow D_{E'}A(A \cap B)$
 - Conservativity
 - For the body, only the elements in the body matter
 - Not hold of "Only dogs barked"
 - EXT + CONS \Rightarrow Only A-B and A \cap B matter in determining truth of D_EAB

Expressing Quantifiers

- Quantifiers can be expressed using only $|A \cap B|$ and |A B|
 - All A are $B \Rightarrow |A B| = 0$
 - Some A are $B \implies |A \cap B| > o$
 - Most A are $B \Rightarrow |A \cap B| > |A B|$

