
Lecture 12: Language to Logic
CS 181O

Spring 2016
Kim Bruce

Some slide content taken from Unger and Michaelis

Last Time …
• Let e be type of elements in universe, t be

truth values.

• Type of sentence is t

• Meaning and types of determiners
• “a” ⇒ λQ: e → t. λP: e → t. ∃x: e. (Q(x) ∧P(x))

• “every” ⇒ λQ: e → t. λP: e → t. ∀x: e. (Q(x) → P(x))

• “the” ⇒ λP: e → t. λQ: e → t.  
 ∃x: e. ∀y: e. ((P (y) ↔ x = y) ∧ Q(x))

• All have type (e → t) → (e → t) → t

More types:

• Type of determiner: (e → t) → (e → t) → t

• Type of Noun?
• e → t

• Type of noun phrase?
• (e → t) → t

• Type of verb phrase?
• e → t

• Type of sentence? t!

Natural Language Semantics

• Take grammar from lecture 6 and translate
sentences to predicate logic.

• Use lambda calculus for semantics of phrases.

• Compose using function application.

• Meaning of sentence is formula of predicate
logic.

Grammar from lecture 6

• S → NP VP

• NP → Snow White | Alice | Dorothy | Goldilocks | 
 DET CN | DET RCN

• DET → the | every | some | no

• CN → girl | boy | princess | dwarf | giant | sword | dagger

• RCN → CN that VP | CN that NP TV

• VP → laughed | cheered | shuddered | TV NP | DV NP NP

• TV → loved | admired | helped | defeated | caught

• DV → gave

Syntax
• Review FSynF.hs

data Term = Var Variable | Struct String [Term]
 deriving (Eq,Ord)
data Formula a = Atom String [a]
 | Eq a a
 | Neg (Formula a)
 | Impl (Formula a) (Formula a)
 | Equi (Formula a) (Formula a)
 | Conj [Formula a]
 | Disj [Formula a]
 | Forall Variable (Formula a)
 | Exists Variable (Formula a)
 deriving Eq

Translating
type LF = Formula Term — LF is logical formula

lfSent :: Sent -> LF
lfSent (Sent np vp) = (lfNP np) (lfVP vp)

lfNP :: NP -> (Term -> LF) -> LF
lfNP SnowWhite = \ p -> p (Struct "SnowWhite" [])
lfNP Alice = \ p -> p (Struct "Alice" [])
lfNP Dorothy = \ p -> p (Struct "Dorothy" [])
lfNP Goldilocks = \ p -> p (Struct "Goldilocks" [])
lfNP LittleMook = \ p -> p (Struct "LittleMook" [])
lfNP Atreyu = \ p -> p (Struct "Atreyu" [])
lfNP (NP1 det cn) = (lfDET det) (lfCN cn)
lfNP (NP2 det rcn) = (lfDET det) (lfRCN rcn)

From MCWPL.hs

Translating
lfVP :: VP -> Term -> LF
lfVP Laughed = \ t -> Atom "laugh" [t]
lfVP Cheered = \ t -> Atom "cheer" [t]
lfVP Shuddered = \ t -> Atom "shudder" [t]

lfVP (VP1 tv np) =
 \ subj -> lfNP np (\ obj -> lfTV tv (subj,obj))
lfVP (VP2 dv np1 np2) =
 \ subj -> lfNP np1 (\ iobj -> lfNP np2 (\ dobj ->
 lfDV dv (subj,iobj,dobj)))

lfTV :: TV -> (Term,Term) -> LF
lfTV Loved = \ (t1,t2) -> Atom "love" [t1,t2]
lfTV Admired = \ (t1,t2) -> Atom "admire" [t1,t2]
lfTV Helped = \ (t1,t2) -> Atom "help" [t1,t2]
lfTV Defeated = \ (t1,t2) -> Atom "defeat" [t1,t2]

Translating
lfDV :: DV -> (Term,Term,Term) -> LF
lfDV Gave = \ (t1,t2,t3) -> Atom "give" [t1,t2,t3]

lfCN :: CN -> Term -> LF
lfCN Girl = \ t -> Atom "girl" [t]
lfCN Boy = \ t -> Atom "boy" [t]

lfCN Princess = \ t -> Atom "princess" [t]
lfCN Dwarf = \ t -> Atom "dwarf" [t]
lfCN Giant = \ t -> Atom "giant" [t]
lfCN Wizard = \ t -> Atom "wizard" [t]
lfCN Sword = \ t -> Atom "sword" [t]
lfCN Dagger = \ t -> Atom "dagger" [t]

Translating

• Rather than continuing to paste code here, I'll
just refer you to the file MCWPL.hs

• Notice that there are two evaluation functions.
One, eval, just interprets formulas that involve
variables, while the other, evl, evaluates
formulas that involve function symbols as well.

Translating sentences

• MCWPL.hs includes three sentences
• lf1: “Some dwarf defeated some giant”

lfSent (Sent (NP1 Some Dwarf)
 (VP1 Defeated (NP1 Some Giant)))

• lf2: “The wizard that Dorothy admired laughed”
lfSent (Sent (NP2 The (RCN2 Wizard That Dorothy Admired))
 Laughed)

• lf3: “The princess that helped Alice shuddered
lfSent (Sent (NP2 The (RCN1 Princess That (VP1 Helped Alice)))
 Shuddered)

Translating sentences

• MCWPL.hs includes sample sentences

• lf1:
“Some dwarf defeated some giant” ⇒

 Sent (NP1 Some Dwarf) (VP1 Defeated (NP1 Some Giant))

lfSent (…) ⇒
 E x2 conj[dwarf[x2],E x1 conj[giant[x1],defeat[x2,x1]]]
i.e.

 ∃x2 (dwarf(x2) ∧ ∃x1 (giant(x1) ∧ defeat(x2, x1)))

Translating sentences

• lf2:
“The wizard that Dorothy admired laughed” ⇒

Sent (NP2 The (RCN2 Wizard That Dorothy Admired)) Laughed

lfSent (…) ⇒
 E x1 conj[A x2 (conj[wizard[x2],
 admire[Dorothy,x2]]<=>x1==x2), laugh[x1]]
i.e.
∃x1 (∀x2 ((wizard(x2) ∧ admire (Dorothy (x2))) ↔ x1 = x2) ∧
 laugh(x1))

Translating sentences

• lf3:
“The princess that helped Alice shuddered” ⇒

Sent (NP2 The (RCN1 Princess That (VP1 Helped Alice))

lfSent (…) ⇒
 E x1 conj[A x2 (conj[princess[x2],help[x2,Alice]]<=>x1==x2),
 shudder[x1]]
i.e.
∃x1 ((∀x2 ((princess(x2) ∧ help(x2,Alice)) ↔ x1 = x2) ∧
 shudder(x1))

Semantics of Predicate Logic

• Now ready to show interpretations in a model.

• See file Model.hs (and Model2.hs) for examples
of models of language in FSynF.hs
• D = {A,B,C,…,Z,Unspec}

• Because declared as Bounded, can refer to as [minBound..maxBound]

• Associate constants with elements of D (= Entity)

Model Encoding

• Includes functions to convert from lists to one-
place characteristic functions (i.e., for unary
relations)
• Characteristic functions for binary and ternary relations

are Curried (e.g., Entity -> Entity -> Bool)

• Ignore passivize and self for now.

