
Lecture 11: Language to Logic

CS 181O
Spring 2016
Kim Bruce

Some slide content taken from Unger and Michaelis

Predicate Logic in Haskell
x, y, z :: Variable
x = Variable "x" []
y = Variable "y" []
z = Variable "z" []

data Formula a = Atom String [a]
 | Eq a a
 | Neg (Formula a)
 | Impl (Formula a) (Formula a)
 | Equi (Formula a) (Formula a)
 | Conj [Formula a]
 | Disj [Formula a]
 | Forall Variable (Formula a)
 | Exists Variable (Formula a)
 deriving Eq

type a is type of terms

throw in extra connective

Adding Terms

data Term = Var Variable | Struct String [Term]
 deriving (Eq,Ord)

instance Show Term where
 show (Var v) = show v
 show (Struct s []) = s
 show (Struct s ts) = s ++ show ts

tx, ty, tz, one, two, sum :: Term
tx = Var x
ty = Var y
tz = Var z

one = Struct "1" []
two = Struct "2" []
sum12 = Struct "Plus" [one,two]

simple :: Formula Term
simple = Eq sum12 two

constants are 0-ary functions

Formulas with terms
simple = Eq sum12 two

univ = Forall x (Eq tx two)

eqTest = Forall x (Forall y(Eq sumxy two))

-- relation LessThan on one, two
reln = Atom "LessThan" [one, two]

Hold off implementing
semantics for Predicate Logic

Interpreting language

• Two options: indirect & direct

Natural language expression

Logical representation

Model-theoretic interpretation

Indirect First

• A challenge:
• “Fido likes a bone” translates as

• ∃b. (Bone(b) ∧ Likes(f,b)

• Translate “likes a bone” as λd. ∃b. (Bone(b) ∧ Likes(d,b)) then  
(λd. ∃b. (Bone(b) ∧ Likes(d,b)))(f) gives final meaning (where f is Fido)

• Compositional
• Look at parse trees: apply predicate to subject

Indirect First

• Quantifiers look problematic:
• “Fido likes a bone” translates as

• ∃b. (Bone(b) ∧ Likes(f,b)

• Translate “likes a bone” as λd. ∃b. (Bone(b) ∧ Likes(d,b)) then  
(λd. ∃b. (Bone(b) ∧ Likes(d,b)))(f) gives final meaning

• “Every dog likes a bone” translates as
• ∀d. (Dog(d) → ∃b. (Bone(b) ∧ Likes(d,b)))

• Is this compositional?
• How does this come from “likes a bone” and “every dog”?

• Look at parse trees of original and translation

Solution

• Replace individual by the set of all properties
they satisfy.
• Ex. Instead of constant fido, represent as {P | P(fido)}

• Though of course use characteristic function instead: 
 λP. P(fido)

• Every dog: λP.∀d.(Dog(d) → P(d))

• Likes a bone: λx. ∃b. (Bone(b) ∧ Likes(x,b))

Solution

• “Fido”: λP. P(fido)

• “Every dog”: λP.∀d.(Dog(d) → P(d))

• “Likes a bone”: λx. ∃b. (Bone(b) ∧ Likes(x,b))

• Fido likes a bone: ⇒
• (λP. P(fido))(λx. ∃b. (Bone(b) ∧ Likes(x,b))) =β  
(λx. ∃b. (Bone(b) ∧ Likes(x,b)))(fido) =β  
 ∃b. (Bone(b) ∧ Likes(fido,b)))

• Every dog likes a bone ⇒
• (λP.∀d.(Dog(d) → P(d)))(λx. ∃b. (Bone(b) ∧ Likes(x,b))) =β  

 ∀d. (Dog(d) → (λx. ∃b. (Bone(b) ∧ Likes(x,b)))(d)) =β  
 ∀d. (Dog(d) → ∃b. (Bone(b) ∧ Likes(d,b)))

Quantifiers

• Other quantifiers:
• Likes a bone: λx. ∃b. (Bone(b) ∧ Likes(x, b))

• A dog: λP. ∃d. (Dog(d) ∧P(d))

• A dog likes a bone?

• So what is meaning of “a” or “all” or “the”?
• “a” ⇒ λQ. λP. ∃x. (Q(x) ∧P(x))

• “every” ⇒ λQ. λP. ∀x. (Q(x) → P(x))

• “the” ⇒ λP λQ∃x∀y[[P (y) ↔ x = y] ∧ Q(x)]

Types
• Let e be type of elements in universe, t be

truth values.

• Type of sentence is t

• Types of Determiners?
• “a” ⇒ λQ: e → t. λP: e → t. ∃x: e. (Q(x) ∧P(x))

• “every” ⇒ λQ: e → t. λP: e → t. ∀x: e. (Q(x) → P(x))

• “the” ⇒ λP: e → t. λQ: e → t.  
 ∃x: e. ∀y: e. ((P (y) ↔ x = y) ∧ Q(x))

• All have type (e → t) → (e → t) → t

More types:

• Type of determiner: (e → t) → (e → t) → t

• Type of Noun?
• e → t

• Type of noun phrase?
• (e → t) → t

• Type of verb phrase?
• e → t

• Type of sentence? t!

Natural Language Semantics

• Take grammar from lecture 6 and translate
sentences to predicate logic.

• Use lambda calculus for semantics of phrases.

• Compose using function application.

• Meaning of sentence is formula of predicate
logic.

Grammar from lecture 6

• S → NP VP

• NP → Snow White | Alice | Dorothy | Goldilocks | 
 DET CN | DET RCN

• DET → the | every | some | no

• CN → girl | boy | princess | dwarf | giant | sword | dagger

• RCN → CN that VP | CN that NP TV

• VP → laughed | cheered | shuddered | TV NP | DV NP NP

• TV → loved | admired | helped | defeated | caught

• DV → gave

Syntax
• Review FSynF.hs

data Term = Var Variable | Struct String [Term]
 deriving (Eq,Ord)
data Formula a = Atom String [a]
 | Eq a a
 | Neg (Formula a)
 | Impl (Formula a) (Formula a)
 | Equi (Formula a) (Formula a)
 | Conj [Formula a]
 | Disj [Formula a]
 | Forall Variable (Formula a)
 | Exists Variable (Formula a)
 deriving Eq

Translating
type LF = Formula Term

lfSent :: Sent -> LF
lfSent (Sent np vp) = (lfNP np) (lfVP vp)

lfNP :: NP -> (Term -> LF) -> LF
lfNP SnowWhite = \ p -> p (Struct "SnowWhite" [])
lfNP Alice = \ p -> p (Struct "Alice" [])
lfNP Dorothy = \ p -> p (Struct "Dorothy" [])
lfNP Goldilocks = \ p -> p (Struct "Goldilocks" [])
lfNP LittleMook = \ p -> p (Struct "LittleMook" [])
lfNP Atreyu = \ p -> p (Struct "Atreyu" [])
lfNP (NP1 det cn) = (lfDET det) (lfCN cn)
lfNP (NP2 det rcn) = (lfDET det) (lfRCN rcn)

Translating
lfVP :: VP -> Term -> LF
lfVP Laughed = \ t -> Atom "laugh" [t]
lfVP Cheered = \ t -> Atom "cheer" [t]
lfVP Shuddered = \ t -> Atom "shudder" [t]

lfVP (VP1 tv np) =
 \ subj -> lfNP np (\ obj -> lfTV tv (subj,obj))
lfVP (VP2 dv np1 np2) =
 \ subj -> lfNP np1 (\ iobj -> lfNP np2 (\ dobj ->
 lfDV dv (subj,iobj,dobj)))

lfTV :: TV -> (Term,Term) -> LF
lfTV Loved = \ (t1,t2) -> Atom "love" [t1,t2]
lfTV Admired = \ (t1,t2) -> Atom "admire" [t1,t2]
lfTV Helped = \ (t1,t2) -> Atom "help" [t1,t2]
lfTV Defeated = \ (t1,t2) -> Atom "defeat" [t1,t2]

Translating
lfDV :: DV -> (Term,Term,Term) -> LF
lfDV Gave = \ (t1,t2,t3) -> Atom "give" [t1,t2,t3]

lfCN :: CN -> Term -> LF
lfCN Girl = \ t -> Atom "girl" [t]
lfCN Boy = \ t -> Atom "boy" [t]

lfCN Princess = \ t -> Atom "princess" [t]
lfCN Dwarf = \ t -> Atom "dwarf" [t]
lfCN Giant = \ t -> Atom "giant" [t]
lfCN Wizard = \ t -> Atom "wizard" [t]
lfCN Sword = \ t -> Atom "sword" [t]
lfCN Dagger = \ t -> Atom "dagger" [t]

Translating

• Rather than continuing to paste code here, I'll
just refer you to the file MCWPL.hs

• Notice that there are two evaluation functions.
One, eval, just interprets formulas that involve
variables, while the other, evl, evaluates
formulas that involve function symbols as well.

Questions?

