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Some slide content taken from Unger and Michaelis

Predicate Logic in Haskell
x, y, z :: Variable
x = Variable "x" []
y = Variable "y" []
z = Variable "z" []

data Formula a = Atom String [a]
               | Eq a a
               | Neg  (Formula a)
               | Impl (Formula a) (Formula a) 
               | Equi (Formula a) (Formula a)
               | Conj [Formula a]
               | Disj [Formula a] 
               | Forall Variable (Formula a)
               | Exists Variable (Formula a)
               deriving Eq

type a is type of terms

throw in extra connective

Adding Terms

data Term = Var Variable | Struct String [Term] 
            deriving (Eq,Ord)

instance Show Term where 
  show (Var v)       = show v 
  show (Struct s []) = s
  show (Struct s ts) = s ++ show ts

tx, ty, tz, one, two, sum :: Term 
tx = Var x
ty = Var y
tz = Var z

one = Struct "1" []
two = Struct "2" []
sum12 = Struct "Plus" [one,two]

simple :: Formula Term
simple = Eq sum12 two

constants are 0-ary functions

Formulas with terms
simple = Eq sum12 two

univ = Forall x (Eq tx two)

eqTest = Forall x (Forall y(Eq sumxy two))

-- relation LessThan on one, two
reln = Atom "LessThan" [one, two] 



Hold off implementing 
semantics for Predicate Logic

Interpreting language

• Two options: indirect & direct

Natural language expression

Logical representation

Model-theoretic interpretation

Indirect First

• A challenge:
• “Fido likes a bone” translates as

• ∃b. (Bone(b) ∧ Likes(f,b)

• Translate “likes a bone” as λd. ∃b. (Bone(b) ∧ Likes(d,b)) then  
(λd. ∃b. (Bone(b) ∧ Likes(d,b)))(f) gives final meaning (where f is Fido)

• Compositional
• Look at parse trees: apply predicate to subject

Indirect First

• Quantifiers look problematic:
• “Fido likes a bone” translates as

• ∃b. (Bone(b) ∧ Likes(f,b)

• Translate “likes a bone” as λd. ∃b. (Bone(b) ∧ Likes(d,b)) then  
(λd. ∃b. (Bone(b) ∧ Likes(d,b)))(f) gives final meaning

• “Every dog likes a bone” translates as
• ∀d. (Dog(d) → ∃b. (Bone(b) ∧ Likes(d,b)))

• Is this compositional?
• How does this come from “likes a bone” and “every dog”?

• Look at parse trees of original and translation



Solution

• Replace individual by the set of all properties 
they satisfy.
• Ex. Instead of constant fido, represent as {P | P(fido)}

• Though of course use characteristic function instead: 
        λP. P(fido)

• Every dog:  λP.∀d.(Dog(d) → P(d))

• Likes a bone: λx. ∃b. (Bone(b) ∧ Likes(x,b))

Solution

• “Fido”: λP. P(fido)

• “Every dog”:  λP.∀d.(Dog(d) → P(d))

• “Likes a bone”: λx. ∃b. (Bone(b) ∧ Likes(x,b))

• Fido likes a bone: ⇒
• (λP. P(fido))(λx. ∃b. (Bone(b) ∧ Likes(x,b))) =β  
(λx. ∃b. (Bone(b) ∧ Likes(x,b)))(fido) =β  
                                ∃b. (Bone(b) ∧ Likes(fido,b)))

• Every dog likes a bone ⇒
• (λP.∀d.(Dog(d) → P(d)))(λx. ∃b. (Bone(b) ∧ Likes(x,b))) =β  

                                ∀d. (Dog(d) → (λx. ∃b. (Bone(b) ∧ Likes(x,b)))(d)) =β  
                                ∀d. (Dog(d) → ∃b. (Bone(b) ∧ Likes(d,b)))

Quantifiers

• Other quantifiers:
• Likes a bone: λx. ∃b. (Bone(b) ∧ Likes(x, b))

• A dog:  λP. ∃d. (Dog(d) ∧P(d))

• A dog likes a bone?

• So what is meaning of “a” or “all” or “the”?
• “a” ⇒ λQ. λP. ∃x. (Q(x) ∧P(x))

• “every” ⇒ λQ. λP. ∀x. (Q(x) → P(x))

• “the” ⇒ λP λQ∃x∀y[[P (y) ↔ x = y] ∧ Q(x)]

Types
• Let e be type of elements in universe, t be 

truth values.

• Type of sentence is t

• Types of Determiners?
• “a” ⇒ λQ: e → t. λP: e → t. ∃x: e. (Q(x) ∧P(x))

• “every” ⇒ λQ: e → t. λP: e → t. ∀x: e. (Q(x) → P(x))

• “the” ⇒ λP: e → t. λQ: e → t.  
                         ∃x: e. ∀y: e. ((P (y) ↔ x = y) ∧ Q(x))

• All have type (e → t) → (e → t) → t



More types:

• Type of determiner: (e → t) → (e → t) → t

• Type of Noun?
• e → t

• Type of noun phrase?
• (e → t) → t

• Type of verb phrase?
• e → t

• Type of sentence?  t!

Natural Language Semantics

• Take grammar from lecture 6 and translate 
sentences to predicate logic.

• Use lambda calculus for semantics of phrases.

• Compose using function application.

• Meaning of sentence is formula of predicate 
logic.

Grammar from lecture 6

• S → NP VP

• NP → Snow White | Alice | Dorothy | Goldilocks | 
             DET CN | DET RCN

• DET → the | every | some | no

• CN → girl | boy | princess | dwarf | giant | sword | dagger

• RCN → CN that VP | CN that NP TV

• VP → laughed | cheered | shuddered | TV NP | DV NP NP

• TV →  loved | admired | helped | defeated | caught

• DV → gave

Syntax
• Review FSynF.hs

data Term = Var Variable | Struct String [Term] 
            deriving (Eq,Ord)
data Formula a = Atom String [a]
               | Eq a a
               | Neg  (Formula a)
               | Impl (Formula a) (Formula a) 
               | Equi (Formula a) (Formula a)
               | Conj [Formula a]
               | Disj [Formula a] 
               | Forall Variable (Formula a)
               | Exists Variable (Formula a)
               deriving Eq



Translating
type LF = Formula Term

lfSent :: Sent -> LF
lfSent (Sent np vp) = (lfNP np) (lfVP vp)

lfNP :: NP -> (Term -> LF) -> LF
lfNP SnowWhite     = \ p -> p (Struct "SnowWhite"  [])
lfNP Alice         = \ p -> p (Struct "Alice"      [])
lfNP Dorothy       = \ p -> p (Struct "Dorothy"    [])
lfNP Goldilocks    = \ p -> p (Struct "Goldilocks" [])
lfNP LittleMook    = \ p -> p (Struct "LittleMook" [])
lfNP Atreyu        = \ p -> p (Struct "Atreyu"     [])
lfNP (NP1 det cn)  = (lfDET det) (lfCN cn) 
lfNP (NP2 det rcn) = (lfDET det) (lfRCN rcn) 

Translating
lfVP :: VP -> Term -> LF
lfVP Laughed   = \ t -> Atom "laugh"   [t]
lfVP Cheered   = \ t -> Atom "cheer"   [t]
lfVP Shuddered = \ t -> Atom "shudder" [t]

lfVP (VP1 tv np) =
    \ subj -> lfNP np (\ obj -> lfTV tv (subj,obj))
lfVP (VP2 dv np1 np2) = 
    \ subj -> lfNP np1 (\ iobj -> lfNP np2 (\ dobj -> 
                          lfDV dv (subj,iobj,dobj)))

lfTV :: TV -> (Term,Term) -> LF
lfTV Loved    = \ (t1,t2) -> Atom "love"   [t1,t2]
lfTV Admired  = \ (t1,t2) -> Atom "admire" [t1,t2]
lfTV Helped   = \ (t1,t2) -> Atom "help"   [t1,t2]
lfTV Defeated = \ (t1,t2) -> Atom "defeat" [t1,t2]

Translating
lfDV :: DV -> (Term,Term,Term) -> LF
lfDV Gave = \ (t1,t2,t3) -> Atom "give" [t1,t2,t3]

lfCN :: CN -> Term -> LF
lfCN Girl     = \ t -> Atom "girl"     [t]
lfCN Boy      = \ t -> Atom "boy"      [t]

lfCN Princess = \ t -> Atom "princess" [t] 
lfCN Dwarf    = \ t -> Atom "dwarf"    [t] 
lfCN Giant    = \ t -> Atom "giant"    [t] 
lfCN Wizard   = \ t -> Atom "wizard"   [t] 
lfCN Sword    = \ t -> Atom "sword"    [t] 
lfCN Dagger   = \ t -> Atom "dagger"   [t] 

Translating

• Rather than continuing to paste code here, I'll 
just refer you to the file MCWPL.hs

• Notice that there are two evaluation functions. 
One, eval, just interprets formulas that involve 
variables, while the other, evl, evaluates 
formulas that involve function symbols as well.



Questions?


