Lecture 11: Language to Logic

CS 1810
Spring 2016
Kim Bruce

Some slide content taken from Unger and Michaelis

Predicate Logic in Haskell

X, Y, z :: Variable

x = Variable "x" [1
y = Variable "y" {1
z = Variable "z" {1

data Formula a = Atom String {a} type a is type of terms
|[Eqaa
| Neg (Formula a)
| Impl (Formula a) (Formula a)
| Equi (Formula a) (Formula a) throw in extra connective
| Conj [Formula a}
| Disj {Formula a}
| Forall Variable (Formula a)
| Exists Variable (Formula a)
deriving Eq

Adding Terms

data Term = Var Variable | Struct String [Term}

deriving (Eq,0Ord)

instance Show Term where

show (Varv) =showv

show (Struct s [P =s

show (Struct s ts) = s ++ show ts constants are o-ary functions
tx, ty, tz, one, two, sum :: Term /
tx = Var x one = Struct "1" [}
ty =Vary two = Struct "2" {}
tz = Var z sumi12 = Struct "Plus" {one,twol

simple :: Formula Term
simple = Eq sumi12 two

Formulas with terms

simple = Eq sum12 two
univ = Forall x (Eq tx two)
eqTest = Forall x (Forall y(Eq sumxy two))

-- relation LessThan on one, two
reln = Atom "LessThan" [one, twol

Hold off implementing
semantics for Predicate Logic

Interpreting language

¢ Two options: indirect & direct

Natural language expression

Logical representation

Model-theoretic interpretation

Indirect First

e A challenge:

e “Fido likes a bone” translates as
o 3b. Bone(b) A Likes(f;b)
o Translate “likes a bone” as Ad. 3b. (Bone(b) A Likes(d,b)) then
(Ad. 3b. (Bone(b) A Likes(d,b))() gives final meaning (where fis Fido)
e Compositional

o Look at parse trees: apply predicate to subject

Indirect First

* Quantifiers look problematic:

e “Fido likes a bone” translates as
e Jb. (Bone(b) A Likes(f,b)

o ‘Translate “likes a bone” as Ad. 3b. (Bone(b) A Likes(d,b)) then
(Ad. 3b. Bone(b) A Likes(d,b))(D) gives final meaning

e “Every dog likes a bone” translates as
o Vd. (Dog(d) — 3b. (Bone(b) A Likes(d,b)))
e Is this compositional?
e How does this come from “likes a bone” and “every dog™?

e Look at parse trees of original and translation

Solution

* Replace individual by the set of all properties
they satisfy.
¢ Ex. Instead of constant fido, represent as {P | P(fido)}

o Though of course use characteristic function instead:
\P. P(fido)

¢ Every dog: APVd.(Dog(d) — P(d)
o Likes a bone: Ax. 3b. (Bone(b) A Likes(x,b))

Solution

¢ “Fido”: AP. P(fido)
e “Every dog”: APVd.(Dog(d) — P(d))
o “Likes a bone”: Ax. 3b. (Bone(b) A Likes(x,b))

¢ Fido likes a bone: =
e (AP P(fido))(Ax. 3b. (Bone(b) A Likes(x,b)) =p
(Ax. 3b. (Bone(b) A Likes(x,b)(fido) =p
3b. Bone(b) A Likes(fido,b)))

 Every dog likes a bone =

o (\PVd.(Dog(d) — P(d))(x. Ib. (Bone(b) A Likes(x,b))) =p
Vd. (Dog(d) = (x. 3b. (Bone(b) A Likes(x,b))(d)) =p
Vd. (Dog(d) — 3b. (Bone(b) A Likes(d,b)))

Quantifiers

* Other quantifiers:
o Likes a bone: Ax. 3b. (Bone(b) A Likes(x, b))
* Adog: AP.3d. (Dog(d) AP(d))
e A dog likes a bone?
 So what is meaning of “a” or “all” or “the”?
e “a” = AQ. AP Ix. (Q® APX)
* “every” = MQ. AP. Vx. (Q&x) — P(x)
* “the” = AP MQIxVyI[P (y) <= x =y} A Q1

Types

* Let e be type of elements in universe, t be
truth values.

* Type of sentence is t
* Types of Determiners?
e ‘@=Me—t.A\P:e—t Ixe (QX APK)
° “‘every” = AMQ:e = t. A\P:e = t. Vxi e. (Qx) — P(x))

e “the”=>AP:e = t.MQ:e —t.
Ix:e. Vy:e. (P () <> x=y) A Q&)

e All have type (e = t) = (e = t) = ¢t

More types:

* Type of determiner: (e = t) = (e > t) > t

* Type of Noun?

e e—>t

* Type of noun phrase?

e (e—=t)—t

e Type of verb phrase?

e e—>t

* Type of sentence? t!

Natural Language Semantics

e Take grammar from lecture 6 and translate
sentences to predicate logic.

* Use lambda calculus for semantics of phrases.
e Compose using function application.

* Meaning of sentence is formula of predicate
logic.

Grammar from lecture 6

e S—>NPVP

e NP — Snow White | Alice | Dorothy | Goldilocks |
DET CN I DET RCN

e DET — thel every | some | no

e CN — girl | boy | princess | dwarf | giant | sword | dagger

* RCN — CN that VP | CN that NPTV

e VP — laughed | cheered | shuddered | TV NP | DV NP NP
e TV — loved | admired | helped | defeated | caught

* DV — gave

Syntax

e Review FSynF.hs

data Term = Var Variable | Struct String {Term}
deriving (Eq,Ord)

data Formula a = Atom String {a}
|[Eqaa
| Neg (Formula a)
| Impl (Formula a) (Formula a)
| Equi (Formula a) (Formula a)
| Conj {Formula a}
| Disj {Formula al
| Forall Variable (Formula a)
| Exists Variable (Formula a)
deriving Eq

Translating

type LF = Formula Term

IfSent :: Sent -> LF
1fSent (Sent np vp) = NP np) AfVP vp)

IfNP :: NP -> (Term -> LF) -> LF

IfNP SnowWhite =\ p -> p (Struct "SnowWhite" {D
IfNP Alice =\p->p Struct "Alice" [P

IfNP Dorothy ~ =\p -> p (Struct "Dorothy" {D
IfNP Goldilocks =\ p -> p (Struct "Goldilocks" {}
IfNP LittleMook =\ p -> p (Struct "LittleMook" {D
NP Atreyu ~ =\p -> p (Struct "Atreyu" {D

IfNP (NP1 det cn) = (IfDET det) (IfCN cn)

IfNP (NP2 det rcn) = (fDET det) (fRCN rcn)

Translating
IfVP :: VP -> Term -> LF
IfVP Laughed =\t->Atom "laugh" {t}
IfVP Cheered =\t->Atom "cheer" [t}
1fVP Shuddered =\ t -> Atom "shudder" {t}

IfVP (VP1 tv np) =
\ subj -> IfNP np (\ obj -> If TV tv (subj,obj))
IfVP (VP2 dv np1 np2) =
\ subj -> IfNP np1 (\ iobj -> IfNP np2 (\ dobj ->
IfDV dv (subj,iobj,dobj)))

IfTV :: TV -> (Term, Term) -> LF

IfTV Loved =\ (t1,t2) -> Atom "love" [tr,t2}
IfTV Admired =\ (t1,t2) -> Atom "admire" [tr,t2}
IfTV Helped =\ (t1,t2) -> Atom "help" {tr,t2}
IfTV Defeated =\ (t1,t2) -> Atom "defeat" {t1,t2]

Translating

IfDV :: DV -> (Term,Term, Term) -> LF
IfDV Gave =\ (t1,t2,t3) -> Atom "give" {t1,t2,t31

IfCN :: CN -> Term -> LF
IfCN Girl =\t->Atom "girl" {t}
IfCN Boy =\t->Atom "boy" [t}

IfCN Princess = \ t -> Atom "princess" {t}
IfCN Dwarf =\t->Atom "dwarf" [t}
IfCN Giant =\t->Atom "giant" {t}

IfCN Wizard =\t -> Atom "wizard" {t}
IfCN Sword =\t ->Atom "sword" {t}
IfCN Dagger =\t->Atom "dagger" {c}

Translating

* Rather than continuing to paste code here, I'll
just refer you to the file MCWPL.hs

* Notice that there are two evaluation functions.
One, eval, just interprets formulas that involve
variables, while the other, evl, evaluates
formulas that involve function symbols as well.

Questions?

