Lecture 10: Semantics of
Predicate Logic

CS 1810
Spring 2016
Kim Bruce

Some slide content taken from Unger and Michaelis

Quick Review

Substitution

* Define ¢p[t/x] to be the formula obtained by
replacing each free occurrence of variable x in

¢ with t.
o Expect Vx.¢&x) = ¢lt/x] for every term t
e What about Vx.3yL(x,y) = JyL(yy) ?

More Substitution

* Say that ¢ s free for x in ¢ if no free x leaf in ¢
occurs in the scope of Vy or Jy for any variable
y occurring in t.

¢ ynot free for x in Iy L(x,y)
¢ Only allow substitution ¢p{t/x} if t free for x in ¢

¢ If t not free for x in ¢, rename bound variables to make
substitution legal.

Typed Predicate Calculus

e Variant where bound variables have types
e Ix: T, Vy: U

e Examples:
e Tido bit someone = 3Jx: Person. B(f, x))
e Every dog bites Sally = Vx: Dog. B(x,s))

* Some dogbit Sally = 3x: Dog. B(x,s))

e Can be translated away

Semantics

* More complex than for propositional logic.

e Must interpret all the terms as elements of a
model and determine what tuples satisfy which
relation.

* Then can build up meaning as before with -, A, and v.

* Quantifiers tricker.

Semantics

e A model 7 = (D,]) for a predicate logic has the
tollowing components:

 Non-empty set D called the domain of the model 7.

* For each constant symbol c, there is an element I(c) of
D.

e For each k-ary function symbol f, there is a function
I : Dk — D.

* For each k-ary predicate symbol P, there is a subset I(P)
of Dk,

Semantics

» How do we interpret wif: P(x,y) A VxQ(x,x,y).

e Interpret over domain D of real numbers, with
I(P) = {&x,y) | x<y} and I(Q) ={(u, v, w) [u=v + w}.

e 7= Vy @x Qk, x,7) = Vx Q, x, y))

e What about free variables? Need 4: var — D
lookup table

e Then 7.4 = P(x,y) A Vx Qx, x, y) if and only if
4(x) < 0 and ¢(y) = 0.

Defining Truth!

* Due to my (academic) grandfather: Alfred
Tarski in 1933. Cleaned up in 1956.

* Must separate meta-language from the
language studying.

* Want compositional meaning:
* Meaning of whole depends on meaning of parts.

e Notation: If 4: var — D, x is avble, and a € D,

define ¢fx = al(y) =4 (y) if y £ x
=aify=x

Meanings of terms

* Given a model 7 = (D,I), define meaning of
terms with respect to 4 inductively as follows:

* 41,0 = ¢ (%) for x a variable
e 41,(0) = I(c) for c a constant

o g1, (f(t1,...,tk)) = I(D) (1,(t),..., 91,(t))

Satisfaction

o M. = Plty,...,t0) ff (gr,(t),..., 91,(61)) € I(P)

o Mg t=uiff 41,(0) = 91,0)

o My~ iff My ¥ O.

e Mo=b Ay iff Mg and Z.gE= .

o MoV iff Mg or Mgk

* Mok — iff Mgt or Mgk

o M.9=3x ¢ iff for some a€ED, M 4lx := al = .
o M4 Nx ¢ iff foralla € D, 7 4lx := al = .

e Compositional meaning!!

Properties of Semantics

* Prop: If 4 and 4 " agree on all the free variables
in ¢, then .4 = ¢ if and only it .4 = ¢.

e A wif without free variables is called a sentence.

 Prop: If ¢ is a sentence, then either 7.4 = ¢ for
all 4 or 7.4 = -¢ for all 4, but not both.

¢ So just write 7 = ¢ if ¢ is a sentence.

Examples

e Let 7 have domain D = {x €Qlo < x < 1},

ICT) ={(gp lq<rk
9(x) = 0, ¢(2) = 1/2. Then

e Mgz (T2 Vv x=2)

o=y Vz (LT(y2) vy=2)

Satisfiability

e The set I' is satisfiable if exists a model 7 and
environment ¢ such that Z. 4=y forall y €T

* A formula ¢ is valid if, for all models 7 and
environments ¢, .4 & ¢.

° I' = (readT semantically entails \p) iff
Y is true in every model and environment
which make all the formulas of I true.

* ¢ and 1 are logically equivalent iff ???

Satisfiability Example

* Does Vx -¢ = -Vx ¢

e Reverse?

Predicate Logic in Haskell

Defining Variables:

type Name = String
type Index ={Int}
data Variable = Variable Name Index deriving (Eq,Ord)

instance Show Variable where
show (Variable name {]) = name
show (Variable name {il) = name ++ show i
show (Variable name is) = name ++ showlInts is
where showlnts {1 =""
showlInts {il =showi
showlInts (i:is) = show i ++ "_" ++ showInts is

From FSynFbs

Predicate Logic in Haskell

X,y :: Variable

x = Variable "x" {]
y = Variable "y" {1
z = Variable "z"]

data Formula a = Atom String {al type a is type of terms
|[Eqaa
| Neg (Formula a)
| Impl (Formula a) (Formula a)
| Equi (Formula a) (Formula a) throw in extra connective
| Conj {Formula a}
| Disj {Formula al
| Forall Variable (Formula a)
| Exists Variable (Formula a)
deriving Eq

instance Show a => Show (Formula a) where
show (Atom s{D =s
show (Atom s xs) = s ++ show xs
show (Eq t1 t2) =show t1 ++ "==" ++ show t2
show (Neg form) ='-': (show form)
show (Impl f1 f2) ="(" ++ show fr ++ "==>"
++ show f2 ++)"
show (Equi f1 f2) ="(" ++ show f1 ++ "<=>"
++ show {2 ++ ")"
show (Conj{D ="true"
show (Conj fs) = "conj" ++ show fs
show (Disj {D = "false"
show (Disj fs) = "disj" ++ show fs
show (Forall vf) ="A" ++ showv ++ (' ': show f)

show (Exists v ="E" ++ showv ++ ('": show)

Sample Formulas

All of type Formula Variable

formulao = Atom "R" {x,y}
formular = Forall x (Atom "R" [x,x])
formulaz = Forall x
(Forall y
(Impl (Atom "R" {x,yD (Atom "R" {y;xD))

Adding Terms

data Term = Var Variable | Struct String { Terml

deriving (Eq,Ord)

instance Show Term where

show (Varv) =showv

show (Struct s D = s

show (Struct s ts) = s ++ show ts constants are o-ary functions
tx, ty, tz, one, two, sum :: Term /
tx = Var x one = Struct "1" {]
ty=Vary two = Struct "2" {}
tz=Var z sum = Struct "Plus" [one,two}

simple :: Formula Term
simple = Eq sum two

Questions?

