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Some slide content taken from Unger and Michaelis

Quick Review

Substitution

• Define φ[t/x] to be the formula obtained by 
replacing each free occurrence of variable x in 
φ with t.
• Expect ∀x.φ(x) ⇒ φ[t/x] for every term t

• What about ∀x.∃y.L(x,y) ⇒ ∃y.L(y,y) ?

More Substitution

• Say that t is free for x in φ if no free x leaf in φ 
occurs in the scope of ∀y or ∃y for any variable 
y occurring in t.
• y not free for x in ∃y L(x,y)

• Only allow substitution φ[t/x] if t free for x in φ

• If t not free for x in φ, rename bound variables to make 
substitution legal.



Typed Predicate Calculus

• Variant where bound variables have types
• ∃x: T, ∀y: U

• Examples:

• Fido bit someone       ⇒    ∃x: Person. B(f, x))

• Every dog bites Sally ⇒    ∀x: Dog. B(x,s))

• Some dog bit Sally    ⇒     ∃x: Dog. B(x,s))

• Can be translated away

Semantics

• More complex than for propositional logic.

• Must interpret all the terms as elements of a 
model and determine what tuples satisfy which 
relation.  
• Then can build up meaning as before with ¬, ∧, and ∨.

• Quantifiers tricker.

Semantics

• A model M = (D,I) for a predicate logic has the 
following components:

• Non-empty set D called the domain of the model M. 

• For each constant symbol c, there is an element I(c) of 
D. 

• For each k-ary function symbol f , there is a function 
I(f) : Dk → D. 

• For each k-ary predicate symbol P, there is a subset I(P) 
of Dk.

• How do we interpret wff: P(x,y) ∧ ∀xQ(x,x,y). 

• Interpret over domain D of real numbers, with  
I(P) = {(x,y) | x<y} and I(Q) ={(u, v, w) | u = v + w}. 

• M ⊨ ∀y (∃x Q(x, x, y) → ∀x Q(x, x, y))

• What about free variables?  Need g: var → D

• Then M,g ⊨ P(x, y) ∧ ∀x Q(x, x, y) if and only if 
g(x) < 0 and g(y) = 0.

Semantics

lookup table



Defining Truth!
• Due to my (academic) grandfather:  Alfred 

Tarski in 1933.  Cleaned up in 1956.

• Must separate meta-language from the 
language studying.

• Want compositional meaning:

• Meaning of whole depends on meaning of parts.

• Notation:  If g: var → D, x is a vble, and a ∈ D, 
define g[x := a](y) = g (y) if y ≠ x 
                             = a if y = x

Meanings of terms

• Given a model M = (D,I), define meaning of 
terms with respect to g inductively as follows:

• gI,g(x) = g (x) for x a variable

• gI,g(c) = I(c) for c a constant

• gI,g(f(t1,...,tk)) = I(f) (gI,g(t1),…, gI,g(tk))

Satisfaction
• M,g ⊨ P(t1,...,tk) iff (gI,g(t1),…, gI,g(tk)) ∈ I(P) 

• M,g ⊨ t=u iff gI,g(t) = gI,g(u) 

• M,g ⊨ ¬φ  iff  M,g  ⊭ φ.

• M,g ⊨ φ ∧ ψ  iff   M,g ⊨ φ  and  M,g ⊨ ψ.

• M,g ⊨ φ ∨ ψ  iff  M,g ⊨ φ  or  M,g ⊨ ψ.

• M,g ⊨ φ → ψ  iff  M,g ⊭ φ  or  M,g ⊨ ψ.

• M,g ⊨ ∃x φ  iff  for some a∈D,  M,g[x := a] ⊨ φ. 

• M,g ⊨ ∀x φ iff for all a ∈ D,  M,g[x := a] ⊨ φ.

• Compositional meaning!!

Properties of Semantics

• Prop: If g and g ʹ agree on all the free variables 
in φ, then M,g ⊨ φ if and only if M,g’ ⊨ φ.

• A wff without free variables is called a sentence.

• Prop: If φ is a sentence, then either M,g ⊨ φ for 
all g or M,g ⊨ ¬φ for all g, but not both.

• So just write M ⊨ φ if φ is a sentence.



Examples

• Let M have domain D = {x ∈Q | 0 ≤ x ≤ 1},  
I(LT) = {(q,r) | q < r }.  
g(x) = 0,  g(z) = 1/2.  Then

• M,g ⊨ ∀z (LT(x,z) ∨ x = z)

• M ⊨ ∃y ∀z (LT(y,z) ∨ y = z)

Satisfiability

• The set Γ is satisfiable if exists a model M and 
environment g such that M,g ⊨ γ for all γ ∈ Γ.

• A formula φ is valid if, for all models M and 
environments g,    M,g ⊨ φ.

• Γ ⊨ ψ  (read Γ semantically entails ψ) iff  
ψ is true in every model and environment 
which make all the formulas of Γ true.

• φ and ψ are logically equivalent iff ???

Satisfiability Example

• Does ∀x ¬φ ⊨ ¬∀x φ

• Reverse?

Predicate Logic in Haskell

type Name     = String 
type Index    = [Int]
data Variable = Variable Name Index deriving (Eq,Ord)

instance Show Variable where 
  show (Variable name [])  = name
  show (Variable name [i]) = name ++ show i
  show (Variable name is ) = name ++ showInts is
     where showInts []     = "" 
           showInts [i]    = show i  
           showInts (i:is) = show i ++ "_" ++ showInts is

Defining Variables:

From FSynF.hs



Predicate Logic in Haskell
x, y, z :: Variable
x = Variable "x" []
y = Variable "y" []
z = Variable "z" []

data Formula a = Atom String [a]
               | Eq a a
               | Neg  (Formula a)
               | Impl (Formula a) (Formula a) 
               | Equi (Formula a) (Formula a)
               | Conj [Formula a]
               | Disj [Formula a] 
               | Forall Variable (Formula a)
               | Exists Variable (Formula a)
               deriving Eq

type a is type of terms

throw in extra connective

instance Show a => Show (Formula a) where 
  show (Atom s [])   = s
  show (Atom s xs)   = s ++ show xs 
  show (Eq t1 t2)    = show t1 ++ "==" ++ show t2
  show (Neg form)    = '~' : (show form)
  show (Impl f1 f2)  = "(" ++ show f1 ++ "==>" 
                           ++ show f2 ++ ")"
  show (Equi f1 f2)  = "(" ++ show f1 ++ "<=>" 
                           ++ show f2 ++ ")"
  show (Conj [])     = "true" 
  show (Conj fs)     = "conj" ++ show fs 
  show (Disj [])     = "false" 
  show (Disj fs)     = "disj" ++ show fs 
  show (Forall v f)  = "A " ++  show v ++ (' ' : show f)
  show (Exists v f)  = "E " ++  show v ++ (' ' : show f)

Sample Formulas

All of type Formula Variable

formula0 = Atom "R" [x,y]
formula1 = Forall x (Atom "R" [x,x])
formula2 = Forall x 
                      (Forall y
                          (Impl (Atom "R" [x,y]) (Atom "R" [y,x])))

Adding Terms

data Term = Var Variable | Struct String [Term] 
            deriving (Eq,Ord)

instance Show Term where 
  show (Var v)       = show v 
  show (Struct s []) = s
  show (Struct s ts) = s ++ show ts

tx, ty, tz, one, two, sum :: Term 
tx = Var x
ty = Var y
tz = Var z

one = Struct "1" []
two = Struct "2" []
sum = Struct "Plus" [one,two]

simple :: Formula Term
simple = Eq sum two

constants are 0-ary functions



Questions?


