Lecture 10: Semantics of Predicate Logic

CS 181O Spring 2016 Kim Bruce

Some slide content taken from Unger and Michaelis

Quick Review

Substitution

- Define φ[t/x] to be the formula obtained by replacing each free occurrence of variable x in φ with t.
 - Expect $\forall x.\varphi(x) \Rightarrow \varphi[t/x]$ for every term t
 - What about $\forall x. \exists y. L(x,y) \Rightarrow \exists y. L(y,y)$?

More Substitution

- Say that *t* is free for x in φ if no free x leaf in φ occurs in the scope of ∀y or ∃y for any variable y occurring in t.
 - y not free for x in $\exists y L(x,y)$
 - + Only allow substitution $\varphi[t/x]$ if t free for x in φ
 - If t not free for x in $\varphi,$ rename bound variables to make substitution legal.

Typed Predicate Calculus

- Variant where bound variables have types
 - ∃x: T, ∀y: U
- Examples:
 - Fido bit someone $\Rightarrow \exists x: Person. B(f, x))$
 - Every dog bites Sally $\Rightarrow \forall x: Dog. B(x,s)$)
 - Some dog bit Sally $\Rightarrow \exists x: Dog. B(x,s)$)
- Can be translated away

Semantics

- More complex than for propositional logic.
- Must interpret all the terms as elements of a model and determine what tuples satisfy which relation.
 - Then can build up meaning as before with \neg , \wedge , and \vee .
- Quantifiers tricker.

Semantics

- A model $\mathcal{M} = (D, I)$ for a predicate logic has the following components:
 - Non-empty set D called the domain of the model \mathcal{M} .
 - For each constant symbol c, there is an element *I*(c) of *D*.
 - For each k-ary function symbol f , there is a function $I(\mathbf{f}): D^k \rightarrow D$.
 - For each k-ary predicate symbol P, there is a subset *I*(P) of *D*^k.

Semantics

- How do we interpret wff: $P(x,y) \land \forall x Q(x,x,y)$.
- Interpret over domain D of real numbers, with I(P) = {(x,y) | x<y} and I(Q) = {(u, v, w) | u = v + w}.
- $\mathcal{M} \vDash \forall y (\exists_X Q(x, x, y) \rightarrow \forall_X Q(x, x, y))$
- What about free variables? Need $g: var \rightarrow D$ lookup table
- Then $\mathcal{M}_{\mathscr{G}} \models P(x, y) \land \forall x Q(x, x, y) \text{ if and only if}$ g(x) < 0 and g(y) = 0.

Defining Truth!

- Due to my (*academic*) grandfather: Alfred Tarski in 1933. Cleaned up in 1956.
- Must separate meta-language from the language studying.
- Want compositional meaning:
 - Meaning of whole depends on meaning of parts.
- Notation: If g: var → D, x is a vble, and a ∈ D, define g[x := a](y) = g (y) if y ≠ x
 = a if y = x

Meanings of terms

- Given a model *₩* = (*D*,*I*), define meaning of terms with respect to φ inductively as follows:
 - $q_{I,q}(\mathbf{x}) = q(\mathbf{x})$ for \mathbf{x} a variable
 - $q_{I,q}(c) = I(c)$ for c a constant
 - $\mathcal{G}_{I,\varphi}(f(t_1,...,t_k)) = I(f) (\mathcal{G}_{I,\varphi}(t_1),...,\mathcal{G}_{I,\varphi}(t_k))$

Satisfaction

- $\mathcal{M}_{.\mathscr{G}} \models P(t_{I},...,t_{k}) \text{ iff } (\mathscr{G}_{I,\mathscr{G}}(t_{I}),...,\mathscr{G}_{I,\mathscr{G}}(t_{k})) \in I(P)$
- $\mathcal{M}_{,g} \models t=u \text{ iff } g_{I,g}(t) = g_{I,g}(u)$
- $\mathcal{M}_{,g} \vDash \neg \varphi$ iff $\mathcal{M}_{,g} \nvDash \varphi$.
- $\mathcal{M}_{\mathscr{G}} \models \varphi \land \psi$ iff $\mathcal{M}_{\mathscr{G}} \models \varphi$ and $\mathcal{M}_{\mathscr{G}} \models \psi$.
- $\mathcal{M}_{,\mathcal{G}} \models \phi \lor \psi$ iff $\mathcal{M}_{,\mathcal{G}} \models \phi$ or $\mathcal{M}_{,\mathcal{G}} \models \psi$.
- $\mathcal{M}_{,\mathcal{G}} \models \varphi \rightarrow \psi$ iff $\mathcal{M}_{,\mathcal{G}} \nvDash \varphi$ or $\mathcal{M}_{,\mathcal{G}} \models \psi$.
- $\mathcal{M}_{\mathscr{G}} \vDash \exists \mathbf{x} \phi$ iff for some $\mathbf{a} \in D$, $\mathcal{M}_{\mathscr{G}}[\mathbf{x} := \mathbf{a}] \vDash \phi$.
- $\mathcal{M}_{\mathscr{G}} \vDash \forall x \varphi \text{ iff for all } a \in D, \ \mathcal{M}_{\mathscr{G}}[x := a] \vDash \varphi.$
- Compositional meaning!!

Properties of Semantics

- Prop: If 𝑘 and 𝑘 ' agree on all the free variables in φ, then 𝔐.𝑘 ⊨ φ if and only if 𝔐.𝑘 ⊨ φ.
- A wff without free variables is called a *sentence*.
- Prop: If φ is a sentence, then either *M*, *g* ⊨ φ for all *g* or *M*, *g* ⊨ ¬φ for all *g*, but not both.
 - So just write $\mathcal{M} \models \phi$ if ϕ is a sentence.

Examples

- Let \mathcal{M} have domain $D = \{x \in Q \mid 0 \le x \le 1\}$, $I(LT) = \{(q,r) \mid q < r\}$. g(x) = 0, g(z) = 1/2. Then
- $\mathcal{M}_{,q} \models \forall z (LT(x,z) \lor x = z)$
- $\mathcal{M} \models \exists y \forall z (LT(y,z) \lor y = z)$

Satisfiability

- The set Γ is *satisfiable* if exists a model \mathcal{M} and environment φ such that $\mathcal{M}, \varphi \models \gamma$ for all $\gamma \in \Gamma$.
- A formula φ is *valid* if, for all models *M* and environments *θ*, *M*.*θ* ⊨ φ.
- Γ ⊨ ψ (read Γ semantically entails ψ) iff
 ψ is true in every model and environment
 which make all the formulas of Γ true.
- ϕ and ψ are logically equivalent iff ???

Satisfiability Example

- Does $\forall x \neg \phi \vDash \neg \forall x \phi$
 - Reverse?

Predicate Logic in Haskell

Defining Variables:

type Name = String type Index = [Int] data Variable = Variable Name Index deriving (Eq,Ord)

instance Show Variable where show (Variable name []) = name show (Variable name [i]) = name ++ show i show (Variable name is) = name ++ showInts is where showInts [] = """ showInts [i] = show i showInts (i:is) = show i ++ "_" ++ showInts is

From FSynF.bs

Predicate Logic in Haskell

x, y, z :: Variable x = Variable "x" [] y = Variable "y" [] z = Variable "z" []

data Formula a = Atom String [a] type a is type of terms | Eq a a | Neg (Formula a) | Impl (Formula a) (Formula a) | Equi (Formula a) (Formula a) | Conj [Formula a] | Disj [Formula a] | Forall Variable (Formula a) | Exists Variable (Formula a) deriving Eq instance Show a => Show (Formula a) where show (Atom s []) = s show (Atom s xs) = s ++ show xs show (Eq t1 t2) = show t1 ++ "==" ++ show t2 show (Neg form) = '-' : (show form) show (Impl f1 f2) = "(" ++ show f1 ++ "==>" ++ show f2 ++ ")" show (Equi f1 f2) = "(" ++ show f1 ++ "<=>" ++ show f2 ++ ")" show (Conj []) = "true" show (Conj fs) = "conj" ++ show fs show (Disj f2) = "false" show (Disj f3) = "disj" ++ show f5 show (Forall v f) = "A " ++ show v ++ (' ': show f) show (Exists v f) = "E " ++ show v ++ (' ': show f)

Sample Formulas

All of type Formula Variable

formulao = Atom "R" [x,y] formulaı = Forall x (Atom "R" [x,x]) formula2 = Forall x (Forall y (Impl (Atom "R" [x,y]) (Atom "R" [y,x])))

Adding Terms data Term = Var Variable | Struct String [Term] deriving (Eq,Ord) instance Show Term where show (Var v) = show v show (Struct s []) = sshow (Struct s ts) = s ++ show ts constants are o-ary functions tx, ty, tz, one, two, sum :: Term one = Struct "I" [] tx = Var x two = Struct "2" [] ty = Var y sum = Struct "Plus" [one,two] tz = Var z simple :: Formula Term simple = Eq sum two

