
Lecture 10: Semantics of
Predicate Logic

CS 181O
Spring 2016
Kim Bruce

Some slide content taken from Unger and Michaelis

Quick Review

Substitution

• Define φ[t/x] to be the formula obtained by
replacing each free occurrence of variable x in
φ with t.
• Expect ∀x.φ(x) ⇒ φ[t/x] for every term t

• What about ∀x.∃y.L(x,y) ⇒ ∃y.L(y,y) ?

More Substitution

• Say that t is free for x in φ if no free x leaf in φ
occurs in the scope of ∀y or ∃y for any variable
y occurring in t.
• y not free for x in ∃y L(x,y)

• Only allow substitution φ[t/x] if t free for x in φ

• If t not free for x in φ, rename bound variables to make
substitution legal.

Typed Predicate Calculus

• Variant where bound variables have types
• ∃x: T, ∀y: U

• Examples:

• Fido bit someone ⇒ ∃x: Person. B(f, x))

• Every dog bites Sally ⇒ ∀x: Dog. B(x,s))

• Some dog bit Sally ⇒ ∃x: Dog. B(x,s))

• Can be translated away

Semantics

• More complex than for propositional logic.

• Must interpret all the terms as elements of a
model and determine what tuples satisfy which
relation.
• Then can build up meaning as before with ¬, ∧, and ∨.

• Quantifiers tricker.

Semantics

• A model M = (D,I) for a predicate logic has the
following components:

• Non-empty set D called the domain of the model M.

• For each constant symbol c, there is an element I(c) of
D.

• For each k-ary function symbol f , there is a function
I(f) : Dk → D.

• For each k-ary predicate symbol P, there is a subset I(P)
of Dk.

• How do we interpret wff: P(x,y) ∧ ∀xQ(x,x,y).

• Interpret over domain D of real numbers, with  
I(P) = {(x,y) | x<y} and I(Q) ={(u, v, w) | u = v + w}.

• M ⊨ ∀y (∃x Q(x, x, y) → ∀x Q(x, x, y))

• What about free variables? Need g: var → D

• Then M,g ⊨ P(x, y) ∧ ∀x Q(x, x, y) if and only if
g(x) < 0 and g(y) = 0.

Semantics

lookup table

Defining Truth!
• Due to my (academic) grandfather: Alfred

Tarski in 1933. Cleaned up in 1956.

• Must separate meta-language from the
language studying.

• Want compositional meaning:

• Meaning of whole depends on meaning of parts.

• Notation: If g: var → D, x is a vble, and a ∈ D,
define g[x := a](y) = g (y) if y ≠ x 
 = a if y = x

Meanings of terms

• Given a model M = (D,I), define meaning of
terms with respect to g inductively as follows:

• gI,g(x) = g (x) for x a variable

• gI,g(c) = I(c) for c a constant

• gI,g(f(t1,...,tk)) = I(f) (gI,g(t1),…, gI,g(tk))

Satisfaction
• M,g ⊨ P(t1,...,tk) iff (gI,g(t1),…, gI,g(tk)) ∈ I(P)

• M,g ⊨ t=u iff gI,g(t) = gI,g(u)

• M,g ⊨ ¬φ iff M,g ⊭ φ.

• M,g ⊨ φ ∧ ψ iff M,g ⊨ φ and M,g ⊨ ψ.

• M,g ⊨ φ ∨ ψ iff M,g ⊨ φ or M,g ⊨ ψ.

• M,g ⊨ φ → ψ iff M,g ⊭ φ or M,g ⊨ ψ.

• M,g ⊨ ∃x φ iff for some a∈D, M,g[x := a] ⊨ φ.

• M,g ⊨ ∀x φ iff for all a ∈ D, M,g[x := a] ⊨ φ.

• Compositional meaning!!

Properties of Semantics

• Prop: If g and g ʹ agree on all the free variables
in φ, then M,g ⊨ φ if and only if M,g’ ⊨ φ.

• A wff without free variables is called a sentence.

• Prop: If φ is a sentence, then either M,g ⊨ φ for
all g or M,g ⊨ ¬φ for all g, but not both.

• So just write M ⊨ φ if φ is a sentence.

Examples

• Let M have domain D = {x ∈Q | 0 ≤ x ≤ 1},  
I(LT) = {(q,r) | q < r }.  
g(x) = 0, g(z) = 1/2. Then

• M,g ⊨ ∀z (LT(x,z) ∨ x = z)

• M ⊨ ∃y ∀z (LT(y,z) ∨ y = z)

Satisfiability

• The set Γ is satisfiable if exists a model M and
environment g such that M,g ⊨ γ for all γ ∈ Γ.

• A formula φ is valid if, for all models M and
environments g, M,g ⊨ φ.

• Γ ⊨ ψ (read Γ semantically entails ψ) iff  
ψ is true in every model and environment
which make all the formulas of Γ true.

• φ and ψ are logically equivalent iff ???

Satisfiability Example

• Does ∀x ¬φ ⊨ ¬∀x φ

• Reverse?

Predicate Logic in Haskell

type Name = String
type Index = [Int]
data Variable = Variable Name Index deriving (Eq,Ord)

instance Show Variable where
 show (Variable name []) = name
 show (Variable name [i]) = name ++ show i
 show (Variable name is) = name ++ showInts is
 where showInts [] = ""
 showInts [i] = show i
 showInts (i:is) = show i ++ "_" ++ showInts is

Defining Variables:

From FSynF.hs

Predicate Logic in Haskell
x, y, z :: Variable
x = Variable "x" []
y = Variable "y" []
z = Variable "z" []

data Formula a = Atom String [a]
 | Eq a a
 | Neg (Formula a)
 | Impl (Formula a) (Formula a)
 | Equi (Formula a) (Formula a)
 | Conj [Formula a]
 | Disj [Formula a]
 | Forall Variable (Formula a)
 | Exists Variable (Formula a)
 deriving Eq

type a is type of terms

throw in extra connective

instance Show a => Show (Formula a) where
 show (Atom s []) = s
 show (Atom s xs) = s ++ show xs
 show (Eq t1 t2) = show t1 ++ "==" ++ show t2
 show (Neg form) = '~' : (show form)
 show (Impl f1 f2) = "(" ++ show f1 ++ "==>"
 ++ show f2 ++ ")"
 show (Equi f1 f2) = "(" ++ show f1 ++ "<=>"
 ++ show f2 ++ ")"
 show (Conj []) = "true"
 show (Conj fs) = "conj" ++ show fs
 show (Disj []) = "false"
 show (Disj fs) = "disj" ++ show fs
 show (Forall v f) = "A " ++ show v ++ (' ' : show f)
 show (Exists v f) = "E " ++ show v ++ (' ' : show f)

Sample Formulas

All of type Formula Variable

formula0 = Atom "R" [x,y]
formula1 = Forall x (Atom "R" [x,x])
formula2 = Forall x
 (Forall y
 (Impl (Atom "R" [x,y]) (Atom "R" [y,x])))

Adding Terms

data Term = Var Variable | Struct String [Term]
 deriving (Eq,Ord)

instance Show Term where
 show (Var v) = show v
 show (Struct s []) = s
 show (Struct s ts) = s ++ show ts

tx, ty, tz, one, two, sum :: Term
tx = Var x
ty = Var y
tz = Var z

one = Struct "1" []
two = Struct "2" []
sum = Struct "Plus" [one,two]

simple :: Formula Term
simple = Eq sum two

constants are 0-ary functions

Questions?

