
Homework 4
Due Thursday, 02/18/2016, by 11:55 p.m.

Your programs should be in a single file that can be loaded into ghci and
tested. Problem numbers and any discussion of the programs should be set off
as comments (using –) to make the Haskell compiler ignore them. Your program
file should be turned in on Sakai like last week.

I should be able to load your file into Haskell (ghci) and have it compile
without error. If there are programs with compilation errors, please comment
them out so they don’t get in the way of your other programs.

Please include good comments and use good variable names with your pro-
grams. Otherwise it is very difficult to read your code because Haskell is so
concise.

Important: Your programs should have the exact names and types specified
in the problem statement as your code will be automatically tested. Code that
uses the incorrect name or expects different types (i.e., won’t correctly execute
my tests) will be counted as incorrect. Notice that all the functions to be written
are in curried form.

Use comments to explain what each function does, especially helper func-
tions.

Problems that are not programs should be written using LaTeX. When com-
pleted, please put the program file and the pdf generated from LaTeX into a
folder, zip it up, and then turn it in as usual on Sakai.

1. (8 points) Use the functions in FsemF.hs (e.g., eval, tautology, satisfiable,
contradiction, implies) to answer the following by writing Haskell pro-
grams that return the correct answer. Set the answers to identifiers named
ans1ai, ans1aii, etc.

(a) Which of the following are tautologies? If they are not tautologies,
provide an assignment that does not satisfy the formula.

i. p → (q → p)

ii. ((p ∧ (q ∨ r)) → ((p ∧ q) ∨ (p ∧ r))

iii. ((p ∧ (q ∨ r)) → ((p ∧ q) ∨ r))

iv. ((p ∧ q) ∨ r)) → ((p ∧ (q ∨ r))

(b) Show ¬(p ∧ q) |= (¬p) ∨ (¬q)

2. A formula F is in disjunctive normal form if it can be written in the form
G1 ∨ ... ∨ Gn where each Gi is of the form A1 ∧ ...Ak and each of these
Ajs is either a proposition letter or the negation of a proposition letter.
Thus (p ∧ q) ∨ (p ∧ r ∧ ¬q) ∨ ¬r is in disjunctive normal form. There is a
theorem stating that any formula of propositional logic is equivalent to a
formula in disjunctive normal form. Two formulas are equivalent if each
logically implies the other, or, equivalently, each has the exact same truth
table (or, equivalently, for each valuation of their propositional variables,
they have the same values).

1



(a) (10 points) Please describe an algorithm that, given a formula of
the propositional logic, returns an equivalent formula in disjunctive
normal form. Illustrate your algorithm with the formula (p∧ (q∨r)).

Hint: Given a formula, write out a truth table for that formula.
Now look only at the lines that make the formula true. For each of
those lines, write a conjunction of proposition letters and negations
of proposition letters that is true only for the values of proposition
letters given in that line. From these, create a formula in disjunctive
normal form that is true at exactly those lines of the truth table that
make the formula true.

(b) (10 points) Use the update function to implement this algorithm as a
function in Haskell. Your function should be named toCNF. Here are
some useful intermediate functions that should help you get there:

i. valToCForm :: [(String, Bool)] -> Form

This function takes a valuation (i.e., row of a truth table) and
forms a conjunction of propositional letters and negations of
propositional letters that is only true for the given valuation.

ii. valToForm:: [[(String, Bool)]] -> Form

Takes a list of valuations (e.g. all the valuations that make a
formula true) and returns a formula of propositional logic that is
in disjunctive normal form and is true only for those valuations.

Using these helper functions, define toCNF :: Form -> Form that
takes a formula, computes the list of valuations that make it true
(using allVals and update from FSemF.hs to compute an equivalent
formula in disjunctive normal form

3. (12 points) Given the sentences below, translate into (untyped) predicate
logic. Introduce (and explain) relations and constants as needed:

(a) No student fails CS181.

(b) If someone is happy, then Mary is happy.

(c) All professors who fail their students are evil.

(d) Every student takes some computer science course.

(e) John likes every person who likes him.

Please represent the fourth sentence as an item of type Formula Term in
Haskell. Please name the term good.

2


