Homework 2
Due Thursday, 02/04/2016, by 11:59 p.m.

Your programs should be in a single file that can be loaded into sml and
tested. Problem numbers and any discussion of the programs should be set off
as comments (using —) to make the Haskell compiler ignore them. Your program
file should be turned in on Sakai like last week.

I should be able to load your file into Haskell (ghci) and have it compile
without error. If there are programs with compilation errors, please comment
them out so they don’t get in the way of your other programs.

Please include good comments and use good variable names with your pro-
grams. Otherwise it is very difficult to read your code because Haskell is so
concise.

Important: Your programs should have the exact names and types specified
in the problem statement as your code will be automatically tested. Code that
uses the incorrect name or expects different types (i.e., won'’t correctly execute
my tests) will be counted as incorrect. Notice that all the functions to be written
are in curried form.

Use comments to explain what each function does, especially helper func-
tions.

1. (5 pts) Suppose we write the time of day as a triple of the hour, minutes
after the hour, and either ”AM” or "PM”, e.g. class starts at (10, 0,
7 AM”) and my office hours start at (2, 0, ”PM”). Please write a function
comesBefore that takes two times of day and returns whether the first
comes before the second on a given day. E.g.,

comesBefore (10, 0, "AM") (2, 0, "PM")

should return True.

comesBefore :: (Int, Int, [Char]) -> (Int, Int, [Char]) -> Bool

This can be a bit tricky as recall that 12:15 a.m. comes before 1:10 a.m.,
but pre-processing the hours to make them easier to compare can make
your task easier. For one point extra credit write your solution using only
boolean operators (not, &&, and ||) and comparison operators. ILe., no
if-then-else or similar control structures.

2. (5 points) Write a function nth which returns the nth element of a list.
E.g., nth n 1st should return element n of 1st, where as usual we start
counting at 0. Thus nth 0 [5,4,3] = 5. (I know that Haskell has a
built-in operator !'! that does exactly this, but I want you to write it
from scratch without using that operator.)

nth :: (Eq a, Num a) => a -> [t] >t

3. (5 points) Suppose we have a list of pairs of elements. Write a function
keys that returns the list of all first elements of the pairs (do not re-
move repetitions). Thus keys [("hello",2), ("bye",3), ("on",4),
("hello",1)] should return ["hello", "bye", "on", "hello"l. Hint:
Consider using the map function on lists.

keys :: [(b, b1)] -> [b]

4. Haskell contains a function elem that takes an element and a list and
returns whether the element is in the list. E.g. elem 3 [1,3,5] returns
True.

Of course we could also write our own version, elem’, recursively:

elem’ e [] = False
elem’ e (hd:tail) = (e == hd) || (elem’ e tail)

Please write the following variations on this function:

(a) (5 points) Write a function index0f that returns the index of the first
occurrence of an element in a list. E.g., index0f elt 1lst returns
i iff elt first occurs in lst in position i, where as usual we start
counting from 0. If elt does not occur in 1st return -1. (Be careful
to get the right answer for the case where the element doesn’t appear.
It takes more work than the previous problems.) Please don’t use any
of the built-in list operators like findIndex in writing your solution.

index0f :: (Eq a, Eq al, Num al) => a -> [a] -> al

(b) (5 points) Write a more general function IndexOfList that takes
two lists of elements, patterns and source and returns the index
of the first place in source where any of the elements in patterns
occurs. Thus index0fList [1,3,5] [34,7,3,6] returns 2, because
the element 3 from the first list occurs in position 2 in the second
list. As before the function should return -1 if no elements are found.

index0fList :: (Eq a, Eq al, Num al, Foldable t) =>
t a-> [a] -> al

5. The Haskell function words breaks a string up into a list of words, each of
which was delimited by white space (e.g., spaces, tab, newline, etc.). For
example words "This is a test, isn’t it?" returns
["This","is","a","test,","isn’t","it?"].

(a) (5 points) Please write a function pwords that improves on this by
separating punctuation from words. You may assume that the only
punctuation marks are in the list [*>.>, >,?, 272, 212 2> ;0]
(which could also have been written as ”.,?!:;”. It should also break
for white space (any of the characters in " \n\t"). You may find the
function index0fList from the previous exercise helpful here.
Evaluating pwords "this !! is a test,!" should result in
[MEhis™, " ", mHn, e g g u e npegn]

pwords :: [Char] -> [[Char]]

(b) (5 points) Please write a function glueWords that puts a list of words
back together, inserting a space between consecutive words. In par-
ticular, glueWords (words "This is a test") should return "This
is a test" (with no extra spaces at the end),

glueWords :: [[Char]] -> [Char]

Do not use the function unlines from Data.String

6. (5 points) Write a function deleteAll that deletes all occurrences of a
given element from a list. E.g., deleteAll elt 1st returns the list of all
elements from 1st except occurrences of elt. The order of elements in
the list returned should be the same as in the 1st.

deleteAll :: Eq t => t -> [t] -> [t]

