
DRAFT

Speech and Language Processing: An introduction to natural language processing,
computational linguistics, and speech recognition. Daniel Jurafsky & James H. Martin.
Copyright c© 2006, All rights reserved. Draft of October 31, 2007. Do not cite
without permission.

6
HIDDEN MARKOV AND
MAXIMUM ENTROPY
MODELS

Numquam ponenda est pluralitas sine necessitat
‘Plurality should never be proposed unless needed’

William of Occam

Her sister was called Tatiana.
For the first time with such a name
the tender pages of a novel,
we’ll whimsically grace.

Pushkin,Eugene Onegin, in the Nabokov translation

Alexander Pushkin’s novel in verse,Eugene Onegin, serialized in the early 19th
century, tells of the young dandy Onegin, his rejection of the love of young Tatiana,
his duel with his friend Lenski, and his later regret for bothmistakes. But the novel is
mainly beloved for its style and structure rather than its plot. Among other interesting
structural innovations, the novel is written in a form now known as theOnegin stanza,
iambic tetrameter with an unusual rhyme scheme. These elements have caused compli-
cations and controversy in its translation into other languages. Many of the translations
have been in verse, but Nabokov famously translated it strictly literally into English
prose. The issue of its translation, and the tension betweenliteral and verse transla-
tions have inspired much commentary (see for example Hofstadter (1997)).

In 1913 A. A. Markov asked a less controversial question about Pushkin’s text:
could we use frequency counts from the text to help compute the probability that the
next letter in sequence would be a vowel. In this chapter we introduce two impor-
tant classes of statistical models for processing text and speech, both descendants of
Markov’s models. One of them is theHidden Markov Model (HMM). The other,
is theMaximum Entropy model (MaxEnt), and particularly a Markov-related vari-
ant of MaxEnt called theMaximum Entropy Markov Model (MEMM). All of these
aremachine learningmodels. We have already touched on some aspects of machine
learning; indeed we briefly introduced the Hidden Markov Model in the previous chap-
ter, and we have introduced theN-gram model in the chapter before. In this chapter we

DRAFT

2 Chapter 6. Hidden Markov and Maximum Entropy Models

give a more complete and formal introduction to these two important models.
HMMs and MEMMs are bothsequence classifiers. A sequence classifier orse-SEQUENCE

CLASSIFIERS

quence labeleris a model whose job is to assign some label or class to each unit in a
sequence. The finite-state transducer we studied in Ch. 3 is akind of non-probabilistic
sequence classifier, for example transducing from sequences of words to sequences of
morphemes. The HMM and MEMM extend this notion by being probabilistic sequence
classifiers; given a sequence of units (words, letters, morphemes, sentences, whatever)
their job is to compute a probability distribution over possible labels and choose the
best label sequence.

We have already seen one important sequence classification task: part-of-speech
tagging, where each word in a sequence has to be assigned a part-of-speech tag. Se-
quence labeling tasks come up throughout speech and language processing, a fact that
isn’t too surprising if we consider that language consists of sequences at many represen-
tational levels. Besides part-of-speech tagging, in this book we will see the application
of these sequence models to tasks like speech recognition (Ch. 9), sentence segmenta-
tion and grapheme-to-phoneme conversion (Ch. 8), partial parsing/chunking (Ch. 13),
and named entity recognition and information extraction (Ch. 22).

This chapter is roughly divided into two sections: Hidden Markov Models followed
by Maximum Entropy Markov Models. Our discussion of the Hidden Markov Model
extends what we said about HMM part-of-speech tagging. We begin in the next sec-
tion by introducing the Markov Chain, then give a detailed overview of HMMs and
the forward and Viterbi algorithms with more formalization, and finally introduce the
important EM algorithm for unsupervised (or semi-supervised) learning of a Hidden
Markov Model.

In the second half of the chapter, we introduce Maximum Entropy Markov Models
gradually, beginning with techniques that may already be familiar to you from statis-
tics: linear regression and logistic regression. We next introduce MaxEnt. MaxEnt by
itself is not a sequence classifier; it is used to assign a class to a single element. The
name Maximum Entropy comes from the idea that the classifier finds the probabilis-
tic model which follows Occam’s Razor in being the simplest (least constrained; has
the maximum entropy) yet still consistent with some specificconstraints. The Maxi-
mum Entropy Markov Model is the extension of MaxEnt to the sequence labeling task,
adding components such as the Viterbi algorithm.

Although this chapter introduces MaxEnt, which is a classifier, we will not focus
in general on non-sequential classification. Non-sequential classification will be ad-
dressed in later chapters with the introduction of classifiers like theGaussian Mixture
Model in (Ch. 9) and theNaive Bayesanddecision listclassifiers in (Ch. 20).

6.1 MARKOV CHAINS

The Hidden Markov Model is one of the most important machine learning models in
speech and language processing. In order to define it properly, we need to first in-
troduce theMarkov chain , sometimes called theobserved Markov model. Markov
chains and Hidden Markov Models are both extensions of the finite automata of Ch. 2.

DRAFT
Section 6.1. Markov Chains 3

Recall that a finite automaton is defined by a set of states, anda set of transitions be-
tween states that are taken based on the input observations.A weighted finite-stateWEIGHTED

automaton is a simple augmentation of the finite automaton in which eacharc is asso-
ciated with a probability, indicating how likely that path is to be taken. The probability
on all the arcs leaving a node must sum to 1.

A Markov chain is a special case of a weighted automaton in which the inputMARKOV CHAIN

sequence uniquely determines which states the automaton will go through. Because
it can’t represent inherently ambiguous problems, a Markovchain is only useful for
assigning probabilities to unambiguous sequences.

Start
0

End
4

WARM
3

HOT
1

COLD
2

a
22

a
02

a
11

a
12

a
03

a
01

a
21

a
13

a
33

a
24

a
14

Start
0

End
4

white
3

is
1

snow
2

a
22

a
02

a
11

a
12

a
03

a
01

a
21

a
13

a
33

a
24

a
14

(a) (b)

Figure 6.1 A Markov chain for weather (a) and one for words (b). A Markov chain is specified by the structure,
the transition between states, and the start and end states.

Fig. 6.1a shows a Markov chain for assigning a probability toa sequence of weather
events, where the vocabulary consists ofHOT, COLD, and RAINY . Fig. 6.1b shows
another simple example of a Markov chain for assigning a probability to a sequence
of wordsw1...wn. This Markov chain should be familiar; in fact it representsa bigram
language model. Given the two models in Figure 6.1 we can assign a probability to any
sequence from our vocabulary. We’ll go over how to do this shortly.

First, let’s be more formal. We’ll view a Markov chain as a kind of probabilis-
tic graphical model; a way of representing probabilistic assumptions in a graph. A
Markov chain is specified by the following components:

Q = q1q2 . . .qN a set ofN states

A = a01a02. . .an1 . . .ann a transition probability matrix A, eachai j rep-
resenting the probability of moving from statei
to statej, s.t.∑n

j=1ai j = 1 ∀i

q0,qF a specialstart state andend (final) statewhich
are not associated with observations.

Fig. 6.1 shows that we represent the states (including startand end states) as nodes
in the graph, and the transitions as edges between nodes.

A Markov chain embodies an important assumption about theseprobabilities. In a
first-order Markov chain, the probability of a particular state is dependent only on theFIRSTORDER

DRAFT

4 Chapter 6. Hidden Markov and Maximum Entropy Models

previous state:

Markov Assumption: P(qi |q1...qi−1) = P(qi|qi−1)(6.1)

Note that because eachai j expresses the probabilityp(q j |qi), the laws of probabil-
ity require that the values of the outgoing arcs from a given state must sum to 1:

n

∑
j=1

ai j = 1 ∀i(6.2)

An alternate representation that is sometimes used for Markov chains doesn’t rely
on a start or end state, instead representing the distribution over initial states and ac-
cepting states explicitly:

π = π1,π2, ...,πN an initial probability distribution over states. πi is the
probability that the Markov chain will start in statei. Some
statesj may haveπ j = 0, meaning that they cannot be initial
states. Also,∑n

i=1 πi = 1

QA= {qx,qy...} a setQA⊂Q of legalaccepting states

Thus the probability of state 1 being the first state can be represented either asa01

or asπ1. Note that because eachπi expresses the probabilityp(qi |START), all theπ
probabilities must sum to 1:

n

∑
i=1

πi = 1(6.3)

(a) (b)

Figure 6.2 Another representation of the same Markov chain for weathershown in Fig. 6.1. Instead of using
a special start state witha01 transition probabilities, we use theπ vector, which represents the distribution over
starting state probabilities. The figure in (b) shows sampleprobabilities.

DRAFT
Section 6.2. The Hidden Markov Model 5

Before you go on, use the sample probabilities in Fig. 6.2b tocompute the proba-
bility of each of the following sequences:

(6.4) hot hot hot hot

(6.5) cold hot cold hot

What does the difference in these probabilities tell you about a real-world weather
fact encoded in Fig. 6.2b?

6.2 THE HIDDEN MARKOV MODEL

A Markov chain is useful when we need to compute a probabilityfor a sequence of
events that we can observe in the world. In many cases, however, the events we are
interested in may not be directly observable in the world. For example, in part-of-
speech tagging (Ch. 5) we didn’t observe part of speech tags in the world; we saw
words, and had to infer the correct tags from the word sequence. We call the part-of-
speech tagshidden because they are not observed. The same architecture will come
up in speech recognition; in that case we’ll see acoustic events in the world, and have
to infer the presence of ‘hidden’ words that are the underlying causal source of the
acoustics. AHidden Markov Model (HMM) allows us to talk about bothobservedHIDDEN MARKOV

MODEL

events (like words that we see in the input) andhiddenevents (like part-of-speech tags)
that we think of as causal factors in our probabilistic model.

To exemplify these models, we’ll use a task conceived of by Jason Eisner (2002).
Imagine that you are a climatologist in the year 2799 studying the history of global
warming. You cannot find any records of the weather in Baltimore, Maryland, for the
summer of 2007, but you do find Jason Eisner’s diary, which lists how many ice creams
Jason ate every day that summer. Our goal is to use these observations to estimate the
temperature every day. We’ll simplify this weather task by assuming there are only two
kinds of days: cold (C) and hot (H). So the Eisner task is as follows:

Given a sequence of observationsO, each observation an integer corre-
sponding to the number of ice creams eaten on a given day, figure out the
correct ‘hidden’ sequenceQof weather states (H or C) which caused Jason
to eat the ice cream.

Let’s begin with a formal definition of a Hidden Markov Model,focusing on how
it differs from a Markov chain. AnHMM is specified by the following components:HMM

DRAFT

6 Chapter 6. Hidden Markov and Maximum Entropy Models

Q = q1q2 . . .qN a set ofN states

A = a11a12. . .an1 . . .ann a transition probability matrix A, eachai j rep-
resenting the probability of moving from statei
to statej, s.t.∑n

j=1ai j = 1 ∀i

O = o1o2 . . .oT a sequence ofT observations, each one drawn
from a vocabularyV = v1,v2, ...,vV .

B = bi(ot) a sequence ofobservation likelihoods:, also
called emission probabilities, each expressing
the probability of an observationot being gen-
erated from a statei.

q0,qF a specialstart state andend (final) statewhich
are not associated with observations, together
with transition probabilitiesa01a02..a0n out of the
start state anda1Fa2F ...anF into the end state.

As we noted for Markov chains, an alternate representation that is sometimes used
for HMMs doesn’t rely on a start or end state, instead representing the distribution over
initial and accepting states explicitly. We won’t be using theπ notation in this textbook,
but you may see it in the literature:

π = π1,π2, ...,πN an initial probability distribution over states. πi is the
probability that the Markov chain will start in statei. Some
statesj may haveπ j = 0, meaning that they cannot be initial
states. Also,∑n

i=1 πi = 1

QA= {qx,qy...} a setQA⊂Q of legalaccepting states

A first-order Hidden Markov Model instantiates two simplifying assumptions. First,
as with a first-order Markov chain, the probability of a particular state is dependent only
on the previous state:

Markov Assumption: P(qi |q1...qi−1) = P(qi|qi−1)(6.6)

Second, the probability of an output observationoi is dependent only on the state
that produced the observationqi , and not on any other states or any other observations:

Output Independence Assumption: P(oi |q1 . . .qi , . . . ,qT ,o1, . . . ,oi , . . . ,oT)= P(oi|qi)
(6.7)

Fig. 6.3 shows a sample HMM for the ice cream task. The two hidden states (H
and C) correspond to hot and cold weather, while the observations (drawn from the
alphabetO = {1,2,3}) correspond to the number of ice creams eaten by Jason on a
given day.

Notice that in the HMM in Fig. 6.3, there is a (non-zero) probability of transitioning
between any two states. Such an HMM is called afully-connectedor ergodic HMM .FULLYCONNECTED

ERGODIC HMM Sometimes, however, we have HMMs in which many of the transitions between states
have zero probability. For example, inleft-to-right (also calledBakis) HMMs, theLEFTTORIGHT

BAKIS state transitions proceed from left to right, as shown in Fig. 6.4. In a Bakis HMM,

DRAFT
Section 6.2. The Hidden Markov Model 7

Figure 6.3 A Hidden Markov Model for relating numbers of ice creams eaten by Jason
(the observations) to the weather (H or C, the hidden variables). For this example we are
not using an end-state, instead allowing both states 1 and 2 to be a final (accepting) state.

there are no transitions going from a higher-numbered stateto a lower-numbered state
(or, more accurately, any transitions from a higher-numbered state to a lower-numbered
state have zero probability). Bakis HMMs are generally usedto model temporal pro-
cesses like speech; we will see more of them in Ch. 9.

Figure 6.4 Two 4-state Hidden Markov Models; a left-to-right (Bakis) HMM on the
left, and a fully-connected (ergodic) HMM on the right. In the Bakis model, all transitions
not shown have zero probability.

Now that we have seen the structure of an HMM, we turn to algorithms for com-
puting things with them. An influential tutorial by Rabiner (1989), based on tutorials
by Jack Ferguson in the 1960s, introduced the idea that Hidden Markov Models should
be characterized bythree fundamental problems:

Problem 1 (Computing Likelihood): Given an HMMλ = (A,B) and
an observation sequenceO, determine the likelihoodP(O|λ).

Problem 2 (Decoding): Given an observation sequenceOand an HMM
λ = (A,B), discover the best hidden state sequenceQ.

DRAFT

8 Chapter 6. Hidden Markov and Maximum Entropy Models

Problem 3 (Learning): Given an observation sequenceO and the set
of states in the HMM, learn the HMM parametersA andB.

We already saw an example of problem (2) in Ch. 5. In the next three sections we
introduce all three problems more formally.

6.3 COMPUTING L IKELIHOOD : THE FORWARD ALGORITHM

Our first problem is to compute the likelihood of a particularobservation sequence. For
example, given the HMM in Fig. 6.2b, what is the probability of the sequence3 1 3?
More formally:

Computing Likelihood: Given an HMMλ = (A,B) and an observation
sequenceO, determine the likelihoodP(O|λ).

For a Markov chain, where the surface observations are the same as the hidden
events, we could compute the probability of3 1 3just by following the states labeled3 1
3 and multiplying the probabilities along the arcs. For a Hidden Markov Model, things
are not so simple. We want to determine the probability of an ice-cream observation
sequence like3 1 3, but we don’t know what the hidden state sequence is!

Let’s start with a slightly simpler situation. Suppose we already knew the weather,
and wanted to predict how much ice cream Jason would eat. Thisis a useful part of
many HMM tasks. For a given hidden state sequence (e.g.hot hot cold) we can easily
compute the output likelihood of3 1 3.

Let’s see how. First, recall that for Hidden Markov Models, each hidden state pro-
duces only a single observation. Thus the sequence of hiddenstates and the sequence
of observations have the same length.1

Given this one-to-one mapping, and the Markov assumptions expressed in Eq. 6.6,
for a particular hidden state sequenceQ= q0,q1,q2, ...,qT and an observation sequence
O = o1,o2, ...,oT , the likelihood of the observation sequence is:

P(O|Q) =
T

∏
i=1

P(oi |qi)(6.8)

The computation of the forward probability for our ice-cream observation3 1 3
from one possible hidden state sequencehot hot coldis as follows (Fig. 6.5 shows a
graphic representation of this):

P(3 1 3|hot hot cold) = P(3|hot)×P(1|hot)×P(3|cold)(6.9)

But of course, we don’t actually know what the hidden state (weather) sequence
was. We’ll need to compute the probability of ice-cream events 3 1 3 instead by sum-
ming over all possible weather sequences, weighted by theirprobability. First, let’s

1 There are variants of HMMs calledsegmental HMMs(in speech recognition) orsemi-HMMs (in natural
language processing) in which this one-to-one mapping between the length of the hidden state sequence and
the length of the observation sequence does not hold.

DRAFT

Section 6.3. Computing Likelihood: The Forward Algorithm 9

Figure 6.5 The computation of the observation likelihood for the ice-cream events3 1
3 given the hidden state sequencehot hot cold.

compute the joint probability of being in a particular weather sequenceQ and generat-
ing a particular sequenceO of ice-cream events. In general, this is:

P(O,Q) = P(O|Q)×P(Q) =
n

∏
i=1

P(oi |qi)×
n

∏
i=1

P(qi|qi−1)(6.10)

The computation of the joint probability of our ice-cream observation3 1 3 and
one possible hidden state sequencehot hot coldis as follows (Fig. 6.6 shows a graphic
representation of this):

P(3 1 3,hot hot cold) = P(hot|start)×P(hot|hot)×P(cold|hot)

×P(3|hot)×P(1|hot)×P(3|cold)(6.11)

Figure 6.6 The computation of the joint probability of the ice-cream events3 1 3and
the hidden state sequencehot hot cold.

Now that we know how to compute the joint probability of the observations with a
particular hidden state sequence, we can compute the total probability of the observa-
tions just by summing over all possible hidden state sequences:

P(O) = ∑
Q

P(O,Q) = ∑
Q

P(O|Q)P(Q)(6.12)

For our particular case, we would sum over the 8 three-event sequencescold cold
cold, cold cold hot, i.e.:

P(3 1 3)= P(3 1 3,cold cold cold)+P(3 1 3,cold cold hot)+P(3 1 3,hot hot cold)+ ...
(6.13)

DRAFT

10 Chapter 6. Hidden Markov and Maximum Entropy Models

For an HMM withN hidden states and an observation sequence ofT observations,
there areNT possible hidden sequences. For real tasks, whereN andT are both large,
NT is a very large number, and so we cannot compute the total observation likelihood
by computing a separate observation likelihood for each hidden state sequence and then
summing them up.

Instead of using such an extremely exponential algorithm, we use an efficient
(O(N2T)) algorithm called theforward algorithm . The forward algorithm is a kindFORWARD

ALGORITHM

of dynamic programming algorithm, i.e., an algorithm that uses a table to store inter-
mediate values as it builds up the probability of the observation sequence. The forward
algorithm computes the observation probability by summingover the probabilities of
all possible hidden state paths that could generate the observation sequence, but it does
so efficiently by implicitly folding each of these paths intoa singleforward trellis .

Fig. 6.7 shows an example of the forward trellis for computing the likelihood of3
1 3 given the hidden state sequencehot hot cold.

�����
H

C

H

C

H

C

end

P(
C|
st
ar
t)
* P
(3
|C
)

.2
 *
.1

P(H|H) * P(1|H)

.7 * .2

P(C|C) * P(1|C)

.6 * .5

P(C|H) * P(1|C)
.3 * .5

P(H
|C)
 * P

(1|
H)

.4 *
 .2

P
(H
|s
ta
rt
)*
P
(3
|H
)

.8
 *
 .4

α
1
(2)=.32

α
1
(1) = .02

α
2
(2)= .32*.014 + .02*.08 = .00608

α
2
(1) = .32*.15 + .02*.30 = .054

start start start

t

C

H

end end endqF

q2

q1

q0

o1

3 31
o2 o3

Figure 6.7 The forward trellis for computing the total observation likelihood for the ice-cream events3 1 3.
Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions. The
figure shows the computation ofαt(j) for two states at two time steps. The computation in each cellfollows
Eq˙ 6.15: αt(j) = ∑N

i=1 αt−1(i)ai j b j (ot). The resulting probability expressed in each cell is Eq˙ 6.14: αt(j) =
P(o1,o2 . . .ot ,qt = j |λ).

DRAFT

Section 6.4. Decoding: The Viterbi Algorithm 11

Each cell of the forward algorithm trellisαt (j) represents the probability of being
in statej after seeing the firstt observations, given the automatonλ. The value of each
cell αt(j) is computed by summing over the probabilities of every path that could lead
us to this cell. Formally, each cell expresses the followingprobability:

αt(j) = P(o1,o2 . . .ot ,qt = j|λ)(6.14)

Hereqt = j means “the probability that thetth state in the sequence of states is state
j”. We compute this probability by summing over the extensions of all the paths that
lead to the current cell. For a given stateq j at timet, the valueαt (j) is computed as:

αt(j) =
N

∑
i=1

αt−1(i)ai j b j(ot)(6.15)

The three factors that are multiplied in Eq˙ 6.15 in extending the previous paths to
compute the forward probability at timet are:

αt−1(i) theprevious forward path probability from the previous time step

ai j thetransition probability from previous stateqi to current stateq j

b j(ot) thestate observation likelihoodof the observation symbolot given
the current statej

Consider the computation in Fig. 6.7 ofα2(1), the forward probability of being at
time step 2 in state 1 having generated the partial observation3 1. This is computed by
extending theα probabilities from time step 1, via two paths, each extension consisting
of the three factors above:α1(1)×P(H|H)×P(1|H) andα1(2)×P(H|C)×P(1|H).

Fig. 6.8 shows another visualization of this induction stepfor computing the value
in one new cell of the trellis.

We give two formal definitions of the forward algorithm; the pseudocode in Fig. 6.9
and a statement of the definitional recursion here:

1. Initialization:

α1(j) = a0 jb j(o1) 1≤ j ≤ N(6.16)

2. Recursion (since states 0 and F are non-emitting):

αt(j) =
N

∑
i=1

αt−1(i)ai j b j(ot); 1≤ j ≤ N,1 < t ≤ T(6.17)

3. Termination:

P(O|λ) = αT(qF) =
N

∑
i=1

αT(i)aiF(6.18)

DRAFT

12 Chapter 6. Hidden Markov and Maximum Entropy Models

ot-1 ot

a1j

a2j

aNj

a3j

bj(ot)

αt(j)= Σi αt-1(i) aij bj(ot)

q1

q2

q3

qN

q1

qj

q2

q1

q2

ot+1ot-2

q1

q2

q3 q3

qN qN

αt-1(N)

αt-1(3)

αt-1(2)

αt-1(1)

αt-2(N)

αt-2(3)

αt-2(2)

αt-2(1)

Figure 6.8 Visualizing the computation of a single elementαt(i) in the trellis by sum-
ming all the previous valuesαt−1 weighted by their transition probabilitiesa and multiply-
ing by the observation probabilitybi(ot+1). For many applications of HMMs, many of the
transition probabilities are 0, so not all previous states will contribute to the forward prob-
ability of the current state. Hidden states are in circles, observations in squares. Shaded
nodes are included in the probability computation forαt(i). Start and end states are not
shown.

function FORWARD(observationsof lenT, state-graphof lenN) returns forward-prob

create a probability matrixforward[N+2,T]
for each states from 1 to N do ;initialization step

forward[s,1]←a0,s ∗ bs(o1)
for each time stept from 2 to T do ;recursion step

for each states from 1 to N do

forward[s,t]←
N

∑
s′=1

forward[s′,t−1] ∗ as′,s ∗ bs(ot)

forward[qF ,T]←
N

∑
s=1

forward[s,T] ∗ as,qF ; termination step

return forward[qF ,T]

Figure 6.9 The forward algorithm. We’ve used the notationforward[s,t] to represent
αt(s).

6.4 DECODING: THE V ITERBI ALGORITHM

For any model, such as an HMM, that contains hidden variables, the task of determining
which sequence of variables is the underlying source of somesequence of observations
is called thedecodingtask. In the ice cream domain, given a sequence of ice creamDECODING

observations3 1 3 and an HMM, the task of thedecoder is to find the best hiddenDECODER

DRAFT

Section 6.4. Decoding: The Viterbi Algorithm 13

weather sequence (H H H). More formally,

Decoding: Given as input an HMMλ = (A,B) and a sequence of ob-
servationsO = o1,o2, ...,oT , find the most probable sequence of states
Q = q1q2q3 . . .qT .

We might propose to find the best sequence as follows: for eachpossible hidden
state sequence (HHH, HHC, HCH, etc.), we could run the forward algorithm and com-
pute the likelihood of the observation sequence given that hidden state sequence. Then
we could choose the hidden state sequence with the max observation likelihood. It
should be clear from the previous section that we cannot do this because there are an
exponentially large number of state sequences!

Instead, the most common decoding algorithms for HMMs is theViterbi algo-
rithm . Like the forward algorithm,Viterbi is a kind ofdynamic programming, andVITERBI ALGORITHM

makes uses of a dynamic programming trellis. Viterbi also strongly resembles another
dynamic programming variant, theminimum edit distancealgorithm of Ch. 3.

start

H

C

H

C

H

C

end

P(
C|
st
ar
t)
* P
(3
|C
)

.2
 *
.1

P(H|H) * P(1|H)

.7 * .2

P(C|C) * P(1|C)

.6 * .5

P(C|H) * P(1|C)
.3 * .5

P(H
|C)
 * P

(1|
H)

.4 *
 .2

P
(H
|s
ta
rt
)*
P
(3
|H
)

.8
 *
 .4

v
1
(2)=.32

v
1
(1) = .02

v
2
(2)= max(.32*.014, .02*.08) = .0448

v
2
(1) = max(.32*.15, .02*.30) = .048

start start start

t

C

H

end end endqF

q2

q1

q0

o1

3 31
o2 o3

Figure 6.10 The Viterbi trellis for computing the best path through the hidden state space for the ice-cream
eating events3 1 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal
transitions. The figure shows the computation ofvt(j) for two states at two time steps. The computation in each
cell follows Eq˙ 6.20:vt(j) = max1≤i≤N−1 vt−1(i) ai j b j (ot) The resulting probability expressed in each cell is
Eq˙ 6.19:vt(j) = P(q0,q1, . . . ,qt−1,o1,o2, . . . ,ot ,qt = j |λ).

DRAFT

14 Chapter 6. Hidden Markov and Maximum Entropy Models

Fig. 6.10 shows an example of the Viterbi trellis for computing the best hidden state
sequence for the observation sequence3 1 3. The idea is to process the observation se-
quence left to right, filling out the trellis. Each cell of theViterbi trellis,vt(j) represents
the probability that the HMM is in statej after seeing the firstt observations and pass-
ing through the most probable state sequenceq0,q1, ...,qt−1, given the automatonλ.
The value of each cellvt(j) is computed by recursively taking the most probable path
that could lead us to this cell. Formally, each cell expresses the following probability:

vt(j) = max
q0,q1,...,qt−1

P(q0,q1...qt−1,o1,o2 . . .ot ,qt = j|λ)(6.19)

Note that we represent the most probable path by taking the maximum over all
possible previous state sequences max

q0,q1,...,qt−1
. Like other dynamic programming algo-

rithms, Viterbi fills each cell recursively. Given that we had already computed the
probability of being in every state at timet−1, We compute the Viterbi probability by
taking the most probable of the extensions of the paths that lead to the current cell. For
a given stateq j at timet, the valuevt(j) is computed as:

vt(j) =
N

max
i=1

vt−1(i) ai j b j(ot)(6.20)

The three factors that are multiplied in Eq. 6.20 for extending the previous paths to
compute the Viterbi probability at timet are:

vt−1(i) theprevious Viterbi path probability from the previous time step

ai j thetransition probability from previous stateqi to current stateq j

b j(ot) thestate observation likelihoodof the observation symbolot given
the current statej

Fig. 6.11 shows pseudocode for the Viterbi algorithm. Note that the Viterbi algo-
rithm is identical to the forward algorithm except that it takes themax over the previous
path probabilities where the forward algorithm takes thesum. Note also that the Viterbi
algorithm has one component that the forward algorithm doesn’t have:backpointers.
This is because while the forward algorithm needs to producean observation likeli-
hood, the Viterbi algorithm must produce a probability and also the most likely state
sequence. We compute this best state sequence by keeping track of the path of hidden
states that led to each state, as suggested in Fig. 6.12, and then at the end tracing back
the best path to the beginning (the Viterbibacktrace).BACKTRACE

Finally, we can give a formal definition of the Viterbi recursion as follows:

1. Initialization:

v1(j) = a0 jb j(o1) 1≤ j ≤ N(6.21)

bt1(j) = 0(6.22)

DRAFT

Section 6.5. Training HMMs: The Forward-Backward Algorithm 15

function V ITERBI(observationsof lenT, state-graphof lenN) returns best-path

create a path probability matrixviterbi[N+2,T]
for each states from 1 to N do ;initialization step

viterbi[s,1]←a0,s ∗ bs(o1)
backpointer[s,1]←0

for each time stept from 2 to T do ;recursion step
for each states from 1 to N do

viterbi[s,t]←
N

max
s′=1

viterbi[s′,t−1] ∗ as′,s ∗ bs(ot)

backpointer[s,t]←
N

argmax
s′=1

viterbi[s′,t−1] ∗ as′,s

viterbi[qF ,T]←
N

max
s=1

viterbi[s,T] ∗ as,qF ; termination step

backpointer[qF ,T]←
N

argmax
s=1

viterbi[s,T] ∗ as,qF ; termination step

return the backtrace path by following backpointers to states backin time from
backpointer[qF ,T]

Figure 6.11 Viterbi algorithm for finding optimal sequence of hidden states. Given an
observation sequence and an HMMλ = (A,B), the algorithm returns the state-path through
the HMM which assigns maximum likelihood to the observationsequence. Note that states
0 andqF are non-emitting.

2. Recursion(recall states 0 andqF are non-emitting):

vt(j) =
N

max
i=1

vt−1(i)ai j b j(ot); 1≤ j ≤ N,1 < t ≤ T(6.23)

btt(j) =
N

argmax
i=1

vt−1(i)ai j b j(ot); 1≤ j ≤ N,1 < t ≤ T(6.24)

3. Termination:

The best score:P∗= vt(qF) =
N

max
i=1

vT(i)∗ai,F(6.25)

The start of backtrace:qT∗= btT(qF) =
N

argmax
i=1

vT(i)∗ai,F(6.26)

6.5 TRAINING HMM S: THE FORWARD-BACKWARD ALGORITHM

We turn to the third problem for HMMs: learning the parameters of an HMM, i.e., the
A andB matrices. Formally,

Learning: Given an observation sequenceO and the set of possible states
in the HMM, learn the HMM parametersA andB.

The input to such a learning algorithm would be an unlabeled sequence of obser-
vationsO and a vocabulary of potential hidden statesQ. Thus for the ice cream task,

DRAFT

16 Chapter 6. Hidden Markov and Maximum Entropy Models

start

H

C

H

C

H

C

end

P(
C|
st
ar
t)
* P
(3
|C
)

.2
 *
.1

P(H|H) * P(1|H)

.7 * .2

P(C|C) * P(1|C)

.6 * .5

P(C|H) * P(1|C)
.3 * .5

P(H
|C)
 * P

(1|
H)

.4 *
 .2

P
(H
|s
ta
rt
)*
P
(3
|H
)

.8
 *
 .
4

v
1
(2)=.32

v
1
(1) = .02

v
2
(2)= max(.32*.014, .02*.08) = .0448

v
2
(1) = max(.32*.15, .02*.30) = .048

start start start

t

C

H

end end endqF

q2

q1

q0

o1

3 31
o2 o3

Figure 6.12 The Viterbi backtrace. As we extend each path to a new state account for the next observation, we
keep a backpointer (shown with broken blue lines) to the bestpath that led us to this state.

we would start with a sequence of observationsO= {1,3,2, ...,}, and the set of hidden
statesH andC. For the part-of-speech tagging task we would start with a sequence of
observationsO = {w1,w2,w3 . . .} and a set of hidden statesNN, NNS, VBD, IN,...and
so on.

The standard algorithm for HMM training is theforward-backward or Baum-FORWARD
BACKWARD

Welch algorithm (Baum, 1972), a special case of theExpectation-Maximization orBAUMWELCH

EM algorithm (Dempster et al., 1977). The algorithm will let ustrain both the transi-EM

tion probabilitiesA and the emission probabilitiesB of the HMM.
Let us begin by considering the much simpler case of traininga Markov chain

rather than a Hidden Markov Model. Since the states in a Markov chain are observed,
we can run the model on the observation sequence and directlysee which path we took
through the model, and which state generated each observation symbol. A Markov
chain of course has no emission probabilitiesB (alternatively we could view a Markov
chain as a degenerate Hidden Markov Model where all theb probabilities are 1.0 for
the observed symbol and 0 for all other symbols.). Thus the only probabilities we need
to train are the transition probability matrixA.

We get the maximum likelihood estimate of the probabilityai j of a particular tran-
sition between statesi and j by counting the number of times the transition was taken,

DRAFT

Section 6.5. Training HMMs: The Forward-Backward Algorithm 17

which we could callC(i→ j), and then normalizing by the total count of all times we
took any transition from statei:

ai j =
C(i→ j)

∑q∈QC(i→ q)
(6.27)

We can directly compute this probability in a Markov chain because we know which
states we were in. For an HMM we cannot compute these counts directly from an
observation sequence since we don’t know which path of states was taken through the
machine for a given input. The Baum-Welch algorithm uses twoneat intuitions to solve
this problem. The first idea is toiterativelyestimate the counts. We will start with an
estimate for the transition and observation probabilities, and then use these estimated
probabilities to derive better and better probabilities. The second idea is that we get
our estimated probabilities by computing the forward probability for an observation
and then dividing that probability mass among all the different paths that contributed
to this forward probability.

In order to understand the algorithm, we need to define a useful probability related
to the forward probability, called thebackward probability .BACKWARD

PROBABILITY

The backward probabilityβ is the probability of seeing the observations from time
t +1 to the end, given that we are in statei at timet (and of course given the automaton
λ):

βt(i) = P(ot+1,ot+2 . . .oT |qt = i,λ)(6.28)

It is computed inductively in a similar manner to the forwardalgorithm.

1. Initialization:

βT(i) = ai,F , 1≤ i ≤ N(6.29)

2. Recursion(again since states 0 andqF are non-emitting):

βt(i) =
N

∑
j=1

ai j b j(ot+1) βt+1(j), 1≤ i ≤ N,1≤ t < T(6.30)

3. Termination:

P(O|λ) = αT(qF) = β1(0) =
N

∑
j=1

a0 j b j(o1) β1(j)(6.31)

Fig. 6.13 illustrates the backward induction step.
We are now ready to understand how the forward and backward probabilities can

help us compute the transition probabilityai j and observation probabilitybi(ot) from
an observation sequence, even though the actual path taken through the machine is
hidden.

Let’s begin by showing how to estimate ˆai j by a variant of (6.27):

âi j =
expected number of transitions from statei to statej

expected number of transitions from statei
(6.32)

DRAFT

18 Chapter 6. Hidden Markov and Maximum Entropy Models

ot+1
ot

ai1

ai2

aiN

ai3

b1(ot+1)

βt(i)= Σj βt+1(j) aij bj(ot+1)

q1

q2

q3

qN

q1

qi

q2

q1

q2

ot-1

q3

qN

βt+1(N)

βt+1(3)

βt+1(2)

βt+1(1)

b2(ot+1)
b2(ot+1)

b2(ot+1)

Figure 6.13 The computation ofβt(i) by summing all the successive valuesβt+1(j)
weighted by their transition probabilitiesai j and their observation probabilitiesb j (ot+1).
Start and end states not shown.

How do we compute the numerator? Here’s the intuition. Assume we had some
estimate of the probability that a given transitioni→ j was taken at a particular point
in time t in the observation sequence. If we knew this probability foreach particular
time t, we could sum over all timest to estimate the total count for the transitioni→ j.

More formally, let’s define the probabilityξt as the probability of being in statei at
timet and statej at timet +1, given the observation sequence and of course the model:

ξt(i, j) = P(qt = i,qt+1 = j|O,λ)(6.33)

In order to computeξt , we first compute a probability which is similar toξt , but
differs in including the probability of the observation; note the different conditioning
of O from Equation (6.33):

not-quite-ξt(i, j) = P(qt = i,qt+1 = j,O|λ)(6.34)

Fig. 6.14 shows the various probabilities that go into computing not-quite-ξt : the
transition probability for the arc in question, theα probability before the arc, theβ
probability after the arc, and the observation probabilityfor the symbol just after the
arc. These four are multiplied together to producenot-quite-ξt as follows:

not-quite-ξt(i, j) = αt(i)ai j b j(ot+1)βt+1(j)(6.35)

In order to computeξt fromnot-quite-ξt , the laws of probability instruct us to divide
by P(O|λ), since:

P(X|Y,Z) =
P(X,Y|Z)

P(Y|Z)
(6.36)

DRAFT

Section 6.5. Training HMMs: The Forward-Backward Algorithm 19

ot+2ot+1

αt(i)

ot-1 ot

aijbj(ot+1)

si sj

βt+1(j)

Figure 6.14 Computation of the joint probability of being in statei at timet and state
j at time t + 1. The figure shows the various probabilities that need to be combined to
produceP(qt = i,qt+1 = j ,O|λ): the α andβ probabilities, the transition probabilityai j
and the observation probabilityb j (ot+1). After Rabiner (1989).

The probability of the observation given the model is simplythe forward proba-
bility of the whole utterance, (or alternatively the backward probability of the whole
utterance!), which can thus be computed in a number of ways:

P(O|λ) = αT(N) = βT(1) =
N

∑
j=1

αt (j)βt(j)(6.37)

So, the final equation forξt is:

ξt(i, j) =
αt (i)ai j b j(ot+1)βt+1(j)

αT(N)
(6.38)

The expected number of transitions from statei to statej is then the sum over allt
of ξ. For our estimate ofai j in (6.32), we just need one more thing: the total expected
number of transitions from statei. We can get this by summing over all transitions out
of statei. Here’s the final formula for ˆai j :

âi j =
∑T−1

t=1 ξt(i, j)

∑T−1
t=1 ∑N

j=1 ξt(i, j)
(6.39)

We also need a formula for recomputing the observation probability. This is the
probability of a given symbolvk from the observation vocabularyV, given a statej:
b̂ j(vk). We will do this by trying to compute:

b̂ j(vk) =
expected number of times in statej and observing symbolvk

expected number of times in statej
(6.40)

DRAFT

20 Chapter 6. Hidden Markov and Maximum Entropy Models

For this we will need to know the probability of being in statej at timet, which we
will call γt(j):

γt(j) = P(qt = j|O,λ)(6.41)

Once again, we will compute this by including the observation sequence in the
probability:

γt(j) =
P(qt = j,O|λ)

P(O|λ)
(6.42)

ot+1

�
t(j)

o
t-1

o
t

sj

βt(j)

Figure 6.15 The computation ofγt(j), the probability of being in statej at timet. Note
that γ is really a degenerate case ofξ and hence this figure is like a version of Fig. 6.14
with statei collapsed with statej . After Rabiner (1989).

As Fig. 6.15 shows, the numerator of (6.42) is just the product of the forward prob-
ability and the backward probability:

γt(j) =
αt(j)βt (j)

P(O|λ)
(6.43)

We are ready to computeb. For the numerator, we sumγt(j) for all time stepst in
which the observationot is the symbolvk that we are interested in. For the denominator,
we sumγt(j) over all time stepst. The result will be the percentage of the times that
we were in statej and we saw symbolvk (the notation∑T

t=1s.t.Ot =vk
means “sum over

all t for which the observation at timet wasvk”):

b̂ j(vk) =
∑T

t=1s.t.Ot=vk
γt(j)

∑T
t=1 γt(j)

(6.44)

We now have ways in (6.39) and (6.44) tore-estimatethe transitionA and observa-
tion B probabilities from an observation sequenceO assuming that we already have a
previous estimate ofA andB.

DRAFT

Section 6.5. Training HMMs: The Forward-Backward Algorithm 21

These re-estimations form the core of the iterative forward-backward algorithm.
The forward-backward algorithm starts with some initial estimate of the HMM

parametersλ = (A,B). We then iteratively run two steps. Like other cases of the EM
(expectation-maximization) algorithm, the forward-backward algorithm has two steps:
theexpectationstep, orE-step, and themaximization step, orM-step.EXPECTATION

ESTEP

MAXIMIZATION

MSTEP

In the E-step, we compute the expected state occupancy countγ and the expected
state transition countξ, from the earlierA andB probabilities. In the M-step, we useγ
andξ to recompute newA andB probabilities.

function FORWARD-BACKWARD(observationsof len T, output vocabulary V, hidden
state set Q) returns HMM=(A,B)

initialize A andB
iterate until convergence

E-step

γt(j) =
αt(j)βt(j)

P(O|λ)
∀ t and j

ξt(i, j) =
αt(i)ai j b j(ot+1)βt+1(j)

αT(N)
∀ t, i, and j

M-step

âi j =

T−1

∑
t=1

ξt(i, j)

T−1

∑
t=1

N

∑
j=1

ξt(i, j)

b̂ j(vk) =

T

∑
t=1s.t. Ot=vk

γt(j)

T

∑
t=1

γt(j)

return A, B

Figure 6.16 The forward-backward algorithm.

Although in principle the forward-backward algorithm can do completely unsuper-
vised learning of theA andB parameters, in practice the initial conditions are very
important. For this reason the algorithm is often given extra information. For example,
for speech recognition, in practice the HMM structure is very often set by hand, and
only the emission (B) and (non-zero)A transition probabilities are trained from a set
of observation sequencesO. Sec.?? in Ch. 9 will also discuss how initialA andB
estimates are derived in speech recognition. We will also see that for speech that the
forward-backward algorithm can be extended to inputs whichare non-discrete (“con-
tinuous observation densities”).

DRAFT

22 Chapter 6. Hidden Markov and Maximum Entropy Models

6.6 MAXIMUM ENTROPY MODELS: BACKGROUND

We turn now to a second probabilistic machine learning framework calledMaximum
Entropy modeling,MaxEnt for short. MaxEnt is more widely known asmultinomial
logistic regression.

Our goal in this chapter is to introduce the use of MaxEnt for sequence classifica-
tion. Recall that the task of sequence classification or sequence labelling is to assign
a label to each element in some sequence, such as assigning a part-of-speech tag to
a word. The most common MaxEnt sequence classifier is theMaximum Entropy
Markov Model or MEMM , to be introduced in Sec. 6.8. But before we see this use
of MaxEnt as a sequence classifier, we need to introduce non-sequential classification.

The task of classification is to take a single observation, extract some useful features
describing the observation, and then based on these features, toclassifythe observation
into one of a set of discrete classes. Aprobabilistic classifier does slightly more than
this; in addition to assigning a label or class, it gives theprobability of the observation
being in that class; indeed, for a given observation a probabilistic classifier gives a
probability distribution over all classes.

Such non-sequential classification tasks occur throughoutspeech and language pro-
cessing. For example, intext classificationwe might need to decide whether a par-
ticular email should be classified as spam or not. Insentiment analysiswe have to
determine whether a particular sentence or document expresses a positive or negative
opinion. In many tasks, we’ll need to know where the sentence boundaries are, and
so we’ll need to classify a period character (‘.’) as either asentence boundary or not.
We’ll see more examples of the need for classification throughout this book.

MaxEnt belongs to the family of classifiers known as theexponentialor log-linearEXPONENTIAL

LOGLINEAR classifiers. MaxEnt works by extracting some set of featuresfrom the input, combining
themlinearly (meaning that we multiply each by a weight and then add them up), and
then, for reasons we will see below, using this sum as an exponent.

Let’s flesh out this intuition just a bit more. Assume that we have some inputx
(perhaps it is a word that needs to be tagged, or a document that needs to be classified)
from which we extract some features. A feature for tagging might bethis word ends in
-ing or the previous word was ‘the’. For each such featurefi , we have some weightwi .

Given the features and weights, our goal is to choose a class (for example a part-
of-speech tag) for the word. MaxEnt does this by choosing themost probable tag; the
probability of a particular classc given the observationx is:

p(c|x) =
1
Z

exp(∑
i

wi fi)(6.45)

HereZ is a normalizing factor, used to make the probabilities correctly sum to 1;
and as usual exp(x) = ex. As we’ll see later, this is a simplified equation in various
ways; for example in the actual MaxEnt model the featuresf and weightsw are both
dependent on the classc (i.e., we’ll have different features and weights for different
classes).

In order to explain the details of the MaxEnt classifier, including the definition

DRAFT

Section 6.6. Maximum Entropy Models: Background 23

of the normalizing termZ and the intuition of the exponential function, we’ll need
to understand firstlinear regression, which lays the groundwork for prediction using
features, andlogistic regression, which is our introduction to exponential models. We
cover these areas in the next two sections. Readers who have had a grounding in
these kinds of regression may want to skip the next two sections. Then in Sec. 6.7
we introduce the details of the MaxEnt classifier. Finally inSec. 6.8 we show how
the MaxEnt classifier is used for sequence classification in the Maximum Entropy
Markov Model or MEMM .

6.6.1 Linear Regression

In statistics we use two different names for tasks that map some input features into
some output value: we use the wordregressionwhen the output is real-valued, and
classificationwhen the output is one of a discrete set of classes.

You may already be familiar with linear regression from a statistics class. The
idea is that we are given a set of observations, each observation associated with some
features, and we want to predict some real-valued outcome for each observation. Let’s
see an example from the domain of predicting housing prices.Levitt and Dubner (2005)
showed that the words used in a real estate ad can be used as a good predictor of whether
a house will sell for more or less than its asking price. They showed, for example, that
houses whose real estate ads had words likefantastic, cute, or charming, tended to sell
for lower prices, while houses whose ads had words likemapleandgranite tended to
sell for higher prices. Their hypothesis was that real estate agents used vague positive
words likefantasticto mask the lack of any specific positive qualities in the house. Just
for pedagogical purposes, we created the fake data in Fig. 6.17.

Number of vague adjectives Amount house sold over asking price
4 0
3 $1000
2 $1500
2 $6000
1 $14000
0 $18000

Figure 6.17 Some made-up data on the number of vague adjectives (fantastic, cute,
charming) in a real estate ad, and the amount the house sold for over theasking price.

Fig. 6.18 shows a graph of these points, with the feature (# ofadjectives) on the
x-axis, and the price on the y-axis. We have also plotted aregression line, which isREGRESSION LINE

the line that best fits the observed data. The equation of any line isy = mx+b; as we
show on the graph, the slope of this line ism= −4900, while the intercept is 16550.
We can think of these two parameters of this line (slopem and interceptb) as a set of
weights that we use to map from our features (in this casex, numbers of adjectives) to
our output valuey (in this case price). We can represent this linear function usingw to
refer to weights as follows:

DRAFT

24 Chapter 6. Hidden Markov and Maximum Entropy Models

y = -4900x + 16550

-5000

0

5000

10000

15000

20000

0 1 2 3 4 5

Number of Adjectives

I
n
c
r
e
a
s
e
 i
n
 H
o
u
s
e
 S
a
le
 P
r
ic
e

Figure 6.18 A plot of the (made-up) points in Fig. 6.17 and the regressionline that best
fits them, with the equationy =−4900x+16550.

price= w0 +w1∗Num Adjectives(6.46)

Thus Eq. 6.46 gives us a linear function that lets us estimatethe sales price for any
number of these adjectives. For example, how much would we expect a house whose
ad has 5 adjectives to sell for?

The true power of linear models comes when we use more than onefeature (tech-
nically we call thismultiple linear regression). For example, the final house price
probably depends on many factors such as the average mortgage rate that month, the
number of unsold houses on the market, and many other such factors. We could encode
each of these as a variable, and the importance of each factorwould be the weight on
that variable, as follows:

price= w0+w1∗Num Adjectives+w2∗Mortgage Rate+w3∗Num UnsoldHouses(6.47)

In speech and language processing, we often call each of these predictive factors
like the number of adjectives or the mortgage rate afeature. We represent each ob-FEATURE

servation (each house for sale) by a vector of these features. Suppose a house has 1
adjective in its ad, and the mortgage rate was 6.5 and there were 10,000 unsold houses
in the city. The feature vector for the house would be~f = (1,6.5,10000). Suppose the
weight vector that we had previously learned for this task was ~w = (w0,w1,w2,w3) =
(18000,−5000,−3000,−1.8). Then the predicted value for this house would be com-
puted by multiplying each feature by its weight:

price= w0 +
N

∑
i=1

wi× fi(6.48)

In general we will pretend that there is an extra featuref0 which has the value 1, an
intercept feature, which make the equations simpler with regard to that peskyw0, and
so in general we can represent a linear regression for estimating the value ofy as:

DRAFT

Section 6.6. Maximum Entropy Models: Background 25

linear regression: y =
N

∑
i=0

wi× fi(6.49)

Taking two vectors and creating a scalar by multiplying eachelement in a pairwise
fashion and summing the results is called thedot product. Recall that the dot productDOT PRODUCT

a ·b between two vectorsa andb is defined as:

dot product: a ·b=
N

∑
i=1

aibi = a1b1 +a2b2 + · · ·+anbn(6.50)

Thus Eq. 6.49 is equivalent to the dot product between the weights vector and the
feature vector:

y = w · f(6.51)

Vector dot products occur very frequently in speech and language processing; we
will often rely on the dot product notation to avoid the messysummation signs.

Learning in linear regression

How do we learn the weights for linear regression? Intuitively we’d like to choose
weights that make the estimated valuesy as close as possible to the actual values that
we saw in the training set.

Consider a particular instancex(j) from the training set (we’ll use superscripts in
parentheses to represent training instances), which has anobserved label in the training

sety(j)
obs. Our linear regression model predicts a value fory(j) as follows:

y(j)
pred=

N

∑
i=0

wi× f (j)
i(6.52)

We’d like to choose the whole set of weightsW so as to minimize the difference

between the predicted valuey(j)
pred and the observed valuey(j)

obs, and we want this dif-

ference minimized over all theM examples in our training set. Actually we want to
minimize the absolute value of the difference (since we don’t want a negative distance
in one example to cancel out a positive difference in anotherexample), so for simplicity
(and differentiability) we minimize the square of the difference. Thus the total value
we want to minimize, which we call thesum-squared error, is this cost function ofSUMSQUARED

ERROR

the current set of weightsW:

cost(W) =
M

∑
j=0

(

y(j)
pred−y(j)

obs

)2
(6.53)

We won’t give here the details of choosing the optimal set of weights to minimize
the sum-squared error. But, briefly, it turns out that if we put the entire training set
into a single matrixX with each row in the matrix consisting of the vector of features
associated with each observationx(i), and put all the observedyvalues in a vector~y, that
there is a closed-form formula for the optimal weight valuesW which will minimize
cost(W):

DRAFT

26 Chapter 6. Hidden Markov and Maximum Entropy Models

W = (XTX)−1XT~y(6.54)

Implementations of this equation are widely available in statistical packages like
SPSS or R.

6.6.2 Logistic regression

Linear regression is what we want when we are predicting a real-valued outcome. But
somewhat more commonly in speech and language processing weare doingclassifi-
cation, in which the outputy we are trying to predict takes on one from a small set of
discrete values.

Consider the simplest case of binary classification, where we want to classify
whether some observationx is in the class (true) or not in the class (false). In other
wordsy can only take on the values 1 (true) or 0 (false), and we’d likea classifier that
can take features ofx and return true or false. Furthermore, instead of just returning
the 0 or 1 value, we’d like a model that can give us theprobability that a particular
observation is in class 0 or 1. This is important because in most real-world tasks we’re
passing the results of this classifier onto some further classifier to accomplish some
task. Since we are rarely completely certain about which class an observation falls in,
we’d prefer not to make a hard decision at this stage, ruling out all other classes. In-
stead, we’d like to pass on to the later classifier as much information as possible: the
entire set of classes, with the probability value that we assign to each class.

Could we modify our linear regression model to use it for thiskind of probabilistic
classification? Suppose we just tried to train a linear modelto predict a probability as
follows:

P(y = true|x) =
N

∑
i=0

wi × fi(6.55)

= w · f(6.56)

We could train such a model by assigning each training observation the target value
y = 1 if it was in the class (true) and the target valuey = 0 if it was not (false). Each
observationx would have a feature vectorf , and we would train the weight vectorw to
minimize the predictive error from 1 (for observations in the class) or 0 (for observa-
tions not in the class). After training, we would compute theprobability of a class given
an observation by just taking the dot product of the weight vector with the features for
that observation.

The problem with this model is that there is nothing to force the output to be a
legal probability, i.e. to lie between zero and 1. The expression∑N

i=0wi × fi produces
values from−∞ to ∞. How can we fix this problem? Suppose that we keep our linear
predictorw· f , but instead of having it predict a probability, we have it predict aratio of
two probabilities. Specifically, suppose we predict the ratio of the probability of being
in the class to the probability of not being in the class. Thisratio is called theodds. IfODDS

an event has probability .75 of occurring and probability .25 of not occurring, we say

DRAFT

Section 6.6. Maximum Entropy Models: Background 27

theoddsof occurring is.75/.25= 3. We could use the linear model to predict the odds
of y being true:

p(y = true)|x
1− p(y= true|x)

= w · f(6.57)

This last model is close: a ratio of probabilities can lie between 0 and∞. But we
need the left-hand side of the equation to lie between−∞ and∞. We can achieve this
by taking the natural log of this probability:

ln

(

p(y = true|x)
1− p(y= true|x)

)

= w · f(6.58)

Now both the left and right hand lie between−∞ and∞. This function on the left
(the log of the odds) is known as thelogit function :LOGIT FUNCTION

logit(p(x)) = ln

(

p(x)
1− p(x)

)

(6.59)

The model of regression in which we use a linear function to estimate, not the
probability, but the logit of the probability, is known aslogistic regression. If theLOGISTIC

REGRESSION

linear function is estimating the logit, what is the actual formula in logistic regression
for the probabilityP(y = true)? You should stop here and take Equation (6.58) and
apply some simple algebra to solve for the probabilityP(y = true).

Hopefully when you solved forP(y = true) you came up with a derivation some-
thing like the following:

ln

(

p(y = true|x)
1− p(y= true|x)

)

= w · f

p(y = true|x)
1− p(y= true|x)

= ew· f(6.60)

p(y = true|x) = (1− p(y= true|x))ew· f

p(y = true|x) = ew· f − p(y = true|x)ew· f

p(y = true|x)+ p(y= true|x)ew· f = ew· f

p(y = true|x)(1+ew· f) = ew· f

p(y = true|x) =
ew· f

1+ew· f(6.61)

Once we have this probability, we can easily state the probability of the observation
not belonging to the class,p(y = f alse|x), as the two must sum to 1:

p(y = f alse|x) =
1

1+ew· f(6.62)

Here are the equations again using explicit summation notation:

DRAFT

28 Chapter 6. Hidden Markov and Maximum Entropy Models

p(y = true|x) =
exp(∑N

i=0wi fi)

1+exp(∑N
i=0wi fi)

(6.63)

p(y = false|x) =
1

1+exp(∑N
i=0wi fi)

(6.64)

We can express the probabilityP(y= true|x) in a slightly different way, by dividing
the numerator and denominator in (6.61) bye−w· f :

p(y = true|x) =
ew· f

1+ew· f(6.65)

=
1

1+e−w· f(6.66)

These last equation is now in the form of what is called thelogistic function, (theLOGISTIC FUNCTION

function that gives logistic regression its name). The general form of the logistic func-
tion is:

1
1+e−x(6.67)

The logistic function maps values from−∞ and∞ to lie between 0 and 1
Again, we can expressP(y = false|x) so as to make the probabilities sum to one:

p(y = false|x) =
e−w· f

1+e−w· f(6.68)

6.6.3 Logistic regression: Classification

Given a particular observation, how do we decide which of thetwo classes (‘true’ or
‘false’) it belongs to? This is the task ofclassification, also calledinference. ClearlyCLASSIFICATION

INFERENCE the correct class is the one with the higher probability. Thus we can safely say that our
observation should be labeled ‘true’ if:

p(y = true|x) > p(y = f alse|x)

p(y = true|x)
p(y = f alse|x)

> 1

p(y = true|x)
1− p(y= true|x)

> 1

and substituting from Eq. 6.60 for the odds ratio:

ew· f > 1

w · f > 0(6.69)

DRAFT

Section 6.6. Maximum Entropy Models: Background 29

or with the explicit sum notation:

N

∑
i=0

wi fi > 0(6.70)

Thus in order to decide if an observation is a member of the class we just need to
compute the linear function, and see if its value is positive; if so, the observation is in
the class.

A more advanced point: the equation∑N
i=0wi fi = 0 is the equation of ahyperplane

(a generalization of a line toN dimensions). The equation∑N
i=0wi fi > 0 is thus the part

of N-dimensional space above this hyperplane. Thus we can see the logistic regression
function as learning a hyperplane which separates points inspace which are in the class
(’true’) from points which are not in the class.

6.6.4 Advanced: Learning in logistic regression

In linear regression, learning consisted of choosing the weightsw which minimized the
sum-squared error on the training set. In logistic regression, by contrast, we generally
useconditional maximum likelihood estimation. What this means is that we choose

CONDITIONAL
MAXIMUM

LIKELIHOOD
ESTIMATION the parametersw which makes the probability of the observedy values in the training

data to be the highest, given the observationsx. In other words, for an individual
training observationx, we want to choose the weights as follows:

ŵ = argmax
w

P(y(i)|x(i))(6.71)

And we’d like to choose the optimal weights for the entire training set:

ŵ = argmax
w

∏
i

P(y(i)|x(i))(6.72)

We generally work with the log likelihood:

ŵ = argmax
w

∑
i

logP(y(i)|x(i))(6.73)

So, more explicitly:

ŵ = argmax
w

∑
i

log

{

P(y(i) = 1|x(i))) for y(i) = 1
P(y(i) = 0|x(i))) for y(i) = 0

(6.74)

This equation is unwieldy, and so we usually apply a convenient representational
trick. Note that ify = 0 the first term goes away, while ify = 1 the second term goes
away:

ŵ = argmax
w

∑
i

y(i) logP(y(i) = 1|x(i)))+ (1−y(i)) logP(y(i) = 0|x(i))(6.75)

Now if we substitute in (6.66) and (6.68), we get:

DRAFT

30 Chapter 6. Hidden Markov and Maximum Entropy Models

ŵ = argmax
w

∑
i

y(i) log
1

1+e−w· f +(1−y(i)) log
e−w· f

1+e−w· f(6.76)

Finding the weights which result in the maximum log-likelihood according to (6.76)
is a problem in the field known asconvex optimization. Among the most com-CONVEX

OPTIMIZATION

monly used algorithms arequasi-Newtonmethods like L-BFGS, as well as gradient
ascent, conjugate gradient, and various iterative scalingalgorithms (Darroch and Rat-
cliff, 1972; Della Pietra et al., 1997; Malouf, 2002). Theselearning algorithms are
available in the various MaxEnt modeling toolkits but are too complex to define here;
interested readers should see the machine learning textbooks suggested at the end of
the chapter.

6.7 MAXIMUM ENTROPY MODELING

We showed above how logistic regression can be used to classify an observation into
one of two classes. But most of the time the kinds of classification problems that
come up in language processing involve larger numbers of classes (such as the set
of part-of-speech classes). Logistic regression can also be defined for such functions
with many discrete values. In such cases it is calledmultinomial logistic regression.

MULTINOMIAL
LOGISTIC

REGRESSION

As we mentioned above, multinomial logistic regression is calledMaxEnt in speechMAXENT

and language processing (see Sec. 6.7.1 on the intuition behind the name ‘maximum
entropy’).

The equations for computing the class probabilities for a MaxEnt classifier are a
generalization of Eqs. 6.63-6.64 above. Let’s assume that the target valuey is a random
variable which can take onC different values corresponding to the classesc1, c2,...,cC.

We said earlier in this chapter that in a MaxEnt model we estimate the probability
thaty is a particular classc as:

p(c|x) =
1
Z

exp∑
i

wi fi(6.77)

Let’s now add some details to this schematic equation. Firstwe’ll flesh out the
normalization factor Z, specify the number of features asN, and make the value of the
weight dependent on the classc. The final equation is:

p(c|x) =

exp

(

N

∑
i=0

wci fi

)

∑
c′∈C

exp

(

N

∑
i=0

wc′ i fi

)(6.78)

Note that the normalization factorZ is just used to make the exponential into a true
probability;

DRAFT

Section 6.7. Maximum Entropy Modeling 31

Z = ∑
C

p(c|x) = ∑
c′∈C

exp

(

N

∑
i=0

wc′ i fi

)

(6.79)

We need to make one more change to see the final MaxEnt equation. So far we’ve
been assuming that the featuresfi are real-valued. It is more common in speech and
language processing, however, to use binary-valued features. A feature that only takes
on the values 0 and 1 is also called anindicator function . In general, the features weINDICATOR

FUNCTION

use are indicator functions of some property of the observation and the class we are
considering assigning. Thus in MaxEnt, instead of the notation fi , we will often use
the notationfi(c,x), meaning a featurei for a particular classc for a given observation
x.

The final equation for computing the probability ofy being of classc given x in
MaxEnt is:

p(c|x) =

exp

(

N

∑
i=0

wci fi(c,x)

)

∑
c′∈C

exp

(

N

∑
i=0

wc′ i fi(c
′,x)

)(6.80)

To get a clearer intuition of this use of binary features, let’s look at some sample
features for the task of part-of-speech tagging. Suppose weare assigning a part-of-
speech tag to the wordrace in (6.81), repeated from (??):

(6.81) Secretariat/NNP is/BEZ expected/VBN to/TOrace/??tomorrow/

Again, for now we’re just doing classification, not sequenceclassification, so let’s
consider just this single word. We’ll discuss in Sec. 6.8 howto perform tagging for a
whole sequence of words.

We would like to know whether to assign the classVB to race (or instead assign
some other class likeNN). One useful feature, we’ll call itf1, would be the fact that the
current word israce. We can thus add a binary feature which is true if this is the case:

f1(c,x) =

{

1 if wordi = “race” & c = NN
0 otherwise

Another feature would be whether the previous word has the tag TO:

f2(c,x) =

{

1 if ti−1 = TO & c = VB
0 otherwise

Two more part-of-speech tagging features might focus on aspects of a word’s spelling
and case:

f3(c,x) =

{

1 if suffix(wordi) = “ing” & c = VBG
0 otherwise

DRAFT

32 Chapter 6. Hidden Markov and Maximum Entropy Models

f4(c,x) =

{

1 if is lower case(wordi) & c = VB
0 otherwise

Since each feature is dependent on both a property of the observation and the class
being labeled, we would need to have separate feature for, e.g, the link betweenrace
and VB, or the link between a previous TO and NN:

f5(c,x) =

{

1 if wordi = ”race” & c = VB
0 otherwise

f6(c,x) =

{

1 if ti−1 = TO & c = NN
0 otherwise

Each of these features has a corresponding weight. Thus the weightw1(c,x) would
indicate how strong a cue the wordrace is for the tag VB, the weightw2(c,x) would
indicate how strong a cue the previous tagTO is for the current word being a VB, and
so on.

f1 f2 f3 f4 f5 f6
VB f 0 1 0 1 1 0
VB w .8 .01 .1

NN f 1 0 0 0 0 1
NN w .8 -1.3

Figure 6.19 Some sample feature values and weights for tagging the wordrace in
(6.81).

Let’s assume that the feature weights for the two classes VB and VN are as shown
in Fig. 6.19. Let’s call the current input observation (where the current word israce) x.
We can now computeP(NN|x) andP(VB|x), using Eq. 6.80:

P(NN|x) =
e.8e−1.3

e.8e−1.3 +e.8e.01e.1 = .20(6.82)

P(VB|x) =
e.8e.01e.1

e.8e−1.3 +e.8e.01e.1 = .80(6.83)

Notice that when we use MaxEnt to performclassification, MaxEnt naturally gives
us a probability distribution over the classes. If we want todo a hard-classification and
choose the single-best class, we can choose the class that has the highest probability,
i.e.:

ĉ = argmax
c∈C

P(c|x)(6.84)

DRAFT

Section 6.7. Maximum Entropy Modeling 33

Classification in MaxEnt is thus a generalization of classification in (boolean) lo-
gistic regression. In boolean logistic regression, classification involves building one
linear expression which separates the observations in the class from the observations
not in the class. Classification in MaxEnt, by contrast, involves building a separate
linear expression for each ofC classes.

But as we’ll see later in Sec. 6.8, we generally don’t use MaxEnt for hard classi-
fication. Usually we want to use MaxEnt as part of sequence classification, where we
want not the best single class for one unit, but the best totalsequence. For this task,
it’s useful to exploit the entire probability distributionfor each individual unit, to help
find the best sequence. Indeed even in many non-sequence applications a probability
distribution over the classes is more useful than a hard choice.

The features we have described so far express a single binaryproperty of an obser-
vation. But it is often useful to create more complex features that express combinations
of properties of a word. Some kinds of machine learning models, like Support Vector
Machines (SVMs), can automatically model the interactionsbetween primitive proper-
ties, but in MaxEnt any kind of complex feature has to be defined by hand. For example
a word starting with a capital letter (like the wordDay) is more likely to be a proper
noun (NNP) than a common noun (for example in the expressionUnited Nations Day).
But a word which is capitalized but which occurs at the beginning of the sentence (the
previous word is<s>), as inDay after day...., is not more likely to be a proper noun.
Even if each of these properties were already a primitive feature, MaxEnt would not
model their combination, so this boolean combination of properties would need to be
encoded as a feature by hand:

f125(c,x) =

{

1 if wordi−1 = <s> & isupperfirst(wordi) & c = NNP
0 otherwise

A key to successful use of MaxEnt is thus the design of appropriate features and
feature combinations.

Learning Maximum Entropy Models

Learning a MaxEnt model can be done via a generalization of the logistic regression
learning algorithms described in Sec. 6.6.4; as we saw in (6.73), we want to find the
parametersw which maximize the log likelihood of theM training samples:

ŵ = argmax
w

∑
i

logP(y(i)|x(i))(6.85)

As with binary logistic regression, we use some convex optimization algorithm to
find the weights which maximize this function.

A brief note: one important aspect of MaxEnt training is a kind of smoothing of the
weights calledregularization. The goal of regularization is to penalize large weights;REGULARIZATION

it turns out that otherwise a MaxEnt model will learn very high weights which overfit
the training data. Regularization is implemented in training by changing the likeli-
hood function that is optimized. Instead of the optimization in (6.85), we optimize the
following:

DRAFT

34 Chapter 6. Hidden Markov and Maximum Entropy Models

ŵ = argmax
w

∑
i

logP(y(i)|x(i))−αR(w)(6.86)

whereR(w) is a regularization term used to penalize large weights. It is common to
make the regularization termR(w) be a quadratic function of the weight values:

R(W) =
N

∑
j=1

w2
j(6.87)

Subtracting squares of the weights will thus result in preferring smaller weights:

ŵ = argmax
w

∑
i

logP(y(i)|x(i))−α
N

∑
j=1

w2
j(6.88)

It turns that this kind of regularization corresponds to assuming that weights are
distributed according to a Gaussian distribution with meanµ = 0. In a Gaussian or
normal distribution, the further away a value is from the mean, the lower its probability
(scaled by the varianceσ). By using a Gaussian prior on the weights, we are saying
that weights prefer to have the value zero. A Gaussian for a weight wj is:

1
√

2πσ2
j

exp

(

−
(wj −µj)

2

2σ2
j

)

(6.89)

If we multiply each weight by a Gaussian prior on the weight, we are thus maxi-
mizing the following constraint:

ŵ = argmax
w

M

∏
i

P(y(i)|x(i))×
N

∏
j=1

1
√

2πσ2
j

exp

(

−
(wj −µj)

2

2σ2
j

)

(6.90)

which in log space, withµ= 0, corresponds to

ŵ = argmax
w

∑
i

logP(y(i)|x(i))−
N

∑
j=1

w2
j

2σ2
j

(6.91)

which is in the same form as Eq. 6.88.
There is a vast literature on the details of learning in MaxEnt; see the end of the

chapter for pointers to further details.

6.7.1 Why do we call it Maximum Entropy?

Why do we refer to multinomial logistic regression models asMaxEnt or Maximum
Entropy models? Let’s give the intuition of this interpretation in the context of part-
of-speech tagging. Suppose we want to assign a tag to the wordzzfish(a word we
made up for this example). What is the probabilistic taggingmodel (the distribution
of part-of-speech tags across words) that makes the fewest assumptions, imposing no
constraints at all? Intuitively it would be the equiprobable distribution:

DRAFT

Section 6.7. Maximum Entropy Modeling 35

NN JJ NNS VB NNP IN MD UH SYM VBG POS PRP CC CD ...
1
45

1
45

1
45

1
45

1
45

1
45

1
45

1
45

1
45

1
45

1
45

1
45

1
45

1
45 ...

Now suppose we had some training data labeled with part-of-speech tags, and from
this data we learned only one fact: the set of possible tags for zzfishare NN, JJ, NNS,
and VB (sozzfishis a word something likefish, but which can also be an adjective).
What is the tagging model which relies on this constraint, but makes no further as-
sumptions at all? Since one of these must be the correct tag, we know that

P(NN)+P(JJ)+P(NNS)+P(VB) = 1(6.92)

Since we have no further information, a model which makes no further assumptions
beyond what we know would simply assign equal probability toeach of these words:

NN JJ NNS VB NNP IN MD UH SYM VBG POS PRP CC CD ...
1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0 0 0 ...

In the first example, where we wanted an uninformed distribution over 45 parts-of-
speech, and in this case, where we wanted an uninformed distribution over 4 parts-of-
speech, it turns out that of all possible distributions, theequiprobable distribution has
themaximum entropy. Recall from Sec.?? that the entropy of the distribution of a
random variablex is computed as:

H(x) =−∑
x

P(x) log2P(x)(6.93)

An equiprobable distribution in which all values of the random variable have the
same probability has a higher entropy than one in which thereis more information.
Thus of all distributions over four variables the distribution { 1

4, 1
4, 1

4, 1
4} has the maxi-

mum entropy. (To have an intuition for this, use Eq. 6.93 to compute the entropy for a
few other distributions such as the distribution{ 1

4, 1
2, 1

8, 1
8}, and make sure they are all

lower than the equiprobable distribution.)
The intuition of MaxEnt modeling is that the probabilistic model we are building

should follow whatever constraints we impose on it, but beyond these constraints it
should follow Occam’s Razor, i.e., make the fewest possibleassumptions.

Let’s add some more constraints into our tagging example. Suppose we looked at
our tagged training data and noticed that 8 times out of 10,zzfishwas tagged as some
sort of common noun, either NN or NNS. We can think of this as specifying the feature
’word is zzfishandti = NN or ti = NNS’. We might now want to modify our distribution
so that we give8

10 of our probability mass to nouns, i.e. now we have 2 constraints

P(NN)+P(JJ)+P(NNS)+P(VB) = 1

P(word iszzfishandti = NN or ti = NNS) =
8
10

but make no further assumptions (keep JJ and VB equiprobable, and NN and NNS
equiprobable).

DRAFT

36 Chapter 6. Hidden Markov and Maximum Entropy Models

NN JJ NNS VB NNP ...
4
10

1
10

4
10

1
10 0 ...

Now suppose we don’t have have any more information aboutzzfish. But we notice
in the training data that for all English words (not justzzfish) verbs (VB) occur as 1
word in 20. We can now add this constraint (corresponding to the featureti =VB):

P(NN)+P(JJ)+P(NNS)+P(VB) = 1

P(word iszzfishandti = NN or ti = NNS) =
8
10

P(VB) =
1
20

The resulting maximum entropy distribution is now as follows:

NN JJ NNS VB
4
10

3
20

4
10

1
20

In summary, the intuition of maximum entropy is to build a distribution by continu-
ously adding features. Each feature is an indicator function, which picks out a subset of
the training observations. For each feature we add a constraint on our total distribution,
specifying that our distribution for this subset should match the empirical distribution
we saw in our training data. We then choose the maximum entropy distribution which
otherwise accords with these constraints. Berger et al. (1996) pose the optimization
problem of finding this distribution as follows:

“To select a model from a setC of allowed probability distributions, choose
the model p∗ ∈ C with maximum entropy H(p)”:

p∗ = argmax
p∈C

H(p)(6.94)

Now we come to the important conclusion. Berger et al. (1996)show that the
solution to this optimization problem turns out to be exactly the probability distribution
of a multinomial logistic regression model whose weightsW maximize the likelihood
of the training data! Thus the exponential model for multinomial logistic regression,
when trained according to the maximum likelihood criterion, also finds the maximum
entropy distribution subject to the constraints from the feature functions.

6.8 MAXIMUM ENTROPY MARKOV MODELS

We began our discussion of MaxEnt by pointing out that the basic MaxEnt model is
not in itself a classifier for sequences. Instead, it is used to classify a single observation
into one of a set of discrete classes, as in text classification (choosing between possible
authors of an anonymous text, or classifying an email as spam), or tasks like deciding
whether a period marks the end of a sentence.

DRAFT

Section 6.8. Maximum Entropy Markov Models 37

We turn in this section to theMaximum Entropy Markov Model or MEMM ,
which is an augmentation of the basic MaxEnt classifier so that it can be applied to
assign a class to each element in a sequence, just as we do withHMMs. Why would
we want a sequence classifier built on MaxEnt? How might such aclassifier be better
than an HMM?

Consider the HMM approach to part-of-speech tagging. The HMM tagging model
is based on probabilities of the formP(tag|tag) and P(word|tag). That means that
if we want to include some source of knowledge into the tagging process, we must
find a way to encode the knowledge into one of these two probabilities. But many
knowledge sources are hard to fit into these models. For example, we saw in Sec.??
that for tagging unknown words, useful features include capitalization, the presence
of hyphens, word endings, and so on. There is no easy way to fit probabilities like
P(capitalization|tag), P(hyphen|tag), P(suffix|tag), and so on into an HMM-style model.

We gave the initial part of this intuition in the previous section, when we discussed
applying MaxEnt to part-of-speech tagging. Part-of-speech tagging is definitely a se-
quence labeling task, but we only discussed assigning a part-of-speech tag to a single
word.

How can we take this single local classifier and turn it into a general sequence
classifier? When classifying each word we can rely on features from the current word,
features from surrounding words, as well as the output of theclassifier from previous
words. For example the simplest method is to run our local classifier left-to-right, first
making a hard classification of the first word in the sentence,then the second word,
and so on. When classifying each word, we can rely on the output of the classifier from
the previous word as a feature. For example, we saw in taggingthe wordrace that a
useful feature was the tag of the previous word; a previous TOis a good indication that
race is a VB, whereas a previous DT is a good indication thatrace is a NN. Such a
strict left-to-right sliding window approach has been shown to yield surprisingly good
results across a wide range of applications.

While it is possible to perform part-of-speech tagging in this way, this simple left-
to-right classifier has an important flaw: it makes a hard decision on each word before
moving on to the next word. This means that the classifier is unable to use information
from later words to inform its decision early on. Recall thatin Hidden Markov Models,
by contrast, we didn’t have to make a hard decision at each word; we used Viterbi
decoding to find the sequence of part-of-speech tags which was optimal for the whole
sentence.

The Maximum Entropy Markov Model (or MEMM) allows us to achieve this same
advantage, by mating the Viterbi algorithm with MaxEnt. Let’s see how it works,
again looking at part-of-speech tagging. It is easiest to understand an MEMM when
comparing it to an HMM. Remember that in using an HMM to model the most probable
part-of-speech tag sequence we rely on Bayes rule, computing P(W|T)P(W) instead
of directly computingP(T|W):

T̂ = argmax
T

P(T|W)

= argmax
T

P(W|T)P(T)

DRAFT

38 Chapter 6. Hidden Markov and Maximum Entropy Models

= argmax
T

∏
i

P(wordi |tagi)∏
i

P(tagi |tagi−1)(6.95)

That is, an HMM as we’ve described it is a generative model that optimizes the
likelihoodP(W|T), and we estimate the posterior by combining the likelihood and the
prior P(T).

In an MEMM, by contrast, we compute the posteriorP(T|W) directly. Because we
train the model directly to discriminate among the possibletag sequences, we call an
MEMM a discriminative model rather than a generative model. In an MEMM, weDISCRIMINATIVE

MODEL

break down the probabilities as follows:

T̂ = argmax
T

P(T|W)

= argmax
T

∏
i

P(tagi |wordi , tagi−1)(6.96)

Thus in an MEMM instead of having a separate model for likelihoods and priors,
we train a single probabilistic model to estimateP(tagi |wordi , tagi−1). We will use
MaxEnt for this last piece, estimating the probability of each local tag given the previ-
ous tag, the observed word, and, as we will see, any other features we want to include.

We can see the HMM versus MEMM intuitions of the POS tagging task in Fig. 6.20,
which repeats the HMM model of Fig.??a from Ch. 5, and adds a new model for the
MEMM. Note that the HMM model includes distinct probabilityestimates for each
transition and observation, while the MEMM gives one probability estimate per hidden
state, which is the probability of the next tag given the previous tag and the observation.

is

NNP VBZ VBN TO VB NR

Secretariat expected to race tomorrow

#

Figure 6.20 The HMM (top) and MEMM (bottom) representation of the probability
computation for the correct sequence of tags for the Secretariat sentence. Each arc would
be associated with a probability; the HMM computes two separate probabilities for the ob-
servation likelihood and the prior, while the MEMM computesa single probability function
at each state, conditioned on the previous state and currentobservation.

DRAFT

Section 6.8. Maximum Entropy Markov Models 39

Fig. 6.21 emphasizes another advantage of MEMMs over HMMs not shown in
Fig. 6.20: unlike the HMM, the MEMM can condition on any useful feature of the input
observation. In the HMM this wasn’t possible because the HMMis likelihood-based,
hence would have needed to compute the likelihood of each feature of the observation.

expectedis

NNP VBZ VBN TO VB NR

Secretariat to race tomorrow

#

Figure 6.21 An MEMM for part-of-speech tagging, augmenting the description in
Fig. 6.20 by showing that an MEMM can condition on many features of the input, such as
capitalization, morphology (ending in-s or -ed), as well as earlier words or tags. We have
shown some potential additional features for the first threedecisions, using different line
styles for each class.

More formally, in the HMM we compute the probability of the state sequence given
the observations as:

P(Q|O) =
n

∏
i=1

P(oi |qi)×
n

∏
i=1

P(qi |qi−1)(6.97)

In the MEMM, we compute the probability of the state sequencegiven the obser-
vations as:

P(Q|O) =
n

∏
i=1

P(qi |qi−1,oi)(6.98)

In practice, however, an MEMM can also condition on many morefeatures than
the HMM, so in general we condition the right-hand side on many more factors.

To estimate the individual probability of a transition froma stateq′ to a stateq
producing an observationo, we build a MaxEnt model as follows:

P(q|q′,o) =
1

Z(o,q′)
exp

(

∑
i

wi fi(o,q)

)

(6.99)

6.8.1 Decoding and Learning in MEMMs

Like HMMs, the MEMM uses the Viterbi algorithm to perform thetask of decoding
(inference). Concretely, this involves filling anN×T array with the appropriate values
for P(ti |ti−1,wordi), maintaining backpointers as we proceed. As with HMM Viterbi,
when the table is filled we simply follow pointers back from the maximum value in
the final column to retrieve the desired set of labels. The requisite changes from the
HMM-style application of Viterbi only have to do with how we fill each cell. Recall

DRAFT

40 Chapter 6. Hidden Markov and Maximum Entropy Models

from Eq. 6.23 that the recursive step of the Viterbi equationcomputes the Viterbi value
of time t for statej as:

vt(j) =
N

max
i=1

vt−1(i)ai j b j(ot); 1≤ j ≤ N,1 < t ≤ T(6.100)

which is the HMM implementation of

vt(j) =
N

max
i=1

vt−1(i) P(sj |si) P(ot |sj) 1≤ j ≤ N,1 < t ≤ T(6.101)

The MEMM requires only a slight change to this latter formula, replacing thea and
b prior and likelihood probabilities with the direct posterior:

vt(j) =
N

max
i=1

vt−1(i) P(sj |si ,ot) 1≤ j ≤ N,1 < t ≤ T(6.102)

Fig. 6.22 shows an example of the Viterbi trellis for an MEMM applied to the ice-
cream task from Sec. 6.4. Recall that the task is figuring out the hidden weather (Hot
or Cold) from observed numbers of ice-creams eaten in Jason Eisner’s diary. Fig. 6.22
shows the abstract Viterbi probability calculation assuming that we have a MaxEnt
model which computesP(si |si−1,oi) for us.

Learning in MEMMs relies on the same supervised learning algorithms we pre-
sented for logistic regression and MaxEnt. Given a sequenceof observations, fea-
ture functions, and corresponding hidden states, we train the weights so as maximize
the log-likelihood of the training corpus. As with HMMs, it is also possible to train
MEMMs in semi-supervised modes, for example when the sequence of labels for the
training data is missing or incomplete in some way: a versionof the EM algorithm can
be used for this purpose.

6.9 SUMMARY

This chapter described two important models for probabilistic sequence classification:
theHidden Markov Model and theMaximum Entropy Markov Model . Both mod-
els are widely used throughout speech and language processing.

• Hidden Markov Models (HMMs) are a way of relating a sequence ofobser-
vations to a sequence ofhidden classesor hidden stateswhich explain the
observations.
• The process of discovering the sequence of hidden states given the sequence

of observations is known asdecodingor inference. TheViterbi algorithm is
commonly used for decoding.

• The parameters of an HMM are theA transition probability matrix and theB
observation likelihood matrix. Both can be trained using the Baum-Welch or
forward-backward algorithm.

DRAFT

Section 6.9. Summary 41

start

H

C

H

C

H

C

end

P(
C|
st
ar
t,3
)

P(H|H,1)

P(C|C,1)

P(C|H,1)

P(H
|C,
1)

P
(H
|s
ta
rt
,3
)

v
1
(2)=P(H|start,3)

v
1
(1) = P(C|start,3)

v
2
(2)= max(P(H|H,1)*P(H|start,3),

 P(H|C,1)*P(C|start,3))

v
2
(1) = max(P(C|H,1)*P(H|start,3),

 P(C|C,1)*P(C|start,3))

start start start

t

C

H

end end end end

H

C

start

qend

q2

q1

q0

o1

3 31
o2 o3

Figure 6.22 Inference from ice-cream eating computed by an MEMM insteadof an HMM. The Viterbi trellis
for computing the best path through the hidden state space for the ice-cream eating events3 1 3, modified from
the HMM figure in Fig. 6.10.

• A MaxEnt model is a classifier which assigns aclassto anobservationby com-
puting a probability from an exponential function of aweightedset offeatures
of the observation.
• MaxEnt models can be trained using methods from the field ofconvex optimiza-

tion although we don’t give the details in this textbook.
• A Maximum Entropy Markov Model or MEMM is a sequence model aug-

mentation of MaxEnt which makes use of the Viterbi decoding algorithm.

• MEMMs can be trained by augmenting MaxEnt training with a version of EM.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

As we discussed at the end of Ch. 4, Markov chains were first used by Markov (1913,
2006), to predict whether an upcoming letter in Pushkin’sEugene Oneginwould be a
vowel or a consonant.

The Hidden Markov Model was developed by Baum and colleaguesat the Institute
for Defense Analyses in Princeton (Baum and Petrie, 1966; Baum and Eagon, 1967).

TheViterbi algorithm was first applied to speech and language processing in the
context of speech recognition by Vintsyuk (1968), but has what Kruskal (1983) calls a

DRAFT

42 Chapter 6. Hidden Markov and Maximum Entropy Models

‘remarkable history of multiple independent discovery andpublication’.2 Kruskal and
others give at least the following independently-discovered variants of the algorithm
published in four separate fields:

Citation Field
Viterbi (1967) information theory
Vintsyuk (1968) speech processing
Needleman and Wunsch (1970) molecular biology
Sakoe and Chiba (1971) speech processing
Sankoff (1972) molecular biology
Reichert et al. (1973) molecular biology
Wagner and Fischer (1974) computer science

The use of the termViterbi is now standard for the application of dynamic pro-
gramming to any kind of probabilistic maximization problemin speech and language
processing. For non-probabilistic problems (such as for minimum edit distance) the
plain termdynamic programming is often used. Forney Jr. (1973) is an early survey
paper which explores the origin of the Viterbi algorithm in the context of information
and communications theory.

Our presentation of the idea that Hidden Markov Models should be characterized
by three fundamental problems was modeled after an influential tutorial by Rabiner
(1989), which was itself based on tutorials by Jack Fergusonof IDA in the 1960s.
Jelinek (1997) and Rabiner and Juang (1993) give very complete descriptions of the
forward-backward algorithm, as applied to the speech recognition problem. Jelinek
(1997) also shows the relationship between forward-backward and EM. See also the
description of HMMs in other textbooks such as Manning and Schütze (1999). Bilmes
(1997) is a tutorial on EM.

While logistic regression and other log-linear models havebeen used in many fields
since the middle of the 20th century, the use of Maximum Entropy/multinomial logistic
regression in natural language processing dates from work in the early 1990s at IBM
(Berger et al., 1996; Della Pietra et al., 1997). This early work introduced the maximum
entropy formalism, proposed a learning algorithm (improved iterative scaling), and
proposed the use of regularization. A number of applications of MaxEnt followed. For
further discussion of regularization and smoothing for maximum entropy models see
(inter alia) Chen and Rosenfeld (2000), Goodman (2004), and Dudı́k and Schapire
(2006).

Although the second part of this chapter focused on MaxEnt-style classification,
numerous other approaches to classification are used throughout speech and language
processing. Naive Bayes (Duda et al., 2000) is often employed as a good baseline
method (often yielding results that are sufficiently good for practical use); we’ll cover
naive Bayes in Ch. 20. Support Vector Machines (Vapnik, 1995) have been successfully
used in text classification and in a wide variety of sequence processing applications.
Decision lists have been widely used in word sense discrimination, and decision trees
(Breiman et al., 1984; Quinlan, 1986) have been used in many applications in speech
processing. Good references to supervised machine learning approaches to classifica-

2 Seven is pretty remarkable, but see page?? for a discussion of the prevalence of multiple discovery.

DRAFT

Section 6.9. Summary 43

tion include Duda et al. (2000), Hastie et al. (2001), and Witten and Frank (2005).
Maximum Entropy Markov Models (MEMMs) were introduced by Ratnaparkhi

(1996) and McCallum et al. (2000).
There are many sequence models that augment the MEMM, such asthe Condi-

tional Random Field (CRF) (Lafferty et al., 2001; Sutton and McCallum, 2006). InCONDITIONAL
RANDOM FIELD

CRF addition, there are various generalizations ofmaximum margin methods (the insights
that underlie SVM classifiers) to sequence tasks.

DRAFT

44 Chapter 6. Hidden Markov and Maximum Entropy Models

Baum, L. E. (1972). An inequality and associated maximiza-
tion technique in statistical estimation for probabilistic func-
tions of Markov processes. In Shisha, O. (Ed.),Inequalities
III: Proceedings of the Third Symposium on Inequalities, Uni-
versity of California, Los Angeles, pp. 1–8. Academic Press.

Baum, L. E. and Eagon, J. A. (1967). An inequality with appli-
cations to statistical estimation for probabilistic functions of
Markov processes and to a model for ecology.Bulletin of the
American Mathematical Society, 73(3), 360–363.

Baum, L. E. and Petrie, T. (1966). Statistical inference forprob-
abilistic functions of finite-state Markov chains.Annals of
Mathematical Statistics, 37(6), 1554–1563.

Berger, A., Della Pietra, S. A., and Della Pietra, V. J. (1996). A
maximum entropy approach to natural language processing.
Computational Linguistics, 22(1), 39–71.

Bilmes, J. (1997). A gentle tutorial on the EM algorithm and
its application to parameter estimation for gaussian mixture
and hidden markov models. Tech. rep. ICSI-TR-97-021, ICSI,
Berkeley.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.
(1984). Classification and Regression Trees. Wadsworth &
Brooks, Pacific Grove, CA.

Chen, S. F. and Rosenfeld, R. (2000). A survey of smoothing
techniques for ME models.IEEE Transactions on Speech and
Audio Processing, 8(1), 37–50.

Darroch, J. N. and Ratcliff, D. (1972). Generalized iterative
scaling for log-linear models.The Annals of Mathematical
Statistics, 43(5), 1470–1480.

Della Pietra, S. A., Della Pietra, V. J., and Lafferty, J. D. (1997).
Inducing features of random fields.IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 19(4), 380–393.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Max-
imum likelihood from incomplete data via theEM algorithm.
Journal of the Royal Statistical Society, 39(1), 1–21.

Duda, R. O., Hart, P. E., and Stork, D. G. (2000).Pattern Clas-
sification. Wiley-Interscience Publication.

Dudı́k, M. and Schapire, R. E. (2006). Maximum entropy distri-
bution estimation with generalized regularization. In Lugosi,
G. and Simon, H. U. (Eds.),COLT 2006, Berlin, pp. 123–138.
Springer-Verlag.

Eisner, J. (2002). An interactive spreadsheet for teachingthe
forward-backward algorithm. InProceedings of the ACL
Workshop on Effective Tools and Methodologies for Teaching
NLP and CL, pp. 10–18.

Forney Jr., G. D. (1973). The Viterbi algorithm.Proceedings
of the IEEE, 61(3), 268–278.

Goodman, J. (2004). Exponential priors for maximum entropy
models. InACL-04.

Hastie, T., Tibshirani, R., and Friedman, J. H. (2001).The Ele-
ments of Statistical Learning. Springer.

Hofstadter, D. R. (1997).Le ton beau de marot. Basic Books.

Jelinek, F. (1997).Statistical Methods for Speech Recognition.
MIT Press.

Kruskal, J. B. (1983). An overview of sequence compari-
son. In Sankoff, D. and Kruskal, J. B. (Eds.),Time Warps,
String Edits, and Macromolecules: The Theory and Practice
of Sequence Comparison, pp. 1–44. Addison-Wesley, Read-
ing, MA.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001).
Conditional random fields: Probabilistic models for segment-
ing and labeling sequence data. InICML 2001, Stanford, CA.

Levitt, S. D. and Dubner, S. J. (2005).Freakonomics. Morrow.

Malouf, R. (2002). A comparison of algorithms for maximum
entropy parameter estimation. InCoNLL-2002, pp. 49–55.

Manning, C. D. and Schütze, H. (1999).Foundations of Statis-
tical Natural Language Processing. MIT Press.

Markov, A. A. (1913). Essai d’une recherche statistique sur
le texte du roman “Eugene Onegin” illustrant la liaison des
epreuve en chain (‘Example of a statistical investigation of
the text of “Eugene Onegin” illustrating the dependence be-
tween samples in chain’).Izvistia Imperatorskoi Akademii
Nauk (Bulletin de l’Académie Impériale des Sciences de St.-
Pétersbourg), 7, 153–162. English translation by Morris
Halle, 1956.

Markov, A. A. (2006). Classical text in translation: A. A.
Markov, an example of statistical investigation of the textEu-
gene Onegin concerning the connection of samples in chains.
Science in Context, 19(4), 591–600. Translated by David
Link.

McCallum, A., Freitag, D., and Pereira, F. C. N. (2000). Maxi-
mum Entropy Markov Models for Information Extraction and
Segmentation. InICML 2000, pp. 591–598.

Needleman, S. B. and Wunsch, C. D. (1970). A general method
applicable to the search for similarities in the amino-acidse-
quence of two proteins.Journal of Molecular Biology, 48,
443–453.

Quinlan, J. R. (1986). Induction of decision trees.Machine
Learning, 1, 81–106.

Rabiner, L. R. (1989). A tutorial on Hidden Markov Models
and selected applications in speech recognition.Proceedings
of the IEEE, 77(2), 257–286.

Rabiner, L. R. and Juang, B. H. (1993).Fundamentals of
Speech Recognition. Prentice Hall.

Ratnaparkhi, A. (1996). A maximum entropy part-of-speech
tagger. InEMNLP 1996, Philadelphia, PA, pp. 133–142.

Reichert, T. A., Cohen, D. N., and Wong, A. K. C. (1973). An
application of information theory to genetic mutations andthe
matching of polypeptide sequences.Journal of Theoretical
Biology, 42, 245–261.

Sakoe, H. and Chiba, S. (1971). A dynamic programming ap-
proach to continuous speech recognition. InProceedings of
the Seventh International Congress on Acoustics, Budapest,
Budapest, Vol. 3, pp. 65–69. Akadémiai Kiadó.

Sankoff, D. (1972). Matching sequences under deletion-
insertion constraints.Proceedings of the Natural Academy
of Sciences of the U.S.A., 69, 4–6.

DRAFT

Section 6.9. Summary 45

Sutton, C. and McCallum, A. (2006). An introduction to condi-
tional random fields for relational learning. In Getoor, L. and
Taskar, B. (Eds.),Introduction to Statistical Relational Learn-
ing. MIT Press.

Vapnik, V. N. (1995).The Nature of Statistical Learning The-
ory. Springer-Verlag.

Vintsyuk, T. K. (1968). Speech discrimination by dynamic pro-
gramming. Cybernetics, 4(1), 52–57. Russian Kibernetika
4(1):81-88 (1968).

Viterbi, A. J. (1967). Error bounds for convolutional codesand
an asymptotically optimum decoding algorithm.IEEE Trans-
actions on Information Theory, IT-13(2), 260–269.

Wagner, R. A. and Fischer, M. J. (1974). The string-to-string
correction problem.Journal of the Association for Computing
Machinery, 21, 168–173.

Witten, I. H. and Frank, E. (2005).Data Mining: Practical
Machine Learning Tools and Techniques. Morgan Kaufmann.
2nd ed.

