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HIDDEN MARKOV AND
MAXIMUM ENTROPY
MODELS

Numqguam ponenda est pluralitas sine necessitat
‘Plurality should never be proposed unless needed’
William of Occam

Her sister was called Tatiana.
For the first time with such a name
the tender pages of a novel,
we’ll whimsically grace.
Pushkin Eugene Onegirin the Nabokov translation

Alexander Pushkin’s novel in verseugene Oneginserialized in the early 19th
century, tells of the young dandy Onegin, his rejection @f litve of young Tatiana,
his duel with his friend Lenski, and his later regret for botlstakes. But the novel is
mainly beloved for its style and structure rather than itd.pAmong other interesting
structural innovations, the novel is written in a form nowolum as theéDnegin stanza
iambic tetrameter with an unusual rhyme scheme. These atsrhave caused compli-
cations and controversy in its translation into other laaggs. Many of the translations
have been in verse, but Nabokov famously translated ittistiiterally into English
prose. The issue of its translation, and the tension betweegal and verse transla-
tions have inspired much commentary (see for example Hitfst§1997)).

In 1913 A. A. Markov asked a less controversial question aBushkin’s text:
could we use frequency counts from the text to help compw@etbbability that the
next letter in sequence would be a vowel. In this chapter w@diuce two impor-
tant classes of statistical models for processing text aeech, both descendants of
Markov’s models. One of them is thHdidden Markov Model (HMM ). The other,
is the Maximum Entropy model MaxEnt), and particularly a Markov-related vari-
ant of MaxEnt called thaximum Entropy Markov Model (MEMM ). All of these
aremachine learningmodels. We have already touched on some aspects of machine
learning; indeed we briefly introduced the Hidden Markov Midd the previous chap-
ter, and we have introduced thegram model in the chapter before. In this chapter we
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give a more complete and formal introduction to these twoartgnt models.

oSRENCE HMMs and MEMMs are botlsequence classifiersA sequence classifier @e-
guence labeleris a model whose job is to assign some label or class to eatimumi
sequence. The finite-state transducer we studied in Ch. Bitglaf non-probabilistic
sequence classifier, for example transducing from seqsearfegords to sequences of
morphemes. The HMM and MEMM extend this notion by being philistic sequence
classifiers; given a sequence of units (words, letters, hmnes, sentences, whatever)
their job is to compute a probability distribution over pibés labels and choose the
best label sequence.

We have already seen one important sequence classificaskn part-of-speech
tagging, where each word in a sequence has to be assignett@-speech tag. Se-
quence labeling tasks come up throughout speech and laaguagessing, a fact that
isn’t too surprising if we consider that language consi§sequences at many represen-
tational levels. Besides part-of-speech tagging, in thiskbwe will see the application
of these sequence models to tasks like speech recognitior®jCsentence segmenta-
tion and grapheme-to-phoneme conversion (Ch. 8), pauiaipg/chunking (Ch. 13),
and named entity recognition and information extractioh. (22).

This chapter is roughly divided into two sections: Hiddenrkter Models followed
by Maximum Entropy Markov Models. Our discussion of the Hiddviarkov Model
extends what we said about HMM part-of-speech tagging. Vgnkia the next sec-
tion by introducing the Markov Chain, then give a detaileémiew of HMMs and
the forward and Viterbi algorithms with more formalizatj@nd finally introduce the
important EM algorithm for unsupervised (or semi-supesgijslearning of a Hidden
Markov Model.

In the second half of the chapter, we introduce Maximum Entitdarkov Models
gradually, beginning with techniques that may already Ibeilfar to you from statis-
tics: linear regression and logistic regression. We nexboduce MaxEnt. MaxEnt by
itself is not a sequence classifier; it is used to assign & ¢taa single element. The
name Maximum Entropy comes from the idea that the classifielsfthe probabilis-
tic model which follows Occam’s Razor in being the simpldsaét constrained; has
the maximum entropy) yet still consistent with some spedifinstraints. The Maxi-
mum Entropy Markov Model is the extension of MaxEnt to theusatse labeling task,
adding components such as the Viterbi algorithm.

Although this chapter introduces MaxEnt, which is a classifive will not focus
in general on non-sequential classification. Non-seqakdissification will be ad-
dressed in later chapters with the introduction of clagsifike theGaussian Mixture
Model in (Ch. 9) and théNaive Bayesanddecision listclassifiers in (Ch. 20).

6.1 MARKOV CHAINS

The Hidden Markov Model is one of the most important macheshing models in
speech and language processing. In order to define it pyopesl need to first in-
troduce theMarkov chain, sometimes called thebserved Markov model Markov

chains and Hidden Markov Models are both extensions of tlite fiutomata of Ch. 2.
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WEIGHTED

MARKOV CHAIN

Recall that a finite automaton is defined by a set of statesaa®d of transitions be-
tween states that are taken based on the input observationgighted finite-state
automatonis a simple augmentation of the finite automaton in which eaclis asso-
ciated with a probability, indicating how likely that pathto be taken. The probability
on all the arcs leaving a node must sum to 1.

A Markov chain is a special case of a weighted automaton in which the input
sequence uniquely determines which states the automatbgonthrough. Because
it can’t represent inherently ambiguous problems, a Martwain is only useful for
assigning probabilities to unambiguous sequences.

ag

Figure 6.1

the transition between states, and the start and end states.

A Markov chain for weather (a) and one for words (b). A Marktain is specified by the structu

o

FIRST-ORDER

Fig. 6.1a shows a Markov chain for assigning a probability sequence of weather
events, where the vocabulary consistsHafT, coLD, andRAINY. Fig. 6.1b shows
another simple example of a Markov chain for assigning a ity to a sequence
of wordsws...wy. This Markov chain should be familiar; in fact it represeatsigram
language model. Given the two models in Figure 6.1 we cagassprobability to any
sequence from our vocabulary. We'll go over how to do thig#jo

First, let's be more formal. We'll view a Markov chain as a d&iof probabilis-
tic graphical model, a way of representing probabilistic assumptions in a graph
Markov chain is specified by the following components:

Q=010...0n a set ofN states

A=agiag2...an1...ann  atransition probability matrix A, eacha;; rep-
resenting the probability of moving from state
to statej, s.t. 3 j&j =1 Vi

do.OF a speciaktart state andend (final) statewhich
are not associated with observations.

Fig. 6.1 shows that we represent the states (includingatarend states) as nodes
in the graph, and the transitions as edges between nodes.

A Markov chain embodies an important assumption about thesgabilities. In a
first-order Markov chain, the probability of a particular state is degrmt only on the
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previous state:

(6.1) Markov Assumption:  P(qi|q1...Gi—1) = P(qi|gi—1)

Note that because eaal) expresses the probabilipy(gj|qi), the laws of probabil-
ity require that the values of the outgoing arcs from a givatesnust sum to 1:

n
(6.2) Z aj=1Vi
=i

An alternate representation that is sometimes used for dlackains doesn’t rely
on a start or end state, instead representing the distibotrer initial states and ac-
cepting states explicitly:

T=Ty,Th,...,Tiy an initial probability distribution over states. T is the
probability that the Markov chain will start in stateSome
statesj may haver; = 0, meaning that they cannot be initial
states. Alsoyl ;=1

QA= {ax,qy...} asetQAC Q oflegalaccepting states
Thus the probability of state 1 being the first state can beesgmted either a@);

or as. Note that because eachexpresses the probability(gi|START), all thett
probabilities must sum to 1:

6.3 ZT“ 1

Figure 6.2  Another representation of the same Markov chain for weathewn in Fig. 6.1. Instead of using
a special start state witdy; transition probabilities, we use threvector, which represents the distribution oyer
starting state probabilities. The figure in (b) shows sampdbabilities.
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Before you go on, use the sample probabilities in Fig. 6.2totopute the proba-
bility of each of the following sequences:
(6.4) hot hot hot hot
(6.5) cold hot cold hot

What does the difference in these probabilities tell youdlaoreal-world weather
fact encoded in Fig. 6.2b?

6.2 THE HIDDEN MARKOV MODEL

HIDDEN MARKOV
MODEL

HMM

A Markov chain is useful when we need to compute a probalftitya sequence of
events that we can observe in the world. In many cases, howbeeevents we are
interested in may not be directly observable in the worldr &wample, in part-of-
speech tagging (Ch. 5) we didn’t observe part of speech tagsei world; we saw
words, and had to infer the correct tags from the word sequewe call the part-of-
speech taghidden because they are not observed. The same architecture wil co
up in speech recognition; in that case we’ll see acoustinteva the world, and have
to infer the presence of ‘hidden’ words that are the undegytausal source of the
acoustics. AHidden Markov Model (HMM ) allows us to talk about botbbserved
events (like words that we see in the input) &mdidenevents (like part-of-speech tags)
that we think of as causal factors in our probabilistic model

To exemplify these models, we’ll use a task conceived of Ispddisner (2002).
Imagine that you are a climatologist in the year 2799 stuglyire history of global
warming. You cannot find any records of the weather in Balten®aryland, for the
summer of 2007, but you do find Jason Eisner’s diary, whidk isw many ice creams
Jason ate every day that summer. Our goal is to use thesevatises to estimate the
temperature every day. We'll simplify this weather task bganing there are only two
kinds of days: cold (C) and hot (H). So the Eisner task is devid:

Given a sequence of observatioDs each observation an integer corre-
sponding to the number of ice creams eaten on a given dayef@urthe
correct ‘hidden’ sequend@ of weather states (H or C) which caused Jason
to eat the ice cream.

Let's begin with a formal definition of a Hidden Markov Modé&bcusing on how
it differs from a Markov chain. AMMM is specified by the following components:
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(6.6)

(6.7)

FULLY-CONNECTED
ERGODIC HMM
LEFT-TO-RIGHT

BAKIS

Q=010...0n a set ofN states

A=agia12...an1...a8nn  atransition probability matrix A, eacha;j rep-
resenting the probability of moving from state
to statej, s.t. 3 &j =1 Vi

O =0107...07 a sequence of observations each one drawn
from a vocabulary¥ =vi,vo,....W.
B=nhi(o) a sequence obbservation likelihoods; also

called emission probabilities each expressing
the probability of an observationy being gen-
erated from a state

do.dF a speciaktart state andend (final) statewhich
are not associated with observations, together
with transition probabilitiesgiag,..ag, out of the
start state andirayr...anr into the end state.

As we noted for Markov chains, an alternate representaliani$ sometimes used
for HMMs doesn’t rely on a start or end state, instead reprtasgthe distribution over
initial and accepting states explicitly. We won't be usihgttnotation in this textbook,
but you may see it in the literature:

m=Ty,Th,...,Tiy an initial probability distribution over states. T is the
probability that the Markov chain will start in stateSome
statesj may haver; = 0, meaning that they cannot be initial
states. Alsoy! ;i =1

QA= {ax,qy...} asetQAC Q oflegalaccepting states

Afirst-order Hidden Markov Model instantiates two simplifg assumptions. First,
as with a first-order Markov chain, the probability of a peutar state is dependent only
on the previous state:

Markov Assumption:  P(qi|d1...0i—1) = P(qi|di—1)

Second, the probability of an output observatipiis dependent only on the state
that produced the observatign and not on any other states or any other observations:

Output Independence Assumption: P(oi|qs - - - Gi, - . ., 4T, 01, . . - ,0i,...,07) = P(0i|q;)

Fig. 6.3 shows a sample HMM for the ice cream task. The twodridstates (H
and C) correspond to hot and cold weather, while the obsensfdrawn from the
alphabetO = {1,2,3}) correspond to the number of ice creams eaten by Jason on a
given day.

Notice thatin the HMM in Fig. 6.3, there is a (non-zero) priitity of transitioning
between any two states. Such an HMM is callddlb-connectedor ergodic HMM .
Sometimes, however, we have HMMs in which many of the traorstbetween states
have zero probability. For example, lieft-to-right (also calledBakis) HMMs, the
state transitions proceed from left to right, as shown in Big. In a Bakis HMM,
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Figure 6.3 A Hidden Markov Model for relating numbers of ice creams adtg Jason
(the observations) to the weather (H or C, the hidden va&gblFor this example we ar¢
not using an end-state, instead allowing both states 1 andh@ & final (accepting) state.

there are no transitions going from a higher-numbered steadower-numbered state
(or, more accurately, any transitions from a higher-nuraflstate to a lower-numbered
state have zero probability). Bakis HMMs are generally useshodel temporal pro-
cesses like speech; we will see more of them in Ch. 9.

Figure 6.4 Two 4-state Hidden Markov Models; a left-to-right (BakisM¥ on the
left, and a fully-connected (ergodic) HMM on the right. IretBakis model, all transitions|
not shown have zero probability.

Now that we have seen the structure of an HMM, we turn to allgars for com-
puting things with them. An influential tutorial by Rabinér989), based on tutorials
by Jack Ferguson in the 1960s, introduced the idea that Hiltdagkov Models should
be characterized biree fundamental problems

Problem 1 (Computing Likelihood): Given an HMMA = (A,B) and
an observation sequen€g determine the likelihoo&(OJA).

Problem 2 (Decoding): Given an observation sequer@and an HMM
A = (A,B), discover the best hidden state sequece
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Problem 3 (Learning): Given an observation sequen@eand the set
of states in the HMM, learn the HMM parametérandB.

We already saw an example of problem (2) in Ch. 5. In the neretkections we
introduce all three problems more formally.

6.3 COMPUTING LIKELIHOOD: THE FORWARD ALGORITHM

(6.8)

(6.9)

Our first problem is to compute the likelihood of a particidbservation sequence. For
example, given the HMM in Fig. 6.2b, what is the probabilifittee sequenc8 1 3?
More formally:

Computing Likelihood: Given an HMMA = (A,B) and an observation
sequenc®, determine the likelihoo&(O|M).

For a Markov chain, where the surface observations are time se& the hidden
events, we could compute the probability3of 3just by following the states label&dl
3 and multiplying the probabilities along the arcs. For a Kidd/larkov Model, things
are not so simple. We want to determine the probability ofc@adream observation
sequence lik& 1 3 but we don’'t know what the hidden state sequence is!

Let's start with a slightly simpler situation. Suppose weatly knew the weather,
and wanted to predict how much ice cream Jason would eat. iF hisiseful part of
many HMM tasks. For a given hidden state sequence f@ghot cold we can easily
compute the output likelihood &1 3

Let's see how. First, recall that for Hidden Markov Modelscle hidden state pro-
duces only a single observation. Thus the sequence of hitdéss and the sequence
of observations have the same lendth.

Given this one-to-one mapping, and the Markov assumptigpessed in Eq. 6.6,
for a particular hidden state sequefige: go, 01,02, ---, gt and an observation sequence
O =0,,0y,...,07, the likelihood of the observation sequence is:

;
P(OIQ) = .UP(Oilq)

The computation of the forward probability for our ice-areabservatior8 1 3
from one possible hidden state sequehothot coldis as follows (Fig. 6.5 shows a
graphic representation of this):

P(3 1 3hot hotcold = P(3Jhot) x P(1]hot) x P(3|cold)

But of course, we don’t actually know what the hidden statedtier) sequence
was. We'll need to compute the probability of ice-cream ¢s8rl 3instead by sum-
ming over all possible weather sequences, weighted by gnebrability. First, let's

1 There are variants of HMMs callesegmental HMMs(in speech recognition) @emi-HMMs (in natural
language processing) in which this one-to-one mappingdmivthe length of the hidden state sequence and
the length of the observation sequence does not hold.
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4 2 A
3 1 3
Figure 6.5 The computation of the observation likelihood for the iceamn event$ 1
3 given the hidden state sequerit hot cold
compute the joint probability of being in a particular weatsequenc® and generat-
ing a particular sequencé® of ice-cream events. In general, this is:
n n
(6.10) P(0,Q) =P(OIQ) x P(Q) = _rlP(Oi i) X ‘HP(QHQH)
i= i=
The computation of the joint probability of our ice-creansebvation3 1 3and
one possible hidden state sequehothot coldis as follows (Fig. 6.6 shows a graphic
representation of this):
P(313hothotcold = P(hotstar) x P(hothot) x P(coldhot)
(6.11) x P(3Jhot) x P(1|hot) x P(3|cold)
4 2 A
3 1 3
Figure 6.6 The computation of the joint probability of the ice-creaneets3 1 3and
the hidden state sequeniget hot cold
Now that we know how to compute the joint probability of thesebvations with a
particular hidden state sequence, we can compute the totabpility of the observa-
tions just by summing over all possible hidden state seqggenc
(6.12)

(6.13)

P(O) = gP(O, Q)= % P(OIQP(Q)

For our particular case, we would sum over the 8 three-evantencesold cold
cold, cold cold hoti.e.:

P(313 =P(313cold cold cold+P(3 1 3 cold cold hoj+P(3 1 3 hot hot cold +...
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For an HMM withN hidden states and an observation sequendeaifservations,
there areNT possible hidden sequences. For real tasks, WNexed T are both large,
NT is a very large number, and so we cannot compute the totahaiigm likelihood
by computing a separate observation likelihood for eactidridstate sequence and then
summing them up.

Instead of using such an extremely exponential algorithm,use an efficient

JSBWARD - (O(N?T)) algorithm called théorward algorithm . The forward algorithm is a kind
of dynamic programming algorithm, i.e., an algorithm that uses a table to store-inte
mediate values as it builds up the probability of the obd@masequence. The forward
algorithm computes the observation probability by sumnuagr the probabilities of
all possible hidden state paths that could generate thenatigm sequence, but it does
so efficiently by implicitly folding each of these paths irg@ingleforward trellis .

Fig. 6.7 shows an example of the forward trellis for compgitime likelihood of3

1 3 given the hidden state sequers hot cold

l/’—\\ l/’—\\ l/‘—\\
\ \ \
qr tend tend tend
\ / \ / \ ’
N
(§

a1(2)=.32 (12(2)= .32*.014 + .02*.08 = .00608 “. \
a O P(HIH) * P(1IH) _,@ ____________________ Lo
2 L D(C//‘/) 7% 0 < ;
-3 5(7/0) \\\ P . /,
S el !
g . )= 02 Lot 0,(1) = .32".15 + ,02".30 = 054
. Sy T T /
o (o) o " P(CIO)* P(1IC) e ,
N Q< 6*.5
- Q’\c,\
\*Q
O, N
o

. \ . .
! \ ! \
qo 1 start 1 start
\ / \ /
N N N

0, 0, 03
>
t

Figure 6.7 The forward trellis for computing the total observationelikood for the ice-cream evenssl 3
Hidden states are in circles, observations in squares. e\uitfilled) circles indicate illegal transitions. T
figure shows the computation of(j) for two states at two time steps. The computation in eachfchtiws
Eq 6.15:at()) = z{\‘zlat,l(i)a;,—bj (or). The resulting probability expressed in each cell is Eq46d;(j) =

P(01,02...0,0t = j[A).
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Each cell of the forward algorithm trellis (j) represents the probability of being
in statej after seeing the firgtobservations, given the automatonThe value of each
cella;(j) is computed by summing over the probabilities of every pla#t tould lead
us to this cell. Formally, each cell expresses the followirgpability:

(6.14) a¢(j) =P(01,02...01,G = j|A)

Hereq: = j means “the probability that thh state in the sequence of states is state
i”. We compute this probability by summing over the extensiofall the paths that
lead to the current cell. For a given stafeat timet, the valuen () is computed as:

N

(6.15) a(j) = _Zlqtfl(i)aij bj(or)

The three factors that are multiplied in Eq” 6.15 in extegdhre previous paths to
compute the forward probability at tinteare:

ot—1(i) theprevious forward path probability from the previous time step
ajj thetransition probability from previous state to current statej;

bj(or) the state observation likelihoodof the observation symbat given
the current statg

Consider the computation in Fig. 6.7 @$(1), the forward probability of being at
time step 2 in state 1 having generated the partial obsen@tl. This is computed by
extending thex probabilities from time step 1, via two paths, each extemsansisting
of the three factors above; (1) x P(H|H) x P(1|H) anda1(2) x P(H|C) x P(1|H).

Fig. 6.8 shows another visualization of this induction dtapcomputing the value
in one new cell of the trellis.

We give two formal definitions of the forward algorithm; thegmdocode in Fig. 6.9
and a statement of the definitional recursion here:

1. Initialization:
(6.16) ai(j) = agjbj(01) 1<j<N

2. Recursion (since states 0 and F are non-emitting):

(6.17) ar(j) =Y ara1(i)ajbj(or); 1<j<N,I<t<T

'\IMZ

3. Termination:

=z

(6.18) P(O\) = at(gr) = ) ar(i)ar
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%M oy (N) ]
i - _ ™
ay oi)= ‘Zi ay4(i) a;bj(o) -
° ° | °
] L] ]
e o °
at.2(3) a4(3) ay, .
( qS \/\, ‘/ ( q3 \/\,
2 e -, bjo)
(\qz)" @ ay; (\qzl\/" i (\qzl\/"
u|_?(1) (1) . )
q1 @ q1 q1
Ot-2 Ot-1 O Ot41

Figure 6.8  Visualizing the computation of a single elementi) in the trellis by sum-
ming all the previous values; _; weighted by their transition probabiliti@sand multiply-
ing by the observation probability (o;+1). For many applications of HMMs, many of the
transition probabilities are 0, so not all previous statélsoentribute to the forward prob-
ability of the current state. Hidden states are in circléseovations in squares. Shaded
nodes are included in the probability computationdefi). Start and end states are not
shown.

function FORWARD(observation®f len T, state-graphof len N) returns forward-prob

create a probability matriforward[N+2,T]

for each statsfrom 1to N do ;initialization step
forwards, 1]« ags * bs(01)
for each time stepfrom 2to T do ;recursion step

for each statsfrom 1to N dg
forward[s, t] « Z forward[s',t — 1] = ag s * bs(0r)
=1

N
forwardgr,T] — z forward(s, T] * agg. ; termination step

s=1
return forward[qgr, T]

Figure 6.9 The forward algorithm. We've used the notatifmward[s,t] to represent
0t ().

6.4 DeCODING. THE VITERBI ALGORITHM

DECODING
DECODER

For any model, such as an HMM, that contains hidden variatilesask of determining
which sequence of variables is the underlying source of smgaence of observations

is called thedecodingtask. In the ice cream domain, given a sequence of ice cream
observations88 1 3and an HMM, the task of thdecoderis to find the best hidden
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VITERBI ALGORITHM

weather sequencél(H H). More formally,

Decoding Given as input an HMM\ = (A,B) and a sequence of ob-
servationsO = 01,0, ...,07, find the most probable sequence of states

Q=010203...0r.

We might propose to find the best sequence as follows: for paskible hidden
state sequencélHH, HHC, HCH, etc.), we could run the forward algorithm and com-
pute the likelihood of the observation sequence given tidlatdn state sequence. Then
we could choose the hidden state sequence with the max aliserlikelihood. It
should be clear from the previous section that we cannotiddo#cause there are an
exponentially large number of state sequences!

Instead, the most common decoding algorithms for HMMs is\thierbi algo-
rithm . Like the forward algorithmVYiterbi is a kind ofdynamic programming, and
makes uses of a dynamic programming trellis. Viterbi alsorgly resembles another
dynamic programming variant, tieinimum edit distance algorithm of Ch. 3.

qr 1 end

a2 W

s
q1 + C

R
. @

v,(2)=.32 v,(2)= max(:32".014, .02".08) = .0448 |
PHH*PAH) _ o\ Lo
p(o//v ) 7*.2 j .:
A, S e 1
-3 * s (7/0) N - ‘;
RS @ e |
& vm=.02 o v,() = max(32' 157 02:30) = 048 |
S oWy - 2 R 4
&9 * P(cic)* P(1IC) R ,@
N) 6*.5
o
QN
Q. A
\"%fz,

o, 0, 0,

>
t

Figure 6.10 The Viterbi trellis for computing the best path through theéden state space for the ice-cream

eating event8 1 3 Hidden states are in circles, observations in squareste/{iimfilled) circles indicate illegal

transitions. The figure shows the computatiorwdf ) for two states at two time steps. The computation in gach
cell follows Eq 6.20:w(j) = maxi<i<n—1V—1(i) aj bj(o) The resulting probability expressed in each cell is

Eq 6.19:vt(j) =P(qo,q1,---»Gt-1,01,02,...,0,G = j|A).
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(6.19)

(6.20)

BACKTRACE

Fig. 6.10 shows an example of the Viterbi trellis for compgtihe best hidden state
sequence for the observation sequedde3 The idea is to process the observation se-
quence left to right, filling out the trellis. Each cell of th@erbi trellis, v (j ) represents
the probability that the HMM is in statpafter seeing the firgtobservations and pass-
ing through the most probable state sequemg€s,...,q—1, given the automatoh.
The value of each celk(j) is computed by recursively taking the most probable path
that could lead us to this cell. Formally, each cell expresise following probability:

w(j)=_max P(do,0--0k-1,01,02...0, 0 = j[A)
Go,d1;---,Gt—1
Note that we represent the most probable path by taking thénmaan over all

possible previous state sequences max_.ike other dynamic programming algo-
Jo,d1,-- Gt—1

rithms, Viterbi fills each cell recursively. Given that wedchalready computed the
probability of being in every state at timhe- 1, We compute the Viterbi probability by
taking the most probable of the extensions of the pathsélaatto the current cell. For
a given state; at timet, the valuev (j) is computed as:

: N .
ve(j) = maxv-1(i) & bj(a)
The three factors that are multiplied in Eq. 6.20 for extagdhe previous paths to
compute the Viterbi probability at timteare:

vi_1(i) theprevious Viterbi path probability from the previous time step
aij thetransition probability from previous state; to current state;

bj(o) thestate observation likelihoodof the observation symba given
the current stat¢

Fig. 6.11 shows pseudocode for the Viterbi algorithm. Nbtg the Viterbi algo-
rithmis identical to the forward algorithm except that kea themax over the previous
path probabilities where the forward algorithm takesshe. Note also that the Viterbi
algorithm has one component that the forward algorithm aibesve: backpointers.
This is because while the forward algorithm needs to produrcebservation likeli-
hood, the Viterbi algorithm must produce a probability afsbahe most likely state
sequence. We compute this best state sequence by keemikg@titae path of hidden
states that led to each state, as suggested in Fig. 6.12hamat the end tracing back
the best path to the beginning (the Vitebaicktrace).

Finally, we can give a formal definition of the Viterbi recians as follows:

1. Initialization:

(6.21) vi(j) = aojbj(01) 1<j<N
(6.22) bta(j) = O
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function VITERBI(observation®f len T, state-graphof len N) returns best-path

create a path probability matristerbi[N+2,T]
for each statsfrom 1to Ndo ;initialization step
viterbi[s,1]«ag s * bs(01)
backpointefs,1]< 0
for each time stepfrom 2to T do ;recursion step
for each statsfrom 1to N do

viterbi[s,t]Hrg’gx viterbils',t — 1] x ag g * bs(0t)
=1

backpointe[s,t]garg'ﬁnax viterbi[s,t — 1] x ag g

g=1
N N o ——
viterbi[gr, T] « malx viterbi[s, T] * asge ; termination step
S=
backpointefgr,T] arg’?lnax viterbi[s, T] * agg: ; termination step

s=1
return the backtrace path by following backpointers to states bactime from
backpointefgr, T]

Figure 6.11  Viterbi algorithm for finding optimal sequence of hiddentsta Given an
observation sequence and an HMM: (A, B), the algorithm returns the state-path through
the HMM which assigns maximum likelihood to the observasequence. Note that statgs
0 andgg are non-emitting.

2. Recursion(recall states 0 ange are non-emitting):
(6.23) w(i) = maxv aiaybj(0); 1<j<NLI<t<T
i=

(6.24) b(j) = argmawe 1(i)a;bj(a); 1<j<N1<t<T
i=1

3. Termination:

(6.25) The best score:Px=w(qr) = m'\é\lva(i) * 8 F
=

(6.26) The start of backtrace:qr+ = bty (Qe) = argNmava(i) *a F
i=1

6.5 TRAINING HMMS. THE FORWARD-BACKWARD ALGORITHM

We turn to the third problem for HMMs: learning the paramsigran HMM, i.e., the
A andB matrices. Formally,

Learning: Given an observation sequer@end the set of possible states
in the HMM, learn the HMM parametefsandB.

The input to such a learning algorithm would be an unlabesepience of obser-
vationsO and a vocabulary of potential hidden sta€@sThus for the ice cream task,
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Figure 6.12 The Viterbi backtrace. As we extend each path to a new statiatfor the next observation, we
keep a backpointer (shown with broken blue lines) to the past that led us to this state.

we would start with a sequence of observations {1,3,2, ..., }, and the set of hidden

statesH andC. For the part-of-speech tagging task we would start withquerce of
observation®© = {w1,w»,ws...} and a set of hidden statdBN, NNS, VBD, IN,..and

so on.
OnWARD: The standard algorithm for HMM training is tHerward-backward or Baum-
BAUM-WELCH

Welch algorithm (Baum, 1972), a special case of Ewpectation-Maximization or
EM EM algorithm (Dempster et al., 1977). The algorithm will letttain both the transi-
tion probabilitiesA and the emission probabiliti&of the HMM.

Let us begin by considering the much simpler case of traimirigarkov chain
rather than a Hidden Markov Model. Since the states in a Mackain are observed,
we can run the model on the observation sequence and diseetlywhich path we took
through the model, and which state generated each obsenatmbol. A Markov
chain of course has no emission probabiliti@lternatively we could view a Markov
chain as a degenerate Hidden Markov Model where albtpeobabilities are 1.0 for
the observed symbol and O for all other symbols.). Thus tihemmobabilities we need
to train are the transition probability matrix

We get the maximum likelihood estimate of the probabityof a particular tran-
sition between statdsand j by counting the number of times the transition was taken,

Hidden Markov and Maximum Entropy Models
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which we could calC(i — j), and then normalizing by the total count of all times we
took any transition from state
__Cli—=10

YqeCi —a)

We can directly compute this probability in a Markov chaicé®ease we know which
states we were in. For an HMM we cannot compute these courgstlgi from an
observation sequence since we don’t know which path ofstases taken through the
machine for a given input. The Baum-Welch algorithm usesrteat intuitions to solve
this problem. The first idea is titeratively estimate the counts. We will start with an
estimate for the transition and observation probabilie®l then use these estimated
probabilities to derive better and better probabilitiehie Becond idea is that we get
our estimated probabilities by computing the forward pholitg for an observation
and then dividing that probability mass among all the dédferpaths that contributed
to this forward probability.

In order to understand the algorithm, we need to define a Lgegbability related

PRACKWARD  to the forward probability, called theackward probability .

The backward probabilit§} is the probability of seeing the observations from time
t+ 1 to the end, given that we are in stasg timet (and of course given the automaton
A):

(6.27) aj

(6.28) Bi(i) = P(0t+1,0t+2...07|ck =i,A)
Itis computed inductively in a similar manner to the forwaftdgorithm.

1. Initialization:
(6.29) Br(i) = aF, 1<i<N

2. Recursion(again since states 0 agd are non-emitting):
. N . .
(6.30) &(I)=Zau bj(0ts1) Brea(j), 1<i<N,I<t<T
J:
3. Termination:

N
(6.31) P(OIA) = at(gr) = B1(0) = Zaoj bj(01) Ba(})
=

Fig. 6.13 illustrates the backward induction step.

We are now ready to understand how the forward and backwatshpilities can
help us compute the transition probabiléty and observation probability (o;) from
an observation sequence, even though the actual path tat@mgh the machine is
hidden.

Let's begin by showing how to estimaag by a variant of (6.27):

__expected number of transitions from state statej
N expected number of transitions from state

(6.32) ajj
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(6.33)

(6.34)

(6.35)

(6.36)

qN By(i)= ZJ' Br1(i) a; b;(04,4)

(M3}

Figure 6.13 The computation of}(i) by summing all the successive valugs1(j)
weighted by their transition probabilitieg; and their observation probabilitidsg(o;1).
Start and end states not shown.

How do we compute the numerator? Here’s the intuition. Asswa had some
estimate of the probability that a given transition: j was taken at a particular point
in timet in the observation sequence. If we knew this probabilitydfach particular
timet, we could sum over all timetsto estimate the total count for the transitions .

More formally, let's define the probabili as the probability of being in statat
timet and statg at timet + 1, given the observation sequence and of course the model:

Et(lvj) :P(qt = ivthrl: J|07)\)

In order to computé;, we first compute a probability which is similar &, but
differs in including the probability of the observation;tadhe different conditioning
of O from Equation (6.33):

nOt_qUiteEt(ia J) = P(q'[ = ivq'[Jrl = Jvo|}\)

Fig. 6.14 shows the various probabilities that go into cotimgunot-quiteé;: the
transition probability for the arc in question, theprobability before the arc, th@
probability after the arc, and the observation probabftitythe symbol just after the
arc. These four are multiplied together to prodnoé-quite€; as follows:

not-quite& (i, j) = ot (i) &j bj (0r+1) Be+1(J)

In order to computé; fromnot-quite€;, the laws of probability instruct us to divide
by P(OJA), since:

P(X,Y|Z)

P(X|Y,2Z) = W
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aijbj(9t+1)
ag(i)
—
Ot-1 Ot Ot12

Figure 6.14 Computation of the joint probability of being in stdtat timet and state

j at timet + 1. The figure shows the various probabilities that need todmebined to

produceP(g; =i,0t+1 = j,OJA): thea and( probabilities, the transition probability;

and the observation probabilibf (o1). After Rabiner (1989).

The probability of the observation given the model is simihlg forward proba-
bility of the whole utterance, (or alternatively the backd/arobability of the whole
utterance!), which can thus be computed in a number of ways:

N
(6.37) P(OJA) =ar(N) =Br(1) = ar(j)Be(i)
=1

So, the final equation fd; is:

o ae(i)aijbj(0r1)Bria(i)
6.38 &(i,j) =
( ) t( J) GT(N)

The expected number of transitions from stiatie statej is then the sum over 4l
of &. For our estimate odjj in (6.32), we just need one more thing: the total expected
number of transitions from stateWe can get this by summing over all transitions out
of statei. Here’s the final formula foa;;:

T*lE (I ;

A — til J)
(6:39) = Ak
2t=1 ZJ::LEt(laJ)

We also need a formula for recomputing the observation fitiba This is the
probability of a given symbo¥ from the observation vocabulay, given a statg:
bj(vk). We will do this by trying to compute:

A expected number of times in statand observing symbaek
(6.40) B (v = 2P 3 g5y

expected number of times in state
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For this we will need to know the probability of being in statat timet, which we

will call w(j):
(6.41) W (J) =P(q = j|O,A)
Once again, we will compute this by including the observasequence in the
probability:
. _ P(ax=j,0A)

a(i) B()

Ot-1 Ot Ot+1

Figure 6.15 The computation oft(j), the probability of being in statpat timet. Note
thaty is really a degenerate case&%#and hence this figure is like a version of Fig. 6.14
with statei collapsed with statg¢. After Rabiner (1989).

As Fig. 6.15 shows, the numerator of (6.42) is just the prodtithe forward prob-
ability and the backward probability:

(6.43) w(i) = —aggé?t)\()i)

We are ready to compute For the numerator, we suw(j) for all time stepg in
which the observatioa; is the symboly that we are interested in. For the denominator,
we sumy; (j) over all time steps. The result will be the percentage of the times that
we were in statg and we saw symbol, (the notation;thlst.OI:Vk means “sum over
all t for which the observation at timtewasvy”):

i Zr:lst.olzvk W (J)
6.44 B (i) — :
e M= W)

We now have ways in (6.39) and (6.44)teestimatahe transitiorA and observa-
tion B probabilities from an observation sequer@assuming that we already have a
previous estimate ok andB.
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EXPECTATION
E-STEP
MAXIMIZATION
M-STEP

These re-estimations form the core of the iterative fora@adkward algorithm.

The forward-backward algorithm starts with some initialiraate of the HMM
parameterd = (A,B). We then iteratively run two steps. Like other cases of the EM
(expectation-maximization) algorithm, the forward-baekd algorithm has two steps:
theexpectationstep, orE-step and themaximization step, ofM-step.

In the E-step, we compute the expected state occupancy geunat the expected
state transition courd, from the earlie’A andB probabilities. In the M-step, we use
andg to recompute nevi andB probabilities.

function FORWARD-BACKWARD( observationsof len T, output vocabulary Yhidden
state set Qreturns HMM=(A,B)

initialize A andB
iterate until convergence

E-step . )
w(i) = % 7t and]
Et(h]) _ Gt(l)ai]b](o[+l)[3t+l(1) Vt, i, andj

ar(N)
M-step
T-1
Et(hj)
&j = 71

N . .
jzlz.tO? J)
-

bj(v) = tls.;)'\/k V()

T .
t; ve(])

Figure 6.16  The forward-backward algorithm.

=

return A, B

Although in principle the forward-backward algorithm camampletely unsuper-
vised learning of théA and B parameters, in practice the initial conditions are very
important. For this reason the algorithm is often givenaiiformation. For example,
for speech recognition, in practice the HMM structure isyveften set by hand, and
only the emissionE) and (non-zerop transition probabilities are trained from a set
of observation sequenc€s Sec.??in Ch. 9 will also discuss how initiah andB
estimates are derived in speech recognition. We will algotisat for speech that the
forward-backward algorithm can be extended to inputs whighnon-discrete (“con-
tinuous observation densities”).
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6.6 MAXIMUM ENTROPY MODELS. BACKGROUND

We turn now to a second probabilistic machine learning fraork calledMaximum
Entropy modelingMaxEnt for short. MaxEnt is more widely known asultinomial
logistic regression

Our goal in this chapter is to introduce the use of MaxEnt &aquence classifica-
tion. Recall that the task of sequence classification or esecgilabelling is to assign
a label to each element in some sequence, such as assignarga-ppeech tag to
a word. The most common MaxEnt sequence classifier isMagimum Entropy
Markov Model or MEMM , to be introduced in Sec. 6.8. But before we see this use
of MaxEnt as a sequence classifier, we need to introduce eguestial classification.

The task of classification is to take a single observatiomaeksome useful features
describing the observation, and then based on these featoictassifythe observation
into one of a set of discrete classespbabilistic classifier does slightly more than
this; in addition to assigning a label or class, it givesghebability of the observation
being in that class; indeed, for a given observation a prilibtib classifier gives a
probability distribution over all classes.

Such non-sequential classification tasks occur througgpmech and language pro-
cessing. For example, iext classificationwe might need to decide whether a par-
ticular email should be classified as spam or notséntiment analysiswe have to
determine whether a particular sentence or document esgg@spositive or negative
opinion. In many tasks, we’'ll need to know where the sentence boigwlare, and
so we'll need to classify a period character (‘") as eitheeatence boundary or not.
We'll see more examples of the need for classification thnowgthis book.

EXPONENTIAL MaxEnt belongs to the family of classifiers known asexponentialor log-linear
oaLnear  classifiers. MaxEnt works by extracting some set of featfroes the input, combining
themlinearly (meaning that we multiply each by a weight and then add theyauma
then, for reasons we will see below, using this sum as an exgon

Let's flesh out this intuition just a bit more. Assume that vavdr some inpux
(perhaps it is a word that needs to be tagged, or a documemidhds to be classified)
from which we extract some features. A feature for tagginghthbethis word ends in
-ing or the previous word was ‘theFor each such featurfg, we have some weight;.

Given the features and weights, our goal is to choose a diaseXample a part-
of-speech tag) for the word. MaxEnt does this by choosingitbst probable tag; the
probability of a particular classgiven the observationis:

(6.45) p(c|x) = %exp(Zwi fi)

HereZ is a normalizing factor, used to make the probabilitiesectty sum to 1;
and as usual exp) = €. As we'll see later, this is a simplified equation in various
ways; for example in the actual MaxEnt model the featdresmd weightsv are both
dependent on the class(i.e., we'll have different features and weights for diéfat
classes).

In order to explain the details of the MaxEnt classifier, utthg the definition
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REGRESSION LINE

of the normalizing ternZ and the intuition of the exponential function, we’ll need
to understand firdinear regression which lays the groundwork for prediction using
features, antbgistic regression which is our introduction to exponential models. We
cover these areas in the next two sections. Readers who laava lgrounding in
these kinds of regression may want to skip the next two sextidhen in Sec. 6.7
we introduce the details of the MaxEnt classifier. FinallySec. 6.8 we show how
the MaxEnt classifier is used for sequence classificatiofmérMtaximum Entropy
Markov Model or MEMM .

6.6.1 Linear Regression

In statistics we use two different names for tasks that mapesmput features into
some output value: we use the warressionwhen the output is real-valued, and
classificationwhen the output is one of a discrete set of classes.

You may already be familiar with linear regression from aisties class. The
idea is that we are given a set of observations, each obsemnatsociated with some
features, and we want to predict some real-valued outconesfth observation. Let's
see an example from the domain of predicting housing price&tt and Dubner (2005)
showed that the words used in a real estate ad can be useda$rgdictor of whether
a house will sell for more or less than its asking price. THeysed, for example, that
houses whose real estate ads had wordgdiktastic cute or charming tended to sell
for lower prices, while houses whose ads had wordstilegleandgranitetended to
sell for higher prices. Their hypothesis was that real estgents used vague positive
words likefantasticto mask the lack of any specific positive qualities in the leousist
for pedagogical purposes, we created the fake data in Rig. 6.

| Number of vague adjectives Amount house sold over asking price
4 0
3 $1000
2 $1500
2 $6000
1 $14000
0 $18000
Figure 6.17 Some made-up data on the number of vague adjectfeesabtic cute
charming in a real estate ad, and the amount the house sold for oveskieg price.

Fig. 6.18 shows a graph of these points, with the feature @d@ctives) on the
x-axis, and the price on the y-axis. We have also plotteglgaession line which is
the line that best fits the observed data. The equation ofiaeydy = mx+ b; as we
show on the graph, the slope of this linenis= —4900, while the intercept is 16550.
We can think of these two parameters of this line (slopand intercepb) as a set of
weights that we use to map from our features (in this caseimbers of adjectives) to
our output valuey (in this case price). We can represent this linear functsingw to
refer to weights as follows:
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(6.46)

(6.47)

FEATURE

(6.48)

20000

15000

y = -4900x + 16550
10000

5000

o

Increase in House Sale Price

-5000

Number of Adjectives

Figure 6.18 A plot of the (made-up) points in Fig. 6.17 and the regresbi@that best
fits them, with the equation= —4900+ 16550.

price= wp + wy x Num_Adjectives

Thus Eq. 6.46 gives us a linear function that lets us estithatsales price for any
number of these adjectives. For example, how much would weeba house whose
ad has 5 adjectives to sell for?

The true power of linear models comes when we use more thafeahee (tech-
nically we call thismultiple linear regression). For example, the final house price
probably depends on many factors such as the average mentgi@gthat month, the
number of unsold houses on the market, and many other suchgag/e could encode
each of these as a variable, and the importance of each faotdd be the weight on
that variable, as follows:

price= wp+ w1 x* Num_Adjectivest w, x« Mortgage Rate-ws «Num_UnsoldHouses

In speech and language processing, we often call each a&f greslictive factors
like the number of adjectives or the mortgage rafeature. We represent each ob-
servation (each house for sale) by a vector of these feat@@gpose a house has 1
adjective in its ad, and the mortgage rate was 6.5 and there 10000 unsold houses
in the city. The feature vector for the house wouldfbe (1,6.5,10000. Suppose the
weight vector that we had previously learned for this task Wa= (W, w1, Wa, W3) =
(1800Q —500Q0 —300Q —1.8). Then the predicted value for this house would be com-
puted by multiplying each feature by its weight:

N
price= wg + lei x i
=

In general we will pretend that there is an extra featigrehich has the value 1, an
intercept feature, which make the equations simpler with regard to that pegkand
so in general we can represent a linear regression for dgtigrthe value ofy as:
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N
(6.49) linear regression: y= Z)Wi x i
i=

Taking two vectors and creating a scalar by multiplying eglelment in a pairwise
porproouct  fashion and summing the results is called do¢ product. Recall that the dot product
a-b between two vectora andb is defined as:

N
(6.50) dot product: a-b= Zabi — agby +aghy + - 4 agbn
=
Thus Eq. 6.49 is equivalent to the dot product between thgiM®ivector and the
feature vector:
(6.51) y=w-f

Vector dot products occur very frequently in speech anddagg processing; we
will often rely on the dot product notation to avoid the mesgynmation signs.

Learning in linear regression

How do we learn the weights for linear regression? Intulgiwge'd like to choose
weights that make the estimated valyess close as possible to the actual values that
we saw in the training set.

Consider a particular instana&’ from the training set (we'll use superscripts in
parentheses to represent training instances), which halssemved label in the training

setygt))s Our linear regression model predicts a valueyfdr as follows:

(i) A ()
(6.52) Y, =3 wx f
pred i; ! i

We'd like to choose the whole set of weiglsso as to minimize the difference

between the predicted Val'yg:ed and the observed valqé)jgs, and we want this dif-

ference minimized over all thiel examples in our training set. Actually we want to
minimize the absolute value of the difference (since we tieaht a negative distance
in one example to cancel out a positive difference in anatheample), so for simplicity
(and differentiability) we minimize the square of the diface. Thus the total value

SUM-SQUARED  wwe want to minimize, which we call theum-squared error, is this cost function of
the current set of weightd/:

M . . 2
(6.53) cos{W) = Z) (y[()Jr)ed - ygt))s)
J:

We won't give here the details of choosing the optimal set eights to minimize
the sum-squared error. But, briefly, it turns out that if we fhe entire training set
into a single matrixX with each row in the matrix consisting of the vector of featur
associated with each observatiéh, and put all the observadalues in a vectoy, that
there is a closed-form formula for the optimal weight valMésvhich will minimize

costiv):
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(6.54)

(6.55)

(6.56)

0oDDS

W= (X"X)"1xTy

Implementations of this equation are widely available tistical packages like
SPSSorR.

6.6.2 Logistic regression

Linear regression is what we want when we are predictinglavadaed outcome. But
somewhat more commonly in speech and language processiagendoingclassifi-
cation, in which the outpuy we are trying to predict takes on one from a small set of
discrete values.

Consider the simplest case of binary classification, whezewant to classify
whether some observationis in the class (true) or not in the class (false). In other
wordsy can only take on the values 1 (true) or O (false), and we'ddikdassifier that
can take features of and return true or false. Furthermore, instead of just nirigr
the 0 or 1 value, we'd like a model that can give us pinebability that a particular
observation is in class 0 or 1. This is important because ist ma@al-world tasks we're
passing the results of this classifier onto some furtheisiflas to accomplish some
task. Since we are rarely completely certain about whickscéa observation falls in,
we’'d prefer not to make a hard decision at this stage, rulintgatl other classes. In-
stead, we'd like to pass on to the later classifier as muchrimdtion as possible: the
entire set of classes, with the probability value that wégas® each class.

Could we modify our linear regression model to use it for il of probabilistic
classification? Suppose we just tried to train a linear mtaptedict a probability as
follows:

N

Ply=trugx) = Y wi x fj
i; i i
w- f

We could train such a model by assigning each training olservthe target value
y =1 ifit was in the class (true) and the target vajue 0 if it was not (false). Each
observatiorx would have a feature vectdr and we would train the weight vectarto
minimize the predictive error from 1 (for observations ie ttlass) or O (for observa-
tions not in the class). After training, we would computephebability of a class given
an observation by just taking the dot product of the weigltmewith the features for
that observation.

The problem with this model is that there is nothing to forice butput to be a
legal probability, i.e. to lie between zero and 1. The emmz{\‘:owi x fi produces
values from—oo to co. How can we fix this problem? Suppose that we keep our linear
predictorw- f, butinstead of having it predict a probability, we have #édict aratio of
two probabilities. Specifically, suppose we predict théoraf the probability of being
in the class to the probability of not being in the class. Thi® is called theodds If
an event has probability .75 of occurring and probabilify a2 not occurring, we say
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(6.57)

(6.58)

LOGIT FUNCTION

(6.59)

LOGISTIC
REGRESSION

(6.60)

(6.61)

(6.62)

theoddsof occurring is.75/.25= 3. We could use the linear model to predict the odds
of y being true:

ply=true)lx
1—p(y=trugx)
This last model is close: a ratio of probabilities can liewestn 0 ando. But we

need the left-hand side of the equation to lie betweenand~. We can achieve this
by taking the natural log of this probability:

ply=truelx) \
n (2 o) ="

Now both the left and right hand lie betweeno ande. This function on the left
(the log of the odds) is known as thagit function:

. P(X)
logit(p(x)) =In (1_ p(x))

The model of regression in which we use a linear function torege, not the
probability, but the logit of the probability, is known #&sgistic regression If the
linear function is estimating the logit, what is the actuahfiula in logistic regression
for the probabilityP(y = true)? You should stop here and take Equation (6.58) and
apply some simple algebra to solve for the probabHy = true).

Hopefully when you solved foP(y = true) you came up with a derivation some-
thing like the following:

ply=truex) \
n (1— p(y=trud><)> —w

ply=truel) i
1— p(y=truex)

p(y = truex) = (1— p(y = truejx))e"
y = trugx) = e"f — p(y = truglx)e"

+p(y=trugx)e"f ="

(1+ew-f) _ eW-f

Once we have this probability, we can easily state the pritityadif the observation
not belonging to the clasg(y = falsgx), as the two must sum to 1:

p(y: fa|SdX) = W

Here are the equations again using explicit summation iootat
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(6.63)

(6.64)

(6.65)

(6.66)

LOGISTIC FUNCTION

(6.67)

(6.68)

CLASSIFICATION
INFERENCE

(6.69)

_ _expzowfi)
p(y =truex) = 1+exqzi('\)‘:owifi)
p(y = falsex) — .

1+ exr(zi'\‘:owi fi)

We can express the probabilRyy = trugx) in a slightly different way, by dividing
the numerator and denominator in (6.61)dy" '

ew-f
1+ewf

1
14+ewf

p(y =trugx) =

These last equation is now in the form of what is calledltiygstic function, (the
function that gives logistic regression its name). The galferm of the logistic func-
tion is:

1
l+eX
The logistic function maps values frorro andeo to lie between 0 and 1
Again, we can expred®(y = falsgx) so as to make the probabilities sum to one:

—w- f

p(y=fa|sqx) = W

6.6.3 Logistic regression: Classification

Given a particular observation, how do we decide which oftite classes (‘true’ or
‘false’) it belongs to? This is the task ofassification also callednference Clearly
the correct class is the one with the higher probability. Stwe can safely say that our
observation should be labeled ‘true’ if:

p(y =truelx) > p(y = falsgx)

p(y =truelx)
p(y = falsex)
p(y = truejx)

1— p(y=truelx)
and substituting from Eq. 6.60 for the odds ratio:

evf>1
w-f>0
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(6.70)

CONDITIONAL
MAXIMUM
LIKELIHOOD
ESTIMATION

(6.71)

(6.72)

(6.73)

(6.74)

(6.75)

or with the explicit sum notation:

N
i;wi fi>0

Thus in order to decide if an observation is a member of thesolee just need to
compute the linear function, and see if its value is positifveo, the observation is in
the class.

A more advanced point: the equatigtiowi fi = 0 is the equation of hyperplane
(a generalization of a line td dimensions). The equatiq{\':owi fi > Ois thus the part
of N-dimensional space above this hyperplane. Thus we can séegiistic regression
function as learning a hyperplane which separates poirsizane which are in the class
('true’) from points which are not in the class.

6.6.4 Advanced: Learning in logistic regression

In linear regression, learning consisted of choosing thightsw which minimized the
sum-squared error on the training set. In logistic regoesdiy contrast, we generally
useconditional maximum likelihood estimation. What this means is that we choose
the parameterar which makes the probability of the obserwedalues in the training
data to be the highest, given the observatisndn other words, for an individual
training observatiow, we want to choose the weights as follows:

W = argma(y" |x))
w
And we'd like to choose the optimal weights for the entirertirzg set:
W= argmax ] P(y"|x)
g >1T| (Y 1x)
We generally work with the log likelihood:
W= argmaxy logP(y"|x"))
w T
So, more explicitly:

. Py = 1jx)) for yi =1
W=argmag 0a{ 270 o) for 0

This equation is unwieldy, and so we usually apply a conw@niepresentational
trick. Note that ify = 0 the first term goes away, whileyf= 1 the second term goes
away:

W= argvgnaxz y(l) log P(y(l) — 1|X(|))) +(1- y(l)) log P(y(l) — le(l))
|

Now if we substitute in (6.66) and (6.68), we get:
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() 1 () !
6.76 N= log———— 1- log———
(6.76) W argvpaxIZy 007 g wf +(1-y") 00 g wf
Finding the weights which result in the maximum log-likeldd according to (6.76)
orTiIMEXis a problem in the field known asonvex optimization Among the most com-

monly used algorithms amguasi-Newtonmethods like L-BFGS, as well as gradient
ascent, conjugate gradient, and various iterative scaliggrithms (Darroch and Rat-
cliff, 1972; Della Pietra et al., 1997; Malouf, 2002). Thdsarning algorithms are
available in the various MaxEnt modeling toolkits but are tmmplex to define here;
interested readers should see the machine learning teeglsnggested at the end of
the chapter.

6.7 MAXIMUM ENTROPY MODELING

MULTINOMIAL
LOGISTIC
REGRESSION
MAXENT

(6.77)

(6.78)

We showed above how logistic regression can be used to fyl@ssbbservation into
one of two classes. But most of the time the kinds of classifingproblems that
come up in language processing involve larger numbers skeka(such as the set
of part-of-speech classes). Logistic regression can astefined for such functions
with many discrete values. In such cases it is caftedtinomial logistic regression
As we mentioned above, multinomial logistic regressionaibed MaxEnt in speech
and language processing (see Sec. 6.7.1 on the intuitiand#re name ‘maximum
entropy’).

The equations for computing the class probabilities for axBfd classifier are a
generalization of Egs. 6.63-6.64 above. Let's assumeltlegarget valug is a random
variable which can take d@ different values corresponding to the classgsy,...cc.

We said earlier in this chapter that in a MaxEnt model we estiinthe probability
thaty is a particular class as:

1
p(clx) = ZeXPZWi fi
|

Let's now add some details to this schematic equation. Riesll flesh out the
normalization factor Z, specify the number of featuredlaand make the value of the
weight dependent on the classThe final equation is:

Note that the normalization factdris just used to make the exponential into a true
probability;

p(clx) =
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(6.79)

INDICATOR
FUNCTION

(6.80)

(6.81)

2= p(ox) = czcexp(iwdi ﬁ)

We need to make one more change to see the final MaxEnt equatidiar we've
been assuming that the featurgsre real-valued. It is more common in speech and
language processing, however, to use binary-valued festér feature that only takes
on the values 0 and 1 is also callediadicator function. In general, the features we
use are indicator functions of some property of the obsenvand the class we are
considering assigning. Thus in MaxEnt, instead of the mwtaf;, we will often use
the notationf;(c,x), meaning a featurefor a particular class for a given observation
X.

The final equation for computing the probability pbeing of class givenx in
MaxEnt is:

exp (i)wci fi(c, x))

p(clx) = N
cgcexp (iZ}Wdi fi(c, x))

To get a clearer intuition of this use of binary featuressletok at some sample
features for the task of part-of-speech tagging. Supposare@ssigning a part-of-
speech tag to the womacein (6.81), repeated fron?():

Secretariat/NNP is/BEZ expected/VBN to/Tace/??tomorrow/

Again, for now we're just doing classification, not sequeadlessification, so let’s
consider just this single word. We'll discuss in Sec. 6.8 hoywerform tagging for a
whole sequence of words.

We would like to know whether to assign the cla& to race (or instead assign
some other class likidN). One useful feature, we’ll call it;, would be the fact that the
current word igace We can thus add a binary feature which is true if this is treeca

f(cX) = 1 if word ="“race” & c=NN
=271 0 otherwise

Another feature would be whether the previous word has thé @

tex) — {11 t-1=TO& c=VB
2% = 1 0 otherwise

Two more part-of-speech tagging features might focus oaaspf a word’s spelling
and case:

_ [ 1 if suffix(word) =“ing” & c¢=VBG
fa(ex) = {O otherwise
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[ 1 if is_.lowercasgword)) & c=VB
fa(ex) = { 0 otherwise
Since each feature is dependent on both a property of thewaltien and the class
being labeled, we would need to have separate feature fprthe link betweemace
and VB, or the link between a previous TO and NN:

f5(c,X) = 1 if word ="race” & c=VB
S\ = 1 0 otherwise

fo(C,X) = 1if t_1=TO & c=NN
6% = 1 0 otherwise
Each of these features has a corresponding weight. Thuseigétw; (c,x) would
indicate how strong a cue the worace is for the tag VB, the weighiv,(c,x) would
indicate how strong a cue the previous ®gis for the current word being a VB, and

SO on.
fl f2 3 f4 5 f6
VB f 0 1 0 1 1 0
VB W .8 .01 d
NN f 1 0 0 0 0 1
NN W .8 -1.3
Figure 6.19 Some sample feature values and weights for tagging the waarelin
(6.81).

Let's assume that the feature weights for the two classesNB/N are as shown
in Fig. 6.19. Let's call the current input observation (whére current word isace) x.
We can now computB(NN|x) andP(V B|x), using Eq. 6.80:

e.8e71.3

(6.82) PINNX) = 55137 gsgoier = -20
8a01a1
e~e--e

(6.83) PIVBX) = g513 gsg0ie1 — 80

Notice that when we use MaxEnt to perfoatassification MaxEnt naturally gives
us a probability distribution over the classes. If we wardda hard-classification and

choose the single-best class, we can choose the class thtitenhighest probability,
ie.

(6.84) € =argma¥P(c|x)
ceC
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Classification in MaxEnt is thus a generalization of clasatfon in (boolean) lo-
gistic regression. In boolean logistic regression, cfasgion involves building one
linear expression which separates the observations inléilss élom the observations
not in the class. Classification in MaxEnt, by contrast, imege building a separate
linear expression for each Gfclasses.

But as we'll see later in Sec. 6.8, we generally don't use MexXar hard classi-
fication. Usually we want to use MaxEnt as part of sequencssitieation, where we
want not the best single class for one unit, but the best seiglience. For this task,
it's useful to exploit the entire probability distributidar each individual unit, to help
find the best sequence. Indeed even in many non-sequendesdéippk a probability
distribution over the classes is more useful than a hardehoi

The features we have described so far express a single pr@pgrty of an obser-
vation. But it is often useful to create more complex featubhat express combinations
of properties of a word. Some kinds of machine learning mndide Support Vector
Machines (SVMs), can automatically model the interactioetsveen primitive proper-
ties, but in MaxEnt any kind of complex feature has to be defimehand. For example
a word starting with a capital letter (like the wolthy) is more likely to be a proper
noun (NNP) than a common noun (for example in the expredsdioted Nations Day
But a word which is capitalized but which occurs at the bemigmof the sentence (the
previous word is<s>), as inDay after day..,.is not more likely to be a proper noun.
Even if each of these properties were already a primitiveufea MaxEnt would not
model their combination, so this boolean combination oferties would need to be
encoded as a feature by hand:

fios(C,X) = 1 if word_1 =<s> & isupperfirstword) & c=NNP
1255%%°= 1 0 otherwise

A key to successful use of MaxEnt is thus the design of apjmtgpfeatures and
feature combinations.

Learning Maximum Entropy Models

Learning a MaxEnt model can be done via a generalizationefdbistic regression
learning algorithms described in Sec. 6.6.4; as we saw i8fpwe want to find the
parametersy which maximize the log likelihood of thi! training samples:

(6.85) W= argmaxy logP(y"|x"))
w T

As with binary logistic regression, we use some convex ogation algorithm to
find the weights which maximize this function.

A brief note: one important aspect of MaxEnt training is adkaf smoothing of the

REGULARIZATION  Weights calledegularization. The goal of regularization is to penalize large weights;

it turns out that otherwise a MaxEnt model will learn verytigeights which overfit
the training data. Regularization is implemented in tragnby changing the likeli-
hood function that is optimized. Instead of the optimizatio (6.85), we optimize the
following:
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(6.86)

(6.87)

(6.88)

(6.89)

(6.90)

(6.91)

W = argmaxy logP(y"|x") — aR(w)
w i

whereR(w) is aregularization term used to penalize large weights. It is common to
make the regularization terR(w) be a quadratic function of the weight values:

Subtracting squares of the weights will thus result in prafg smaller weights:
(i) %) c W2
w=argmaxy logP(y"V|x") —a -
2 2

It turns that this kind of regularization corresponds touasiig that weights are
distributed according to a Gaussian distribution with mgan 0. In a Gaussian or
normal distribution, the further away a value is from the mehe lower its probability
(scaled by the varianog). By using a Gaussian prior on the weights, we are saying
that weights prefer to have the value zero. A Gaussian forightre; is:

)2
1 exp| = (Wj EJ)
/2,.[0]2 205
If we multiply each weight by a Gaussian prior on the weight, ave thus maxi-
mizing the following constraint:

PO x ] (w; —)?
W= argmax ] P(y" |x) x exp| ————2~
w )ﬂ Dl 2mo? 20%

which in log space, witlu = 0, corresponds to
W = argmaxy log Py x1) —
w T

which is in the same form as Eq. 6.88.
There is a vast literature on the details of learning in MaxEee the end of the
chapter for pointers to further details.

6.7.1 Why do we call it Maximum Entropy?

Why do we refer to multinomial logistic regression modeldvéexEnt or Maximum
Entropy models? Let's give the intuition of this interpitéa in the context of part-
of-speech tagging. Suppose we want to assign a tag to the zzéisth(a word we
made up for this example). What is the probabilistic taggimadel (the distribution
of part-of-speech tags across words) that makes the fewsgimgptions, imposing no
constraints at all? Intuitively it would be the equiprotadistribution:
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(6.92)

(6.93)

NNS|VB |NNP|IN |MD |UH|SYM | VBG | POS/ PRP|CC|CD|...

11 |1 T 1 |1
45 | 45 4 4 45 45

8|2
[
<

al
il
IN
ol
IN
ol
al
il
il
il
IN
ol

Now suppose we had some training data labeled with parpeéch tags, and from
this data we learned only one fact: the set of possible tagezfitshare NN, JJ, NNS,
and VB (sozzfishis a word something likéish but which can also be an adjective).
What is the tagging model which relies on this constraint, makes no further as-
sumptions at all? Since one of these must be the correct tagnaw that

P(NN) + P(JJ) + P(NNS + P(VB) = 1

Since we have no further information, a model which makesinhér assumptions
beyond what we know would simply assign equal probabilitgdch of these words:

NN [JJNNS|VB [NNP|IN |MD |UH | SYM |VBG | POS PRP|CC|CD| ...
0 0|0 |0 |O 0 0 o0 (0 |O

FNTN
FNTN
FNTN
FNTN

In the first example, where we wanted an uninformed distidlutver 45 parts-of-
speech, and in this case, where we wanted an uninformebditn over 4 parts-of-
speech, it turns out that of all possible distributions, eéq@iprobable distribution has
the maximum entropy. Recall from Sec?? that the entropy of the distribution of a
random variable is computed as:

H(X) = — 5 P(X)log, P(x)

An equiprobable distribution in which all values of the randvariable have the
same probability has a higher entropy than one in which tieeraore information.
Thus of all distributions over four variables the distriout{3, ,%,1} has the maxi-
mum entropy. (To have an intuition for this, use Eq. 6.93 tmpate the entropy for a
few other distributions such as the distributiph, 3,2, 2}, and make sure they are all
lower than the equiprobable distribution.)

The intuition of MaxEnt modeling is that the probabilistiodel we are building
should follow whatever constraints we impose on it, but Imelythese constraints it
should follow Occam’s Razor, i.e., make the fewest possibsimptions.

Let's add some more constraints into our tagging examplep8&se we looked at
our tagged training data and noticed that 8 times out okzifishwas tagged as some
sort of common noun, either NN or NNS. We can think of this ac#fging the feature
‘'word is zzfishandt; = NN ort; = NNS’. We might now want to modify our distribution
so that we givel% of our probability mass to nouns, i.e. now we have 2 condsain

P(NN)+PJJ)+P(NNS +P(VB) =1

P(word iszzfishandt; = NN ort; = NNS) = 1—80

but make no further assumptions (keep JJ and VB equiprofatdeNN and NNS
equiprobable).



36

Chapter 6. Hidden Markov and Maximum Entropy Models

NN [JJ|NNS| VB [NNP|...

a 112 |1 [g
10 | 10| 10 10

Now suppose we don’t have have any more information akzfigh But we notice
in the training data that for all English words (not ju=tfiish verbs (VB) occur as 1
word in 20. We can now add this constraint (correspondingédeaturd; =VB):

P(NN)+P(JJ) + P(NNS +P(VB) = 1

o 8
P(word iszzfishandt; = NN ort; = NNS) = 10
1

PIVB) =

The resulting maximum entropy distribution is now as foltow

NN |JJ|NNS| VB

A 1314 |1
10 (20|10 |20

In summary, the intuition of maximum entropy is to build atdisution by continu-
ously adding features. Each feature is an indicator functidnich picks out a subset of
the training observations. For each feature we add a camstraour total distribution,
specifying that our distribution for this subset should chathe empirical distribution
we saw in our training data. We then choose the maximum eptligribution which
otherwise accords with these constraints. Berger et aBg)lpose the optimization
problem of finding this distribution as follows:

“To select a model from a setof allowed probability distributions, choose
the model p € ¢ with maximum entropy p)™:
(6.94) p* =argmad (p)
pec
Now we come to the important conclusion. Berger et al. (199®)w that the

solution to this optimization problem turns out to be exatite probability distribution
of a multinomial logistic regression model whose weigtsnaximize the likelihood
of the training data! Thus the exponential model for multiial logistic regression,
when trained according to the maximum likelihood criterialso finds the maximum
entropy distribution subject to the constraints from thetdiee functions.

6.8 MAXIMUM ENTROPY MARKOV MODELS

We began our discussion of MaxEnt by pointing out that thecbislexEnt model is
not in itself a classifier for sequences. Instead, it is usatkissify a single observation
into one of a set of discrete classes, as in text classifitétiooosing between possible
authors of an anonymous text, or classifying an email as ypamntasks like deciding
whether a period marks the end of a sentence.
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We turn in this section to thlaximum Entropy Markov Model or MEMM |,
which is an augmentation of the basic MaxEnt classifier sbith@an be applied to
assign a class to each element in a sequence, just as we daMits. Why would
we want a sequence classifier built on MaxEnt? How might sudhssifier be better
than an HMM?

Consider the HMM approach to part-of-speech tagging. ThevHisgging model
is based on probabilities of the forf(tagtag) and P(wordtag). That means that
if we want to include some source of knowledge into the taggirocess, we must
find a way to encode the knowledge into one of these two préibebi But many
knowledge sources are hard to fit into these models. For eeamp saw in Sec??
that for tagging unknown words, useful features includetaépation, the presence
of hyphens, word endings, and so on. There is no easy way toofipilities like
P(capitalizatioftag), P(hypheitag), P(suffix|tag), and so on into an HMM-style model.

We gave the initial part of this intuition in the previous Sen, when we discussed
applying MaxEnt to part-of-speech tagging. Part-of-sheagging is definitely a se-
quence labeling task, but we only discussed assigning eopagieech tag to a single
word.

How can we take this single local classifier and turn it intoemeyal sequence
classifier? When classifying each word we can rely on featfren the current word,
features from surrounding words, as well as the output otthssifier from previous
words. For example the simplest method is to run our localsifi@r left-to-right, first
making a hard classification of the first word in the sentettoen the second word,
and so on. When classifying each word, we can rely on the ¢offhe classifier from
the previous word as a feature. For example, we saw in taggmgvordrace that a
useful feature was the tag of the previous word; a previouss’Edood indication that
raceis a VB, whereas a previous DT is a good indication tlaae is a NN. Such a
strict left-to-right sliding window approach has been shawyield surprisingly good
results across a wide range of applications.

While it is possible to perform part-of-speech tagging iis thay, this simple left-
to-right classifier has an important flaw: it makes a hardsienion each word before
moving on to the next word. This means that the classifier #lento use information
from later words to inform its decision early on. Recall timeitlidden Markov Models,
by contrast, we didn't have to make a hard decision at eacld;wee used Viterbi
decoding to find the sequence of part-of-speech tags whistoptimal for the whole
sentence.

The Maximum Entropy Markov Model (or MEMM) allows us to actéethis same
advantage, by mating the Viterbi algorithm with MaxEnt. 'setee how it works,
again looking at part-of-speech tagging. It is easiest weuostand an MEMM when
comparing itto an HMM. Remember that in using an HMM to modelmnost probable
part-of-speech tag sequence we rely on Bayes rule, congoB{\W|T)P(W) instead
of directly computindP(T|W):

T = argmaP(T|W)
T

= argmaP(W|T)P(T)
T
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(6.95)

DISCRIMINATIVE
MODEL

(6.96)

= argmaxﬂ P(word |tag) |'| P(tag|tag_;)
T i

That is, an HMM as we've described it is a generative model dpsimizes the
likelihood P(W|T), and we estimate the posterior by combining the likelihood the
prior P(T).

In an MEMM, by contrast, we compute the postegT |W) directly. Because we
train the model directly to discriminate among the possiatesequences, we call an
MEMM a discriminative model rather than a generative model. In an MEMM, we
break down the probabilities as follows:

T = argma®(T|W)
T

argmay | P(tag |word,tag
or >1i'|(g|wda g 1)

Thus in an MEMM instead of having a separate model for likaditts and priors,
we train a single probabilistic model to estim&gag |word ,tag_4). We will use
MaxEnt for this last piece, estimating the probability ofledocal tag given the previ-
ous tag, the observed word, and, as we will see, any otheuréesatve want to include.

We can see the HMM versus MEMM intuitions of the POS taggisg ta Fig. 6.20,
which repeats the HMM model of Fi@?a from Ch. 5, and adds a new model for the
MEMM. Note that the HMM model includes distinct probabiligstimates for each
transition and observation, while the MEMM gives one praliglestimate per hidden
state, which is the probability of the next tag given the pres tag and the observation.

223993

Secretariat is expected to race tomorrow
Secretariat is expected to race tomorrow

Figure 6.20 The HMM (top) and MEMM (bottom) representation of the proitiab
computation for the correct sequence of tags for the Se@eszntence. Each arc would
be associated with a probability; the HMM computes two s&jggprobabilities for the ob-
servation likelihood and the prior, while the MEMM compuéesingle probability function
at each state, conditioned on the previous state and cuipsetvation.




Section 6.8.

Maximum Entropy Markov Models 39

(6.97)

(6.98)

(6.99)

Fig. 6.21 emphasizes another advantage of MEMMs over HMMsshown in
Fig. 6.20: unlike the HMM, the MEMM can condition on any udd&ature of the input
observation. In the HMM this wasn'’t possible because the Hidlikelihood-based,
hence would have needed to compute the likelihood of eathrieaf the observation.

\ .
expectéd) to race tomorrow

LN
\ .
cretariat

Figure 6.21 An MEMM for part-of-speech tagging, augmenting the degwip in
Fig. 6.20 by showing that an MEMM can condition on many feasusf the input, such ag
capitalization, morphology (ending s or -ed), as well as earlier words or tags. We haye
shown some potential additional features for the first tlie@sions, using different line
styles for each class.

More formally, in the HMM we compute the probability of thest sequence given
the observations as:

P(QO) = []Plola)  []P(ala-)

In the MEMM, we compute the probability of the state sequegieen the obser-
vations as:

P(QO) - []P(ala-10)

In practice, however, an MEMM can also condition on many nfeedures than
the HMM, so in general we condition the right-hand side on yrmaore factors.

To estimate the individual probability of a transition fraanstateq’ to a stateq
producing an observatiam we build a MaxEnt model as follows:

1

6.8.1 Decoding and Learning in MEMMs

Like HMMs, the MEMM uses the Viterbi algorithm to perform thesk of decoding
(inference). Concretely, this involves filling &hx T array with the appropriate values
for P(t|ti—1,word: ), maintaining backpointers as we proceed. As with HMM Viterb
when the table is filled we simply follow pointers back frone ttnaximum value in
the final column to retrieve the desired set of labels. Theisig changes from the
HMM-style application of Viterbi only have to do with how wdlfeach cell. Recall

P(qld,0) =
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(6.100)

(6.101)

(6.102)

from Eq. 6.23 that the recursive step of the Viterbi equatimmputes the Viterbi value
of timet for statej as:

wi(j) = mNalx vi—a(iajbj(o); 1<j<N1<t<T
1=

which is the HMM implementation of

w(i) = max 1) P(sils) Plafs;) 1<j<N1<t<T
i=

The MEMM requires only a slight change to this latter formuéplacing thea and
b prior and likelihood probabilities with the direct postari

w(j) = mNalx Vi—1(i) P(sjls,0or) 1<j<N,1<t<T
i=

Fig. 6.22 shows an example of the Viterbi trellis for an MEMbbéied to the ice-
cream task from Sec. 6.4. Recall that the task is figuringlwihidden weather (Hot
or Cold) from observed numbers of ice-creams eaten in JasoeEs diary. Fig. 6.22
shows the abstract Viterbi probability calculation assugnihat we have a MaxEnt
model which computeB(s|s_1,0;) for us.

Learning in MEMMSs relies on the same supervised learningritlyns we pre-
sented for logistic regression and MaxEnt. Given a sequehadservations, fea-
ture functions, and corresponding hidden states, we th@meights so as maximize
the log-likelihood of the training corpus. As with HMMs, & also possible to train
MEMMs in semi-supervised modes, for example when the semuehlabels for the
training data is missing or incomplete in some way: a versidhe EM algorithm can
be used for this purpose.

6.9 SUMMARY

This chapter described two important models for probahilsequence classificatian
theHidden Markov Model and theMaximum Entropy Markov Model . Both mod-
els are widely used throughout speech and language progessi

e Hidden Markov ModelsKIMMs) are a way of relating a sequence alfser-
vations to a sequence diidden classesor hidden stateswhich explain the
observations.

e The process of discovering the sequence of hidden states gjie sequence
of observations is known adecodingor inference The Viterbi algorithm is
commonly used for decoding.

e The parameters of an HMM are thetransition probability matrix and thB
observation likelihood matrix. Both can be trained using Baum-Welch or
forward-backward algorithm.
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Figure 6.22 Inference from ice-cream eating computed by an MEMM instafagh HMM. The Viterbi trellig
for computing the best path through the hidden state spadbddce-cream eating eversl 3 modified from
the HMM figure in Fig. 6.10.

A MaxEnt model is a classifier which assignslassto anobservationby com-
puting a probability from an exponential function ofweightedset offeatures
of the observation.

MaxEnt models can be trained using methods from the fieto¥ex optimiza-
tion although we don't give the details in this textbook.

A Maximum Entropy Markov Model or MEMM is a sequence model aug-
mentation of MaxEnt which makes use of the Viterbi decodigg@athm.

MEMMSs can be trained by augmenting MaxEnt training with asien of EM.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

As we discussed at the end of Ch. 4, Markov chains were first ngdarkov (1913,
2006), to predict whether an upcoming letter in Pushkifugiene Onegimould be a
vowel or a consonant.
The Hidden Markov Model was developed by Baum and colleagtide Institute
for Defense Analyses in Princeton (Baum and Petrie, 1966rBand Eagon, 1967).
The Viterbi algorithm was first applied to speech and language proagssithe
context of speech recognition by Vintsyuk (1968), but haat#ruskal (1983) calls a
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‘remarkable history of multiple independent discovery antlication’? Kruskal and
others give at least the following independently-discederariants of the algorithm
published in four separate fields:

Citation Field

Viterbi (1967) information theory
Vintsyuk (1968) speech processing
Needleman and Wunsch (1970) molecular biology
Sakoe and Chiba (1971) speech processing
Sankoff (1972) molecular biology
Reichert et al. (1973) molecular biology
Wagner and Fischer (1974) computer science

The use of the ternViterbi is now standard for the application of dynamic pro-
gramming to any kind of probabilistic maximization probléamspeech and language
processing. For non-probabilistic problems (such as forimmim edit distance) the
plain termdynamic programming is often used. Forney Jr. (1973) is an early survey
paper which explores the origin of the Viterbi algorithm retcontext of information
and communications theory.

Our presentation of the idea that Hidden Markov Models sthéwel characterized
by three fundamental problems was modeled after an inflaletuiorial by Rabiner
(1989), which was itself based on tutorials by Jack FergusoiDA in the 1960s.
Jelinek (1997) and Rabiner and Juang (1993) give very camplescriptions of the
forward-backward algorithm, as applied to the speech rmeitiog problem. Jelinek
(1997) also shows the relationship between forward-baokaad EM. See also the
description of HMMs in other textbooks such as Manning antii&e (1999). Bilmes
(1997) is a tutorial on EM.

While logistic regression and other log-linear models Hzeen used in many fields
since the middle of the 20th century, the use of Maximum Exhmultinomial logistic
regression in natural language processing dates from wattkei early 1990s at IBM
(Bergeretal., 1996; Della Pietra et al., 1997). This eadykintroduced the maximum
entropy formalism, proposed a learning algorithm (impibiterative scaling), and
proposed the use of regularization. A number of applicatmiMaxEnt followed. For
further discussion of regularization and smoothing for mman entropy models see
(inter alia) Chen and Rosenfeld (2000), Goodman (2004), and Dudik ahdre
(2006).

Although the second part of this chapter focused on MaxBi¢-€lassification,
numerous other approaches to classification are used thoatigpeech and language
processing. Naive Bayes (Duda et al., 2000) is often empl@agea good baseline
method (often yielding results that are sufficiently gooddtactical use); we’ll cover
naive Bayes in Ch. 20. Support Vector Machines (Vapnik, }88%e been successfully
used in text classification and in a wide variety of sequenocegssing applications.
Decision lists have been widely used in word sense discatitn, and decision trees
(Breiman et al., 1984; Quinlan, 1986) have been used in mpplcations in speech
processing. Good references to supervised machine legapioroaches to classifica-

2 Seven is pretty remarkable, but see pa@éor a discussion of the prevalence of multiple discovery.
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CONDITIONAL
RANDOM FIELD

CRF

tion include Duda et al. (2000), Hastie et al. (2001), andéNitand Frank (2005).

Maximum Entropy Markov Models (MEMMSs) were introduced bytRaparkhi
(1996) and McCallum et al. (2000).

There are many sequence models that augment the MEMM, suitte &ondi-
tional Random Field (CRF) (Lafferty et al., 2001; Sutton and McCallum, 2006). In
addition, there are various generalizationsmaximum margin methods (the insights
that underlie SVM classifiers) to sequence tasks.
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