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WORD CLASSES AND
PART-OF-SPEECH
TAGGING

PARTS-OF-SPEECH

Conjunction Junction, what's your function?
Bob Dorough Schoolhouse Rock, 1973

A gnostic was seated before a grammarian. The grammarian
said, ‘A word must be one of three things: either it is a noun, a
verb, or a particle’ The gnostic tore his robe and cried, Al
Twenty years of my life and striving and seeking have gonkeeo t
winds, for | laboured greatly in the hope that there was aeoth
word outside of this. Now you have destroyed my hope. Though
the gnostic had already attained the word which was his psepo
he spoke thus in order to arouse the grammarian.

Rumi (1207-1273)The Discourses of Rumiiranslated by A. J. Arberry

Dionysius Thrax of Alexandriac{ 100 B.c.), or perhaps someone else (exact au-
thorship being understandably difficult to be sure of witktseof this vintage), wrote
a grammatical sketch of Greek (tethre”) which summarized the linguistic knowl-
edge of his day. This work is the direct source of an astongspiroportion of our
modern linguistic vocabulary, including among many otheras,syntax diphthong
clitic, andanalogy Also included are a description of eigbarts-of-speech noun,
verb, pronoun, preposition, adverb, conjunction, pgt&iand article. Although ear-
lier scholars (including Aristotle as well as the Stoicsyl ltlaeir own lists of parts-of-
speech, it was Thrax’s set of eight which became the baséatically all subsequent
part-of-speech descriptions of Greek, Latin, and most ge@o languages for the next
2000 years.

Schoolhouse Rock was a popular series of 3-minute musidalaaed clips first
aired on television in 1973. The series was designed torapis to learn multipli-
cation tables, grammar, and basic science and history. Tam@ar Rock sequence,
for example, included songs about parts-of-speech, thngibg these categories into
the realm of popular culture. As it happens, Grammar Rock neasarkably tradi-
tional in its grammatical notation, including exactly eigongs about parts-of-speech.
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TAGSETS

POS

Although the list was slightly modified from Thrax’s originaubstituting adjective
and interjection for the original participle and articleetastonishing durability of the
parts-of-speech through two millenia is an indicator oftbthte importance and the
transparency of their role in human language.

More recent lists of parts-of-speech fagsetd have many more word classes; 45
for the Penn Treebank (Marcus et al., 1993), 87 for the Broarmpus (Francis, 1979;
Francis and Kucera, 1982), and 146 for the C7 tagset (Gaesidl., 1997).

The significance of parts-of-speech (also knowrP&sS, word classes morpho-
logical classesor lexical tagg for language processing is the large amount of informa-
tion they give about a word and its neighbors. This is cletdg for major categories,
(verb versusnoun), but is also true for the many finer distinctions. For exaarthkese
tagsets distinguish between possessive pronaugsypur, his, her, its) and personal
pronouns |, you he me. Knowing whether a word is a possessive pronoun or a per-
sonal pronoun can tell us what words are likely to occur invitsnity (possessive
pronouns are likely to be followed by a noun, personal prosday a verb). This can
be useful in a language model for speech recognition.

A word'’s part-of-speech can tell us something about how tbehis pronounced.
As Ch. 8 will discuss, the wordontent for example, can be a noun or an adjective.
They are pronounced differently (the noun is pronoun€@Ntentand the adjective
conTENTY. Thus knowing the part-of-speech can produce more ngtuoalunciations
in a speech synthesis system and more accuracy in a speeghiteam system. (Other
pairs like this includeOBject(noun) andobJECT (verb), DIScount(noun) anddis-
COUNT (verb); see Cutler (1986)).

Parts-of-speech can also be used in stemming for informeitretrieval (IR), since
knowing a word’s part-of-speech can help tell us which motpgical affixes it can
take, as we saw in Ch. 3. They can also enhance an IR applidayicelecting out
nouns or other important words from a document. Automatsigasnent of part-of-
speech plays arole in parsing, in word-sense disambigualgmrithms, and in shallow
parsing of texts to quickly find names, times, dates, or otfzaned entities for the
information extraction applications discussed in Ch. 22nally, corpora that have
been marked for parts-of-speech are very useful for liriguissearch. For example,
they can be used to help find instances or frequencies otpkaticonstructions.

This chapter focuses on computational methods for assignémts-of-speech to
words part-of-speech tagging. Many algorithms have been applied to this problem,
including hand-written ruleggle-based tagging, probabilistic methodsHMM tag-
ging andmaximum entropy tagging), as well as other methods such@nsformation-
based taggingand memory-based tagging We will introduce three of these algo-
rithms in this chapter: rule-based tagging, HMM taggingd &ransformation-based
tagging. But before turning to the algorithms themselvetss begin with a summary
of English word classes, and of various tagsets for forn@ilying these classes.
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5.1 (MosTLY) ENGLISH WORD CLASSES

CLOSED CLASS
OPEN CLASS

FUNCTION WORDS

NOUN

PROPER NOUNS
COMMON NOUNS

COUNT NOUNS
MASS NOUNS

Until now we have been using part-of-speech termstikan andverb rather freely.

In this section we give a more complete definition of these athér classes. Tradi-
tionally the definition of parts-of-speech has been basesiyotactic and morphologi-
cal function; words that function similarly with respectthat can occur nearby (their
“syntactic distributional properties”), or with respeatthe affixes they take (their mor-
phological properties) are grouped into classes. Whileletasses do have tendencies
toward semantic coherence (nouns do in fact often descpibeple, places or things”,
and adjectives often describe properties), this is notssardy the case, and in general
we don’t use semantic coherence as a definitional critenopdrts-of-speech.

Parts-of-speech can be divided into two broad supercaesyatosed clasgypes
andopen clasgypes. Closed classes are those that have relatively fixecbership.
For example, prepositions are a closed class because $reefxéd set of them in En-
glish; new prepositions are rarely coined. By contrast saumd verbs are open classes
because new nouns and verbs are continually coined or bedram other languages
(e.g., the new verto faxor the borrowed noufuton). Itis likely that any given speaker
or corpus will have different open class words, but all sgesbf a language, and cor-
pora that are large enough, will likely share the set of dadass words. Closed class
words are also generalfynction words like of, it, and, oryou, which tend to be very
short, occur frequently, and often have structuring usggammar.

There are four major open classes that occur in the languddles world;nouns
verbs, adjectives andadverbs It turns out that English has all four of these, although
not every language does.

Noun is the name given to the syntactic class in which the wordsifost people,
places, or things occur. But since syntactic classesriken are defined syntacti-
cally and morphologically rather than semantically, sonw@ds for people, places,
and things may not be nouns, and conversely some nouns mag matrds for people,
places, or things. Thus nouns include concrete termssliiigandchair, abstractions
like bandwidthandrelationship and verb-like terms likgpacingas inHis pacing to
and fro became quite annoyinyVhat defines a noun in English, then, are things like
its ability to occur with determiners(goat, its bandwidth, Plato’s Repubjjdo take
possessivedBM'’s annual revenug and for most but not all nouns, to occur in the
plural form (goats, abadi

Nouns are traditionally grouped infroper nouns andcommon nouns Proper
nouns, likeRegina Coloradqg andIBM, are names of specific persons or entities. In
English, they generally aren’t preceded by articles (&hg.book is upstairdutRegina
is upstairg. In written English, proper nouns are usually capitalized

In many languages, including English, common nouns areéd/intocount nouns
andmass nouns Count nouns are those that allow grammatical enumeratiaijs,
they can occur in both the singular and plurgdét/goats, relationship/relationships
and they can be countedr{e goat, two goajs Mass nouns are used when something
is conceptualized as a homogeneous group. So wordsri, saltandcommunism
are not counted (i.e*two snowsor *two communisn)s Mass nouns can also appear
without articles where singular count nouns canr&ndw is whitebut not*Goat is
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VERB

AUXILIARIES

ADVERBS

LOCATIVE
DEGREE

MANNER
TEMPORAL

PREPOSITIONS

white).

Theverb class includes most of the words referring to actions andgm®es, in-
cluding main verbs likedraw, provide differ, andgo. As we saw in Ch. 3, English
verbs have a number of morphological forms (non-3rd-pesgpal, 3rd-person-sg
(eat9, progressivedating), past participledater)). A subclass of English verbs called
auxiliaries will be discussed when we turn to closed class forms.

While many researchers believe that all human languages thavcategories of
noun and verb, others have argued that some languages, s&tawalndonesian and
Tongan, don’t even make this distinction (Broschart, 1¥vgns, 2000; Gil, 2000).

The third open class English form is adjectives; semaryi¢hls class includes
many terms that describe properties or qualities. Mostuaggs have adjectives for
the concepts of colom¢hite black), age 6ld, young, and value good bad), but there
are languages without adjectives. In Korean, for example words corresponding
to English adjectives act as a subclass of verbs, so what Bglish an adjective
‘beautiful’ acts in Korean like a verb meaning ‘to be beaultifEvans, 2000).

The final open class fornadverbs is rather a hodge-podge, both semantically and
formally. For example Schachter (1985) points out that iergence like the following,
all the italicized words are adverbs:

Unfortunately John walkechome extremely slowly yesterday

What coherence the class has semantically may be solelgdlchtof these words
can be viewed as modifying something (often verbs, hencenéime “adverb”, but
also other adverbs and entire verb phrasB&ectional adverbs or locative adverbs
(home here downhill) specify the direction or location of some actidiegree adverbs
(extremely very, somewh3tspecify the extent of some action, process, or property;
manner adverbs (slowly, slinkily, delicately describe the manner of some action or
process; antemporal adverb describe the time that some action or event took place
(yesterdayMonday). Because of the heterogeneous nature of this class, soragbad
(for example temporal adverbs likdonday) are tagged in some tagging schemes as
nouns.

The closed classes differ more from language to languagedih#he open classes.
Here’s a quick overview of some of the more important clodadses in English, with
a few examples of each:

e prepositions: on, under, over, near, by, at, from, to, with

e determiners: a, an, the

e pronouns: she, who, I, others

e conjunctions: and, but, or, as, if, when

e auxiliary verbs: can, may, should, are

e particles: up, down, on, off, in, out, at, by,

e numerals: one, two, three, first, second, third

Prepositions occur before noun phrases; semantically they are reldfiofign
indicating spatial or temporal relations, whether litéoal it, before thenby the house
or metaphorical@n time with gustq beside herself But they often indicate other

relations as wellklamlet was written byghakespeayeand [from Shakespearefnd |
did laugh sansntermission an hour byis dial’). Fig. 5.1 shows the prepositions of
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PARTICLE

PHRASAL VERB

DETERMINERS
ARTICLES

English according to the CELEX on-line dictionary (Baayérak, 1995), sorted by
their frequency in the COBUILD 16 million word corpus of Ersgil. Fig. 5.1 should
not be considered a definitive list, since different dictinas and tagsets label word
classes differently. Furthermore, this list combines ps#ipns and particles.

of 540,085 through 14,964 worth 1,563 pace 12
in 331,235 after 13,670 toward 1,39(Q nigh 9
for 142,421 between 13,278 plus 750 re 4
to 125,691 under 9,525 till 686 mid 3
with 124,965 per 6,515 amongst 524 o'er 2
on 109,129 among 5,09( via 351 but 0
at 100,169 within 5,030 amid 222 ere 0
by 77,794 towards 4,70( underneath 164 less 0
from 74,843 above 3,056 Versus 113 midst 0
about 38,424 near 2,026 amidst 67 (o} 0
than 20,210 off 1,695 sans 20 thru 0
over 18,071 past 1,574 circa 14 vice 0
Figure 5.1  Prepositions (and particles) of English from the CELEX mldictionary.
Frequency counts are from the COBUILD 16 million word corpus

A particle is a word that resembles a preposition or an adverb, and © inse
combination with a verb. When a verb and a particle behavesamgée syntactic and/or
semantic unit, we call the combinatiorphrasal verb. Phrasal verbs can behave as a
semantic unit; thus they often have a meaning that is notigtedale from the separate
meanings of the verb and the particle. Thush downmeans something like ‘reject’,
rule outmeans ‘eliminate’find outis ‘discover’, andyo onis ‘continue’; these are not
meanings that could have been predicted from the meanirige wérb and the particle
independently. Here are some examples of phrasal verbsThareau:

So Iwent onfor some days cutting and hewing timber. ..
Moral reform is the effort tahrow offsleep. . .

Particles don't always occur with idiomatic phrasal verimaatics; here are more
examples of particles from the Brown corpus:

...she had turned the papmrer.
He arose slowly and brushed himseif.
He packedup his clothes.

We show in Fig. 5.2 alist of single-word particles from Quétial. (1985). Since it
is extremely hard to automatically distinguish particlesi prepositions, some tagsets
(like the one used for CELEX) do not distinguish them, andhémeorporathat do (like
the Penn Treebank) the distinction is very difficult to ma&kably in an automatic
process, so we do not give counts.

A closed class that occurs with nouns, often marking thermegg of a noun
phrase, is theleterminers. One small subtype of determiners is #mticles: English
has three articles, an, andthe. Other determiners includhis (as inthis chaptey and
that(as inthat pag@. A andanmark a noun phrase as indefinite, whihe can mark it



CONJUNCTIONS

COMPLEMENTIZERS

PRONOUNS
PERSONAL
POSSESSIVE
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aboard aside besides forward(s) opposite through
about astray between home out throughput
above away beyond in outside together
across back by inside over under
ahead before close instead overhead underrjeath
alongside behind down near past up
apart below east, etc. off round within
around beneath eastward(s),etc. on since without

Figure 5.2 English single-word particles from Quirk et al. (1985).

as definite; definiteness is a discourse and semantic pydpaitwill be discussed in
Ch. 21. Articles are quite frequent in English; indelkdis the most frequently occur-
ring word in most corpora of written English. Here are COBDIktatistics, again out
of 16 million words:

the: 1,071,676 a: 413,887 an: 59,359

Conjunctions are used to join two phrases, clauses, or sentences. Catingin
conjunctions likeand, or, andbut, join two elements of equal status. Subordinating
conjunctions are used when one of the elements is of som®fsembedded status.
For exampldahatin “I thought that you might like some milkis a subordinating con-
junction that links the main clauséhoughtwith the subordinate claug®u might like
some milk This clause is called subordinate because this entirselisuthe “content”
of the main vertihought Subordinating conjunctions likkat which link a verb to its
argument in this way are also calledmplementizers Ch. 12 and Ch. 16 will discuss
complementation in more detail. Table 5.3 lists Englishjgnations.

and 514,944 yet 5,040/| considering 174 forasmuchas 0
that 134,773| since 4,843 lest 131|| however 0
but 96,889 where 3,952 albeit 104|| immediately 0
or 76,563|| nor 3,078|| providing 96|| inasfaras @
as 54,608 once 2,826/ whereupon 8% insofaras Q
if 53,917| unless 2,20% seeing 63| inasmuch as D
when 37,978 why 1,333|| directly 26 insomuch as (
because 23,626 now 1,290|| ere 12|l insomuch that (
S0 12,933| neither 1,120 notwithstanding 3 like 0
before 10,720, whenever 913 according as | neither nor q
though 10,329, whereas 867 asif 0 now that 0
than 9,511| except 864| aslongas @ only 0
while 8,144 till 686 as though 0| providedthat @
after 7,042 provided 594 both and Q| providing that 0
whether 5,978 whilst 351|| butthat 0|| seeingas

for 5,935|| suppose 281 but then 0| seeingashow 0
although 5,424 cos 188| but then again seeing that @
until 5,072|| supposing 184 either or without 0

Figure 5.3 Coordinating and subordinating conjunctions of EnglisgmfrtCELEX. Fre-
quency counts are from COBUILD (16 million words).

Pronouns are forms that often act as a kind of shorthand for referrmmgdme
noun phrase or entity or evenersonal pronounsrefer to persons or entitieydqu,
she 1, it, mg etc.). Possessive pronounare forms of personal pronouns that indicate



Section 5.1. (Mostly) English Word Classes 7
either actual possession or more often just an abstratiorletween the person and
wi  some objectrqy, your, his, her, its, one’s, our, thgir Wh-pronouns (what, who,

AUXILIARY

COPULA
MODAL

whom, whoev@are used in certain question forms, or may also act as congpigzers
(Frieda, who | met five years ago )..Table 5.4 shows English pronouns, again from
CELEX.

it 199,920|| how 13,137| yourself 2,437 noone 106
I 198,139|| another 12,55)] why 2,220|| wherein 58
he 158,364| where 11,857 little 2,089 double 39
you 128,688| same 11,841 none 1,992 thine 30
his 99,820| something 11,754 nobody 1,684 summat 22
they 88,41¢| each 11,32¢ further 1,666| suchlike 18
this 84,927 both 10,930| everybody 1,474 fewest 15
that 82,603| last 10,814| ourselves 1,428 thyself 14
she 73,966 every 9,788 mine 1,426 whomever 11
her 69,004| himself 9,113 somebody 1,32% whosoever 1(
we 64,846| nothing 9,026| former 1,177 whomsoever g
all 61,767|| when 8,336| past 984| wherefore g
which 61,399| one 7,423| plenty 940/ whereat 5
their 51,922 much 7,237| either 848|| whatsoever 4
what 50,116| anything 6,937| yours 826|| whereon 2
my 46,791|| next 6,047| neither 61| whoso 2
him 45,024 themselves 5,990 fewer 536|| aught 1
me 43,071 most 5,115| hers 482| howsoever 1
who 42.,881| itself 5,032 ours 458 thrice 1
them 42,099 myself 4,819| whoever 391 wheresoever L
no 33,458| everything 4,662 least 386| you-all 1
some 32,863 several 4,306 twice 382 additional 0
other 29,391 less 4,278| theirs 303|| anybody 0
your 28,923| herself 4,016 wherever 289 each other @
its 27,783 whose 4,005 oneself 239| once 0
our 23,029| someone 3,755 thou 229|| one another

these 22,697 certain 3,348 'un 227 overmuch 0
any 22,664| anyone 3,31 ye 192|| such and such 0
more 21,873 whom 3,22 thy 191| whate'er 0
many 17,343 enough 3,19 whereby 176| whenever a
such 16,880, half 3,065|| thee 166| whereof 0
those 15,819 few 2,933|| yourselves 148 whereto 0
own 15,741| everyone 2,81 latter 142 whereunto (0
us 15,724 whatever 2,57 whichever 121 whichsoever a

Figure 5.4  Pronouns of English from the CELEX on-line dictionary. Fregcy counts
are from the COBUILD 16 million word corpus.

A closed class subtype of English verbs areahgiliary verbs. Crosslinguistically,
auxiliaries are words (usually verbs) that mark certain ain features of a main
verb, including whether an action takes place in the pregmst or future (tense),
whether it is completed (aspect), whether it is negatedffig), and whether an action
is necessary, possible, suggested, desired, etc. (mood).

English auxiliaries include theopula verbbe, the two verbslo andhave along
with their inflected forms, as well as a classrobdal verbs Be s called a copula
because it connects subjects with certain kinds of preglivatinals and adjectiveldé
isa duck. The verbhaveis used for example to mark the perfect tenddmyegone
I had goné, while beis used as part of the passiw&/d wererobbed, or progressive
(We_areleaving constructions. The modals are used to mark the mood assdeigth
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INTERJECTIONS

NEGATIVES
POLITENESS
MARKERS

the event or action depicted by the main verb. caaindicates ability or possibility,
may indicates permission or possibilityyustindicates necessity, and so on. Fig. 5.5
gives counts for the frequencies of the modals in Englishaddition to the perfect
havementioned above, there is a modal védve(e.g.,| haveto go), which is very
common in spoken English. Neither it nor the modal veddre, which is very rare,
have frequency counts because the CELEX dictionary doedistimguish the main
verb sensel(havethree orangesHe daredme to eat thei from the modal sense
(There_hago be some mistak®are | confront him?, from the non-modal auxiliary
verb sensel (havenever seen that

can 70,930 might 5,580 shouldn’t 858
will 69,206 couldn’t 4,265 mustn’t 332
may 25,802 shall 4,118 'll 175
would 18,448 wouldn't 3,548 needn’t 148
should 17,760 won'’t 3,100 mightn’t 68
must 16,520 d 2,299 oughtn’t 44
need 9,955 ought 1,845 mayn’t 3
can't 6,375 will 862 dare, have ???
Figure 5.5 English modal verbs from the CELEX on-line dictionary. Fregcy counts
are from the COBUILD 16 million word corpus.

English also has many words of more or less unique functimiydinginterjec-
tions (oh, ah, hey, man, alas, uh, yymegativegno, no), politeness markers(please,
thank you, greetings(hello, goodbyk and the existentiahere (thereare two on the
table) among others. Whether these classes are assigned partiemhes or lumped
together (as interjections or even adverbs) depends orutipege of the labeling.

5.2 TAGSETS FORENGLISH

The previous section gave broad descriptions of the kindyotactic classes that En-
glish words fall into. This section fleshes out that sketcdéscribing the actual tagsets
used in part-of-speech tagging, in preparation for theousrtagging algorithms to be
described in the following sections.

There are a small number of popular tagsets for English, nodmghich evolved
from the 87-tag tagset used for the Brown corpus (Francig9;1Brancis and Kucera,
1982). The Brown corpus is a 1 million word collection of sdegpfrom 500 writ-
ten texts from different genres (newspaper, novels, ndioficacademic, etc.) which
was assembled at Brown University in 1963—-1964 (KuCeraraadcis, 1967; Francis,
1979; Francis and KucCera, 1982). This corpus was taggddpaitts-of-speech by first
applying the BGGIT program and then hand-correcting the tags.

Besides this original Brown tagset, two of the most commardgd tagsets are
the small 45-tag Penn Treebank tagset (Marcus et al., 1998)the medium-sized
61 tag C5 tagset used by the Lancaster UCREL project’s CLAWE Constituent
Likelihood Automatic Word-tagging System) tagger to tag British National Corpus
(BNC) (Garside et al., 1997). We give all three of these ttsglsere, focusing on the
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| Tag Description Example | Tag  Description Example |
CcC Coordin. Conjunction and, but, or SYM Symbol +,%, &
CD Cardinal number one, two, threg| TO “to” to
DT Determiner a, the UH Interjection ah, oops
EX Existential ‘there’ there VB Verb, base form eat
FW Foreign word mea culpa VBD \erb, past tense ate
IN Preposition/sub-conj of, in, by VBG Verb, gerund eating
JJ Adjective yellow VBN \Verb, past participle eaten
JIR Adj., comparative bigger VBP  Verb, non-3sg pres eat
JJS Adj., superlative wildest VBZ \Verb, 3sg pres eats
LS List item marker 1, 2, One WDT Wh-determiner which, that
MD Modal can, should WP Wh-pronoun what, who
NN Noun, sing. or mass llama WP$ Possessive wh- whose
NNS  Noun, plural llamas WRB Wh-adverb how, wherg
NNP  Proper noun, singular|IBM $ Dollar sign $
NNPS Proper noun, plural Carolinas # Pound sign #
PDT Predeterminer all, both “ Left quote ‘or“
POS  Possessive ending ’s B Right quote “or”
PRP  Personal pronoun |, you, he ( Left parenthesis L4 <
PRP$ Possessive pronoun your, one’s ) Right parenthesis 1% >
RB Adverb quickly, never|| , Comma ,
RBR  Adverb, comparative faster . Sentence-final punc . !?
RBS  Adverb, superlative fastest : Mid-sentence punc ;... —-
RP Particle up, off

Figure 5.6  Penn Treebank part-of-speech tags (including punctuation

smallest, the Penn Treebank set, and discuss difficultnggtgcisions in that tag set
and some useful distinctions made in the larger tagsets.

The Penn Treebank tagset, shown in Fig. 5.6, has been apptieelBrown corpus,
the Wall Street Journal corpus, and the Switchboard corpusng others; indeed,
perhaps partly because of its small size, it is one of the mimly used tagsets. Here
are some examples of tagged sentences from the Penn Treedraida of the Brown
corpus (we will represent a tagged word by placing the tagy &féch word, delimited
by a slash):

(5.1) The/DT grand/JJ jury/NN commented/VBD on/IN a/DT numbex/dF/IN other/JJ
topics/NNS ./.

(5.2) There/EX are/VBP 70/CD children/NN$&ere/RB

(5.3)  Although/IN preliminary/JJ findings/NNS were/VBi2ported/VBN more/RBR
than/IN a/DT year/NN ago/IN ./, the/DT latest/JJS resiiés appear/VBP in/IN
today/NN’s/POSNew/NNP England/NNP Journal/NNP of/IN Medicine/NNP ,/,

Example (5.1) shows phenomena that we discussed in theopeeséction; the de-
terminersthe anda, the adjectivegrandandother, the common nounjsiry, number
andtopics the past tense vetommented Example (5.2) shows the use of the EX
tag to mark the existentihereconstruction in English, and, for comparison, another
use oftherewhich is tagged as an adverb (RB). Example (5.3) shows theaeg-
tion of the possessive morpherseand shows an example of a passive construction,
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(5.4)
(5.5)
(5.6)

(5.7)
(5.8)

(5.9)
(5.10)

(5.11)
(5.12)
(5.13)

(5.14)
(5.15)

‘were reported’, in which the veneportedis marked as a past participle (VBN), rather
than a simple past (VBD). Note also that the proper ndaw Englands tagged NNP.
Finally, note that sinc&lew England Journal of Medicinis a proper noun, the Tree-
bank tagging chooses to mark each noun in it separately asiNd&dingjournal and
medicine which might otherwise be labeled as common nouns (NN).

Some tagging distinctions are quite hard for both humansnaachines to make.
For example prepositions (IN), particles (RP), and advéRB) can have a large over-
lap. Words likearoundcan be all three:

Mrs./NNP Shaefer/NNP never/RB got/VBibound/RP to/TO joining/VBG
All/DT we/PRP gotta/VBN do/VB is/VBZ go/VBaround/IN the/DT corner/NN
Chateau/NNP Petrus/NNP costs/VB#ound/RB 250/CD

Making these decisions requires sophisticated knowlefiggrdax; tagging man-
uals (Santorini, 1990) give various heuristics that camp lrelman coders make these
decisions, and that can also provide useful features fanaatic taggers. For example
two heuristics from Santorini (1990) are that prepositigaserally are associated with
a following noun phrase (although they also may be followmegiepositional phrases),
and that the wor@roundis tagged as an adverb when it means “approximately”. Fur-
thermore, particles often can either precede or follow anr@hwrase object, as in the
following examples:

She told off/RP her friends

She told her friends off/RP.

Prepositions, on the other hand, cannot follow their nouagd (* is used here to mark
an ungrammatical sentence, a concept which we will retuim @h. 12):

She stepped off/IN the train

*She stepped the train off/IN.

Another difficulty is labeling the words that can modify neunSometimes the
modifiers preceding nouns are common nounsdikonbelow, other times the Tree-
bank tagging manual specifies that modifiers be tagged astadg (for example if
the modifier is a hyphenated common noun likeome-taxand other times as proper
nouns (for modifiers which are hyphenated proper nhoungGitEmm-Rudman
cotton/NN sweater/NN
income-tax/JJ return/NN
the/DT Gramm-Rudman/NP Act/NP

Some words that can be adjectives, common nouns, or propesnare tagged in
the Treebank as common nouns when acting as modifiers:

Chinese/NN cooking/NN
Pacific/NN waters/NNS

A third known difficulty in tagging is distinguishing past ppigiples (VBN) from

adjectives (JJ). A word likenarried is a past participle when it is being used in an

eventive, verbal way, as in (5.16) below, and is an adjeatikien it is being used to
express a property, asin (5.17):
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(5.16)
(5.17)

(5.18)

(5.19)

(5.20)

They were married/VBN by the Justice of the Peace yesterdaypa.
At the time, she was already married/JJ.

Tagging manuals like Santorini (1990) give various helgftleria for deciding
how ‘verb-like’ or ‘eventive’ a particular word is in a spécicontext.

The Penn Treebank tagset was culled from the original 8 Tagget for the Brown
corpus. This reduced set leaves out information that caedmvered from the identity
of the lexical item. For example the original Brown and C5sktg include a separate
tag for each of the different forms of the vertis (e.g. C5 tag “vDD” fordid and
“VDG” for doing), be, andhave These were omitted from the Treebank set.

Certain syntactic distinctions were not marked in the Pamebdank tagset because
Treebank sentences were parsed, not merely tagged, anchesgotactic information
is represented in the phrase structure. For example, thkedimg IN is used for both
prepositions and subordinating conjunctions since the-steucture of the sentence
disambiguates them (subordinating conjunctions alwagsette clauses, prepositions
precede noun phrases or prepositional phrases). Mostnagguations, however, do
not involve parsed corpora; for this reason the Penn Trdedetris not specific enough
for many uses. The original Brown and C5 tagsets, for exangigéinguish preposi-
tions (IN) from subordinating conjunctions (CS), as in tbkdwing examples:

after/CS spending/VBG a/AT few/AP days/NNS at/IN the/AT Brown/NPd&e/NN
Hotel/NN

after/IN a/AT wedding/NN trip/NN to/IN Corpus/NP Christi/NP ./.

The original Brown and C5 tagsets also have two tags for thelwa in Brown
the infinitive use is tagged TO, while the prepositional usé\a

to/TO give/VB priority/NN to/IN teacher/NN pay/NN raises/NNS

Brown also has the tag NR for adverbial nouns lii@me west Monday andto-
morrow. Because the Treebank lacks this tag, it has a much lessstamtspolicy for
adverbial noundylonday Tuesdayand other days of the week are marked NfgR)or-
row, west andhomeare marked sometimes as NN, sometimes as RB. This makes the
Treebank tagset less useful for high-level NLP tasks likedétection of time phrases.

Nonetheless, the Treebank tagset has been the most widslyrusvaluating tag-
ging algorithms, and so many of the algorithms we descritaleave been evaluated
mainly on this tagset. Of course whether a tagset is usefd frarticular application
depends on how much information the application needs.

5.3 PRT-OF-SPEECHTAGGING

TAGGING

Part-of-speech tagging (or jusigging for short) is the process of assigning a part-
of-speech or other syntactic class marker to each word irrguso Because tags are
generally also applied to punctuation, tagging requirasttie punctuation marks (pe-
riod, comma, etc) be separated off of the words. Ttokenization of the sort de-
scribed in Ch. 3 is usually performed before, or as part @ftdigging process, separat-
ing commas, quotation marks, etc., from words, and disanaigg end-of-sentence
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Tag Description Example
( opening parenthesis G
) closing parenthesis )]
* negator not n't
, comma ,
- dash -
. sentence terminator 5?1
: colon :
ABL pre-qualifier quite, rather, such
ABN | pre-quantifier half, all,
ABX | pre-quantifier, double conjunction|| both
AP post-determiner many, next, several, last
AT article a the an no a every
BE/BED/BEDZ/BEG/BEM/BEN/BER/BEZ || be/were/was/being/am/been/are/is
CcC coordinating conjunction and or but either neither
CD cardinal numeral two, 2, 1962, million
CS subordinating conjunction that as after whether before
DO/DOD/DOZ || do, did, does
DT singular determiner, this, that
DTI singular or plural determiner some, any
DTS | plural determiner these those them
DTX determiner, double conjunction either, neither
EX existential there there
HV/HVD/HVG/HVN/HVZ || have, had, having, had, has
IN preposition of in for by to on at
JJ adjective
JIR comparative adjective better, greater, higher, larger, lower
JJS semantically superlative adj. main, top, principal, chief, key, foremost
JJT morphologically superlative adj. best, greatest, highest, largest, latest, worst
MD modal auxiliary would, will, can, could, may, must, should
NN (common) singular or mass noun || time, world, work, school, family, door
NN$ | possessive singular common nouf) father’s, year’s, city’s, earth’s
NNS | plural common noun years, people, things, children, problems
NNS$| possessive plural noun children’s, artist's parent’s years’
NP singular proper noun Kennedy, England, Rachel, Congress
NP$ | possessive singular proper noun || Plato’s Faulkner’s Viola’s
NPS | plural proper noun Americans Democrats Belgians Chinese $ox
NPS$| possessive plural proper noun Yankees’, Gershwins’ Earthmen’s
NR adverbial noun home, west, tomorrow, Friday, North,
NR$ | possessive adverbial noun today’s, yesterday’s, Sunday’s, South’s
NRS | plural adverbial noun Sundays Fridays
oD ordinal numeral second, 2nd, twenty-first, mid-twentieth
PN nominal pronoun one, something, nothing, anyone, none,
PN$ | possessive nominal pronoun one’s someone’s anyone’s
PP$ possessive personal pronoun his their her its my our your
PP$$ | second possessive personal pronpumine, his, ours, yours, theirs
PPL singular reflexive personal pronoun myself, herself
PPLS| plural reflexive pronoun ourselves, themselves
PPO | objective personal pronoun me, us, him
PPS 3rd. sg. nominative pronoun he, she, it
PPSS| other nominative pronoun I, we, they
QL qualifier very, too, most, quite, almost, extremely
QLP | post-qualifier enough, indeed
RB adverb
RBR | comparative adverb later, more, better, longer, further
RBT superlative adverb best, most, highest, nearest
RN nominal adverb here, then
Figure 5.7  First part of original 87-tag Brown corpus tagset (Franoid Kucera, 1982).
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Tag Description Example
RP adverb or particle across, off, up
TO infinitive marker to
UH interjection, exclamation well, oh, say, please, okay, uh, goodbye
VB verb, base form make, understand, try, determine, droq
VBD verb, past tense said, went, looked, brought, reached kept
VBG verb, present participle, gerund getting, writing, increasing
VBN verb, past participle made, given, found, called, required
VBZ verb, 3rd singular present says, follows, requires, transcends
WDT wh- determiner what, which
WP$ possessive wh- pronoun whose
WPO objective wh- pronoun whom, which, that
WPS nominative wh- pronoun who, which, that
WQL how
WRB wh- adverb how, when

Figure 5.8  Rest of 87-tag Brown corpus tagset (Francis and Kuter&2)198

(5.21)
(5.22)

AMBIGUOUS

RESOLVE

DISAMBIGUATION

punctuation (period, question mark, etc) from part-of-dvpunctuation (such as in
abbreviations likee.g.andetc)

The input to a tagging algorithm is a string of words and a digekctagset of the
kind described in the previous section. The outputis a sihgkt tag for each word. For
example, here are some sample sentences from the ATIS aafrgiadogues about air-
travel reservations that we will discuss in Ch. 12. For eaethawve shown a potential
tagged output using the Penn Treebank tagset defined in.Bigngage 9:

Book/VB that/DT flight/NN /.
Does/VBZ that/DT flight/NN serve/VB dinner/NN ?/.

The previous section discussed some tagging decisionsuteatifficult to make
for humans. Even in these simple examples, automaticafliglaisg a tag to each
word is not trivial. For exampleyookis ambiguous That is, it has more than one
possible usage and part-of-speech. It can be a verb (asakthat flightor to book
the suspegtor a noun (as ithand me that boglor a bookof matchel Similarly that
can be a determiner (as Does_thafflight serve dinnér, or a complementizer (as in
thought thatyour flight was earlie). The problem of POS-tagging is tesolvethese
ambiguities, choosing the proper tag for the context. Baspeech tagging is thus one
of the manydisambiguationtasks we will see in this book.

How hard is the tagging problem? The previous section desdrsome difficult
tagging decisions; how common is tag ambiguity? It turnstiat most words in En-
glish are unambiguous; i.e., they have only a single tag niarty of the most common
words of English are ambiguous (for exampsncan be an auxiliary (‘to be able’), a
noun (‘a metal container’), or a verb (‘to put something infsa metal container’)). In
fact, DeRose (1988) reports that while only 11.5% of Englsind types in the Brown
corpus are ambiguous, over 40% of Brown tokens are ambigubigs 5.10 shows
the number of word types with different levels of part-oesph ambiguity from the
Brown corpus. We show these computations from two versidiiseotagged Brown
corpus, the original tagging done at Brown by Francis andefa(1982), and the
Treebank-3 tagging done at the University of PennsylvaNiate that despite having
more coarse-grained tags, the 45-tag corpus unexpectasliybre ambiguity than the
87-tag corpus.
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o9

Tag Description Example
AJO adjective (unmarked) good old
AJC comparative adjective better, older
AJS superlative adjective best, oldest
ATO article the a, an
AVO adverb (unmarked) often, well, longer, furthest
AVP adverb particle up, off, out
AVQ wh-adverb when, how, why
cJC coordinating conjunction and, or
CJS subordinating conjunction although, when
CJT the conjunctiorthat
CRD cardinal numeral (excepinée 3, twenty-five 734
DPS possessive determiner your, their
DTO general determiner these, some
DTQ wh-determiner whose, which
EXO existentialthere
ITJ interjection or other isolate oh, yes, mhm
NNO noun (neutral for number) aircraft, data
NN1 singular noun pencil, goose
NN2 plural noun pencils, geese
NPO proper noun London, Michael, Mars
ORD ordinal sixth, 77th, last
PNI indefinite pronoun none, everything
PNP personal pronoun you, them, ours
PNQ wh-pronoun who, whoever
PNX reflexive pronoun itself, ourselves
POS possessivés or’
PRF the prepositiorof
PRP preposition (excepof) for, above, to
PUL punctuation — left bracket (or[
PUN punctuation — general mark -7
PUQ punctuation — quotation mark L
PUR punctuation — right bracket )or]
TOO infinitive markerto
UNC unclassified items (not English)
VBB base forms obe (except infinitive) am, are
VBD past form ofbe was, were
VBG -ing form of be being
VBI infinitive of be
VBN past participle obe been
VBZ -s form ofbe is,’s
VDB/D/G/IIN/Z form of do do, does, did, doing, to do, et
VHB/D/G/I/N/Z  form of have have, had, having, to have, e
VMO modal auxiliary verb can, could, will, Il
VVB base form of lexical verb (except infir}) take, live
VVD past tense form of lexical verb took, lived
VVG -ing form of lexical verb taking, living
VVI infinitive of lexical verb take, live
VVN past participle form of lex. verb taken, lived
VVvZ -s form of lexical verb takes, lives
XX0 the negativenotor n't
270 alphabetical symbol A, B,c,d

Figure 5.9 UCREL's C5 tagset for the British National Corpus (Garsitlale 1997).

Luckily, it turns out that many of the 40% ambiguous tokers easy to disam-
biguate. This is because the various tags associated withrchave not equally likely.
For examplea can be a determiner, or the leteefperhaps as part of an acronym or an
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RULE-BASED

STOCHASTIC
TAGGERS

HMM TAGGER

BRILL TAGGER

Original Treebank
87-tag corpus 45-tag corpus
Unambiguous (1 tag) 44,019 38,857
Ambiguous (2—7 tags) 5,490 8844
Detalils: 2tags 4,967 6,731
3 tags 411 1621
4 tags 91 357
5tags 17 90
6 tagsg 2 (well, bea) 32
7 tagsg 2 (still, down 6 (well, set round, open fit,
down)
8 tagyg 4 (s, half, back a)
9 tagsg 3 (that, morg in)
Figure 5.10  The amount of tag ambiguity for word types in the Brown cordtusm
the ICAME release of the original (87-tag) tagging and theebank-3 (45-tag) tagging.
Numbers are not strictly comparable because only the Trdetegmentss. An earlier
estimate of some of these numbers is reported in DeRose ) 1988

initial). But the determiner sense ais much more likely.

Most tagging algorithms fall into one of two classesie-basedtaggers andtochas-
tic taggerstaggers. Rule-based taggers generally involve a largédsgaof hand-
written disambiguation rules which specify, for examplettan ambiguous word is
a noun rather than a verb if it follows a determiner. The nextisn will describe a
sample rule-based tagg&mgCG, based on the Constraint Grammar architecture of
Karlsson et al. (1995b).

Stochastic taggers generally resolve tagging ambiguityegsing a training cor-
pus to compute the probability of a given word having a givamnih a given context.
Sec. 5.5 describes the Hidden Markov ModeHiM tagger.

Finally, Sec. 5.6 will describe an approach to tagging datletransformation-
based taggeror the Brill tagger, after Brill (1995). The Brill tagger shares features
of both tagging architectures. Like the rule-based tadgés,based on rules which
determine when an ambiguous word should have a given tag. thik stochastic tag-
gers, it has a machine-learning component: the rules aoereically induced from a
previously tagged training corpus.

5.4 RULE-BASED PART-OF-SPEECHTAGGING

The earliest algorithms for automatically assigning mdsspeech were based on a two-
stage architecture (Harris, 1962; Klein and Simmons, 1838gne and Rubin, 1971).
The first stage used a dictionary to assign each word a lisbteinpial parts-of-speech.
The second stage used large lists of hand-written disarabiaurules to winnow down
this list to a single part-of-speech for each word.

Modern rule-based approaches to part-of-speech taggwvey daimilar architec-
ture, although the dictionaries and the rule sets are véather than in the 1960’s.
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ENGCG

SUBCATEGORIZATION
COMPLEMENTATION

One of the most comprehensive rule-based approaches iotiwr@int Grammar ap-
proach (Karlsson et al., 1995a). In this section we desailb@gger based on this
approach, th&ngCG tagger (Moutilainen, 1995, 1999).

The EngCG ENGTWOL lexicon is based on the two-level morphpltescribed in
Ch. 3, and has about 56,000 entries for English word stemikklttg 1995), counting
a word with multiple parts-of-speech (e.g., nominal andaésenses dfit) as separate
entries, and not counting inflected and many derived fornechEentry is annotated
with a set of morphological and syntactic features. Figlshows some selected

words, together with a slightly simplified listing of theiedtures; these features are
used in rule writing.

Word POS Additional POS features
smaller ADJ COMPARATIVE
entire ADJ ABSOLUTE ATTRIBUTIVE
fast ADV SUPERLATIVE
that DET CENTRAL DEMONSTRATIVE SG
all DET PREDETERMINER SG/PL QUANTIFIER
dog’s N GENITIVE SG
furniture N NOMINATIVE SG NOINDEFDETERMINER
one-third NUM SG
she PRON PERSONAL FEMININE NOMINATIVE SG3
show \% PRESENT -SG3 VFIN
show N NOMINATIVE SG
shown PCP2 SVOO SVO sV
occurred PCP2 SV
occurred \Y PAST VFIN SV
Figure 5.11 Sample lexical entries from the ENGTWOL lexicon described/outi-
lainen (1995) and Heikkila (1995).

Most of the features in Fig. 5.11 are relatively self-explamy; SG for singular,
-SG3 for other than third-person-singular. ABSOLUTE menaos-comparative and
non-superlative for an adjective, NOMINATIVE just meansrgenitive, and PCP2
means past participle. PRE, CENTRAL, and POST are ordelatg for determiners
(predeterminersal) come before determinerthg): all the president's mén NOIN-
DEFDETERMINER means that words likarniture do not appear with the indefinite
determinera. SV, SVO, and SVOO specify theubcategorizationor complementa-
tion pattern for the verb. Subcategorization will be discussgdh. 12 and Ch. 16, but
briefly SV means the verb appears solely with a subjeeth(ing occurredt SVO with
a subject and an objedtghowed the filry) SVOO with a subject and two complements:
She showed her the ball

In the first stage of the tagger, each word is run through tloeléwel lexicon trans-
ducer and the entries for all possible parts-of-speechettgmed. For example the
phrasePavlov had shown that salivation . would return the following list (one line
per possible tag, with the correct tag shown in boldface):



Section 5.4. Rule-Based Part-of-Speech Tagging 17

Pavilov PAVLOV N NOM SG PROPER
had HAVE V PAST VFIN SVO
HAVE PCP2 SVO
shown SHOW PCP2 SVOO SVO SV
that ADV
PRON DEM SG
DET CENTRAL DEM SG
CSs
salivation N NOM SG

EngCG then applies a large set of constraints (as many ag 8gistraints in
the EngCG-2 system) to the input sentence to rule out incbpats-of-speech. The
boldfaced entries in the table above show the desired résuithich the simple past
tense tag (rather than the past participle tag) is applib@tband the complementizer
(CS) tag is applied téhat The constraints are used in a negative way, to eliminate
tags that are inconsistent with the context. For exampleconstraint eliminates all
readings ofthat except the ADV (adverbial intensifier) sense (this is thessdn the
sentencéd isn’t that odd). Here’s a simplified version of the constraint:

ADVERBIAL -THAT RULE
Given input: “that”
if
(+1 AJADVIQUANT); / = if next word is adj, adverb, or quantifier/
(+2 SENT-LIM); / = and following which is a sentence boundayy,
(NOT -1 SVOC/A);/ * and the previous word is not a verb liké
/ = ‘consider’ which allows adjs as object complements
then eliminate non-ADV tags
elseeliminate ADV tag

The first two clauses of this rule check to see thattthet directly precedes a
sentence-final adjective, adverb, or quantifier. In all oiteses the adverb reading
is eliminated. The last clause eliminates cases precededrbyg likeconsideror be-
lieve which can take a noun and an adjective; this is to avoid tagtiie following
instance othatas an adverb:

| consider that odd.

Another rule is used to express the constraint that the cermgahtizer sense tat
is most likely to be used if the previous word is a verb whicpents a complement
(like believe think, or show), and ifthatis followed by the beginning of a noun phrase,
and a finite verb.

This description oversimplifies the EngCG architecture; giistem also includes
probabilistic constraints, and also makes use of otheastiotinformation we haven't
discussed. The interested reader should consult Karlssdn(#995b) and Voutilainen
(1999).
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5.5 HMM PART-OF-SPEECHTAGGING

BAYESIAN
INFERENCE

(5.23)

(5.24)

(5.25)

The use of probabilities in tags is quite old; probabiliiie$agging were first used by
Stolz et al. (1965), a complete probabilistic tagger witteXhi decoding was sketched
by Bahl and Mercer (1976), and various stochastic taggers Wweilt in the 1980s
(Marshall, 1983; Garside, 1987; Church, 1988; DeRose, 1988s section describes
a particular stochastic tagging algorithm generally knasthe Hidden Markov Model
or HMM tagger. Hidden Markov Models themselves will be markyfintroduced and
definedin Ch. 6. In this section, we prefigure Ch. 6 a bit byrgj\dn initial introduction
to the Hidden Markov Model as applied to part-of-speechitagg

Use of a Hidden Markov Model to do part-of-speech-taggisgya will define it, is
a special case @ayesian inferencea paradigm that has been known since the work of
Bayes (1763). Bayesian inference or Bayesian classifitatas applied successfully
to language problems as early as the late 1950s, includex@@®R work of Bledsoe
in 1959, and the seminal work of Mosteller and Wallace (1984applying Bayesian
inference to determine the authorship of the Federalistrzap

In a classification task, we are given some observation¢(spanjob is to determine
which of a set of classes it belongs to. Part-of-speechbaggigenerally treated as a
sequence classification task. So here the observation guaisee of words (let’s say
a sentence), and it is our job to assign them a sequence effpspeech tags.

For example, say we are given a sentence like

Secretariat is expected tace tomorrow.

What is the best sequence of tags which corresponds to thiesee of words?
The Bayesian interpretation of this task starts by consideall possible sequences
of classes—in this case, all possible sequences of tags.ofQbts universe of tag
sequences, we want to choose the tag sequence which is mbsabpg given the ob-
servation sequence ofwordswj. In other words, we want, out of all sequencesof
tagst]' the single tag sequence such tRét'|wy) is highest. We use the hat notation
to mean “our estimate of the correct tag sequence”.

1 = argmaP(ty|wh)
1

The function argmaxf (x) means “thex such thatf (x) is maximized”. Equation
(5.24) thus means, out of all tag sequences of lemgtive want the particular tag
sequence] which maximizes the right-hand side. While (5.24) is gusead to give
us the optimal tag sequence, it is not clear how to make that@nuoperational; that
is, for a given tag sequent@ and word sequencef, we don’t know how to directly
computeP(t]|w}).

The intuition of Bayesian classification is to use Bayesénd transform (5.24)
into a set of other probabilities which turn out to be easiecdmpute. Bayes’ rule is
presented in (5.25); it gives us a way to break down any cmmdit probabilityP(x]y)
into three other probabilities:

PP

POY) = 5



Section 5.5.

HMM Part-of-Speech Tagging 19

(5.26)

(5.27)

PRIOR PROBABILITY
LIKELIHOOD

(5.28)

(5.29)

(5.30)

(5.31)

We can then substitute (5.25) into (5.24) to get (5.26):

PWiIt)P(t7)
f = argmax—= 121
PR

We can conveniently simplify 5.26 by dropping the denonon&(wy). Why is
that? Since we are choosing a tag sequence out of all tagrseeg)jeve will be comput-
ing W—lwnp‘zl)l';“—l) for each tag sequence. BRfw}) doesn’'t change for each tag sequence;
we are always asking about the most likely tag sequence éosdime observation,
which must have the same probabilRywy). Thus we can choose the tag sequence
which maximizes this simpler formula:

&1 = argmaP(wWi|t)P(t7)
A

To summarize, the most probable tag sequépggven some word string/] can
be computed by taking the product of two probabilities focleéag sequence, and
choosing the tag sequence for which this product is greafidst two terms are the
prior probability of the tag sequenci(t])), and thelikelihood of the word string
P(wilty):

likelihood prior
N ——
{7 = argmaxP(wWj|t]) P(t7)
)
Unfortunately, (5.28) is still too hard to compute directyMM taggers therefore
make two simplifying assumptions. The first assumption & the probability of a

word appearing is dependent only on its own part-of-spesghthat it is independent
of other words around it, and of the other tags around it:

PR =~ []Powi)

The second assumption is that the probability of a tag appeer dependent only
on the previous tag, thHegram assumption we saw in Ch. 4:

Pt)) ~ |j P(tilti—1)

Plugging the simplifying assumptions (5.29) and (5.30) i(8.28) results in the
following equation by which a bigram tagger estimates thetpmbable tag sequence:

n
{7 = argmaP(t]|w}) ~ argmaxrl P(wilti)P(ti[ti—1)
il L

i
Equation (5.31) contains two kinds of probabilities, taapsition probabilities and
word likelihoods. Let’s take a moment to see what these fitibas represent. The
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(5.32)

(5.33)

(5.34)

(5.35)

tag transition probabilitie®(t;ti_1), represent the probability of a tag given the previ-
ous tag. For example, determiners are very likely to preedgictives and nouns, as in
sequences likehat/DT flight/NNandthe/DT yellow/JJ hat/NNThus we would expect
the probabilitied®(NN|DT) andP(JJDT) to be high. But in English, adjectives don't
tend to precede determiners, so the probati{tpT|JJ) ought to be low.

We can compute the maximum likelihood estimate of a tag itiansprobability
P(NN|DT) by taking a corpus in which parts-of-speech are labeled andting, out
of the times we see DT, how many of those times we see NN a#ddih That is, we
compute the following ratio of counts:

C(ti—1,t)
C(ti—1)

Let's choose a specific corpus to examine. For the examplisgsrchapter we'll
use the Brown corpus, the 1 million word corpus of Americaglish described earlier.
The Brown corpus has been tagged twice, once in the 1960i¢at87-tag tagset, and
again in the 1990's with the 45-tag Treebank tagset. Thisamékiseful for comparing
tagsets, and is also widely available.

In the 45-tag Treebank Brown corpus, the tag DT occurs 1¥gjates. Of these,
DT is followed by NN 56,509 times (if we ignore the few casesaofbiguous tags).
Thus the MLE estimate of the transition probability is cédted as follows:

P(ti|ti,l) =

C(DT,NN) 56,509
C(DT) 116454

The probability of getting a common noun after a determirid, is indeed quite
high, as we suspected.

The word likelihood probabilitieR(wit; ), represent the probability, given that we
see a given tag, that it will be associated with a given woatt.example if we were to
see the tag VBZ (third person singular present verb) andsghesverb that is likely to
have that tag, we might likely guess the véspsince the verlio beis so common in
English.

We can compute the MLE estimate of a word likelihood probgtike P(is|VBZ)
again by counting, out of the times we see VBZ in a corpus, hamynof those times
the VBZ is labeling the words. That is, we compute the following ratio of counts:

P(NN|DT) = 49

C(ti, W)
C(ti)
In Treebank Brown corpus, the tag VBZ occurs 21,627 timed,\d4BZ is the tag
foris 10,073 times. Thus:

P(Wi|ti) =

C(vBzis) 10,073
C(VBZ) 21,627
For those readers who are new to Bayesian modeling notenikdikielihood term
is not asking “which is the most likely tag for the woigl. That is, the term is not
P(VBZ]is). Instead we are computir(is|VBZ). The probability, slightly counterin-
tuitively, answers the question “If we were expecting adhgerson singular verb, how
likely is it that this verb would bés?”.

P(isVBZ) = 47




Section 5.5.

HMM Part-of-Speech Tagging 21

(5.36)
(5.37)

We have now defined HMM tagging as a task of choosing a tageseguwith the
maximum probability, derived the equations by which we wdlinpute this probability,
and shown how to compute the component probabilities. linviacave simplified the
presentation of the probabilities in many ways; in latetises we will return to these
equations and introduce the deleted interpolation algarfor smoothing these counts,
the trigram model of tag history, and a model for unknown vgord

But before turning to these augmentations, we need to int®the decoding algo-
rithm by which these probabilities are combined to choosartbst likely tag sequence.

5.5.1 Computing the most-likely tag sequence: A motivatingex-
ample

The previous section showed that the HMM tagging algorithhooses as the most
likely tag sequence the one that maximizes the product oféwas; the probability of
the sequence of tags, and the probability of each tag gémgeatvord. In this section
we ground these equations in a specific example, showingdartecular sentence how
the correct tag sequence achieves a higher probabilitydharof the many possible
wrong sequences.

We will focus on resolving the part-of-speech ambiguity feé tvordrace, which
can be anoun or verb in English, as we show in two examplesfiraddiiom the Brown
and Switchboard corpus. For this example, we will use th&§Brown corpus tagset,
because it has a specific tag foy TO, used only wheto is an infinitive; prepositional
uses oto are tagged as IN. This will come in handy in our examiple.

In (5.36)raceis a verb (VB) while in (5.37Jaceis a common noun (NN):

Secretariat/NNP is/BEZ expected/VBN to/Téce/\VB tomorrow/NR

People/NNS continue/VB to/TO inquire/VB the/AT reason/fiWIN the/AT
race/NN for/IN outer/JJ space/NN

Let's look at howracecan be correctly tagged as a VB instead of an NN in (5.36).
HMM part-of-speech taggers resolve this ambiguity glopedther than locally, pick-
ing the best tag sequence for the whole sentence. There asehypothetically pos-
sible tag sequences for (5.36), since there are other aitibgyin the sentence (for
exampleexpecteaan be an adjective (JJ), a past tense/preterite (VBD) ostappatici-
ple (VBN)). But let’s just consider two of the potential semees, shown in Fig. 5.12.
Note that these sequences differ only in one place; wheligetaly chosen faraceis
VB or NN.

Almost all the probabilities in these two sequences aretidaln in Fig. 5.12 we
have highlighted in boldface the three probabilities thiffed Let’'s consider two
of these, corresponding ®(ti|ti_1) and P(wilti). The probabilityP(ti|ti_1) in Fig-
ure 5.12aiP(VB|TO), while in Figure 5.12b the transition probabilityP§NN|TO).

The tag transition probabilitifd(NN|TO) andP(VB|TO) give us the answer to the
question “How likely are we to expect a verb (noun) given thevipus tag?” As we

1 The 45-tag Treebank-3 tagset does make this distinctioharStvitchboard corpus but not, alas, in the
Brown corpus. Recall that in the 45-tag tagset time advekesdmorroware tagged as NN; in the 87-tag
tagset they appear as NR.
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sessps

Secretariat is expected to race tomorrow
. 900000
Secretariat is expected to race tomorrow

Figure 5.12 Two of the possible sequences of tags corresponding to theet@eat
sentence, one of them corresponding to the correct sequengkichraceis a VB. Each
arc in these graphs would be associated with a probabilibye khat the two graphs differ

only in 3 arcs, hence in 3 probabilities.

saw in the previous section, the maximum likelihood esterfat these probabilities
can be derived from corpus counts.

Since the (87-tag Brown tagset) tag TO is used only for thaiinfe markerto, we
expect that only a very small number of nouns can follow théskar (as an exercise,
try to think of a sentence where a noun can follow the infigitimarker use ofo).
Sure enough, a look at the (87-tag) Brown corpus gives usoflening probabilities,
showing that verbs are about 500 times as likely as nounsciar @adter TO:

P(NN|TO) = .00047
P(VB|TO) = .83
Let's now turn toP(w;|t;), the lexical likelihood of the wordace given a part-of-

speech tag. For the two possible tags VB and NN, these camegp the probabilities
P(raceVB) andP(racéNN). Here are the lexical likelihoods from Brown:

P(raceNN) .00057
P(racdVB) = .00012

Finally, we need to represent the tag sequence probalalityé following tag (in this
case the tag NR faomorrow):

P(NR|VB) = .0027
P(NR|NN) = .0012

If we multiply the lexical likelihoods with the tag sequenombabilities, we see
that the probability of the sequence with the VB tag is higied the HMM tagger
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HIDDEN MARKOV
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HMM

correctly tagsaceas a VB in Fig. 5.12 despite the fact that it is the less likelyse of
race

P(VB|TO)P(NR|VB)P(racdVB) = .00000027
P(NN|TO)P(NR|NN)P(racéNN) = .00000000032

5.5.2 Formalizing Hidden Markov Model taggers

Now that we have seen the equations and some examples ofrepttes most probable
tag sequence, we show a brief formalization of this problsmldidden Markov Model
(see Ch. 6 for the more complete formalization).

The HMM is an extension of the finite automata of Ch. 3. Redal ta finite
automaton is defined by a set of states, and a set of trarshigwveen states that are
taken based on the input observationsvéighted finite-state automatonis a simple
augmentation of the finite automaton in which each arc iscaatea with a probability,
indicating how likely that path is to be taken. The probapitin all the arcs leaving
a node must sum to 1. Markov chain is a special case of a weighted automaton
in which the input sequence uniquely determines which sttite automaton will go
through. Because they can't represent inherently ambigpmblems, a Markov chain
is only useful for assigning probabilities to unambiguoegiences.

While the Markov chain is appropriate for situations whee ean see the actual
conditioning events, it is not appropriate in part-of-ggetagging. This is because in
part-of-speech tagging, while we observe the words in tpetinwe donot observe
the part-of-speech tags. Thus we can’t condition any pridibab on, say, a previous
part-of-speech tag, because we cannot be completelyrtextactly which tag applied
to the previous word. Adidden Markov Model (HMM ) allows us to talk about both
observedevents (like words that we see in the input) dnddenevents (like part-of-
speech tags) that we think of as causal factors in our préstEbmodel.

An HMM is specified by the following components:

Q=0102...0n a set ofN states

A=ajiai2...an1...apn  atransition probability matrix A, eacha;j rep-
resenting the probability of moving from state
to statej, s.t. ZT:laij =1Vi

O=0107...07 a sequence of observations each one drawn
from a vocabulary¥ = vi,va,...,w.
B=nhi(o) A sequence ofobservation likelihoods; also

called emission probabilities each expressing
the probability of an observationy being gen-
erated from a state

do,9F a speciabtart state andend (final) statewhich
are not associated with observations, together
with transition probabilitieggiag,..ag, out of the
start state andirayr...anr into the end state.
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Figure 5.13 The Markov chain corresponding to the hidden states of thévHVhe A
transition probabilities are used to compute the prior phility.

An HMM thus has two kinds of probabilities; th& transition probabilities, and
the B observation likelihoods, corresponding respectivelyhmprior andlikelihood
probabilities that we saw in equation (5.31). Fig. 5.13silfates the prior probabilities
in an HMM part-of-speech tagger, showing 3 sample statesame of theA transition
probabilities between them. Fig. 5.14 shows another vieandfiIMM part-of-speech
tagger, focusing on the word likelihoods Each hidden state is associated with a
vector of likelihoods for each observation word.

B 7N

2
P(“aardvark” | TO)

P(‘race” | TO)
P(‘the” | TO)

P(to” | TO)

P(“zebra” | TO)

P(“aardvark” | VB) P(“aardvark” | NN)
P(“race” | VB) P(“race” | NN)
P(“the” | VB) P(“the” | NN)
P(“to” | VB) P(“to” | NN)
is(“zebra" |1 VB) if"(“zebra" 1 NN)

Figure 5.14 The B observation likelihoods for the HMM in the previous figureadh
state (except the non-emitting Start and End states) isi@sed with a vector of probabil-
ities, one likelihood for each possible observation word.
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DECODING
VITERBI

5.5.3 The Viterbi Algorithm for HMM Tagging

For any model, such as an HMM, that contains hidden variatilegask of determin-
ing which sequence of variables is the underlying sourcewfessequence of observa-
tions is called thelecodingtask. TheViterbi algorithm is perhaps the most common
decoding algorithm used for HMMs, whether for part-of-sgetgging or for speech
recognition. The ternViterbi is common in speech and language processing, but this
is really a standard application of the clasgimamic programming algorithm, and
looks a lot like theminimum edit distance algorithm of Ch. 3. The Viterbi algorithm
was first applied to speech and language processing in thiextaf speech recogni-
tion by Vintsyuk (1968), but has what Kruskal (1983) calls@emarkable history of
multiple independent discovery and publication’; see tligdtly section at the end of
Ch. 6 for more details.

The slightly simplified version of the Viterbi algorithm thae will present takes
as input a single HMM and a set of observed wadds (010203...07) and returns the
most probable state/tag sequeXe (010203 ... qr), together with its probability.

Let the HMM be defined by the two tables in Fig. 5.15 and Fig65.Eig. 5.15
expresses tha;; probabilities, theransition probabilities between hidden states (i.e.
part-of-speech tags). Fig. 5.16 expressedif®) probabilities, theobservatiorlike-
lihoods of words given tags.

VB TO NN PPSS
<s> .019 .0043 .041 .067
VB .0038 .035 .047 .0070
TO .83 0 .00047 0
NN .0040 .016 .087 .0045
PPSS .23 .00079 .0012 .00014

Figure 5.15  Tag transition probabilities (thearray, p(ti|ti_1)) computed from the 87-
tag Brown corpus without smoothing. The rows are labeleth Wie conditioning event;
thusP(PPS$VB) is .0070. The symboks> is the start-of-sentence symbol.

| want to race
VB 0 .0093 0 .00012
TO 0 0 .99 0
NN 0 .000054 0 .00057
PPSS .37 0 0 0

Figure 5.16  Observation likelihoods (thé array) computed from the 87-tag Brown

corpus without smoothing.

Fig. 5.17 shows pseudocode for the Viterbi algorithm. Thendi algorithm sets
up a probability matrix, with one column for each observati@and one row for each
state in the state graph. Each column thus has a cell for datdqsin the single
combined automaton for the four words.
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(5.38)

function VITERBI(observation®f len T,state-graptof len N) returns best-path

create a path probability matrisiterbi[N+2,T]
for each statsfrom 1to Ndo ;initialization step
viterbi[s,1]«—ag s * bs(01)
backpointefs,1]< 0
for each time stepfrom 2to T do ;recursion step
for each statsfrom 1to N do

viterbi[s,t]Hrg’\éx viterbi[g,t — 1] * ags * bs(0t)
-1 ’

backpointe[s,t]garg'lynax viterbi[s,t — 1] x ag g
g=1

o N —
viterbi[gr, T] « malx viterbi[s, T] * asge ; termination step
o

backpointefgr,T] arg’?lnax viterbi[s, T] * agg: ; termination step

s=1
return the backtrace path by following backpointers to states bactime from
backpointefgr, T]

Figure 5.17  Viterbi algorithm for finding optimal sequence of tags. Givan observa-
tion sequence and an HMR = (A, B), the algorithm returns the state-path through the
HMM which assigns maximum likelihood to the observationusatce. Note that states O
andgg are non-emitting.

The algorithm first createld or four state columns. The first column corresponds
to the observation of the first woidthe second to the second wasént the third to
the third wordto, and the fourth to the fourth womdce We begin in the first column
by setting the viterbi value in each cell to the product ofttia@sition probability (into
it from the state state) and the observation probabilitytifef first word); the reader
should find this in Fig. 5.18.

Then we move on, column by column; for every state in colummelcompute the
probability of moving into each state in column 2, and so aor. éach state; at time
t, the valueviterbi[s,t] is computed by taking the maximum over the extensions of all
the paths that lead to the current cell, following the folilogrequation:

w(i) = maxe-a(i) ay bj o)

The three factors that are multiplied in Eq. 5.38 for extegdhe previous paths to
compute the Viterbi probability at tinteare:

vi—1(i) theprevious Viterbi path probability from the previous time step
aij thetransition probability from previous state; to current state;

bj(o) thestate observation likelihoodof the observation symba given
the current stat¢
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Figure 5.18 The entries in the individual state columns for the Vitedgoaithm. Each cell keeps the probabi
ity of the best path so far and a pointer to the previous cefigithat path. We have only filled out columns 0 and
1 and one cell of column 2; the rest is left as an exercise ®ré¢ader. After the cells are filled in, backtracjng
from theendstate, we should be able to reconstruct the correct stateseg PPSS VB TO VB.

In Fig. 5.18, each cell of the trellis in the column for the @adris computed by
multiplying the previous probability at the start state0]1the transition probability
from the start state to the tag for that cell, and the obsenvdikelihood of the word
| given the tag for that cell. As it turns out, three of the calls zero (since the word
| can be neither NN, TO nor VB). Next, each cell in twantcolumn gets updated
with the maximum probability path from the previous columite have shown only
the value for the VB cell. That cell gets the max of four valuags it happens in this
case, three of them are zero (since there were zero values previous column). The
remaining value is multiplied by the relevant transitiomlpability, and the (trivial)
max is taken. In this case the final value, .000051, comes fhenPPSS state at the
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(5.39)

(5.40)

(5.41)

(5.42)

previous column.
The reader should fill in the rest of the trellis in Fig. 5.18ddacktrace to recon-
struct the correct state sequence PPSS VB TO VB.

5.5.4 Extending the HMM algorithm to trigrams

We mentioned earlier that HMM taggers in actual use have aoeuof sophistications
not present in the simplified tagger as we have described farsoOne important
missing feature has to do with the tag context. In the taggsciibed above, we
assume that the probability of a tag appearing is depenaénba the previous tag:

P(t]) =~ IE! P(tifti—1)

Most modern HMM taggers actually use a little more of thedrigtletting the
probability of a tag depend on the two previous tags:

Pt) ~ |j P(tifti—1,ti—2)

In addition to increasing the window before a tagging decisistate-of-the-art
HMM taggers like Brants (2000) let the tagger know the lamatof the end of the
sentence by adding dependence on an end-of-sequence fivatket. This gives the
following equation for part of speech tagging:

n
{7 = argmaP(tf|w}) ~ argmax[rlP(wi Pt |til,ti2)1 P(tns1/tn)

n n |
t t i

In tagging any sentence with (5.41), three of the tags ustittinontext will fall off
the edge of the sentence, and hence will not match regulatsvdihese tags, 1, to,
andtp 1, can all be set to be a single special ‘sentence boundaryiéch is added to
the tagset. This requires that sentences passed to the teygesentence boundaries
demarcated, as discussed in Ch. 3.

There is one large problem with (5.41); data sparsity. Anyigpalar sequence of
tagsti_2,ti_1,t that occurs in the test set may simply never have occurrdetitraining
set. That means we cannot compute the tag trigram prohyajoisit by the maximum
likelihood estimate from counts, following Equation (5)42

Cti—a,ti—1,ti) .
C(ti—2,ti—1)

Why not? Because many of these counts will be zero in anyitigiset, and we will
incorrectly predict that a given tag sequence will neveuocg/hat we need is a way
to estimateP(ti|ti_1,ti_2) even if the sequende »,t_1,t never occurs in the training
data.

P(tilti—1,ti—2) =
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The standard approach to solve this problem is to estimatpritbability by com-
bining more robust, but weaker estimators. For examplegif/@never seen the tag
sequence PRP VB TO, so we can’t compB{& O|PRP,VB) from this frequency, we
still could rely on the bigram probabiliti?(TO|VB), or even the unigram probabil-
ity P(TO). The maximum likelihood estimation of each of thesebatilities can be
computed from a corpus via the following counts:
. 5 C(ti—2,ti—1,t)
5.43 T Ptilt_1.t_o) = ——= =21
(5.43) rigrams P(tifti—1,ti—2) Ch ot 1)
. 5o Cltiigt)
(5.44) Bigrams  P(tjfti_1) = Ct o)
(5.45) Unigrams P(t) = %
How should these three estimators be combined in order imast the trigram
probability P(titi_1,ti_2)? The simplest method of combination is linear interpotatio
In linear interpolation, we estimate the probabiRt;|ti_1ti_2) by a weighted sum of
the unigram, bigram, and trigram probabilities:
(5.46) P(tilti_1ti—2) = A1P(tifti_1ti_2) + AP (tifti_1) + AsP(t)

DELETED
INTERPOLATION

We require\1 + A2+ Az = 1, insuring that the resulting P is a probability distribu
tion. How should thesgs be set? One good waydeleted interpolation, developed
by Jelinek and Mercer (1980). In deleted interpolation, wecsssively delete each
trigram from the training corpus, and choose Aseso as to maximize the likelihood
of the rest of the corpus. The idea of the deletion is to sehthim such a way as to
generalize to unseen data and not overfit the training cofigs5.19 gives the Brants
(2000) version of the deleted interpolation algorithm fy trigrams.

Brants (2000) achieves an accuracy of 96.7% on the Penndmketith a trigram
HMM tagger. Weischedel et al. (1993) and DeRose (1988) heeraported accu-
racies of above 96% for HMM tagging. (Thede and Harper, 199y a number of
augmentations of the trigram HMM model, including the idéaonditioning word
likelihoods on neighboring words and tags.

The HMM taggers we have seen so far are trained on hand-tatgged Kupiec
(1992), Cutting et al. (1992), and others show that it is glsssible to train an HMM
tagger on unlabeled data, using the EM algorithm that weimtiibduce in Ch. 6. These
taggers still start with a dictionary which lists which tagsn be assigned to which
words; the EM algorithm then learns the word likelihood ftioe for each tag, and
the tag transition probabilities. An experiment by Mer@(d994), however, indicates
that with even a small amount of training data, a tagger é&ion hand-tagged data
worked better than one trained via EM. Thus the EM-traineatépHMM” tagger is
probably best suited to cases where no training data isadlejl for example when
tagging languages for which there is no previously handedgiata.
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function DELETED-INTERPOLATIONCOrpuUg returns Aq,Ao,A3

A0
A0
A3<—0
foreach trigramty, tp, t3 with f(t1,tp,t3) >0
dependingon the maximum of the following three values
case%ﬁl’ll: incrementAz by C(t,t,t3)

casecété’zt;:l: increment\, by C(ty,tp,13)

case%: increment\1 by C(ts,tp,t3)

end
end
normalizeh1,A2, A3
return Aq,A2,A3

Figure 5.19 The deleted interpolation algorithm for setting the wesgfor combining
unigram, bigram, and trigram tag probabilities. If the daimmator is O for any case, we
define the result of that case to be 0. N is the total numberkefit® in the corpus. After
Brants (2000).

5.6 TRANSFORMATION-BASED TAGGING

Transformation-Based Tagging, sometimes called Brilgbag, is an instance of the
TRARSFORMATION.  Transformation-Based Learning (TBL) approach to machine learning (Brill, 1995),
and draws inspiration from both the rule-based and stocht@sgigers. Like the rule-
based taggers, TBL is based on rules that specify what tamddsie assigned to
what words. But like the stochastic taggers, TBL is a mache&aening technique,
in which rules are automatically induced from the data. Lskene but not all of the
HMM taggers, TBL is a supervised learning technique; it asssia pre-tagged training
corpus. _

Samuel et al. (1998) offer a useful analogy for understapttie TBL paraigm,
which they credit to Terry Harvey. Imagine an artist paigtipicture of a white house
with green trim against a blue sky. Suppose most of the motvas sky, and hence
most of the picture was blue. The artist might begin by usingry broad brush and
painting the entire canvas blue. Next she might switch toraesehat smaller white
brush, and paint the entire house white. She would just ¢oltre whole house, not
worrying about the brown roof, or the blue windows or the grgables. Next she
takes a smaller brown brush and colors over the roof. Nowadkestup the blue paint
on a small brush and paints in the blue windows on the housallffishe takes a very
fine green brush and does the trim on the gables.

The painter starts with a broad brush that covers a lot of #mvas but colors a
lot of areas that will have to be repainted. The next layeorless of the canvas,
but also makes less “mistakes”. Each new layer uses a finshbhat corrects less of
the picture, but makes fewer mistakes. TBL uses somewhaidime method as this
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(5.47)

(5.48)

(5.49)

TEMPLATES

painter. The TBL algorithm has a set of tagging rules. A cerisuirst tagged using
the broadest rule, that is, the one that applies to the masiscarhen a slightly more
specific rule is chosen, which changes some of the origigal tdext an even narrower
rule, which changes a smaller number of tags (some of whigdhirbe previously

changed tags).

5.6.1 How TBL Rules Are Applied

Let’s look at one of the rules used by Brill's (1995) taggeef@e the rules apply, the
tagger labels every word with its most-likely tag. We gesthenost-likely tags from a
tagged corpus. For example, in the Brown corpaseis most likely to be a noun:

P(NNjrace = .98
P(VB|racg = .02

This means that the two examplesratethat we saw above will both be coded as
NN. In the first case, this is a mistake, as NN is the incoriagt t

is/VBZ expected/VBN to/TO racBN tomorrow/NN
In the second case thiaceis correctly tagged as an NN:
the/DT racelNN for/IN outer/JJ space/NN

After selecting the most-likely tag, Brill's tagger apiés transformation rules.
As it happens, Brill's tagger learned a rule that appliescdyao this mistagging of
race

ChangeNN to VB when the previous tag iEO

This rule would changeace/NNto race/VBin exactly the following situation, since
it is preceded byo/TCO.

expected/VBN to/TO race/NN- expected/VBN to/TO race/VB

5.6.2 How TBL Rules Are Learned

Brill's TBL algorithm has three major stages. It first labelgery word with its most-
likely tag. It then examines every possible transformatimd selects the one that
results in the most improved tagging. Finally, it then rgstéhe data according to this
rule. The last two stages are repeated until some stoppitegion is reached, such as
insufficient improvement over the previous pass. Note tzafestwo requires that TBL
knows the correct tag of each word; that is, TBL is a supedvisarning algorithm.

The output of the TBL process is an ordered list of transfdiona; these then
constitute a “tagging procedure” that can be applied to aecayus. In principle the
set of possible transformations is infinite, since we conldgine transformations such
as “transform NN to VB if the previous word was “IBM” and the wb“the” occurs
between 17 and 158 words before that”. But TBL needs to cengdery possible
transformation, in order to pick the best one on each passigfirthe algorithm. Thus
the algorithm needs a way to limit the set of transformatidrtss is done by designing
a small set ofemplates(abstracted transformations). Every allowable transéiiom
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is an instantiation of one of the templates. Brill's set ahfdates is listed in Fig. 5.20.
Fig. 5.21 gives the details of this algorithm for learningsformations.

The preceding (following) word is tagged
The word two before (after) is tagged
One of the two preceding (following) words is tagged
One of the three preceding (following) words is tagged
The preceding word is taggedand the following word is tagged.
The preceding (following) word is taggedand the word
two before (after) is tagged.

Figure 5.20  Brill's (1995) templates. Each begins witB@hange taga to taghb when:
...". The variables, b, z, andw range over parts-of-speech.

At the heart of Fig. 5.21 are the two function€ GBEST_.TRANSFORMATION
and GET_BEST.INSTANCE. GET_BEST.TRANSFORMATION is called with a list of
potential templates; for each template, it callETBESTINSTANCE. GET_BEST.-
INSTANCE iteratively tests every possible instantiation of eachpiate by filling in
specific values for the tag variablasb, z, andw.

In practice, there are a number of ways to make the algoritturerafficient. For
example, templates and instantiated transformations eaudggested in a data-driven
manner; a transformation-instance might only be suggéfstedould improve the tag-
ging of some specific word. The search can also be made marieefiby pre-indexing
the words in the training corpus by potential transformatiRoche and Schabes (1997)
show how the tagger can also be speeded up by converting @aadhto a finite-state
transducer and composing all the transducers.

Fig. 5.22 shows a few of the rules learned by Brill’s origitejger.

5.7 BEVALUATION AND ERRORANALYSIS

DEVELOPMENT TEST
SET

DEVTEST

The probabilities in a statistical model like an HMM POS¢gagcome from the corpus
it is trained on. We saw in Se@? that in order to train statistical models like taggers
or N-grams, we need to set asiddraining set. The design of the training set or
training corpus needs to be carefully considered. If the training corpusasspecific

to the task or domain, the probabilities may be too narrowrastcdheneralize well to
tagging sentences in very different domains. But if thenirgy corpus is too general,
the probabilities may not do a sufficient job of reflecting tagk or domain.

For evaluatingN-grams models, we said in Se2? that we need to divide our
corpus into a distinct training set, test set, and a secasidsét called a development
test set. We train our tagger on the training set. Then we hesddvelopment test
set(also called alevtestset) to perhaps tune some parameters, and in general decide
what the best model is. Then once we come up with what we tisittka best model,
we run it on the (hitherto unseen) test set to see its perfocmaWe might use 80%
of our data for training, and save 10% each for devtest arid Why do we need a
development test set distinct from the final test set? Becdwge used the final test
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function TBL(corpug returns transforms-queue

INTIALIZE -WITH-MOST-LIKELY -TAGS(COrpug

until end condition is metlo
templates— GENERATE-POTENTIAL-RELEVANT-TEMPLATES
best-transform— GET-BEST TRANSFORMcOrpustemplatey
APPLY-TRANSFORMbest-transformcorpug
ENQUEUHDbest-transform-rulgtransforms-queye

end

return (transforms-quede

function GET-BESTTRANSFORMcorpustemplatesreturns transform
for eachtemplatein templates
(instancescorg <+ GET-BEST-INSTANCHcorpustemplate
if (score> best-transform.scojehen best-transform— (instancescore
return (best-transform

function GET-BESTINSTANCHcoOrpus templateyeturns transform
for from-tag— from tag; to tag, do
for to-tag— from tag; to tag, do
for pos— from 1to corpus-sizelo
if (correct-tagpog ==to-tag&& current-tagpog == from-tag
num-good-transfornfsurrent-tagpos—1))++
elseif (correct-tagpog==from-tag&& current-tagpog==from-tag
num-bad-transforn{surrent-tagpos—1))++
end
best-Z— ARGMAX(num-good-transforngy - num-bad-transforn{s))
if (num-good-transforngbest-Z - num-bad-transforn{best-2
> best-instance.scoyghen
best.rule—“Change tag fromfrom-tagto to-tagif prev tag is best-Z
best.score- num-good-transfornfpest-7 - num-bad-transforn{best-2
return (bes)

procedure APPLY-TRANSFORM(transform corpug
for pos— from 1to corpus-sizelo
if (current-tagpog==best-rule-fron
& ( current-tagpos—1)==best-rule-prey)
current-tagpos < best-rule-to

Figure 5.21 The TBL algorithm for learning to tag. & _BEST_INSTANCEWould have
to change for transformation templates other th@hange tag from X to Y if previous tag
is Z". After Brill (1995).

set to compute performance for all our experiments durirrgleuelopment phase, we
would be tuning the various changes and parameters to thi©sefinal error rate on
the test set would then be optimistic: it would underestéthg true error rate.
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CROSSVALIDATION

10-FOLD
CROSSVALIDATION

BASELINE
CEILING

Change tags
From| To | Condition Example
NN VB Previous tag is TO to/TO race/NN— VB

VBP | VB One of the previous 3 tags is M
NN VB One of the previous 2 tags is M
VB NN One of the previous 2 tags is D]
VBD | VBN | One of the previous 3 tags is VB

might/MD vanish/VBP— VB
might/MD not reply/NN— VB

g~ WN P H*

N YU U

Figure 5.22  The first 20 nonlexicalized transformations from Brill (B)9

The problem with having a fixed training set, devset, anddesis that in order to
save lots of data for training, the test set might not be largrigh to be representative.
Thus a better approach would be to somehowalseur data both for training and
test. How is this possible? The idea is to esessvalidation In crossvalidation, we
randomly choose a training and test set division of our dedé) our tagger, and then
compute the error rate on the test set. Then we repeat wiffeaatit randomly selected
training set and test set. We do this sampling process 1G&tiamel then average these
10 runs to get an average error rate. This is call@dold crossvalidation

The only problem with cross-validation is that becausetaldata is used for test-
ing, we need the whole corpus to be blind; we can’t examinedditiye data to suggest
possible features, and in general see what's going on. Biirig at the corpus is of-
ten important for designing the system. For this reasondbremon to create a fixed
training set and test set, and then to do 10-fold crossuaidanside the training set,
but compute error rate the normal way in the test set.

Once we have a test set, taggers are evaluated by compaeinigtieling of the test
set with a human-labele@old Standard test set, based aaccuracy. the percentage
of all tags in the test set where the tagger and the Gold stdradmee. Most current
tagging algorithms have an accuracy of around 96—97% faulsitagsets like the Penn
Treebank set. These accuracies are for words and punctuéit@accuracy for words
only would be lower.

How good is 97%7? Since tagsets and tasks differ, the perfocenaf tags can be
compared against a lower-boubdselineand an upper-bountkiling. One way to set
a ceiling is to see how well humans do on the task. Marcus €1293), for example,
found that human annotators agreed on about 96—97% of thétdye Penn Treebank
version of the Brown corpus. This suggests that the Golddstahmay have a 3-4%
margin of error, and that it is meaningless to get 100% aogui@odeling the last
3% would just be modeling noise). Indeed Ratnaparkhi (18B6)ved that the tagging
ambiguities that caused problems for his tagger were gxtmtlones that humans had
labeled inconsistently in the training set. Two experirsdnt Voutilainen (1995, p.
174), however, found that when humans were allowed to déstags, they reached
consensus on 100% of the tags.

Human Ceiling: When using a human Gold Standard to evaluate a classification
algorithm, check the agreement rate of humans on the stdndar

The standardaseling suggested by Gale et al. (1992) (in the slightly different
context of word-sense disambiguation), is to chooseutligram most-likely tag for
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PAIRED TESTS

WILCOXON
SIGNED-RANK TEST
PAIRED T-TESTS
MAPSSWE

MCNEMAR TEST

each ambiguous word. The most-likely tag for each word candmputed from a
hand-tagged corpus (which may be the same as the trainipgséor the tagger being
evaluated).

Most Frequent Class BaselineAlways compare a classifier against a baseline
at least as good as the most frequent class baseline (agsiggih token to the
class it occurred in most often in the training set).

Tagging algorithms since Harris (1962) incorporate this fr@quency intuition.
Charniak et al. (1993) showed that this baseline algoritbinmesres an accuracy of 90—
91% on the 87-tag Brown tagset; Toutanova et al. (2003) stidkat a more complex
version, augmented with an unknown word model, achieve@98.on the 45-tag
Treebank tagset.

When comparing models it is important to use statisticaktéatroduced in any
statistics class or textbook for the social sciences) terdenhe if the difference be-
tween two models is significant. Cohen (1995) is a usefulregige which focuses
on statistical research methods for artificial intelligenDietterich (1998) focuses on
statistical tests for comparing classifiers. When statifiii comparing sequence mod-
els like part-of-speech taggers, it is important to paged tests Commonly used
paired tests for evaluating part-of-speech taggers imcthdWilcoxon signed-rank
test, paired t-tests versions of matched t-tests such as the Matched-Pair i8ante
Segment Word ErrodNAPSSWE) test originally applied to speech recognition word
error rate, and th®lcNemar test.

5.7.1 Error Analysis

In order to improve any model we need to understand whererit weong. Analyzing
the error in a classifier like a part-of-speech tagger is doae confusion matrix,

or contingency table A confusion matrix for arN-way classification task is aN-
by-N matrix where the cel(x,y) contains the number of times an item with correct
classificatiorx was classified by the modelgsFor example, the following table shows
a portion of the confusion matrix from the HMM tagging expeeints of Franz (1996).
The row labels indicate correct tags, column labels inditla¢ tagger’s hypothesized
tags, and each cell indicates percentage of the overalirtgggror. Thus 4.4% of
the total errors were caused by mistagging a VBD as a VBN. Comatrors are
boldfaced.

IN JJ NN NNP RB VBD VBN
IN - 2 e
JJ 2 - 3.3 2.1 1.7 2 2.7
NN 8.7 - 2
NNP 2 3.3 4.1 - 2
RB 2.2 2.0 5 -
VBD 3 5 - 4.4
VBN 2.8 2.6 -
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The confusion matrix above, and related error analysesanz-(1996), Kupiec
(1992), and Ratnaparkhi (1996), suggest that some majbigms facing current tag-
gers are:

1. NN versus NNP versus JJ:These are hard to distinguish prenominally. Dis-
tinguishing proper nouns is especially important for imfi@ation extraction and
machine translation.

2. RP versus RB versus IN:All of these can appear in sequences of satellites
immediately following the verb.

3. VBD versus VBN versus JJ:Distinguishing these is important for partial pars-
ing (participles are used to find passives), and for corrdahieling the edges of
noun-phrases.

Error analysis like this is a crucial part of any computaéidimguistic application. Er-
ror analysis can help find bugs, find problems in the trainetgdand, most important,
help in developing new kinds of knowledge or algorithms te umssolving problems.

5.8 ADVANCED ISSUES INPART-OF-SPEECHTAGGING

5.8.1 Practical Issues: Tag Indeterminacy and Tokenizatio

Tag indeterminacy arises when a word is ambiguous betwedtiptattags and it is
impossible or very difficult to disambiguate. In this caseme taggers allow the use
of multiple tags. This is the case in both the Penn Treebadkratie British National
Corpus. Common tag indeterminacies include adjectiveugepseterite versus past
participle (JJ/VBD/VBN), and adjective versus noun as preimal modifier (JJ/NN).
Given a corpus with these indeterminate tags, there are 8 teajeal with tag indeter-
minacy when training and scoring part-of-speech taggers:

1. Somehow replace the indeterminate tags with only one tag.

2. In testing, count a tagger as having correctly tagged @etérminate token if it
gives either of the correct tags. In training, somehow chaody one of the tags
for the word.

3. Treat the indeterminate tag as a single complex tag.

The second approach is perhaps the most sensible, althoosjiprevious published
results seem to have used the third approach. This thircbapprapplied to the Penn
Treebank Brown corpus, for example, results in a much laegset of 85 tags instead
of 45, but the additional 40 complex tags cover a total of dr#i§ word instances out
of the million word corpus.

Most tagging algorithms assume a process of tokenizatierbban applied to the
tags. Ch. 3 discussed the issue of tokenization of periadditinguishing sentence-
final periods from word-internal period in words lile¢c. An additional role for tok-
enization is in word splitting. The Penn Treebank and th&®riNational Corpus split
contractions and th's-genitive from their stems:

would/MD n't/RB
children/NNS 's/POS
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HAPAX LEGOMENA

Indeed, the special Treebank tag POS is used only for thelmeargs which must
be segmented off during tokenization.

Another tokenization issue concerns multi-part words. Theebank tagset as-
sumes that tokenization of words likéew Yorkis done at whitespace. The phrase
a New York City firmis tagged in Treebank notation as five separate woed®T
New/NNP York/NNP City/NNP firm/NNhe C5 tagset, by contrast, allow prepositions
like “in terms of to be treated as a single word by adding numbers to each ¢ag, a
in/l131 terms/1132 of/1133

5.8.2 Unknown Words

words people

never use —

could be

only |

know them
Ishikawa Takuboku 18851912

All the tagging algorithms we have discussed require a ahetiy that lists the
possible parts-of-speech of every word. But the largesiodiary will still not contain
every possible word, as we saw in Ch. 7. Proper names andyaascare created very
often, and even new common nouns and verbs enter the langtiagaurprising rate.
Therefore in order to build a complete tagger we cannot awsg a dictionary to give
us p(wilti). We need some method for guessing the tag of an unknown word.

The simplest possible unknown-word algorithm is to pretdrad each unknown
word is ambiguous among all possible tags, with equal pritibabThen the tagger
must rely solely on the contextual POS-trigrams to sugdeesptoper tag. A slightly
more complex algorithm is based on the idea that the prababiktribution of tags
over unknown words is very similar to the distribution of $agver words that oc-
curred only once in a training set, an idea that was suggéstdibth Baayen and
Sproat (1996) and Dermatas and Kokkinakis (1995). Thesdsitbat only occur once
are known a$hapax legomengasingularhapax legomenoi. For example, unknown
words andhapax legomenare similar in that they are both most likely to be nouns,
followed by verbs, but are very unlikely to be determinersnterjections. Thus the
likelihood P(wi|t;) for an unknown word is determined by the average of the Bigtri
tion over all singleton words in the training set. This idéaising “things we've seen
once” as an estimator for “things we've never seen” will graxseful in the Good-
Turing algorithm of Ch. 4.

Most unknown-word algorithms, however, make use of a muchenpowerful
source of information: the morphology of the words. For eglanwords that end
in -s are likely to be plural nouns (NNS), words ending witld tend to be past par-
ticiples (VBN), words ending witlabletend to be adjectives (JJ), and so on. Even if
we've never seen a word, we can use facts about its morploalofgirm to guess its
part-of-speech. Besides morphological knowledge, ortdyaigic information can be
very helpful. For example words starting with capital leftare likely to be proper
nouns (NP). The presence of a hyphenis also a useful feétywbenated words in the
Treebank version of Brown are most likely to be adjectivd}. (Dhis prevalence of JJs
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(5.50)

(5.51)

is caused by the labeling instructions for the Treebank¢hvbpecified that prenominal
modifiers should be labeled as JJ if they contained a hyphen.

How are these features combined and used in part-of-spagghris? One method
is to train separate probability estimators for each fegtassume independence, and
multiply the probabilities. Weischedel et al. (1993) bgilich a model, based on four
specific kinds of morphological and orthographic featurébey used 3 inflectional
endings {ed -s, -ing), 32 derivational endings (such 4asn, -al, -ive, and-ly), 4 values
of capitalization depending on whether a word is sentenitidi (+/- capitalization, +/-
initial) and whether the word was hyphenated. For each fegtioey trained maximum
likelihood estimates of the probability of the feature givgetag from a labeled training
set. They then combined the features to estimate the pidjatfian unknown word
by assuming independence and multiplying:

P(wi|ti) = p(unknown-wordt;) *« p(capitalt;) * p(endings/hyp}t)

Another HMM-based approach, due to Samuelsson (1993) aanat8¢2000), gen-
eralizes this use of morphology in a data-driven way. In #pgroach, rather than
pre-selecting certain suffixes by hand, all final letter seapes of all words are con-
sidered. They consider such suffixes of up to ten letters penimg for each suffix of
lengthi the probability of the tag given the suffix:

P(t|||n7|+1 In)

These probabilities are smoothed using successivelyeshand shorter suffixes.
Separate suffix tries are kept for capitalized and uncapé@ords.

In general, most unknown word models try to capture the featinknown words
are unlikely to be closed-class words like prepositionsir models this fact by only
computing suffix probabilities from the training set for wWisrwhose frequency in the
training set is< 10. In the HMM tagging model of Thede and Harper (1999), tact f
is modeled instead by only training on open-class words.

Note that (5.51) gives an estimatef;|w; ); since for the HMM tagging approach
we need the likelihoogh(w|t;), this can be derived from (5.51) using Bayesian inver-
sion (i.e. using Bayes rule and computation of the two pigts andP(ti|ln—it+1-..In)).

In addition to using capitalization information for unknoewvords, Brants (2000)
also uses capitalization information for tagging known égrby adding a capitaliza-
tion feature to each tag. Thus instead of compuR(tgti_1,t_2) as in (5.44), he actu-
ally computes the probabilit(ti, i |ti_1,Ci—1,t_2,Ci—2). This is equivalent to having
a capitalized and uncapitalized version of each tag, eésfigrdoubling the size of the
tagset.

A non-HMM based approach to unknown word detection was thBrid (1995)
using the TBL algorithm, where the allowable templates vaerfined orthographically
(the firstN letters of the words, the ladt letters of the word, etc.).

Most recent approaches to unknown word handling, howeeenpine these fea-
tures in a third way: by using maximum entropyigxEnt) models such as thdaxi-
mum Entropy Markov Model (MEMM ) first introduced by Ratnaparkhi (1996) and
McCallum et al. (2000), and which we will study in Ch. 6. Theximaum entropy ap-
proach is one a family of loglinear approaches to classifinah which many features
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are computed for the word to be tagged, and all the featueesanbined in a model
based on multinomial logistic regression. The unknown wamdlel in the tagger of
Toutanova et al. (2003) uses a feature set extended fronapatkhi (1996), in which
each feature represents a property of a word, includingifeatike:

word contains a number

word contains an upper-case letter

word contains a hyphen

word is all upper-case

word contains a particular prefix (from the set of all prefigéfength< 4)
word contains a particular suffix (from the set of all prefirésength< 4)
word is upper-case and has a digit and a dash Qik€-12

word is upper-case and followed within 3 word by Co., Incc, et

Toutanova et al. (2003) found this last feature, implenmgnt simple company
name detector, to be particularly useful. 3 words by a wda Go. or Inc. Note that
the Ratnaparkhi (1996) model ignored all features with ¢®less than 10.

Loglinear models have also been applied to Chinese taggiigéng et al. (2005).
Chinese words are very short (around 2.4 characters peowrkword compared with
7.7 for English), but Tseng et al. (2005) found that morphalal features nonetheless
gave a huge increase in tagging performance for unknownsvéiar example for each
characterin an unknown word and each POS tag, they addedry iigature indicating
whether that character ever occurred with that tag in arigiirg set word. There is
also an interesting distributional difference in unknoworess between Chinese and
English. While English unknown words tend to be proper noii$s of unknown
words in WSJ are NP), in Chinese the majority of unknown wamgscommon nouns
and verbs (61% in the Chinese TreeBank 5.0). These ratiosimikar to German,
and seem to be caused by the prevalence of compounding aphaotagical device in
Chinese and German.

5.8.3 Part-of-Speech Tagging for Other Languages

As the previous paragraph suggests, part-of-speech @gadégorithms have all been
applied to many other languages as well. In some cases, thedsawvork well without
large modifications; Brants (2000) showed the exact sanfermpeance for tagging on
the German NEGRA corpus (96.7%) as on the English Penn TingelBat a number
of augmentations and changes become necessary when deiifitndghly inflected or
agglutinative languages.

One problem with these languages is simply the large numbaroads, when
compared to English. Recall from Ch. 3 that agglutinativiglaages like Turkish (and
to some extent mixed agglutinative-inflectional languddesHungarian) are those in
which words contain long strings of morphemes, where eaalphsme has relatively
few surface forms, and so it is often possible to clearly Beartorphemes in the surface
text. For example Megyesi (1999) gives the following typeeample of a Hungarian
word meaning “of their hits”:

talalataiknak

talal  -at -a - -k -nak
hit/find nominalizerhis poss.pluttheir dat/gen
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“of their hits”

Similarly, the following list, excerpted from Hakkani-Tét al. (2002), shows a few
of the words producible in Turkish from the ramyu-, 'sleep’:

uyuyorum ‘Il am sleeping’ uyuyorsun ‘you are sleeping’

uyuduk  ‘we slept’ uyumadan ‘without sleeping’

uyuman  ‘your sleeping’ uyurken ‘while (somebody) is sleepi
uyutmak ‘to cause someone to sleep’ uyutturmak ‘to causeesomto cause another

person to sleep’

These productive word-formation processes result in a&laggabulary for these
languages. Oravecz and Dienes (2002), for example, shawa tpaarter-million word
corpus of English has about 19,000 different words (i.e. dagpes); the same size
corpus of Hungarian has almost 50,000 different words. Pprelem continues even
with much larger corpora; note in the table below on Turkismf Hakkani-Tur et al.
(2002) that the vocabulary size of Turkish is far bigger tiiaat of English and is
growing faster than English even at 10 million words.

Vocabulary Size
Turkish English
1M words |[106,547 33,398
10M words (417,775 97,734

The large vocabulary size seems to cause a significant degradn tagging per-
formance when the HMM algorithm is applied directly to agglative languages. For
example Oravecz and Dienes (2002) applied the exact same lddivare (called
‘TnT’) that Brants (2000) used to achieve 96.7% on both Eigind German, and
achieved only 92.88% on Hungarian. The performance on kiveovds (98.32%) was
comparable to English results; the problem was the perfocean unknown words:
67.07% on Hungarian, compared to around 84-85% for unknoardswvith a compa-
rable amount of English training data. Haji¢ (2000) notesgame problem in a wide
variety of other languages (including Czech, Slovene, fiiatg and Romanian); the
performance of these taggers is hugely improved by addirigtimdary which essen-
tially gives a better model of unknown words. In summary, diféiculty in tagging
highly inflected and agglutinative languages is taggingrdnown words.

A second, related issue with such languages is the vast @robimfiormation that
is coded in the morphology of the word. In English, lots obirmhation about syntactic
function of a word is represented by word order, or neighimpfunction words. In
highly inflectional languages, information such as the qaseninative, accusative,
genitive) or gender (masculine, feminine) is marked on tbeds themselves, and word
order plays less of a role in marking syntactic function.c8itagging is often used a
preprocessing step for other NLP algorithms such as paesimjormation extraction,
this morphological information is crucial to extract. Thigans that a part-of-speech
tagging output for Turkish or Czech needs to include infdiameabout the case and
gender of each word in order to be as useful as parts-of-Bpeiftout case or gender
are in English.

For this reason, tagsets for agglutinative and highly itife@l languages are usu-
ally much larger than the 50-100 tags we have seen for Endlegips in such enriched

Corpus Size
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tagsets are sequences of morphological tags rather thagle primitive tag. Assign-
ing tags from such a tagset to words means that we are joimlthng the problems of
part-of-speech tagging and morphological disambiguatidekkani-Tur et al. (2002)
give the following example of tags from Turkish, in which th@rd izin has three
possible morphological/part-of-speech tags (and meaiing

1. Yerdekiizin temizlenmesi gerek. iz Noun+A3sg+Pnon+Gen
The trace on the floor should be cleaned.

2. Uzerinde parmalzin kalmis iz +Noun+A3sg+P2sg+Nom
Your fingerprint is left on (it).

3. Igeri girmek icinizin alman gerekiyor. izin Noun+A3sg+Pnon+Nom
You need germissionto enter.

Using a morphological parse sequence Nauin+A3sg+Pnon+Gen as the part-
of-speech tag greatly increases the number of parts-a&esp®f course. We can see
this clearly in the morphologically tagged MULTEXT-Eastpora, in English, Czech,
Estonian, Hungarian, Romanian, and Slovene (Dimitrova. £1898; Erjavec, 2004).
Hajic (2000) gives the following tagset sizes for theseooa:

Language Tagset Size

English 139
Czech 970
Estonian 476
Hungarian 401
Romanian 486
Slovene 1033

With such large tagsets, it is generally necessary to perfoorphological analysis
on each word to generate the list of possible morphologagpsequences (i.e. the list
of possible part-of-speech tags) for the word. The role eftdgger is then to disam-
biguate among these tags. The morphological analysis caofe in various ways.
The Hakkani-Tur et al. (2002) model of Turkish morphol@j@nalysis is based on the
two-level morphology we introduced in Ch. 3. For Czech aredNMWULTEXT-East lan-
guages, Haji¢ (2000) and Hajic and Hladka (1998) use alfesgernal dictionary for
each language which compiles out all the possible formsdi @ard, and lists possi-
ble tags for each wordform. The morphological parse alsoially helps address the
problem of unknown words, since morphological parsers caegt unknown stems
and still segment the affixes properly.

Given such a morphological parse, various methods for theirtg itself can be
used. The Hakkani-Tur et al. (2002) model for Turkish uskkekov model of tag se-
guences. The model assigns a probability to sequencessdikagzi n+Noun+A3sg+Pnon+Nom
by computing tag transition probabilities from a trainirgy.Other models use similar
techniques to those for English. Hajic (2000) and Hajid &tladka (1998), for ex-
ample, use a log-linear exponential tagger for the MULTEE&St languages, Oravecz
and Dienes (2002) and Dzeroski et al. (2000) use the TnT Hiter (Brants, 2000),
and so on.
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5.8.4 Combining Taggers

The various part-of-speech tagging algorithms we haveritest can also be com-
bined. The most common approach to tagger combination isrtanultiple taggers
in parallel on the same sentence, and then combine theiupgjpher by voting or

by training another classifier to choose which tagger tat irua given context. Brill

and Wu (1998), for example, combined unigram, HMM, TBL, arakimum-entropy

taggers by voting via a higher-order classifier, and showsahall gain over the best
of the four classifiers. In general, this kind of combinati®only useful if the taggers
have complementary errors, and so research on combindteamlzegins by checking
to see if the errors are indeed different from different &xgg Another option is to
combine taggers in series. Haji€ et al. (2001) apply thisoopfor Czech, using the
rule-based approach to remove some of the impossible taghild®s for each word,

and then an HMM tagger to choose the best sequence from tlaniegtags.

5.9 ADVANCED: THE NoOIsSYy CHANNEL MODEL FORSPELLING

NOISY CHANNEL

The Bayesian inference model introduced in Sec. 5.5 foritaghgas another inter-
pretation: as an implementation of theisy channelmodel, a crucial tool in speech
recognition and machine translation.

In this section we introduce this noisy channel model andvdmaw to apply it to
the task of correcting spelling errors. The noisy channedlehds used in Microsoft
Word and in many search engines, and in general is the mostynided algorithm for
correcting any kind of single-word spelling error, inclaghon-word spelling errors
and forreal-word spelling errors.

Recall that non-word spelling errors are those which areEmgflish words (like
recievefor receive, and we cardetectthese by simply looking for any word not in a
dictionary. We saw in Se@?that candidate corrections for some spelling errors could
be found by looking for words that had a smediit distanceto the misspelled word.

The Bayesian models we have seen in this chapter, and the ciwsinel model,
will give us a better way to find these corrections. Furtheenwe’ll be able to use
the noisy channel model f@ontextual spell checking which is the task of correcting
real-word spelling errors like the following:

They are leaving in about fifteaninuetsto go to her house.
The study was conducted mairthg John Black.

Since these errors have real words, we can't find them by pmgithg words not in
the dictionary, and we can't correct them just using editagise alone. But note that
words around the candidate correctiomabout fifteen minutesake it a much more
probable word sequence than the origimehbout fifteen minuetsThe noisy channel
model will implement this idea vial-gram models.

The intuition of thenoisy channelmodel (see Fig. 5.23) is to treat the misspelled
word as if a correctly-spelled word had been ‘distorted’ binlg passed through a noisy
communication channel. This channel introduces “noisgheform of substitutions
or other changes to the letters which makes it hard to rezeghe “true” word. Our
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Figure 5.23 In the noisy channel model, we imagine that the surface foersee is
actually a ‘distorted’ form of an original word passed thgbua noisy channel. The def
coder passes each hypothesis through a model of this chemhgicks the word that best
matches the surface noisy word.

goal is then to build a model of the channel. Given this modelthen find the true
word by taking every word of the language, passing each waaligh our model of
the noisy channel, and seeing which one comes the closdst taisspelled word.

This noisy channel model, like the HMM tagging architectwe saw earlier, is a
special case dBayesian inference We see an observati@ (a misspelled word) and
our job is to find the worav which generated this misspelled word. Out of all possible
words in the vocabulary we want to find the worev such thaf(w|O) is highest, or:

W = argmaxP(w|O)
weV
As we saw for part-of-speech tagging, we will use Bayes rul@itn the problem
around (and note that, as for tagging, we can ignore the dieradon):

W= argmaxW = argmaxP(O|w) P(w)
weV P(O) weV

To summarize, the noisy channel model says that we have someinderlying
wordw, and we have a noisy channel which modifies the word into sarasilple mis-
spelled surface form. The probability of the noisy chanmeldpicing any particular
observation sequen®is modeled byP(O|w). The probability distribution over pos-
sible hidden words is modeled B®(w). The most probable word given that we've
seen some observed misspell@gan be computed by taking the product of the word
prior P(w) and the observation likelihoodl(OJw) and choosing the word for which
this product is greatest.

Let's apply the noisy channel approach to correcting nonehgpelling errors. This
approach was first suggested by Kernighan et al. (1990); fmegram,corr ect,
takes words rejected by the Ursypel | program, generates a list of potential correct
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(5.55)

words, ranks them according to Eq. (5.54), and picks thedsghanked one. We'll
apply the algorithm to the example misspelliagress The algorithm has two stages:
proposing candidate correctioradscoring the candidates

In order to propose candidate corrections Kernighan et akenthe reasonable
(Damerau, 1964) simplifying assumption that the correatwuaill differ from the mis-
spelling by a single insertion, deletion, substitutionfransposition. The list of can-
didate words is generated from the typo by applying any sitiginsformation which
results in a word in a large on-line dictionary. Applying adissible transformations to
acressyields the list of candidate words in Fig. 5.24.

Transformation
Correct] Error Position

Error Correction Letter Letter (Letter #) Type
acresy actress t - 2 deletion
acresy cress - a 0 insertion
acresg caress ca ac 0 transpositiot
acress access c r 2 substitution
acress across o] e 3 substitution
acresg acres - 2 5 insertion
acresg acres - 2 4 insertion

Figure 5.24  Candidate corrections for the misspelliagress together with the trans-

formations that would have produced the error (after Kdraiget al. (1990)). “-—" repre-

sents a null letter.

The second stage of the algorithm scores each correctiombgti®n 5.54. Let
represent the typo (the misspelled word), anccleange over the s of candidate
corrections. The most likely correction is then:

likelihood prior

—~ = =
¢=argmax P(t|lc) P(c)
ceC

The prior probability of each correctidp(c) is the language model probability
of the wordc in context; for in this section for pedagogical reasons Wwaéke the
simplifying assumption that this is the unigram probapil(c), but in practice in
spelling correction this is extended to trigram or 4-grambabilities. Let's use the
corpus of Kernighan et al. (1990), which is the 1988 AP neweswadrpus of 44 million
words. Since in this corpus the woetttressoccurs 1343 times out of 44 million,
the wordacres2879 times, and so on, the resulting unigram prior probi#sliare as
follows:

c freq(c) p(c)
actress 1343 .0000315

cress O .000000014
caress 4 .0000001
access 2280 .000058
across 8436 .00019
acres 2879 .000065
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CONFUSION MATRIX

(5.56)

How can we estimat®(t|c)? It is very difficult to model the actual channel per-
fectly (i.e. computing the exact probability that a wordIviné mistyped) because it
would require knowing who the typist was, whether they wesfé-handed or right-
handed, and many other factors. Luckily, it turns out we cainagpretty reasonable
estimate ofp(t|c) just by looking at simple local context factors, becausentost
important factors predicting an insertion, deletion, s@wsition are the identity of the
correct letter itself, how the letter was misspelled, aral gbrrounding context. For
example, the lettersn andn are often substituted for each other; this is partly a fact
about their identity (these two letters are pronouncedaitgiand they are nextto each
other on the keyboard), and partly a fact about context (mexthey are pronounced
similarly, they occur in similar contexts). Kernighan et(@990) used a simple model
of this sort. They estimated e.@(acres$acrosg just using the number of times that
the lettere was substituted for the letterin some large corpus of errors. This is repre-
sented by @onfusion matrix, a square 2826 matrix which represents the number of
times one letter was incorrectly used instead of anothaerekample, the cell labeled
[0, €] in a substitution confusion matrix would give the count afeis thae was substi-
tuted foro. The cell labeledt, § in an insertion confusion matrix would give the count
of times thatt was inserted aftes. A confusion matrix can be computed by coding
a collection of spelling errors with the correct spellingladhen counting the number
of times different errors occurred (Grudin, 1983). Kerragtet al. (1990) used four
confusion matrices, one for each type of single error:

e dellx,y| contains the number of times in the training set that theadtarsxy in
the correct word were typed as

e ins[x,y] contains the number of times in the training set that theattarx in the
correct word was typed ag.

e subjx,y] the number of times thatwas typed ay.
e trangx, y|] the number of times thady was typed agx.

Note that they chose to condition their insertion and defefpirobabilities on the
previous character; they could also have chosen to conditighe following character.
Using these matrices, they estimaf#t|c) as follows (wherey, is the pth character of
the wordc):

del[c cpl - )
p-1.Cp

counte, 1c, I deletion
iNSicp_1tp] ¢+ .
CoUNte, 4] * if insertion

Subtp’cp] H . .
countc,) ° if substitution

transcepcpi1l .
CoUNcpcp 1]’ if transposition

Fig. 5.25 shows the final probabilities for each of the po&rmorrections; the
unigram prior is multiplied by the likelihood (computed ngiEquation (5.56) and the
confusion matrices). The final column shows the “normalizextentage”.

This implementation of the Bayesian algorithm predaxtsesas the correct word
(at a total normalized percentage of 45%), aesttessas the second most likely word.

P(t|c) =
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REAL-WORD ERROR
DETECTION

CONTEXT-SENSITIVE
SPELL CORRECTION

E | freaqc)] p(c) | p(fo) | popc) [ % |
actresd] 1343 .0000315 000117 3.60x 10 ? 37%
cress 0 000000014 .00000144| 2.02x 10| 0%
caress| 4 .0000001 .00000164| 1.64x10° 18| 0%
access| 2280 .000058 000000209 1.21x 10| 0%
across| 8436 .00019 .0000093 1.77x10°° 18%
acres 2879 .000065 .0000321 2.09% 10°° 21%
acres 2879 .000065 .0000342 2.22%x10°° 23%

Figure 5.25 Computation of the ranking for each candidate correctionteNhat the
highest ranked word is neictressbutacres(the two lines at the bottom of the table), sinc
acrescan be generated in two ways. Tthel[], ing[], sulf], andtrang] confusion matrices
are given in full in Kernighan et al. (1990).

1%

Unfortunately, the algorithm was wrong here: The writerigention becomes clear
from the context. ..was called a “stellar and versatilacresswhose combination of
sass and glamour has defined hef. The surrounding words make it clear tlzatress
and notacreswas the intended word. This is the reason that in practicesgdrigram
(or larger) language models in the noisy channel modelerdttaan unigrams. Seeing
whether abigram model ofP(c) correctly solves this problem is left as Exercise 5.10
for the reader.

The algorithm as we have described it requires hand-arettita to train the
confusion matrices. An alternative approach used by Kaamget al. (1990) is to
compute the matrices by iteratively using this very spglimror correction algorithm
itself. The iterative algorithm first initializes the mates with equal values; thus any
character is equally likely to be deleted, equally likelyo® substituted for any other
character, etc. Next the spelling error correction alganiis run on a set of spelling
errors. Given the set of typos paired with their correctjdhs confusion matrices can
now be recomputed, the spelling algorithm run again, andnsoldis clever method
turns out to be an instance of the import&M algorithm (Dempster et al., 1977) that
we will discuss in Ch. 6.

5.9.1 Contextual Spelling Error Correction

As we mentioned above, the noisy channel approach can alapgied to detect and
correctreal-word spelling errors, errors that result in an actual word of English. This
can happen from typographical errors (insertion, deleti@nsposition) that acciden-
tally produce a real word (e.gherefor threg), or because the writer substituted the
wrong spelling of a homophone or near-homophone (dagsertfor desert or piece
for peacg. The task of correcting these errors is also caltedtext-sensitive spell
correction. A number of studies suggest that between of 25% and 40% dfrgpe
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errors are valid English words (Kukich, 1992); some of Kihkiseexamples include:

They are leaving in about fifteeninuetsto go to her house.

The desigran construction of the system will take more than a year.
Can theylavehim my messages?

The study was conducted mairthg John Black.

We can extend the noisy channel model to deal with real-wpedling errors by
generating a&andidate spelling sd€or every word in a sentence (Mays et al., 1991).
The candidate set includes the word itself, plus every Bhgliord that would be gen-
erated from the word by either typographical modificatidesiér insertion, deletion,
substitution), or from a homophone list. The algorithm ticbooses the spelling for
each word that gives the whole sentence the highest prayaBihat is, given a sen-
tenceW = {wg, W, ..., W,...,Wn}, wherewy has alternative spelling,, w/, etc., we
choose the spelling among these possible spellings thaimimes P(W), using the
N-gram grammar to compui(W).

More recent research has focused on improving the channeélgt|c), such
as by incorporating phonetic information, or allowing mewemplex errors (Brill and
Moore, 2000; Toutanova and Moore, 2002). The most impoitaptovement to the
language modd®(c) is to use very large contexts, for example by using the vegela
set of 5-grams publicly released by Google in 2006 (FranzBwaohts, 2006). See
Norvig (2007) for a nice explanation and Python implemeaatedf the noisy channel
model; the end of the chapter has further pointers.

5.10 SUMMARY

This chapter introduced the ideadrts-of-speechandpart-of-speech tagging The
main ideas:

e Languages generally have a relatively small setlobed classvords, which
are often highly frequent, generally actfasction words, and can be very am-
biguous in their part-of-speech tags. Open class wordsrgiyanclude various
kinds ofnouns verbs, adjectives There are a number of part-of-speech coding
schemes, based ¢agsetsof between 40 and 200 tags.

e Part-of-speech taggings the process of assigning a part-of-speech label to each
of a sequence of words. Rule-based taggers use hand-wtitesto distinguish
tag ambiguity. HMM taggers choose the tag sequence whichimizes the
product of word likelihood and tag sequence probabilitthé&imachine learning
models used for tagging include maximum entropy and otlgetiteear models,
decision trees, memory-based learning, and framsion-based learning.

e The probabilities in HMM taggers are trained on hand-latbélaining corpora,
combining differeniN-gram levels using deleted interpolation, and using sephis
ticated unknown word models.

e Given an HMM and an input string, the Viterbi algorithm is d¢e decode the
optimal tag sequence.
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e Taggers are evaluated by comparing their output from a é&¢$bhuman labels
for that test set. Error analysis can help pinpoint areasevhdagger doesn’t
perform well.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The earliest implemented part-of-speech assignmentitigpmay have been part of
the parser in Zellig Harris’s Transformations and Disceuksalysis Project (TDAP),
which was implemented between June 1958 and July 1959 atrilverdity of Penn-
sylvania (Harris, 1962). Previous natural language pingssystems had used dic-
tionaries with part-of-speech information for words, batvé not been described as
performing part-of-speech disambiguation. As part of dssing, TDAP did part-of-
speech disambiguation via 14 hand-written rules, whoseftipart-of-speech tag se-
quences prefigures all the modern algorithms, and which warén an order based
on the relative frequency of tags for a word. The parseréag@s reimplemented re-
cently and is described by Joshi and Hopely (1999) and Kaeti(1999), who note
that the parser was essentially implemented (in a very nmodey) as a cascade of
finite-state transducers.

Soon after the TDAP parser was the Computational GrammaeIC@&IGC) of
Klein and Simmons (1963). The CGC had three componentsi@olexa morpholog-
ical analyzer, and a context disambiguator. The small 286 lexicon included ex-
ceptional words that could not be accounted for in the simpephological analyzer,
including function words as well as irregular nouns, vedry] adjectives. The mor-
phological analyzer used inflectional and derivationdiise$ to assign part-of-speech
classes. A word was run through the lexicon and morpholbgitalyzer to produce a
candidate set of parts-of-speech. A set of 500 context mwézs then used to disam-
biguate this candidate set, by relying on surrounding ddaof unambiguous words.
For example, one rule said that between an ARTICLE and a VERBonly allowable
sequences were ADJ-NOUN, NOUN-ADVERB, or NOUN-NOUN. The C@lgo-
rithm reported 90% accuracy on applying a 30-tag tagsetti@es from the Scientific
American and a children’s encyclopedia.

TheTAGGIT tagger (Greene and Rubin, 1971) was based on the Klein and&is
(1963) system, using the same architecture but incredsinsjze of the dictionary and
the size of the tagset (to 87 tags). For example the followargple rule, which states
that a wordx is unlikely to be a plural noun (NNS) before a third persorgsiar verb
(VBZ):

XxVBZ — notNNS

TAGGIT was applied to the Brown corpus and, according to Franciskariera
(1982, p. 9), “resulted in the accurate tagging of 77% of thwpuas” (the remainder of
the Brown corpus was tagged by hand).

In the 1970s the Lancaster-Oslo/Bergen (LOB) corpus waspdethas a British
English equivalent of the Brown corpus. It was tagged with@_AWS tagger (Mar-
shall, 1983, 1987; Garside, 1987), a probabilistic alhamitvhich can be viewed as an
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approximation to the HMM tagging approach. The algorithradutag bigram prob-
abilities, but instead of storing the word-likelihood ofceaag, tags were marked ei-
ther asrare (P(tagword) < .01) infrequent(P(tagword) < .10), ornormally frequent
(P(tagword) > .10),

The probabilisticcARTs tagger of Church (1988) was very close to a full HMM
tagger. It extended the CLAWS idea to assign full lexicabyatailities to each word/tag
combination, and used Viterbi decoding to find a tag sequerngdee the CLAWS
tagger, however, it stored the probability of the tag givemword:

P(tagword) « P(tagpreviousn tagg
rather than using the probability of the word given the tagaa HMM tagger does:

P(word|tag) « P(tagpreviousn tags

Later taggers explicitly introduced the use of the Hiddemida Model, often with
the EM training algorithm (Kupiec, 1992; Merialdo, 1994; Mé&hedel et al., 1993),
including the use of variable-length Markov models (Sekignd Singer, 1994).

Most recent tagging algorithms, like the HMM and TBL approes we have dis-
cussed, are machine-learning classifiers which estimatddist tag-sequence for a
sentence given various features such as the current wdghbweing parts-of-speech
or words, and unknown word features such as orthographicargphological fea-
tures. Many kinds of classifiers have been used to combirse tfeatures, includ-
ing decision trees (Jelinek et al., 1994; Magerman, 1998ximum entropy models
(Ratnaparkhi, 1996), other log-linear models (Franz, }98&mory-based learning
(Daelemans et al., 1996), and networks of linear separé&NOW) (Roth and Ze-
lenko, 1998). Most machine learning models seem to acheegively similar per-
formance given similar features, roughly 96-97% on the bagd 45-tag tagset on the
Wall Street Journal corpus. As of the writing of this chaptee highest performing
published model on this WSJ Treebank task is a log-lineaygathat uses information
about neighboring words as well as tags, and a sophistieatkdown-word model,
achieving 97.24% accuracy (Toutanova et al., 2003). Mosh snodels are super-
vised, although there is beginning to be work on unsupedwisedels (Schiitze, 1995;
Brill, 1997; Clark, 2000; Banko and Moore, 2004; Goldwated &riffiths, 2007).

Readers interested in the history of parts-of-speech dramrisult a history of lin-
guistics such as Robins (1967) or Koerner and Asher (1998jicplarly the article
by Householder (1995) in the latter. Sampson (1987) andiGaes al. (1997) give a
detailed summary of the provenance and makeup of the Brodoter tagsets. More
information on part-of-speech tagging can be found in valeren (1999).

Algorithms for spelling error detection and correction @axisted since at least
Blair (1960). Most early algorithm were based on similakgys like the Soundex
algorithm discussed in the exercises on p&@gOdell and Russell, 1922; Knuth,
1973). Damerau (1964) gave a dictionary-based algorithmeifimr detection; most
error-detection algorithms since then have been basedctiorthries. Damerau also
gave a correction algorithm that worked for single error@shalgorithms since then
have relied on dynamic programming, beginning with WagmerEischer (1974). Ku-
kich (1992) is the definitive survey article on spelling erdetection and correction.
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Modern algorithms are based on statistical or machine iiegrmlgorithm, following
e.g., Kashyap and Oommen (1983) and Kernighan et al. (19R8¢ent approaches
to spelling include extensions to the noisy channel modeill(8nd Moore, 2000;
Toutanova and Moore, 2002) as well as many other machinaiteparchitectures
such as Bayesian classifiers, (Gale et al., 1993; Golding7;1&olding and Sch-
abes, 1996), decision lists (Yarowsky, 1994), transfoiomalbased learning (Mangu
and Brill, 1997) latent semantic analysis (Jones and Mat887) and Winnow (Gold-
ing and Roth, 1999). Hirst and Budanitsky (2005) exploreute of word relatedness;
see Ch. 20. Noisy channel spelling correction is used in abeurof commercial ap-
plications, including the Microsoft Word contextual speiiecker.

EXERCISES

5.1 Find one tagging error in each of the following sentencesdtatagged with the
Penn Treebank tagset:

a. I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN

b. Does/VBZ this/DT flight/NN serve/VB dinner/NNS

c. I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP

d. What/WDT flights/NNS do/VBP you/PRP have/VB from/IN Milwkee/NNP

to/IN Tampa/NNP
e. Can/VBP you/PRP list/VB the/DT nonstop/JJ afternoon/Nghtis/NNS

5.2 Use the Penn Treebank tagset to tag each word in the follogéntences from
Damon Runyon’s short stories. You may ignore punctuatimmé&of these are quite
difficult; do your best.

a. Itis a nice night.

b. This crap game is over a garage in Fifty-second Street. ..

c. ...Nobody ever takes the newspapers she sells ...

d. He is a tall, skinny guy with a long, sad, mean-looking kiss@d a mournful
voice.

e. ...l amsitting in Mindy’s restaurant putting on the geéilfish, which is a dish |
am very fond of, ...

f. When a guy and a doll get to taking peeks back and forth atethen, why there
you are indeed.

5.3 Now compare your tags from the previous exercise with ongvorftiend’s an-
swers. On which words did you disagree the most? Why?

5.4 Now tag the sentences in Exercise 5.2 using the more defit@dn tagset in
Fig. 5.7.
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5.5 Implement the TBL algorithm in Fig. 5.21. Create a small nemaf templates
and train the tagger on any POS-tagged training set you cdn fin

5.6 Implement the “most-likely tag” baseline. Find a POS-tadjtraining set, and
use it to compute for each word the tag which maximipé$w). You will need to
implement a simple tokenizer to deal with sentence bouadaBtart by assuming all
unknown words are NN and compute your error rate on known akdawn words.
Now write at least 5 rules to do a better job of tagging unknawends, and show the
difference in error rates.

5.7 Recall that the Church (1988) tagger is not an HMM taggeresinmcorporates
the probability of the tag given the word:

P(tagword) « P(tagpreviousn tagg
rather than using the likelihood of the word given the tacgra$iMM tagger does:

P(word|tag) « P(tagpreviousn tags

As a gedanken-experiment, construct a sentence, a settrditesifion probabilities,
and a set of lexical tag probabilities that demonstrate aiwayhich the HMM tagger
can produce a better answer than the Church tagger, andeamatimple in which the
Church tagger is better.

5.8 Build an HMM tagger. This requires (1) that you have impleteerthe Viterbi
algorithm from this chapter and Ch. 6, (2) that you have aiahery with part-of-
speech information and (3) that you have either (a) a paspe&ch-tagged corpus or
(b) an implementation of the Forward Backward algorithmydéi have a labeled cor-
pus, train the transition and observation probabilitiea@fHMM tagger directly on
the hand-tagged data. If you have an unlabeled corpus, tisag Forward Back-
ward.

5.9 Now run your algorithm on a small test set that you have habeied. Find five
errors and analyze them.

5.10 Compute a bigram grammar on a large corpus and reestimatpéehimg correc-
tion probabilities shown in Fig. 5.25 given the correct sage. . . was called a “stellar
and versatileacresswhose combination of sass and glamour has defined herDoés
a bigram grammar prefer the correct warctres®

5.11 Read Norvig (2007) and implement one of the extensions hgesig to his
Python noisy channel spell checker.
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