
DRAFT

Speech and Language Processing: An introduction to speech recognition, computational
linguistics and natural language processing. Daniel Jurafsky & James H. Martin.
Copyright c© 2007, All rights reserved. Draft of October 7, 2007. Do not cite without
permission.

4 N-GRAMS

But it must be recognized that the notion “probability of a sen-
tence” is an entirely useless one, under any known interpretation
of this term.

Noam Chomsky (1969, p. 57)

Anytime a linguist leaves the group the recognition rate goes up.
Fred Jelinek (then of the IBM speech group) (1988)1

Being able to predict the future is not always a good thing. Cassandra of Troy had
the gift of fore-seeing, but was cursed by Apollo that her predictions would never be
believed. Her warnings of the destruction of Troy were ignored and to simplify, let’s
just say that things just didn’t go well for her later.

Predicting words seems somewhat less fraught, and in this chapter we take up this
idea of word prediction. What word, for example, is likely tofollow:

Please turn your homework . . .

Hopefully most of you concluded that a very likely word isin, or possiblyover,
but probably notthe. We formalize this idea ofword prediction with probabilisticWORD PREDICTION

models calledN-gram models, which predict the next word from the previousN−1NGRAM MODELS

words. Such statistical models of word sequences are also called language modelsorLANGUAGE MODELS

LMs . Computing the probability of the next word will turn out to be closely relatedLMS

to computing the probability of a sequence of words. The following sequence, for
example, has a non-zero probability of appearing in a text:

. . . all of a sudden I notice three guys standing on the sidewalk...

while this same set of words in a different order has a very lowprobability:

on guys all I of notice sidewalk three a sudden standing the

1 This wording from his address is as recalled by Jelinek himself; the quote didn’t appear in the proceed-
ings (Palmer and Finin, 1990). Some remember a more snappy version: Every time I fire a linguist the
performance of the recognizer improves.
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As we will see, estimators likeN-grams that assign a conditional probability to
possible next words can be used to assign a joint probabilityto an entire sentence.
Whether estimating probabilities of next words or of whole sequences, theN-gram
model is one of the most important tools in speech and language processing.

N-grams are essential in any task in which we have to identify words in noisy,
ambiguous input. Inspeech recognition, for example, the input speech sounds are very
confusable and many words sound extremely similar. Russelland Norvig (2002) give
an intuition fromhandwriting recognition for how probabilities of word sequences
can help. In the movieTake the Money and Run, Woody Allen tries to rob a bank with
a sloppily written hold-up note that the teller incorrectlyreads as “I have a gub”. Any
speech and language processing system could avoid making this mistake by using the
knowledge that the sequence “I have a gun” is far more probable than the non-word “I
have a gub” or even “I have a gull”.

N-gram models are also essential in statisticalmachine translation. Suppose we
are translating a Chinese source sentence and as
part of the process we have a set of potential rough English translations:

he briefed to reporters on the chief contents of the statement
he briefed reporters on the chief contents of the statement
he briefed to reporters on the main contents of the statement
he briefed reporters on the main contents of the statement

An N-gram grammar might tell us that, even after controlling forlength,briefed
reportersis more likely thanbriefed to reporters, andmain contentsis more likely than
chief contents. This lets us select the bold-faced sentence above as the most fluent
translation sentence, i.e. the one that has the highest probability.

In spelling correction, we need to find and correct spelling errors like the following
(from Kukich (1992)) that accidentally result in real English words:

They are leaving in about fifteenminuetsto go to her house.
The designanconstruction of the system will take more than a year.

Since these errors have real words, we can’t find them by just flagging words that
are not in the dictionary. But note thatin about fifteen minuetsis a much less probable
sequence thanin about fifteen minutes. A spellchecker can use a probability estimator
both to detect these errors and to suggest higher-probability corrections.

Word prediction is also important foraugmentative communication(Newell et al.,AUGMENTATIVE
COMMUNICATION

1998) systems that help the disabled. People who are unable to use speech or sign-
language to communicate, like the physicist Steven Hawking, can communicate by
using simple body movements to select words from a menu that are spoken by the
system. Word prediction can be used to suggest likely words for the menu.

Besides these sample areas,N-grams are also crucial in NLP tasks likepart-of-
speech tagging, natural language generation, andword similarity , as well as in
applications fromauthorship identification andsentiment extraction to predictive
text input systems for cell phones.
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4.1 COUNTING WORDS IN CORPORA

[upon being asked if there weren’t enough words in the English language for him]:

“Yes, there are enough, but they aren’t the right ones.”
James Joyce, reported in Bates (1997)

Probabilities are based on counting things. Before we talk about probabilities, we
need to decide what we are going to count. Counting of things in natural language is
based on acorpus (pluralcorpora), an on-line collection of text or speech. Let’s lookCORPUS

CORPORA at two popular corpora, Brown and Switchboard. The Brown corpus is a 1 million word
collection of samples from 500 written texts from differentgenres (newspaper, novels,
non-fiction, academic, etc.), assembled at Brown University in 1963-64 (Kučera and
Francis, 1967; Francis, 1979; Francis and Kučera, 1982). How many words are in the
following Brown sentence?

(4.1) He stepped out into the hall, was delighted to encounter a water brother.

Example (4.1) has 13 words if we don’t count punctuation marks as words, 15 if
we count punctuation. Whether we treat period (“.”), comma (“,”), and so on as words
depends on the task. Punctuation is critical for finding boundaries of things (com-
mas, periods, colons), and for identifying some aspects of meaning (question marks,
exclamation marks, quotation marks). For some tasks, like part-of-speech tagging or
parsing or speech synthesis, we sometimes treat punctuation marks as if they were
separate words.

The Switchboard corpus of telephone conversations betweenstrangers was col-
lected in the early 1990s and contains 2430 conversations averaging 6 minutes each,
totaling 240 hours of speech and about 3 million words (Godfrey et al., 1992). Such
corpora of spoken language don’t have punctuation, but do introduce other complica-
tions with regard to defining words. Let’s look at one utterance from Switchboard; an
utterance is the spoken correlate of a sentence:UTTERANCE

(4.2) I do uh main- mainly business data processing

This utterance has two kinds ofdisfluencies. The broken-off wordmain- is calledDISFLUENCIES

a fragment. Words likeuh and um are calledfillers or filled pauses. Should weFRAGMENT

FILLERS

FILLED PAUSES

consider these to be words? Again, it depends on the application. If we are building an
automatic dictation system based on automatic speech recognition, we might want to
eventually strip out the disfluencies.

But we also sometimes keep disfluencies around. How disfluenta person is can
be used to identify them, or to detect whether they are stressed or confused. Disfluen-
cies also often occur with particular syntactic structures, so they may help in parsing
and word prediction. Stolcke and Shriberg (1996) found for example that treatinguh
as a word improves next-word prediction (why might this be?), and so most speech
recognition systems treatuhandumas words.2

Are capitalized tokens likeTheyand uncapitalized tokens liketheythe same word?
These are lumped together in speech recognition, while for part-of-speech-taggingcap-

2 Clark and Fox Tree (2002) showed thatuh andumhave different meanings. What do you think they are?
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italization is retained as a separate feature. For the rest of this chapter we will assume
our models are not case-sensitive.

How about inflected forms likecatsversuscat? These two words have the same
lemma cat but are different wordforms. Recall from Ch. 3 that a lemma isa set of
lexical forms having the same stem, the same major part-of-speech, and the same
word-sense. Thewordform is the full inflected or derived form of the word. ForWORDFORM

morphologically complex languages like Arabic we often need to deal with lemmati-
zation. N-grams for speech recognition in English, however, and all the examples in
this chapter, are based on wordforms.

As we can see,N-gram models, and counting words in general, requires that we do
the kind of tokenization or text normalization that we introduced in the previous chap-
ter: separating out punctuation, dealing with abbreviations like m.p.h., normalizing
spelling, and so on.

How many words are there in English? To answer this question we need to dis-
tinguish types, the number of distinct words in a corpus or vocabulary sizeV, fromTYPES

tokens, the total numberN of running words. The following Brown sentence has 16TOKENS

tokens and 14 types (not counting punctuation):

(4.3) They picnicked by the pool, then lay back on the grass and looked at the stars.

The Switchboard corpus has about 20,000 wordform types (from about 3 million
wordform tokens) Shakespeare’s complete works have 29,066wordform types (from
884,647 wordform tokens) (Kučera, 1992) The Brown corpus has 61,805 wordform
types from 37,851 lemma types (from 1 million wordform tokens). Looking at a
very large corpus of 583 million wordform tokens, Brown et al. (1992a) found that
it included 293,181 different wordform types. Dictionaries can help in giving lemma
counts; dictionary entries, orboldface forms are a very rough upper bound on the
number of lemmas (since some lemmas have multiple boldface forms). The American
Heritage Dictionary lists 200,000 boldface forms. It seemslike the larger corpora we
look at, the more word types we find. In general (Gale and Church, 1990) suggest that
the vocabulary size (the number of types) grows with at leastthe square root of the
number of tokens (i.e.V > O(

√
N).

In the rest of this chapter we will continue to distinguish between types and tokens,
using “types” to mean wordform types.

4.2 SIMPLE (UNSMOOTHED) N-GRAMS

Let’s start with some intuitive motivations forN-grams. We assume that the reader has
acquired some very basic background in probability theory.Our goal is to compute the
probability of a wordw given some historyh, or P(w|h). Suppose the historyh is “its
water is so transparent that” and we want to know the probability that the next word is
the:

P(the|its water is so transparent that).(4.4)

How can we compute this probability? One way is to estimate itfrom relative frequency
counts. For example, we could take a very large corpus, countthe number of times we
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seethe water is so transparent that, and count the number of times this is followed by
the. This would be answering the question “Out of the times we sawthe historyh, how
many times was it followed by the wordw”, as follows:

P(the|its water is so transparent that) =

C(its water is so transparent that the)

C(its water is so transparent that)
(4.5)

With a large enough corpus, such as the web, we can compute these counts, and
estimate the probability from Equation (4.5). You should pause now, go to the web and
compute this estimate for yourself.

While this method of estimating probabilities directly from counts works fine in
many cases, it turns out that even the web isn’t big enough to give us good estimates
in most cases. This is because language is creative; new sentences are created all the
time, and we won’t always be able to count entire sentences. Even simple extensions
of the example sentence may have counts of zero on the web (such as “Walden Pond’s
water is so transparent that the”).

Similarly, if we wanted to know the joint probability of an entire sequence of words
like its water is so transparent, we could do it by asking “out of all possible sequences
of 5 words, how many of them areits water is so transparent?” We would have to
get the count ofits water is so transparent, and divide by the sum of the counts of all
possible 5 word sequences. That seems rather a lot to estimate!

For this reason, we’ll need to introduce cleverer ways of estimating the probability
of a wordw given a historyh, or the probability of an entire word sequenceW. Let’s
start with a little formalizing of notation. In order to represent the probability of a
particular random variableXi taking on the value “the”, orP(Xi = “the”), we will use
the simplificationP(the). We’ll represent a sequence ofN words either asw1 . . .wn

or wn
1. For the joint probability of each word in a sequence having aparticular value

P(X = w1,Y = w2,Z = w3, ...,) we’ll useP(w1,w2, ...,wn).
Now how can we compute probabilities of entire sequences like P(w1,w2, ...,wn)?

One thing we can do is to decompose this probability using thechain rule of proba-
bility :

P(X1...Xn) = P(X1)P(X2|X1)P(X3|X2
1 ) . . .P(Xn|Xn−1

1 )

=
n

∏
k=1

P(Xk|Xk−1
1 )(4.6)

Applying the chain rule to words, we get:

P(wn
1) = P(w1)P(w2|w1)P(w3|w2

1) . . .P(wn|wn−1
1 )

=
n

∏
k=1

P(wk|wk−1
1 )(4.7)

The chain rule shows the link between computing the joint probability of a sequence
and computing the conditional probability of a word given previous words. Equation
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(4.7) suggests that we could estimate the joint probabilityof an entire sequence of
words by multiplying together a number of conditional probabilities. But using the
chain rule doesn’t really seem to help us! We don’t know any way to compute the
exact probability of a word given a long sequence of preceding words,P(wn|wn−1

1 ).
As we said above, we can’t just estimate by counting the number of times every word
occurs following every long string, because language is creative and any particular
context might have never occurred before!

The intuition of theN-gram model is that instead of computing the probability of
a word given its entire history, we willapproximate the history by just the last few
words.

The bigram model, for example, approximates the probability of a word givenBIGRAM

all the previous wordsP(wn|wn−1
1 ) by using only the conditional probability of the

preceding wordP(wn|wn−1). In other words, instead of computing the probability

P(the|Walden Pond’s water is so transparent that)(4.8)

we approximate it with the probability

P(the|that)(4.9)

When we use a bigram model to predict the conditional probability of the next word
we are thus making the following approximation:

P(wn|wn−1
1 ) ≈ P(wn|wn−1)(4.10)

This assumption that the probability of a word depends only on the previous word
is called aMarkov assumption. Markov models are the class of probabilistic modelsMARKOV

that assume that we can predict the probability of some future unit without looking too
far into the past. We can generalize the bigram (which looks one word into the past) to
the trigram (which looks two words into the past) and thus to theN-gram (which looksNGRAM

N−1 words into the past).
Thus the general equation for thisN-gram approximation to the conditional proba-

bility of the next word in a sequence is:

P(wn|wn−1
1 ) ≈ P(wn|wn−1

n−N+1)(4.11)

Given the bigram assumption for the probability of an individual word, we can
compute the probability of a complete word sequence by substituting Equation (4.10)
into Equation (4.7):

P(wn
1) ≈

n

∏
k=1

P(wk|wk−1)(4.12)

How do we estimate these bigram orN-gram probabilities? The simplest and most
intuitive way to estimate probabilities is calledMaximum Likelihood Estimation , or

MAXIMUM
LIKELIHOOD
ESTIMATION

MLE . We get the MLE estimate for the parameters of anN-gram model by takingMLE

counts from a corpus, andnormalizing them so they lie between 0 and 1.3
NORMALIZING
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For example, to compute a particular bigram probability of awordy given a previ-
ous wordx, we’ll compute the count of the bigramC(xy) and normalize by the sum of
all the bigrams that share the same first wordx:

P(wn|wn−1) =
C(wn−1wn)

∑wC(wn−1w)
(4.13)

We can simplify this equation, since the sum of all bigram counts that start with a
given wordwn−1 must be equal to the unigram count for that wordwn−1. (The reader
should take a moment to be convinced of this):

P(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(4.14)

Let’s work through an example using a mini-corpus of three sentences. We’ll first
need to augment each sentence with a special symbol<s> at the beginning of the
sentence, to give us the bigram context of the first word. We’ll also need a special
end-symbol</s>.4

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

Here are the calculations for some of the bigram probabilities from this corpus

P(I|<s>) = 2
3 = .67 P(Sam|<s>) = 1

3 = .33 P(am|I) = 2
3 = .67

P(</s>|Sam) = 1
2 = 0.5 P(Sam|am) = 1

2 = .5 P(do|I) = 1
3 = .33

For the general case of MLEN-gram parameter estimation:

P(wn|wn−1
n−N+1) =

C(wn−1
n−N+1wn)

C(wn−1
n−N+1)

(4.15)

Equation 4.15 (like equation 4.14) estimates theN-gram probability by dividing the
observed frequency of a particular sequence by the observedfrequency of a prefix. This
ratio is called arelative frequency. We said above that this use of relative frequenciesRELATIVE

FREQUENCY

as a way to estimate probabilities is an example of Maximum Likelihood Estimation or
MLE. In Maximum Likelihood Estimation, the resulting parameter set maximizes the
likelihood of the training setT given the modelM (i.e.,P(T|M)). For example, suppose
the wordChineseoccurs 400 times in a corpus of a million words like the Brown
corpus. What is the probability that a random word selected from some other text of
say a million words will be the wordChinese? The MLE estimate of its probability
is 400

1000000or .0004. Now.0004 is not the best possible estimate of the probability of
Chineseoccurring in all situations; it might turn out that in some OTHER corpus or
contextChineseis a very unlikely word. But it is the probability that makes it most

3 For probabilistic models, normalizing means dividing by some total count so that the resulting probabili-
ties fall legally between 0 and 1.
4 As Chen and Goodman (1998) point out, we need the end-symbol to make the bigram grammar a true
probability distribution. Without an end-symbol, the sentence probabilities for all sentences of a given length
would sum to one, and the probability of the whole language would be infinite.
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likely that Chinese will occur 400 times in a million-word corpus. We will see ways to
modify the MLE estimates slightly to get better probabilityestimates in Sec. 4.5.

Let’s move on to some examples from a slightly larger corpus than our 14-word
example above. We’ll use data from the now-defunct BerkeleyRestaurant Project,
a dialogue system from the last century that answered questions about a database of
restaurants in Berkeley, California (Jurafsky et al., 1994). Here are some sample user
queries, lowercased and with no punctuation (a representative corpus of 9332 sentences
is on the website):

can you tell me about any good cantonese restaurants close by
mid priced thai food is what i’m looking for
tell me about chez panisse
can you give me a listing of the kinds of food that are available
i’m looking for a good place to eat breakfast
when is caffe venezia open during the day

Fig. 4.1 shows the bigram counts from a piece of a bigram grammar from the Berke-
ley Restaurant Project. Note that the majority of the valuesare zero. In fact, we have
chosen the sample words to cohere with each other; a matrix selected from a random
set of seven words would be even more sparse.

i want to eat chinese food lunch spend

i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Figure 4.1 Bigram counts for eight of the words (out ofV = 1446) in the Berkeley
Restaurant Project corpus of 9332 sentences.

Fig. 4.2 shows the bigram probabilities after normalization (dividing each row by
the following unigram counts):

i want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278

Here are a few other useful probabilities:

P(i|<s>) = 0.25 P(english|want) = 0.0011
P(food|english) = 0.5 P(</s>|food) = 0.68

Now we can compute the probability of sentences likeI want English foodor I want
Chinese foodby simply multiplying the appropriate bigram probabilities together, as
follows:
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i want to eat chinese food lunch spend

i 0.002 0.33 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

Figure 4.2 Bigram probabilities for eight words in the Berkeley Restaurant Project cor-
pus of 9332 sentences.

P(<s> i want english food </s>)

= P(i|<s>)P(want|I)P(english|want)

P(food|english)P(</s>|food)

= .25× .33× .0011×0.5×0.68

= = .000031

We leave it as an exercise for the reader to compute the probability of i want chinese
food. But that exercise does suggest that we’ll want to think a bitabout what kinds of
linguistic phenomena are captured in bigrams. Some of the bigram probabilities above
encode some facts that we think of as strictly syntactic in nature, like the fact that what
comes aftereatis usually a noun or an adjective, or that what comes afterto is usually a
verb. Others might be more cultural than linguistic, like the low probability of anyone
asking for advice on finding English food.

Although we will generally show bigram models in this chapter for pedagogical
purposes, note that when there is sufficient training data weare more likely to use
trigram models, which condition on the previous two words rather than the previousTRIGRAM

word. To compute trigram probabilities at the very beginning of sentence, we can use
two pseudo-words for the first trigram (i.e.,P(I|<s><s>).

4.3 TRAINING AND TEST SETS

The N-gram model is a good example of the kind of statistical models that we will
be seeing throughout speech and language processing. The probabilities of anN-gram
model come from the corpus it is trained on. In general, the parameters of a statistical
model are trained on some set of data, and then we apply the models to some new data
in some task (such as speech recognition) and see how well they work. Of course this
new data or task won’t be the exact same data we trained on.

We can formalize this idea of training on some data, and testing on some other
data by talking about these two data sets as atraining set and atest set(or a trainingTRAINING SET

TEST SET corpus and atest corpus). Thus when using a statistical model of language given
some corpus of relevant data, we start by dividing the data into training and test sets.
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We train the statistical parameters of the model on the training set, and then use this
trained model to compute probabilities on the test set.

This training-and-testing paradigm can also be used toevaluatedifferentN-gramEVALUATE

architectures. Suppose we want to compare different language models (such as those
based onN-grams of different ordersN, or using the differentsmoothingalgorithms
to be introduced in Sec. 4.5). We can do this by taking a corpusand dividing it into
a training set and a test set. Then we train the two differentN-gram models on the
training set and see which one better models the test set. Butwhat does it mean to
“model the test set”? There is is a useful metric for how well agiven statistical model
matches a test corpus, calledperplexity, introduced on page 13. Perplexity is based on
computing the probability of each sentence in the test set; intuitively, whichever model
assigns a higher probability to the test set (hence more accurately predicts the test set)
is a better model.

Since our evaluation metric is based on test set probability, it’s important not to let
the test sentences into the training set. Suppose we are trying to compute the probability
of a particular “test” sentence. If our test sentence is partof the training corpus, we will
mistakenly assign it an artificially high probability when it occurs in the test set. We
call this situationtraining on the test set. Training on the test set introduces a bias that
makes the probabilities all look too high and causes huge inaccuracies in perplexity.

In addition to training and test sets, other divisions of data are often useful. Some-
times we need an extra source of data to augment the training set. Such extra data is
called aheld-out set, because we hold it out from our training set when we trainourHELDOUT

N-gram counts. The held-out corpus is then used to set some other parameters; for ex-
ample we will see the use of held-out data to set interpolation weights ininterpolated
N-gram models in Sec. 4.6. Finally, sometimes we need to have multiple test sets. This
happens because we might use a particular test set so often that we implicitly tune to
its characteristics. Then we would definitely need a fresh test set which is truly unseen.
In such cases, we call the initial test set thedevelopmenttest set or,devset. We willDEVELOPMENT

discuss development test sets again in Ch. 5.
How do we divide our data into training, dev, and test sets? There is a tradeoff, since

we want our test set to be as large as possible and a small test set may be accidentally
unrepresentative. On the other hand, we want as much training data as possible. At the
minimum, we would want to pick the smallest test set that gives us enough statistical
power to measure a statistically significant difference between two potential models.
In practice, we often just divide our data into 80% training,10% development, and
10% test. Given a large corpus that we want to divide into training and test, test data
can either be taken from some continuous sequence of text inside the corpus, or we
can remove smaller “stripes” of text from randomly selectedparts of our corpus and
combine them into a test set.

4.3.1 N-gram Sensitivity to the Training Corpus

The N-gram model, like many statistical models, is very dependent on the training
corpus. One implication of this is that the probabilities often encode very specific facts
about a given training corpus. Another implication is thatN-grams do a better and
better job of modeling the training corpus as we increase thevalue ofN.



DRAFT

Section 4.3. Training and Test Sets 11

We can visualize both of these facts by borrowing the technique of Shannon (1951)
and Miller and Selfridge (1950), of generating random sentences from differentN-
gram models. It’s simplest to visualize how this works for the unigram case. Imagine
all the words of English covering the probability space between 0 and 1, each word
covering an interval equal to its frequency. We choose a random value between 0 and
1, and print out the word whose interval includes the real value we have chosen. We
continue choosing random numbers and generating words until we randomly generate
the sentence-final token</s>. The same technique can be used to generate bigrams
by first generating a random bigram that starts with<s> (according to its bigram prob-
ability), then choosing a random bigram to follow it (again,according to its conditional
probability), and so on.

To give an intuition for the increasing power of higher-order N-grams, Fig. 4.3
shows random sentences generated from unigram, bigram, trigram, and quadrigram
models trained on Shakespeare’s works.

U
ni

gr
am

• To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
• Every enter now severally so, let
• Hill he late speaks; or! a more to leg less first you enter
• Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile
like

B
ig

ra
m

• What means, sir. I confess she? then all sorts, he is trim, captain.
•Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.
•What we, hath got so she that I rest and sent to scold and naturebankrupt, nor the first
gentleman?
•Enter Menenius, if it so many good direction found’st thou art a strong upon command
of fear not a liberal largess given away, Falstaff! Exeunt

T
ri

gr
am

• Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.
• This shall forbid it should be branded, if renown made it empty.
• Indeed the duke; and had a very good friend.
• Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

Q
ua

dr
ig

ra
m • King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A

great banquet serv’d in;
• Will you not tell me who I am?
• It cannot be but so.
• Indeed the short and the long. Marry, ’tis a noble Lepidus.

Figure 4.3 Sentences randomly generated from fourN-gram models computed from
Shakespeare’s works. All characters were mapped to lower case and punctuation marks
were treated as words. Output was hand-corrected for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words, nor any
sentence-final punctuation. The bigram sentences have somevery local word-to-word
coherence (especially if we consider that punctuation counts as a word). The trigram
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and quadrigram sentences are beginning to look a lot like Shakespeare. Indeed a care-
ful investigation of the quadrigram sentences shows that they look a little too much
like Shakespeare. The wordsIt cannot be but soare directly fromKing John. This is
because, not to put the knock on Shakespeare, his oeuvre is not very large as corpora
go (N = 884,647,V = 29,066), and ourN-gram probability matrices are ridiculously
sparse. There areV2 = 844,000,000 possible bigrams alone, and the number of possi-
ble quadrigrams isV4 = 7×1017. Thus once the generator has chosen the first quadri-
gram (It cannot be but), there are only five possible continuations (that, I, he, thou, and
so); indeed for many quadrigrams there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at
an N-gram grammar trained on a completely different corpus:the Wall Street Jour-
nal (WSJ) newspaper. Shakespeare andthe Wall Street Journalare both English, so
we might expect some overlap between ourN-grams for the two genres. In order to
check whether this is true, Fig. 4.4 shows sentences generated by unigram, bigram, and
trigram grammars trained on 40 million words from WSJ.

unigram: Months the my and issue of year foreign new exchange’s september were
recession exchange new endorsed a acquire to six executives
bigram: Last December through the way to preserve the Hudson corporation N. B. E. C.
Taylor would seem to complete the major central planners onepoint five percent of U.
S. E. has already old M. X. corporation of living on information such as more frequently
fishing to keep her
trigram: They also point to ninety nine point six billion dollars fromtwo hundred four oh
six three percent of the rates of interest stores as Mexico and Brazil on market conditions

Figure 4.4 Sentences randomly generated from three orders ofN-gram computed from
40 million words ofthe Wall Street Journal. All characters were mapped to lower case and
punctuation marks were treated as words. Output was hand corrected for capitalization to
improve readability.

Compare these examples to the pseudo-Shakespeare in Fig. 4.3. While superficially
they both seem to model “English-like sentences” there is obviously no overlap what-
soever in possible sentences, and little if any overlap evenin small phrases. This stark
difference tells us that statistical models are likely to bepretty useless as predictors if
the training sets and the test sets are as different as Shakespeare and WSJ.

How should we deal with this problem when we buildN-gram models? In general
we need to be sure to use a training corpus that looks like our test corpus. We especially
wouldn’t choose training and tests from differentgenresof text like newspaper text,
early English fiction, telephone conversations, and web pages. Sometimes finding ap-
propriate training text for a specific new task can be difficult; to buildN-grams for text
prediction in SMS (Short Message Service), we need a training corpus of SMS data.
To buildN-grams on business meetings, we would need to have corpora oftranscribed
business meetings.

For general research where we know we want written English but don’t have a
domain in mind, we can use a balanced training corpus that includes cross sections
from different genres, such as the 1-million-word Brown corpus of English (Francis and
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Kučera, 1982) or the 100-million-word British National Corpus (Leech et al., 1994).
Recent research has also studied ways to dynamicallyadapt language models to

different genres; see Sec. 4.9.4.

4.3.2 Unknown Words: Open versus closed vocabulary tasks

Sometimes we have a language task in which we know all the words that can occur,
and hence we know the vocabulary sizeV in advance. Theclosed vocabularyas-CLOSED

VOCABULARY

sumption is the assumption that we have such a lexicon, and that the test set can only
contain words from this lexicon. The closed vocabulary taskthus assumes there are no
unknown words.

But of course this is a simplification; as we suggested earlier, the number of unseen
words grows constantly, so we can’t possibly know in advanceexactly how many there
are, and we’d like our model to do something reasonable with them. We call these
unseen eventsunknown words, orout of vocabulary (OOV) words. The percentageOOV

of OOV words that appear in the test set is called theOOV rate.
An open vocabularysystem is one where we model these potential unknown wordsOPEN VOCABULARY

in the test set by adding a pseudo-word called<UNK>. We can train the probabilities
of the unknown word model<UNK> as follows:

1. Choose a vocabulary(word list) which is fixed in advance.

2. Convert in the training set any word that is not in this set (any OOV word) to the
unknown word token<UNK> in a text normalization step.

3. Estimate the probabilities for<UNK> from its counts just like any other regular
word in the training set.

4.4 EVALUATING N-GRAMS: PERPLEXITY

The best way to evaluate the performance of a language model is to embed it in an
application and measure the total performance of the application. Such end-to-end
evaluation is calledextrinsic evaluation, and also sometimes calledin vivo evaluationEXTRINSIC

EVALUATION

IN VIVO (Sparck Jones and Galliers, 1996). Extrinisic evaluation is the only way to know if a
particular improvement in a component is really going to help the task at hand. Thus
for speech recognition, we can compare the performance of two language models by
running the speech recognizer twice, once with each language model, and seeing which
gives the more accurate transcription.

Unfortunately, end-to-end evaluation is often very expensive; evaluating a large
speech recognition test set, for example, takes hours or even days. Thus we would
like a metric that can be used to quickly evaluate potential improvements in a language
model. Anintrinsitic evaluation metric is one which measures the quality of a modelINTRINSITIC

EVALUATION

independent of any application.Perplexity is the most common intrinsic evaluation
metric for N-gram language models. While an (intrinsic) improvement inperplexity
does not guarantee an (extrinsic) improvement in speech recognition performance (or
any other end-to-end metric), it often correlates with suchimprovements. Thus it is
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commonly used as a quick check on an algorithm and an improvement in perplexity
can then be confirmed by an end-to-end evaluation.

The intuition of perplexity is that given two probabilisticmodels, the better model
is the one that has a tighter fit to the test data, or predicts the details of the test data
better. We can measure better prediction by looking at the probability the model assigns
to the test data; the better model will assign a higher probability to the test data.

More formally, theperplexity (sometimes calledPP for short) of a language modelPERPLEXITY

on a test set is a function of the probability that the language model assigns to that test
set. For a test setW = w1w2 . . .wN, the perplexity is the probability of the test set,
normalized by the number of words:

PP(W) = P(w1w2 . . .wN)−
1
N(4.16)

= N

√

1
P(w1w2 . . .wN

)

We can use the chain rule to expand the probability ofW:

PP(W) = N

√

N

∏
i=1

1
P(wi |w1 . . .wi−1)

(4.17)

Thus if we are computing the perplexity ofW with a bigram language model, we
get:

PP(W) = N

√

N

∏
i=1

1
P(wi |wi−1)

(4.18)

Note that because of the inverse in Equation (4.17), the higher the conditional prob-
ability of the word sequence, the lower the perplexity. Thusminimizing perplexity
is equivalent to maximizing the test set probability according to the language model.
What we generally use for word sequence in Equation (4.17) orEquation (4.18) is the
entire sequence of words in some test set. Since of course this sequence will cross
many sentence boundaries, we need to include the begin- and end-sentence markers
<s> and</s> in the probability computation. We also need to include the end-of-
sentence marker</s> (but not the beginning-of-sentence marker<s>) in the total
count of word tokensN.

There is another way to think about perplexity: as theweighted average branching
factor of a language. The branching factor of a language is the number of possible next
words that can follow any word. Consider the task of recognizing the digits in English
(zero, one, two,..., nine), given that each of the 10 digits occur with equal probability
P= 1

10. The perplexity of this mini-language is in fact 10. To see that, imagine a string
of digits of lengthN. By Equation (4.17), the perplexity will be:

PP(W) = P(w1w2 . . .wN)−
1
N
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= (
1
10

N

)−
1
N

=
1
10

−1

= 10(4.19)

But now suppose that the number zero is really frequent and occurs 10 times more
often than other numbers. Now we should expect the perplexity to be lower, since most
of the time the next number will be zero. Thus although the branching factor is still 10,
the perplexity or weighted branching factor is smaller. We leave this calculation as an
exercise to the reader.

We’ll see in Sec. 4.10 that perplexity is also closely related to the information-
theoretic notion of entropy.

Finally, let’s see an example of how perplexity can be used tocompare threeN-
gram models. We trained unigram, bigram, and trigram grammars on 38 million words
(including start-of-sentence tokens) from the Wall StreetJournal, using a 19,979 word
vocabulary.5 We then computed the perplexity of each of these models on a test set of
1.5 million words via Equation (4.65). The table below showsthe perplexity of a 1.5
million word WSJ test set according to each of these grammars.

N-gram Order Unigram Bigram Trigram
Perplexity 962 170 109

As we see above, the more information theN-gram gives us about the word se-
quence, the lower the perplexity (since as Equation (4.17) showed, perplexity is related
inversely to the likelihood of the test sequence according to the model).

Note that in computing perplexities theN-gram modelP must be constructed with-
out any knowledge of the test set. Any kind of knowledge of thetest set can cause
the perplexity to be artificially low. For example, we definedabove theclosed vocab-
ulary task, in which the vocabulary for the test set is specified in advance. This canCLOSED

VOCABULARY

greatly reduce the perplexity. As long as this knowledge is provided equally to each of
the models we are comparing, the closed vocabulary perplexity can still be useful for
comparing models, but care must be taken in interpreting theresults. In general, the
perplexity of two language models is only comparable if theyuse the same vocabulary.

4.5 SMOOTHING

Never do I ever want
to hear another word!
There isn’t one,
I haven’t heard!

5 More specifically, Katz-style backoff grammars with Good-Turing discounting trained on 38 million
words from the WSJ0 corpus (LDC, 1993), open-vocabulary, using the<UNK> token; see later sections for
definitions.
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Eliza Doolittle in Alan
Jay Lerner’s My Fair
Lady

There is a major problem with the maximum likelihood estimation process we have
seen for training the parameters of anN-gram model. This is the problem ofsparse
data caused by the fact that our maximum likelihood estimate was based on a particularSPARSE DATA

set of training data. For anyN-gram that occurred a sufficient number of times, we
might have a good estimate of its probability. But because any corpus is limited, some
perfectly acceptable English word sequences are bound to bemissing from it. This
missing data means that theN-gram matrix for any given training corpus is bound to
have a very large number of cases of putative “zero probability N-grams” that should
really have some non-zero probability. Furthermore, the MLE method also produces
poor estimates when the counts are non-zero but still small.

We need a method which can help get better estimates for thesezero or low-
frequency counts. Zero counts turn out to cause another hugeproblem. Theperplexity
metric defined above requires that we compute the probability of each test sentence.
But if a test sentence has anN-gram that never appeared in the training set, the Maxi-
mum Likelihood estimate of the probability for thisN-gram, and hence for the whole
test sentence, will be zero! This means that in order to evaluate our language mod-
els, we need to modify the MLE method to assign some non-zero probability to any
N-gram, even one that was never observed in training.

For these reasons, we’ll want to modify the maximum likelihood estimates for
computingN-gram probabilities, focusing on theN-gram events that we incorrectly
assumed had zero probability. We use the termsmoothingfor such modifications thatSMOOTHING

address the poor estimates that are due to variability in small data sets. The name
comes from the fact that (looking ahead a bit) we will be shaving a little bit of proba-
bility mass from the higher counts, and piling it instead on the zero counts, making the
distribution a little less jagged.

In the next few sections we will introduce some smoothing algorithms and show
how they modify the Berkeley Restaurant bigram probabilities in Fig. 4.2.

4.5.1 Laplace Smoothing

One simple way to do smoothing might be just to take our matrixof bigram counts,
before we normalize them into probabilities, and add one to all the counts. This algo-
rithm is calledLaplace smoothing, or Laplace’s Law (Lidstone, 1920; Johnson, 1932;LAPLACE

SMOOTHING

Jeffreys, 1948). Laplace smoothing does not perform well enough to be used in modern
N-gram models, but we begin with it because it introduces manyof the concepts that
we will see in other smoothing algorithms and also gives us a useful baseline.

Let’s start with the application of Laplace smoothing to unigram probabilities. Re-
call that the unsmoothed maximum likelihood estimate of theunigram probability of
the wordwi is its countci normalized by the total number of word tokensN:

P(wi) =
ci

N

Laplace smoothing merely adds one to each count (hence its alternate nameadd-
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one smoothing). Since there areV words in the vocabulary, and each one got incre-ADDONE

mented, we also need to adjust the the denominator to take into account the extraV
observations.6

PLaplace(wi) =
ci +1
N+V

(4.20)

Instead of changing both the numerator and denominator it isconvenient to describe
how a smoothing algorithm affects the numerator, by defininganadjusted countc∗.
This adjusted count is easier to compare directly with the MLE counts, and can be
turned into a probability like an MLE count by normalizing byN. To define this count,
since we are only changing the numerator, in addition to adding one we’ll also need to
multiply by a normalization factor N

N+V :

c∗i = (ci +1)
N

N+V
(4.21)

We can now turnc∗ into a probabilityp∗i by normalizing byN.
A related way to view smoothing is asdiscounting (lowering) some non-zeroDISCOUNTING

counts in order to get the probability mass that will be assigned to the zero counts.
Thus instead of referring to the discounted countsc∗, we might describe a smoothing
algorithm in terms of a relativediscount dc, the ratio of the discounted counts to theDISCOUNT

original counts:

dc =
c∗

c

Now that we have the intuition for the unigram case, let’s smooth our Berkeley
Restaurant Project bigrams. Fig. 4.5 shows the add-one smoothed counts for the bi-
grams in Fig. 4.1.

i want to eat chinese food lunch spend

i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Figure 4.5 Add-one smoothed bigram counts for eight of the words (out ofV = 1446)
in the Berkeley Restaurant Project corpus of 9332 sentences.

Fig. 4.6 shows the add-one smoothed probabilities for the bigrams in Fig. 4.2. Re-
call that normal bigram probabilities are computed by normalizing each row of counts
by the unigram count:

6 What happens to ourP values if we don’t increase the denominator?
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P(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(4.22)

For add-one smoothed bigram counts we need to augment the unigram count by
the number of total word types in the vocabularyV:

P∗
Laplace(wn|wn−1) =

C(wn−1wn)+1
C(wn−1)+V

(4.23)

Thus each of the unigram counts given in the previous sectionwill need to be
augmented byV = 1446. The result is the smoothed bigram probabilities in Fig. 4.6.

i want to eat chinese food lunch spend

i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046
chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Figure 4.6 Add-one smoothed bigram probabilities for eight of the words (out ofV = 1446) in the BeRP
corpus of 9332 sentences.

It is often convenient to reconstruct the count matrix so we can see how much a
smoothing algorithm has changed the original counts. Theseadjusted counts can be
computed by Equation (4.24). Fig. 4.7 shows the reconstructed counts.

c∗(wn−1wn) =
[C(wn−1wn)+1]×C(wn−1)

C(wn−1)+V
(4.24)

i want to eat chinese food lunch spend

i 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 4.4 133
eat 0.34 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Figure 4.7 Add-one reconstituted counts for eight words (ofV = 1446) in the BeRP
corpus of 9332 sentences.

Note that add-one smoothing has made a very big change to the counts.C(want to)
changed from 608 to 238! We can see this in probability space as well: P(to|want)
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decreases from .66 in the unsmoothed case to .26 in the smoothed case. Looking at the
discountd (the ratio between new and old counts) shows us how strikingly the counts
for each prefix word have been reduced; the discount for the bigramwant to is .39,
while the discount forChinese foodis .10, a factor of 10!

The sharp change in counts and probabilities occurs becausetoo much probability
mass is moved to all the zeros. We could move a bit less mass by adding a frac-
tional count rather than 1 (add-δ smoothing; (Lidstone, 1920; Johnson, 1932; Jeffreys,
1948)), but this method requires a method for choosingδ dynamically, results in an in-
appropriate discount for many counts, and turns out to give counts with poor variances.
For these and other reasons (Gale and Church, 1994), we’ll need better smoothing
methods forN-grams like the ones we’ll see in the next section.

4.5.2 Good-Turing Discounting

There are a number of much better discounting algorithms that are only slightly more
complex than add-one smoothing. In this section we introduce one of them, known as
Good-Turing smoothing.GOODTURING

The intuition of a number of discounting algorithms (Good Turing, Witten-Bell
discounting, andKneyser-Ney smoothing) is to use the count of things you’ve seenWITTENBELL

DISCOUNTING

KNEYSERNEY
SMOOTHING onceto help estimate the count of things you’venever seen. The Good-Turing algo-

rithm was first described by Good (1953), who credits Turing with the original idea.
The basic insight of Good-Turing smoothing is to re-estimate the amount of probabil-
ity mass to assign toN-grams with zero counts by looking at the number ofN-grams
that occurred one time. A word orN-gram (or any event) that occurs once is called a
singleton, or ahapax legomenon. The Good-Turing intuition is to use the frequencySINGLETON

of singletons as a re-estimate of the frequency of zero-count bigrams.
Let’s formalize the algorithm. The Good-Turing algorithm is based on computing

Nc, the number ofN-grams that occurc times. We refer to the number ofN-grams that
occurc times as thefrequency of frequencyc. So applying the idea to smoothing the
joint probability of bigrams,N0 is the number of bigrams with count 0,N1 the number
of bigrams with count 1 (singletons), and so on. We can think of each of theNc as a bin
which stores the number of differentN-grams that occur in the training set with that
frequencyc. More formally:

Nc = ∑
x:count(x)=c

1(4.25)

The MLE count forNc isc. The Good-Turing estimate replaces this with a smoothed
countc∗, as a function ofNc+1:

c∗ = (c+1)
Nc+1

Nc
(4.26)

We can use (Equation (4.26)) to replace the MLE counts for allthe binsN1, N2,
and so on. Instead of using this equation directly to re-estimate the smoothed countc∗

for N0, we use the following equation for the probabilityP∗
GT for things that had zero

countN0, or what we might call themissing mass:
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P∗
GT(things with frequency zero in training) =

N1

N
(4.27)

HereN1 is the count of items in bin 1, i.e. that were seen once in training, andN
is the total number of items we have seen in training. Equation (4.27) thus gives the
probability that theN + 1st bigram we see will be one that we never saw in training.
Showing that (Equation (4.27)) follows from (Equation (4.26)) is left as Exercise 4.8
for the reader.

The Good-Turing method was first proposed for estimating thepopulations of ani-
mal species. Let’s consider an illustrative example from this domain created by Joshua
Goodman and Stanley Chen. Suppose we are fishing in a lake with8 species (bass,
carp, catfish, eel, perch, salmon, trout, whitefish) and we have seen 6 species with the
following counts: 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, and 1 eel (so we
haven’t yet seen the catfish or bass). What is the probabilitythat the next fish we catch
will be a new species, i.e., one that had a zero frequency in our training set, i.e., in this
case either a catfish or a bass?

The MLE countc of a hitherto-unseen species (bass or catfish) is 0. But Equa-
tion (4.27) tells us that the probability of a new fish being one of these unseen species
is 3

18, sinceN1 is 3 andN is 18:

P∗
GT(things with frequency zero in training) =

N1

N
=

3
18

(4.28)

What is the probability that the next fish will be another trout? The MLE count
for trout is 1, so the MLE estimated probability is118. But the Good-Turing estimate
must be lower, since we just stole318 of our probability mass to use on unseen events!
We’ll need to discount the MLE probabilities for trout, perch, carp, etc. In summary,
the revised countsc∗ and Good-Turing smoothed probabilitiesp∗GT for species with
count 0 (like bass or catfish) or count 1 (like trout, salmon, or eel) are as follows:

unseen (bass or catfish) trout
c 0 1

MLE p p = 0
18 = 0 1

18

c∗ c∗(trout)= 2× N2
N1

= 2× 1
3 = .67

GT p∗GT p∗GT(unseen)= N1
N = 3

18 = .17 p∗GT(trout)= .67
18 = 1

27 = .037

Note that the revised countc∗ for eel was discounted fromc= 1.0 toc∗ = .67, (thus
leaving some probability massp∗GT(unseen)= 3

18 = .17 for the catfish and bass). And
since we know there were 2 unknown species, the probability of the next fish being
specifically a catfish isp∗GT(catfish)= 1

2 × 3
18 = .085.

Fig. 4.8 gives two examples of the application of Good-Turing discounting to bi-
gram grammars, one on the BeRP corpus of 9332 sentences, and alarger example com-
puted from 22 million words from the Associated Press (AP) newswire by Church and
Gale (1991) . For both examples the first column shows the count c, i.e., the number of
observed instances of a bigram. The second column shows the number of bigrams that
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had this count. Thus 449,721 of the AP bigrams have a count of 2. The third column
showsc∗, the Good-Turing re-estimation of the count.

AP Newswire Berkeley Restaurant
c (MLE) Nc c∗ (GT) c (MLE) Nc c∗ (GT)
0 74,671,100,000 0.0000270 0 2,081,496 0.002553
1 2,018,046 0.446 1 5315 0.533960
2 449,721 1.26 2 1419 1.357294
3 188,933 2.24 3 642 2.373832
4 105,668 3.24 4 381 4.081365
5 68,379 4.22 5 311 3.781350
6 48,190 5.19 6 196 4.500000

Figure 4.8 Bigram “frequencies of frequencies” and Good-Turing re-estimations for
the 22 million AP bigrams from Church and Gale (1991) and fromthe Berkeley Restaurant
corpus of 9332 sentences.

4.5.3 Some advanced issues in Good-Turing estimation

Good-Turing estimation assumes that the distribution of each bigram is binomial (Church
et al., 1991) and assumes we knowN0, the number of bigrams we haven’t seen. We
know this because given a vocabulary size ofV, the total number of bigrams isV2,
henceN0 is V2 minus all the bigrams we have seen.

There are a number of additional complexities in the use of Good-Turing. For
example, we don’t just use the rawNc values in Equation (4.26). This is because
the re-estimatec∗ for Nc depends onNc+1, hence Equation (4.26) is undefined when
Nc+1 = 0. Such zeros occur quite often. In our sample problem above,for example,
sinceN4 = 0, how can we computeN3? One solution to this is calledSimple Good-
Turing (Gale and Sampson, 1995). In Simple Good-Turing, after we compute the binsSIMPLE

GOODTURING

Nc, but before we compute Equation (4.26) from them, we smooth the Nc counts to
replace any zeros in the sequence. The simplest thing is justto replace the valueNc

with a value computed from a linear regression which is fit to mapNc to c in log space
(see Gale and Sampson (1995) for details):

log(Nc) = a+b log(c)(4.29)

In addition, in practice, the discounted estimatec∗ is not used for all countsc.
Large counts (wherec > k for some thresholdk) are assumed to be reliable. Katz
(1987) suggests settingk at 5. Thus we define

c∗ = c for c > k(4.30)

The correct equation forc∗ when somek is introduced (from Katz (1987)) is:

c∗ =
(c+1)

Nc+1
Nc

−c(k+1)Nk+1
N1

1− (k+1)Nk+1
N1

, for 1≤ c≤ k.(4.31)
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Second, with Good-Turing discounting as with any other, it is usual to treatN-
grams with low raw counts (especially counts of 1) as if the count were 0, i.e., to apply
Good-Turing discounting to these as if they were unseen.

It turns out that Good-Turing discounting is not used by itself in discountingN-
grams; it is only used in combination with the backoff and interpolation algorithms
described in the next sections.

4.6 INTERPOLATION

The discounting we have been discussing so far can help solvethe problem of zero
frequencyN-grams. But there is an additional source of knowledge we candraw on.
If we are trying to computeP(wn|wn−1wn−2), but we have no examples of a particular
trigramwn−2wn−1wn, we can instead estimate its probability by using the bigramprob-
ability P(wn|wn−1). Similarly, if we don’t have counts to computeP(wn|wn−1), we can
look to the unigramP(wn).

There are two ways to use thisN-gram “hierarchy”,backoff andinterpolation . InBACKOFF

INTERPOLATION backoff, if we have non-zero trigram counts, we rely solely on the trigram counts. We
only “back off” to a lower orderN-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimates from
all theN-gram estimators, i.e., we do a weighted interpolation of trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different orderN-grams by linearly in-
terpolating all the models. Thus we estimate the trigram probability P(wn|wn−1wn−2)
by mixing together the unigram, bigram, and trigram probabilities, each weighted by a
λ:

P̂(wn|wn−1wn−2) = λ1P(wn|wn−1wn−2)

+λ2P(wn|wn−1)

+λ3P(wn)(4.32)

such that theλs sum to 1:

∑
i

λi = 1(4.33)

In a slightly more sophisticated version of linear interpolation, eachλ weight is
computed in a more sophisticated way, by conditioning on thecontext. This way if we
have particularly accurate counts for a particular bigram,we assume that the counts
of the trigrams based on this bigram will be more trustworthy, so we can make theλs
for those trigrams higher and thus give that trigram more weight in the interpolation.
Equation (4.34) shows the equation for interpolation with context-conditioned weights:

P̂(wn|wn−2wn−1) = λ1(w
n−1
n−2)P(wn|wn−2wn−1)

+λ2(w
n−1
n−2)P(wn|wn−1)

+ λ3(w
n−1
n−2)P(wn)(4.34)
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How are theseλ values set? Both the simple interpolation and conditional inter-
polationλs are learned from aheld-out corpus. Recall from Sec. 4.3 that a held-outHELDOUT

corpus is an additional training corpus that we use not to settheN-gram counts, but to
set other parameters. In this case we can use such data to set theλ values. We can do
this by choosing theλ values which maximize the likelihood of the held-out corpus.
That is, we fix theN-gram probabilities and then search for theλ values that when
plugged into Equation (4.32) give us the highest probability of the held-out set, There
are various ways to find this optimal set ofλs. One way is to use theEM algorithm to
be defined in Ch. 6, which is an iterative learning algorithm that converges on locally
optimalλs (Baum, 1972; Dempster et al., 1977; Jelinek and Mercer, 1980).

4.7 BACKOFF

While simple interpolation is indeed simple to understand and implement, it turns out
that there are a number of better algorithms. One of these is backoffN-gram modeling.
The version of backoff that we describe uses Good-Turing discounting as well. It was
introduced by Katz (1987), hence this kind of backoff with discounting is also called
Katz backoff. In a Katz backoffN-gram model, if theN-gram we need has zero counts,KATZ BACKOFF

we approximate it by backing off to the (N-1)-gram. We continue backing off until we
reach a history that has some counts:

Pkatz(wn|wn−1
n−N+1) =







P∗(wn|wn−1
n−N+1), if C(wn

n−N+1) > 0

α(wn−1
n−N+1)Pkatz(wn|wn−1

n−N+2), otherwise.
(4.35)

Equation (4.35) shows that the Katz backoff probability foranN-gram just relies on
the (discounted) probabilityP∗ if we’ve seen thisN-gram before (i.e. if we have non-
zero counts). Otherwise, we recursively back off to the Katzprobability for the shorter-
history (N-1)-gram. We’ll define the discounted probabilityP∗, the normalizing factor
α, and other details about dealing with zero counts in Sec. 4.7.1. Based on these details,
the trigram version of backoff might be represented as follows (where for pedagogical
clarity, since it’s easy to confuse the indiceswi ,wi−1 and so on, we refer to the three
words in a sequence asx, y, zin that order):

Pkatz(z|x,y) =











P∗(z|x,y), if C(x,y,z) > 0

α(x,y)Pkatz(z|y), else ifC(x,y) > 0

P∗(z), otherwise.

(4.36)

Pkatz(z|y) =

{

P∗(z|y), if C(y,z) > 0

α(y)P∗(z), otherwise.
(4.37)

Katz backoff incorporates discounting as an integral part of the algorithm. Our
previous discussions of discounting showed how a method like Good-Turing could be
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used to assign probability mass to unseen events. For simplicity, we assumed that these
unseen events were all equally probable, and so the probability mass got distributed
evenly among all unseen events. Katz backoff gives us a better way to distribute the
probability mass among unseen trigram events, by relying oninformation from uni-
grams and bigrams. We use discounting to tell us how much total probability mass to
set aside for all the events we haven’t seen and backoff to tell us how to distribute this
probability.

Discounting is implemented by using discounted probabilities P∗(·) rather than
MLE probabilitiesP(·) in Equation (4.35) and Equation (4.37).

Why do we need discounts andα values in Equation (4.35) and Equation (4.37)?
Why couldn’t we just have three sets of MLE probabilities without weights? Because
without discounts andα weights, the result of the equation would not be a true prob-
ability! The MLE estimates ofP(wn|wn−1

n−N+1) are true probabilities; if we sum the
probability of allwi over a givenN-gram context, we should get 1:

∑
i

P(wi |wj wk) = 1(4.38)

But if that is the case, if we use MLE probabilities but back off to a lower order
model when the MLE probability is zero, we would be adding extra probability mass
into the equation, and the total probability of a word would be greater than 1!

Thus any backoff language model must also be discounted. TheP∗ is used to
discount the MLE probabilities to save some probability mass for the lower orderN-
grams. Theα is used to ensure that the probability mass from all the lowerorder
N-grams sums up to exactly the amount that we saved by discounting the higher-order
N-grams. We defineP∗ as the discounted (c∗) estimate of the conditional probability
of anN-gram, (and saveP for MLE probabilities):

P∗(wn|wn−1
n−N+1) =

c∗(wn
n−N+1)

c(wn−1
n−N+1)

(4.39)

Because on average the (discounted)c∗ will be less thanc, this probabilityP∗ will
be slightly less than the MLE estimate, which is

c(wn
n−N+1)

c(wn−1
n−N+1)

This will leave some probability mass for the lower orderN-grams which is then
distributed by theα weights; details of computingα are in Sec. 4.7.1. Fig. 4.9 shows
the Katz backoff bigram probabilities for our 8 sample words, computed from the BeRP
corpus using the SRILM toolkit.

4.7.1 Advanced: Details of computing Katz backoffα and P∗

In this section we give the remaining details of the computation of the discounted prob-
ability P∗ and the backoff weightsα(w).

We begin withα, which passes the left-over probability mass to the lower order
N-grams. Let’s represent the total amount of left-over probability mass by the function
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i want to eat chinese food lunch spend

i 0.0014 0.326 0.00248 0.00355 0.000205 0.0017 0.00073 0.000489
want 0.00134 0.00152 0.656 0.000483 0.00455 0.00455 0.00384 0.000483
to 0.000512 0.00152 0.00165 0.284 0.000512 0.0017 0.00175 0.0873
eat 0.00101 0.00152 0.00166 0.00189 0.0214 0.00166 0.0563 0.000585
chinese 0.00283 0.00152 0.00248 0.00189 0.000205 0.519 0.00283 0.000585
food 0.0137 0.00152 0.0137 0.00189 0.000409 0.00366 0.00073 0.000585
lunch 0.00363 0.00152 0.00248 0.00189 0.000205 0.00131 0.00073 0.000585
spend 0.00161 0.00152 0.00161 0.00189 0.000205 0.0017 0.00073 0.000585

Figure 4.9 Good-Turing smoothed bigram probabilities for eight words(of V = 1446) in the BeRP corpus of
9332 sentences, computing by using SRILM, withk = 5 and counts of 1 replaced by 0.

β, a function of the (N-1)-gram context. For a given (N-1)-gram context, the total
left-over probability mass can be computed by subtracting from 1 the total discounted
probability mass for allN-grams starting with that context:

β(wn−1
n−N+1) = 1− ∑

wn:c(wn
n−N+1)>0

P∗(wn|wn−1
n−N+1)(4.40)

This gives us the total probability mass that we are ready to distribute to all (N-
1)-gram (e.g., bigrams if our original model was a trigram).Each individual (N-1)-
gram (bigram) will only get a fraction of this mass, so we needto normalizeβ by the
total probability of all the (N-1)-grams (bigrams) that begin someN-gram (trigram)
which has zero count. The final equation for computing how much probability mass to
distribute from anN-gram to an (N-1)-gram is represented by the functionα:

α(wn−1
n−N+1) =

β(wn−1
n−N+1)

∑wn:c(wn
n−N+1)=0Pkatz(wn|wn−1

n−N+2)

=
1−∑wn:c(wn

n−N+1)>0P∗(wn|wn−1
n−N+1)

1−∑wn:c(wn
n−N+1)>0P∗(wn|wn−1

n−N+2)
(4.41)

Note thatα is a function of the preceding word string, that is, ofwn−1
n−N+1; thus

the amount by which we discount each trigram (d), and the mass that gets reassigned
to lower orderN-grams (α) are recomputed for every (N-1)-gram that occurs in any
N-gram.

We only need to specify what to do when the counts of an (N-1)-gram context are
0, (i.e., whenc(wn−1

n−N+1) = 0) and our definition is complete:

Pkatz(wn|wn−1
n−N+1) = Pkatz(wn|wn−1

n−N+2) if c(wn−1
n−N+1) = 0(4.42)

and

P∗(wn|wn−1
n−N+1) = 0 if c(wn−1

n−N+1) = 0(4.43)
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and

β(wn−1
n−N+1) = 1 if c(wn−1

n−N+1) = 0(4.44)

4.8 PRACTICAL ISSUES: TOOLKITS AND DATA FORMATS

Let’s now examine howN-gram language models are represented. We represent and
compute language model probabilities in log format, in order to avoid underflow and
also to speed up computation. Since probabilities are (by definition) less than 1, the
more probabilities we multiply together the smaller the product becomes. Multiplying
enoughN-grams together would result in numerical underflow. By using log prob-
abilities instead of raw probabilities, the numbers are notas small. Since adding in
log space is equivalent to multiplying in linear space, we combine log probabilities by
adding them. Besides avoiding underflow, addition is fasterto compute than multipli-
cation. Since we do all computation and storage in log space,if we ever need to report
probabilities we just take the exp of the logprob:

p1× p2× p3× p4 = exp(logp1 + logp2 + logp3 + logp4)(4.45)

Backoff N-gram language models are generally stored inARPA format . An N-
gram in ARPA format is an ASCII file with a small header followed by a list of all
the non-zeroN-gram probabilities (all the unigrams, followed by bigrams, followed by
trigrams, and so on). EachN-gram entry is stored with its discounted log probability
(in log10 format) and its backoff weightα. Backoff weights are only necessary for
N-grams which form a prefix of a longerN-gram, so noα is computed for the highest
orderN-gram (in this case the trigram) orN-grams ending in the end-of-sequence token
<s>. Thus for a trigram grammar, the format of eachN-gram is:

unigram: logp∗(wi) wi logα(wi)
bigram: logp∗(wi |wi−1) wi−1wi logα(wi−1wi)
trigram: logp∗(wi |wi−2,wi−1) wi−2wi−1wi

Fig. 4.10 shows an ARPA formatted LM file with selectedN-grams from the BeRP
corpus. Given one of these trigrams, the probabilityP(z|x,y) for the word sequence
x,y,z can be computed as follows (repeated from (4.37)):

Pkatz(z|x,y) =











P∗(z|x,y), if C(x,y,z) > 0

α(x,y)Pkatz(z|y), else ifC(x,y) > 0

P∗(z), otherwise.

(4.46)

Pkatz(z|y) =

{

P∗(z|y), if C(y,z) > 0

α(y)P∗(z), otherwise.
(4.47)

Toolkits: There are two commonly used available toolkits for buildinglanguage
models, the SRILM toolkit (Stolcke, 2002) and the Cambridge-CMU toolkit (Clark-
son and Rosenfeld, 1997). Both are publicly available, and have similar functionality.
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\data\
ngram 1=1447
ngram 2=9420
ngram 3=5201

\1-grams:
-0.8679678 </s>
-99 <s> -1.068532
-4.743076 chow-fun -0.1943932
-4.266155 fries -0.5432462
-3.175167 thursday -0.7510199
-1.776296 want -1.04292
...

\2-grams:
-0.6077676 <s> i -0.6257131
-0.4861297 i want 0.0425899
-2.832415 to drink -0.06423882
-0.5469525 to eat -0.008193135
-0.09403705 today </s>
...

\3-grams:
-2.579416 <s> i prefer
-1.148009 <s> about fifteen
-0.4120701 to go to
-0.3735807 me a list
-0.260361 at jupiter </s>
-0.260361 a malaysian restaurant
...
\end\

Figure 4.10 ARPA format forN-grams, showing some sampleN-grams. Each is rep-
resented by alogprob, the word sequence,w1...wn, followed by the log backoff weightα.
Note that noα is computed for the highest-orderN-gram or forN-grams ending in<s>.

In training mode, each toolkit takes a raw text file, one sentence per line with words
separated by white-space, and various parameters such as the orderN, the type of dis-
counting (Good Turing or Kneser-Ney, discussed in Sec. 4.9.1), and various thresholds.
The output is a language model in ARPA format. In perplexity or decoding mode, the
toolkits take a language model in ARPA format, and a sentenceor corpus, and pro-
duce the probability and perplexity of the sentence or corpus. Both also implement
many advanced features to be discussed later in this chapterand in following chapters,
including skipN-grams, word lattices, confusion networks, andN-gram pruning.

4.9 ADVANCED ISSUES INLANGUAGE MODELING

4.9.1 Advanced Smoothing Methods: Kneser-Ney Smoothing

In this section we give a brief introduction to the most commonly used modernN-gram
smoothing method, the interpolatedKneser-Neyalgorithm.KNESERNEY

Kneser-Ney has its roots in a discounting method calledabsolute discounting.
Absolute discounting is a much better method of computing a revised countc∗ than the
Good-Turing discount formula we saw in Equation (4.26), based on frequencies-of-
frequencies. To get the intuition, let’s revisit the Good-Turing estimates of the bigram
c∗ extended from Fig. 4.8 and reformatted below:
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c (MLE) 0 1 2 3 4 5 6 7 8 9
c∗ (GT) 0.00002700.446 1.26 2.24 3.24 4.22 5.19 6.21 7.24 8.25

The astute reader may have noticed that except for the re-estimated counts for 0
and 1, all the other re-estimated countsc∗ could be estimated pretty well by just sub-
tracting 0.75 from the MLE countc! Absolute discountingformalizes this intuition,ABSOLUTE

DISCOUNTING

by subtracting a fixed (absolute) discountd from each count. The intuition is that we
have good estimates already for the high counts, and a small discountd won’t affect
them much. It will mainly modify the smaller counts, for which we don’t necessarily
trust the estimate anyway. The equation for absolute discounting applied to bigrams
(assuming a proper coefficientα on the backoff to make everything sum to one) is:

Pabsolute(wi |wi−1) =

{

C(wi−1wi)−D
C(wi−1)

, if C(wi−1wi) > 0

α(wi)Pabsolute(wi), otherwise.
(4.48)

In practice, we might also want to keep distinct discount valuesd for the 0 and 1
counts.

Kneser-Ney discounting(Kneser and Ney, 1995) augments absolute discounting
with a more sophisticated way to handle the backoff distribution. Consider the job of
predicting the next word in this sentence, assuming we are backing off to a unigram
model:

I can’t see without my reading .

The wordglassesseems much more likely to follow here than the wordFrancisco.
But Franciscois in fact more common, so a unigram model will prefer it toglasses.
We would like to capture the intuition that althoughFranciscois frequent, it is only
frequent after the wordSan, i.e. in the phraseSan Francisco. The wordglasseshas a
much wider distribution.

Thus instead of backing off to the unigram MLE count (the number of times the
wordw has been seen), we want to use a completely different backoffdistribution! We
want a heuristic that more accurately estimates the number of times we might expect to
see wordw in a new unseen context. The Kneser-Ney intuition is to base our estimate
on thenumber of different contexts word w has appeared in. Words that have appeared
in more contexts are more likely to appear in some new contextas well. We can express
this new backoff probability, the “continuation probability”, as follows:

PCONTINUATION(wi) =
|{wi−1 : C(wi−1wi) > 0}|

∑wi
|{wi−1 : C(wi−1wi) > 0}|(4.49)

The Kneser-Ney backoff intuition can be formalized as follows (again assuming a
proper coefficientα on the backoff to make everything sum to one):

PKN(wi |wi−1) =







C(wi−1wi)−D
C(wi−1)

, if C(wi−1wi) > 0

α(wi)
|{wi−1:C(wi−1wi)>0}|

∑wi
|{wi−1:C(wi−1wi)>0}| otherwise.

(4.50)

Finally, it turns out to be better to use aninterpolated rather thanbackoff form
of Kneser-Ney. While Sec. 4.6 showed thatlinear interpolation is not as successful
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as Katz backoff, it turns out that more powerful interpolated models, such as interpo-
lated Kneser-Ney, work better than their backoff version.Interpolated Kneser-NeyINTERPOLATED

KNESERNEY

discounting can be computed with an equation like the following (omitting the compu-
tation ofβ):

PKN(wi |wi−1) =
C(wi−1wi)−D

C(wi−1)
+ β(wi)

|{wi−1 : C(wi−1wi) > 0}|
∑wi

|{wi−1 : C(wi−1wi) > 0}|(4.51)

A final practical note: it turns out that any interpolation model can be represented as
a backoff model, hence stored in ARPA backoff format. We simply do the interpolation
when we build the model, so the ‘bigram’ probability stored in the backoff format is
really ‘bigram already interpolated with unigram’.

4.9.2 Class-based N-grams

Theclass-based N-gramor cluster N-gram is a variant of theN-gram that uses infor-CLASSBASED
NGRAM

CLUSTER NGRAM mation about word classes or clusters. Class-basedN-grams can be useful for dealing
with sparsity in the training data. Suppose for a flight reservation system we want to
compute the probability of the bigramto Shanghai, but this bigram never occurs in the
training set. Instead, our training data hasto London, to Beijing, andto Denver. If we
knew that these were all cities, and assumingShanghaidoes appear in the training set
in other contexts, we could predict the likelihood of a city following from.

There are many variants of clusterN-grams. The simplest one is sometimes known
asIBM clustering , after its originators (Brown et al., 1992b). IBM clustering is a kindIBM CLUSTERING

of hard clustering, in which each word can belong to only one class. The model esti-
mates the conditional probability of a wordwi by multiplying two factors: the probabil-
ity of the word’s classci given the preceding classes (based on anN-gram of classes),
and the probability ofwi givenci . Here is the IBM model in bigram form:

P(wi |wi−1) ≈ P(ci |,ci−1)×P(wi|ci)

If we had a training corpus in which we knew the class for each word, the maxi-
mum likelihood estimate (MLE) of the probability of the wordgiven the class and the
probability of the class given the previous class could be computed as follows:

P(w|c) =
C(w)

C(c)

P(ci |ci−1) =
C(ci−1ci)

∑cC(ci−1c)

ClusterN-grams are generally used in two ways. In dialog systems (Ch.24), we of-
ten hand-design domain-specific word classes. Thus for an airline information system,
we might use classes likeCITYNAME , AIRLINE , DAYOFWEEK, or MONTH. In other
cases, we can automatically induce the classes by clustering words in a corpus (Brown
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et al., 1992b). Syntactic categories like part-of-speech tags don’t seem to work well as
classes (Niesler et al., 1998).

Whether automatically induced or hand-designed, clusterN-grams are generally
mixed with regular word-basedN-grams.

4.9.3 Language Model Adaptation and Using the Web

One of the most exciting recent developments in language modeling is language model
adaptation. This is relevant when we have only a small amount of in-domain trainingADAPTATION

data, but a large amount of data from some other domain. We cantrain on the larger
out-of-domain dataset and adapt our models to the small in-domain set. (Iyer and
Ostendorf, 1997, 1999a, 1999b; Bacchiani and Roark, 2003; Bacchiani et al., 2004).

An obvious large data source for this type of adaptation is the web. Indeed, use of
the web does seem to be helpful in language modeling. The simplest way to apply the
web to improve, say, trigram language models is to use searchengines to get counts for
w1w2w3 andw1w2w3, and then compute:

p̂web=
cweb(w1w2w3)

cweb(w1w2)
(4.52)

We can then mix ˆpweb with a conventionalN-gram (Berger and Miller, 1998; Zhu
and Rosenfeld, 2001). We can also use more sophisticated combination methods that
make use of topic or class dependencies, to find domain-relevant data on the web data
(Bulyko et al., 2003).

In practice it is difficult or impossible to download every page from the web in
order to computeN-grams. For this reason most uses of web data rely on page counts
from search engines. Page counts are only an approximation to actual counts for many
reasons: a page may contain anN-gram multiple times, most search engines round off
their counts, punctuation is deleted, and the counts themselves may be adjusted due to
link and other information. It seems that this kind of noise does not hugely affect the
results of using the web as a corpus (Keller and Lapata, 2003;Nakov and Hearst, 2005),
although it is possible to perform specific adjustments, such as fitting a regression to
predict actual word counts from page counts (Zhu and Rosenfeld, 2001).

4.9.4 Using Longer Distance Information: A Brief Summary

There are many methods for incorporating longer-distance context intoN-gram model-
ing. While we have limited our discussion mainly to bigram and trigrams, state-of-the-
art speech recognition systems, for example, are based on longer-distanceN-grams,
especially 4-grams, but also 5-grams. Goodman (2006) showed that with 284 million
words of training data, 5-grams do improve perplexity scores over 4-grams, but not
by much. Goodman checked contexts up to 20-grams, and found that after 6-grams,
longer contexts weren’t useful, at least not with 284 million words of training data.

Many models focus on more sophisticated ways to get longer-distance information.
For example people tend to repeat words they have used before. Thus if a word is used
once in a text, it will probably be used again. We can capture this fact by acacheCACHE

language model (Kuhn and De Mori, 1990). For example to use a unigram cache model
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to predict wordi of a test corpus, we create a unigram grammar from the preceding part
of the test corpus (words 1 toi −1) and mix this with our conventionalN-gram. We
might use only a shorter window from the previous words, rather than the entire set.
Cache language models are very powerful in any applicationswhere we have perfect
knowledge of the words. Cache models work less well in domains where the previous
words are not known exactly. In speech applications, for example, unless there is some
way for users to correct errors, cache models tend to “lock in” errors they made on
earlier words.

The fact that words are often repeated in a text is a symptom ofa more general
fact about words; texts tend to beabout things. Documents which are about particular
topics tend to use similar words. This suggests that we couldtrain separate language
models for different topics. Intopic-basedlanguage models (Chen et al., 1998; GildeaTOPICBASED

and Hofmann, 1999), we try to take advantage of the fact that different topics will have
different kinds of words. For example we can train differentlanguage models for each
topic t, and then mix them, weighted by how likely each topic is giventhe historyh:

p(w|h) = ∑
t

P(w|t)P(t|h)(4.53)

A very similar class of models relies on the intuition that upcoming words are se-
mantically similar to preceding words in the text. These models use a measure of
semantic word association such as thelatent semantic indexingdescribed in Ch. 20LATENT SEMANTIC

INDEXING

(Coccaro and Jurafsky, 1998; Bellegarda, 1999, 2000), or on-line dictionaries or the-
sauri (Demetriou et al., 1997) to compute a probability based on a word’s similarity to
preceding words, and then mix it with a conventionalN-gram.

There are also various ways to extend theN-gram model by having the previous
(conditioning) word be something other than a fixed window ofprevious words. For
example we can choose as a predictor a word called atrigger which is not adjacentTRIGGER

but which is very related (has high mutual information with)the word we are trying to
predict (Rosenfeld, 1996; Niesler and Woodland, 1999; Zhouand Lua, 1998). Or we
can createskip N-grams, where the preceding context ‘skips over’ some intermediateSKIP NGRAMS

words, for example computing a probability such asP(wi |wi−1,wi−3). We can also
use extra previous context just in cases where a longer phrase is particularly frequent
or predictive, producing avariable-length N-gram (Ney et al., 1994; Kneser, 1996;VARIABLELENGTH

NGRAM

Niesler and Woodland, 1996).
In general, using very large and rich contexts can result in very large language mod-

els. Thus these models are often pruned by removing low-probability events. Pruning
is also essential for using language models on small platforms such as cellphones (Stol-
cke, 1998; Church et al., 2007).

Finally, there is a wide body of research on integrating sophisticated linguistic
structures into language modeling. Language models based on syntactic structure from
probabilistic parsers are described in Ch. 14. Language models based on the current
speech act in dialogue are described in Ch. 24.
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4.10 ADVANCED: INFORMATION THEORY BACKGROUND

I got the horse right here
Frank Loesser,Guys and Dolls

We introduced perplexity in Sec. 4.4 as a way to evaluateN-gram models on a
test set. A betterN-gram model is one which assigns a higher probability to the test
data, and perplexity is a normalized version of the probability of the test set. Another
way to think about perplexity is based on the information-theoretic concept of cross-
entropy. In order to give another intuition into perplexityas a metric, this section gives
a quick review of fundamental facts frominformation theory including the concept
of cross-entropy that underlies perplexity. The interested reader should consult a good
information theory textbook like Cover and Thomas (1991).

Perplexity is based on the information-theoretic notion ofcross-entropy, which we
will now work toward defining.Entropy is a measure of information, and is invaluableENTROPY

throughout speech and language processing. It can be used asa metric for how much
information there is in a particular grammar, for how well a given grammar matches
a given language, for how predictive a givenN-gram grammar is about what the next
word could be. Given two grammars and a corpus, we can use entropy to tell us which
grammar better matches the corpus. We can also use entropy tocompare how difficult
two speech recognition tasks are, and also to measure how well a given probabilistic
grammar matches human grammars.

Computing entropy requires that we establish a random variableX that ranges over
whatever we are predicting (words, letters, parts of speech, the set of which we’ll call
χ), and that has a particular probability function, call itp(x). The entropy of this
random variableX is then

H(X) = −∑
x∈χ

p(x) log2 p(x)(4.54)

The log can in principle be computed in any base. If we use log base 2, the resulting
value of entropy will be measured inbits.

The most intuitive way to define entropy for computer scientists is to think of the
entropy as a lower bound on the number of bits it would take to encode a certain
decision or piece of information in the optimal coding scheme.

Cover and Thomas (1991) suggest the following example. Imagine that we want
to place a bet on a horse race but it is too far to go all the way toYonkers Racetrack,
and we’d like to send a short message to the bookie to tell him which horse to bet on.
Suppose there are eight horses in this particular race.

One way to encode this message is just to use the binary representation of the
horse’s number as the code; thus horse 1 would be001, horse 2010, horse 3011,
and so on, with horse 8 coded as000. If we spend the whole day betting, and each
horse is coded with 3 bits, on average we would be sending 3 bits per race.

Can we do better? Suppose that the spread is the actual distribution of the bets
placed, and that we represent it as the prior probability of each horse as follows:
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Horse 1 1
2 Horse 5 1

64
Horse 2 1

4 Horse 6 1
64

Horse 3 1
8 Horse 7 1

64
Horse 4 1

16 Horse 8 1
64

The entropy of the random variableX that ranges over horses gives us a lower
bound on the number of bits, and is:

H(X) = −
i=8

∑
i=1

p(i) logp(i)

= − 1
2 log 1

2− 1
4 log 1

4− 1
8 log 1

8− 1
16 log 1

16−4( 1
64 log 1

64)

= 2 bits(4.55)

A code that averages 2 bits per race can be built by using shortencodings for more
probable horses, and longer encodings for less probable horses. For example, we could
encode the most likely horse with the code0, and the remaining horses as10, then
110, 1110, 111100, 111101, 111110, and111111.

What if the horses are equally likely? We saw above that if we used an equal-length
binary code for the horse numbers, each horse took 3 bits to code, so the average was
3. Is the entropy the same? In this case each horse would have aprobability of 1

8. The
entropy of the choice of horses is then:

H(X) = −
i=8

∑
i=1

1
8

log
1
8

= − log
1
8

= 3 bits(4.56)

Until now we have been computing the entropy of a single variable. But most of
what we will use entropy for involvessequences. For a grammar, for example, we will
be computing the entropy of some sequence of wordsW = {w0,w1,w2, . . . ,wn}. One
way to do this is to have a variable that ranges over sequencesof words. For example
we can compute the entropy of a random variable that ranges over all finite sequences
of words of lengthn in some languageL as follows:

H(w1,w2, . . . ,wn) = − ∑
Wn

1 ∈L

p(Wn
1 ) logp(Wn

1 )(4.57)

We could define theentropy rate (we could also think of this as theper-wordENTROPY RATE

entropy) as the entropy of this sequence divided by the number of words:

1
n

H(Wn
1 ) = −1

n ∑
Wn

1 ∈L

p(Wn
1 ) logp(Wn

1 )(4.58)

But to measure the true entropy of a language, we need to consider sequences of
infinite length. If we think of a language as a stochastic processL that produces a
sequence of words, its entropy rateH(L) is defined as:
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H(L) = − lim
n→∞

1
n

H(w1,w2, . . . ,wn)

= − lim
n→∞

1
n ∑

W∈L
p(w1, . . . ,wn) logp(w1, . . . ,wn)(4.59)

The Shannon-McMillan-Breiman theorem (Algoet and Cover, 1988; Cover and
Thomas, 1991) states that if the language is regular in certain ways (to be exact, if it is
both stationary and ergodic),

H(L) = lim
n→∞

−1
n

logp(w1w2 . . .wn)(4.60)

That is, we can take a single sequence that is long enough instead of summing over
all possible sequences. The intuition of the Shannon-McMillan-Breiman theorem is
that a long enough sequence of words will contain in it many other shorter sequences,
and that each of these shorter sequences will reoccur in the longer sequence according
to their probabilities.

A stochastic process is said to bestationary if the probabilities it assigns to aSTATIONARY

sequence are invariant with respect to shifts in the time index. In other words, the
probability distribution for words at timet is the same as the probability distribution
at time t + 1. Markov models, and henceN-grams, are stationary. For example, in
a bigram,Pi is dependent only onPi−1. So if we shift our time index byx, Pi+x is
still dependent onPi+x−1. But natural language is not stationary, since as we will
see in Ch. 12, the probability of upcoming words can be dependent on events that
were arbitrarily distant and time dependent. Thus our statistical models only give an
approximation to the correct distributions and entropies of natural language.

To summarize, by making some incorrect but convenient simplifying assumptions,
we can compute the entropy of some stochastic process by taking a very long sample
of the output, and computing its average log probability. Inthe next section we talk
about the why and how:whywe would want to do this (i.e., for what kinds of problems
would the entropy tell us something useful), andhow to compute the probability of a
very long sequence.

4.10.1 Cross-Entropy for Comparing Models

In this section we introducecross-entropy, and discuss its usefulness in comparingCROSSENTROPY

different probabilistic models. The cross-entropy is useful when we don’t know the
actual probability distributionp that generated some data. It allows us to use somem,
which is a model ofp (i.e., an approximation top). The cross-entropy ofm on p is
defined by:

H(p,m) = lim
n→∞

−1
n ∑

W∈L
p(w1, . . . ,wn) logm(w1, . . . ,wn)(4.61)

That is, we draw sequences according to the probability distribution p, but sum the
log of their probabilities according tom.
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Again, following the Shannon-McMillan-Breimantheorem, for a stationary ergodic
process:

H(p,m) = lim
n→∞

−1
n

logm(w1w2 . . .wn)(4.62)

This means that, as for entropy, we can estimate the cross-entropy of a modelmon
some distributionp by taking a single sequence that is long enough instead of summing
over all possible sequences.

What makes the cross entropy useful is that the cross entropyH(p,m) is an upper
bound on the entropyH(p). For any modelm:

H(p) ≤ H(p,m)(4.63)

This means that we can use some simplified modelm to help estimate the true
entropy of a sequence of symbols drawn according to probability p. The more accurate
m is, the closer the cross entropyH(p,m) will be to the true entropyH(p). Thus
the difference betweenH(p,m) andH(p) is a measure of how accurate a model is.
Between two modelsm1 andm2, the more accurate model will be the one with the
lower cross-entropy. (The cross-entropy can never be lowerthan the true entropy, so a
model cannot err by underestimating the true entropy).

We are finally ready to see the relation between perplexity and cross-entropy as
we saw it in Equation (4.62). Cross-entropy is defined in the limit, as the length of
the observed word sequence goes to infinity. We will need an approximation to cross-
entropy, relying on a (sufficiently long) sequence of fixed length. This approximation
to the cross-entropy of a modelM = P(wi |wi−N+1...wi−1) on a sequence of wordsW
is:

H(W) = − 1
N

logP(w1w2 . . .wN)(4.64)

Theperplexity of a modelP on a sequence of wordsW is now formally defined as thePERPLEXITY

exp of this cross-entropy:

Perplexity(W) = 2H(W)

= P(w1w2 . . .wN)−
1
N

= N

√

1
P(w1w2 . . .wN)

= N

√

N

∏
i=1

1
P(wi |w1 . . .wi−1)

(4.65)
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4.11 ADVANCED: THE ENTROPY OFENGLISH AND ENTROPY RATE

CONSTANCY

As we suggested in the previous section, the cross-entropy of some modelm can be
used as an upper bound on the true entropy of some process. We can use this method to
get an estimate of the true entropy of English. Why should we care about the entropy
of English?

One reason is that the true entropy of English would give us a solid lower bound
for all of our future experiments on probabilistic grammars. Another is that we can use
the entropy values for English to help understand what partsof a language provide the
most information (for example, is the predictability of English mainly based on word
order, on semantics, on morphology, on constituency, or on pragmatic cues?) This can
help us immensely in knowing where to focus our language-modeling efforts.

There are two common methods for computing the entropy of English. The first
was employed by Shannon (1951), as part of his groundbreaking work in defining the
field of information theory. His idea was to use human subjects, and to construct a psy-
chological experiment that requires them to guess strings of letters. By looking at how
many guesses it takes them to guess letters correctly we can estimate the probability of
the letters, and hence the entropy of the sequence.

The actual experiment is designed as follows: we present a subject with some En-
glish text and ask the subject to guess the next letter. The subjects will use their knowl-
edge of the language to guess the most probable letter first, the next most probable next,
and so on. We record the number of guesses it takes for the subject to guess correctly.
Shannon’s insight was that the entropy of the number-of-guesses sequence is the same
as the entropy of English. (The intuition is that given the number-of-guesses sequence,
we could reconstruct the original text by choosing the “nth most probable” letter when-
ever the subject tookn guesses). This methodology requires the use of letter guesses
rather than word guesses (since the subject sometimes has todo an exhaustive search
of all the possible letters!), so Shannon computed theper-letter entropy of English
rather than the per-word entropy. He reported an entropy of 1.3 bits (for 27 characters
(26 letters plus space)). Shannon’s estimate is likely to betoo low, since it is based on a
single text (Jefferson the Virginianby Dumas Malone). Shannon notes that his subjects
had worse guesses (hence higher entropies) on other texts (newspaper writing, scien-
tific work, and poetry). More recent variations on the Shannon experiments include the
use of a gambling paradigm where the subjects get to bet on thenext letter (Cover and
King, 1978; Cover and Thomas, 1991).

The second method for computing the entropy of English helpsavoid the single-
text problem that confounds Shannon’s results. This methodis to take a very good
stochastic model, train it on a very large corpus, and use it to assign a log-probability
to a very long sequence of English, using the Shannon-McMillan-Breiman theorem:

H(English) ≤ lim
n→∞

−1
n

logm(w1w2 . . .wn)(4.66)

For example, Brown et al. (1992a) trained a trigram languagemodel on 583 million
words of English (293,181 different types) and used it to compute the probability of
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the entire Brown corpus (1,014,312 tokens). The training data include newspapers,
encyclopedias, novels, office correspondence, proceedings of the Canadian parliament,
and other miscellaneous sources.

They then computed the character entropy of the Brown corpusby using their word-
trigram grammar to assign probabilities to the Brown corpus, considered as a sequence
of individual letters. They obtained an entropy of 1.75 bits per character (where the set
of characters included all the 95 printable ASCII characters).

The average length of English written words (including space) has been reported
at 5.5 letters (Nádas, 1984). If this is correct, it means that the Shannon estimate of
1.3 bits per letter corresponds to a per-word perplexity of 142 for general English. The
numbers we report earlier for the WSJ experiments are significantly lower than this,
since the training and test set came from the same subsample of English. That is, those
experiments underestimate the complexity of English (since the Wall Street Journal
looks very little like Shakespeare, for example)

A number of scholars have independently made the intriguingsuggestion that en-
tropy rate plays a role in human communication in general (Lindblom, 1990; Van Son
et al., 1998; Aylett, 1999; Genzel and Charniak, 2002; Van Son and Pols, 2003). The
idea is that people speak so as to keep the rate of informationbeing transmitted per
second roughly constant, i.e., transmitting a constant number of bits per second, or
maintaining a constant entropy rate. Since the most efficient way of transmitting in-
formation through a channel is at a constant rate, language may even have evolved
for such communicative efficiency (Plotkin and Nowak, 2000). There is a wide vari-
ety of evidence for the constant entropy rate hypothesis. One class of evidence, for
speech, shows that speakers shorten predictable words (i.e., they take less time to say
predictable words) and lengthen unpredictable words (Aylett, 1999; Jurafsky et al.,
2001; Aylett and Turk, 2004). In another line of research, Genzel and Charniak (2002,
2003) show that entropy rate constancy makes predictions about the entropy of individ-
ual sentences from a text. In particular, they show that it predicts that local measures
of sentence entropy which ignore previous discourse context (for example theN-gram
probability of sentence), should increase with the sentence number, and they document
this increase in corpora. Keller (2004) provides evidence that entropy rate plays a role
for the addressee as well, showing a correlation between theentropy of a sentence
and the processing effort it causes in comprehension, as measured by reading times in
eye-tracking data.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The underlying mathematics of theN-gram was first proposed by Markov (1913), who
used what are now calledMarkov chains (bigrams and trigrams) to predict whether an
upcoming letter in Pushkin’sEugene Oneginwould be a vowel or a consonant. Markov
classified 20,000 letters as V or C and computed the bigram andtrigram probability that
a given letter would be a vowel given the previous one or two letters. Shannon (1948)
appliedN-grams to compute approximations to English word sequences. Based on
Shannon’s work, Markov models were commonly used in engineering, linguistic, and
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psychological work on modeling word sequences by the 1950s.
In a series of extremely influential papers starting with Chomsky (1956) and in-

cluding Chomsky (1957) and Miller and Chomsky (1963), Noam Chomsky argued that
“finite-state Markov processes”, while a possibly useful engineering heuristic, were in-
capable of being a complete cognitive model of human grammatical knowledge. These
arguments led many linguists and computational linguists to ignore work in statistical
modeling for decades.

The resurgence ofN-gram models came from Jelinek, Mercer, Bahl, and colleagues
at the IBM Thomas J. Watson Research Center, who were influenced by Shannon, and
Baker at CMU, who was influenced by the work of Baum and colleagues. Indepen-
dently these two labs successfully usedN-grams in their speech recognition systems
(Baker, 1990; Jelinek, 1976; Baker, 1975; Bahl et al., 1983;Jelinek, 1990). A trigram
model was used in the IBM TANGORA speech recognition system in the 1970s, but
the idea was not written up until later.

Add-one smoothing derives from Laplace’s 1812 law of succession, and was first
applied as an engineering solution to the zero-frequency problem by Jeffreys (1948)
based on an earlier Add-K suggestion by Johnson (1932). Problems with the Add-one
algorithm are summarized in Gale and Church (1994). The Good-Turing algorithm was
first applied to the smoothing ofN-gram grammars at IBM by Katz, as cited in Nádas
(1984). Church and Gale (1991) give a good description of theGood-Turing method,
as well as the proof. Sampson (1996) also has a useful discussion of Good-Turing.
Jelinek (1990) summarizes this and many other early language model innovations used
in the IBM language models.

A wide variety of different language modeling and smoothingtechniques were
tested through the 1980’s and 1990’s, including Witten-Bell discounting (Witten and
Bell, 1991), varieties of class-based models (Jelinek, 1990; Kneser and Ney, 1993;
Heeman, 1999; Samuelsson and Reichl, 1999), and others (Gupta et al., 1992). In
the late 1990’s, Chen and Goodman produced a very influentialseries of papers with
a comparison of different language models (Chen and Goodman, 1996, 1998, 1999;
Goodman, 2006). They performed a number of carefully controlled experiments com-
paring different discounting algorithms, cache models, class-based (cluster) models,
and other language model parameters. They showed the advantages of Interpolated
Kneser-Ney, which has since become one of the most popular current methods for
language modeling. These papers influenced our discussion in this chapter, and are
recommended reading if you have further interest in language modeling.

As we suggested earlier in the chapter, recent research in language modeling has fo-
cused on adaptation, on the use of sophisticated linguisticstructures based on syntactic
and dialogue structure, and on very very largeN-grams. For example in 2006, Google
publicly released a very large set ofN-grams that is a useful research resource, consist-
ing of all the five-word sequences that appear at least 40 times from 1,024,908,267,229
words of running text; there are 1,176,470,663 five-word sequences using over 13 mil-
lion unique words types (Franz and Brants, 2006). Large language models generally
need to be pruned to be practical, using techniques such as Stolcke (1998) and Church
et al. (2007).
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4.12 SUMMARY

This chapter introduced theN-gram, one of the oldest and most broadly useful practical
tools in language processing.

• An N-gram probability is the conditional probability of a word given the previous
N− 1 words. N-gram probabilities can be computed by simply counting in a
corpus and normalizing (theMaximum Likelihood Estimate ) or they can be
computed by more sophisticated algorithms. The advantage of N-grams is that
they take advantage of lots of rich lexical knowledge. A disadvantage for some
purposes is that they are very dependent on the corpus they were trained on.

• Smoothingalgorithms provide a better way of estimating the probability of N-
grams than Maximum Likelihood Estimation. Commonly usedN-gram smooth-
ing algorithms rely on lower-orderN-gram counts viabackoff or interpolation .

• Both backoff and interpolation require discounting such asKneser-Ney, Witten-
Bell or Good-Turing discounting.

• N-gramlanguage modelsare evaluated by separating the corpus into atraining
setand atest set, training the model on the training set, and evaluating on the test
set. Theperplexity 2H of of the language model on a test set is used to compare
language models.

EXERCISES

4.1 Write out the equation for trigram probability estimation (modifying Eq. 4.14).

4.2 Write a program to compute unsmoothed unigrams and bigrams.

4.3 Run yourN-gram program on two different small corpora of your choice (you
might use email text or newsgroups). Now compare the statistics of the two corpora.
What are the differences in the most common unigrams betweenthe two? How about
interesting differences in bigrams?

4.4 Add an option to your program to generate random sentences.

4.5 Add an option to your program to do Good-Turing discounting.

4.6 Add an option to your program to implement Katz backoff.

4.7 Add an option to your program to compute the perplexity of a test set.

4.8 (Adapted from Michael Collins). Prove Equation (4.27) given Equation (4.26)
and any necessary assumptions. That is, show that given a probability distribution
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defined by the GT formula in Equation (4.26) for theN items seen in training, that the
probability of the next, (i.e.N + 1st) item being unseen in training can be estimated
by Equation (4.27). You may make any necessary assumptions for the proof, including
assuming that allNc are non-zero.

4.9 (Advanced) Suppose someone took all the words in a sentence and reordered
them randomly. Write a program which take as input such abag of words and pro-BAG OF WORDS

duces as output a guess at the original order. You will need toan N-gram grammar
produced by yourN-gram program (on some corpus), and you will need to use the
Viterbi algorithm introduced in the next chapter. This taskis sometimes calledbag
generation.BAG GENERATION

4.10 The field ofauthorship attribution is concerned with discovering the authorAUTHORSHIP
ATTRIBUTION

of a particular text. Authorship attribution is important in many fields, including his-
tory, literature, and forensic linguistics. For example Mosteller and Wallace (1964)
applied authorship identification techniques to discover who wroteThe Federalistpa-
pers. The Federalist papers were written in 1787-1788 by Alexander Hamilton, John
Jay and James Madison to persuade New York to ratify the United States Constitution.
They were published anonymously, and as a result, although some of the 85 essays
were clearly attributable to one author or another, the authorship of 12 were in dispute
between Hamilton and Madison. Foster (1989) applied authorship identification tech-
niques to suggest that W.S.’sFuneral Elegyfor William Peter might have been written
by William Shakespeare (he turned out to be wrong on this one), and that the anony-
mous author ofPrimary Colors, the roman à clef about the Clinton campaign for the
American presidency, was journalist Joe Klein (Foster, 1996).

A standard technique for authorship attribution, first usedby Mosteller and Wal-
lace, is a Bayesian approach. For example, they trained a probabilistic model of the
writing of Hamilton and another model on the writings of Madison, then computed the
maximum-likelihood author for each of the disputed essays.There are many complex
factors that go into these models, including vocabulary use, word length, syllable struc-
ture, rhyme, grammar; see Holmes (1994) for a summary. This approach can also be
used for identifying which genre a text comes from.

One factor in many models is the use of rare words. As a simple approximation
to this one factor, apply the Bayesian method to the attribution of any particular text.
You will need three things: a text to test and two potential authors or genres, with a
large on-line text sample of each. One of them should be the correct author. Train
a unigram language model on each of the candidate authors. You are only going to
use thesingletonunigrams in each language model. You will computeP(T|A1), the
probability of the text given author or genreA1, by (1) taking the language model from
A1, (2) by multiplying together the probabilities of all the unigrams that only occur once
in the “unknown” text and (3) taking the geometric mean of these (i.e., thenth root,
wheren is the number of probabilities you multiplied). Do the same for A2. Choose
whichever is higher. Did it produce the correct candidate?
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Kučera, H. (1992). The mathematics of language. InThe Amer-
ican Heritage Dictionary of the English Language, pp. xxxi–
xxxiii. Houghton Mifflin, Boston.
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