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N-GRAMS

But it must be recognized that the notion “probability of anse
tence” is an entirely useless one, under any known integpie
of this term.

Noam Chomsky (1969, p. 57)

Anytime a linguist leaves the group the recognition ratexgae.
Fred Jelinek (then of the IBM speech group) (1988)

Being able to predict the future is not always a good thingssaadra of Troy had
the gift of fore-seeing, but was cursed by Apollo that hedmons would never be
believed. Her warnings of the destruction of Troy were igband to simplify, let’s
just say that things just didn’t go well for her later.

Predicting words seems somewhat less fraught, and in thajstenhwe take up this
idea of word prediction. What word, for example, is likelyfedlow:

Please turn your homework ...

Hopefully most of you concluded that a very likely wordits or possiblyover,
WORD PREDICTION but probably nothe We formalize this idea ofvord prediction with probabilistic
N-GRAM MODELS models calledN-gram models which predict the next word from the previobis— 1
LANGUAGEMoDELs  words. Such statistical models of word sequences are allgnl tanguage modelor
LMS LMs. Computing the probability of the next word will turn out te lelosely related
to computing the probability of a sequence of words. Theofeihg sequence, for
example, has a non-zero probability of appearing in a text:

...all of a sudden I notice three guys standing on the sidewal

while this same set of words in a different order has a verygosbability:

on guys all | of notice sidewalk three a sudden standing the

1 This wording from his address is as recalled by Jelinek hifimthee quote didn’t appear in the proceed-
ings (Palmer and Finin, 1990). Some remember a more snappioneEvery time | fire a linguist the
performance of the recognizer improves
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AUGMENTATIVE
COMMUNICATION

As we will see, estimators likbl-grams that assign a conditional probability to
possible next words can be used to assign a joint probaltdign entire sentence.
Whether estimating probabilities of next words or of whodgjgences, thél-gram
model is one of the most important tools in speech and largpearessing.

N-grams are essential in any task in which we have to identiyd® in noisy,
ambiguous input. Ispeech recognitionfor example, the input speech sounds are very
confusable and many words sound extremely similar. RuaséllNorvig (2002) give
an intuition fromhandwriting recognition for how probabilities of word sequences
can help. In the movigdake the Money and RuWoody Allen tries to rob a bank with
a sloppily written hold-up note that the teller incorreathads as “I have a gub”. Any
speech and language processing system could avoid maksngigtake by using the
knowledge that the sequence “I have a gun” is far more prehihlain the non-word “|
have a gub” or even “l have a gull”.

N-gram models are also essential in statistioakhine translation. Suppose we
are translating a Chinese source sentefft 1 ic # /048 17 iz Wi E2 N4 and as
part of the process we have a set of potential rough Engbststations:

he briefed to reporters on the chief contents of the statemen
he briefed reporters on the chief contents of the statement
he briefed to reporters on the main contents of the statement
he briefed reporters on the main contents of the statement

An N-gram grammar might tell us that, even after controllingléargth, briefed
reportersis more likely tharbriefed to reportersandmain contentss more likely than
chief contents This lets us select the bold-faced sentence above as thteflonerst
translation sentence, i.e. the one that has the highesabpiti.

In spelling correction, we need to find and correct spelling errors like the follayvin
(from Kukich (1992)) that accidentally result in real Erggliwords:

They are leaving in about fifteaninuetsto go to her house.
The desigran construction of the system will take more than a year.

Since these errors have real words, we can't find them by jaggiihg words that
are not in the dictionary. But note thiatabout fifteen minuets a much less probable
sequence thaim about fifteen minutesA spellchecker can use a probability estimator
both to detect these errors and to suggest higher-protyadmlirections.

Word prediction is also important faugmentative communication(Newell et al.,
1998) systems that help the disabled. People who are urabisct speech or sign-
language to communicate, like the physicist Steven Hawkoagn communicate by
using simple body movements to select words from a menu tieaspoken by the
system. Word prediction can be used to suggest likely wardghe menu.

Besides these sample arellsgrams are also crucial in NLP tasks lipart-of-
speech tagging natural language generation andword similarity , as well as in
applications fromauthorship identification and sentiment extractionto predictive
text input systems for cell phones.
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4.1 COUNTING WORDS INCORPORA

CORPUS
CORPORA

UTTERANCE

DISFLUENCIES
FRAGMENT
FILLERS
FILLED PAUSES

[upon being asked if there weren’t enough words in the Ehdéinguage for him]:
“Yes, there are enough, but they aren’t the right ones”
James Joyce, reported in Bates (1997)

Probabilities are based on counting things. Before we tatuaprobabilities, we
need to decide what we are going to count. Counting of thingstural language is
based on &orpus (plural corpora), an on-line collection of text or speech. Let’s look
at two popular corpora, Brown and Switchboard. The Browmpuasiis a 1 million word
collection of samples from 500 written texts from differgeinres (newspaper, novels,
non-fiction, academic, etc.), assembled at Brown Univeisitl963-64 (Kucera and
Francis, 1967; Francis, 1979; Francis and Kucera, 1988} fany words are in the
following Brown sentence?

(4.1) He stepped out into the hall, was delighted to encawanteater brother.

Example (4.1) has 13 words if we don’t count punctuation rma% words, 15 if
we count punctuation. Whether we treat period)(‘comma (*,"), and so on as words
depends on the task. Punctuation is critical for finding luauwies of things (com-
mas, periods, colons), and for identifying some aspectseznimg (question marks,
exclamation marks, quotation marks). For some tasks, liteqf-speech tagging or
parsing or speech synthesis, we sometimes treat punciuaiioks as if they were
separate words.

The Switchboard corpus of telephone conversations betwgangers was col-
lected in the early 1990s and contains 2430 conversaticgraging 6 minutes each,
totaling 240 hours of speech and about 3 million words (Gaydét al., 1992). Such
corpora of spoken language don't have punctuation, but tlodace other complica-
tions with regard to defining words. Let’s look at one utte@from Switchboard; an
utteranceis the spoken correlate of a sentence:

(4.2) 1do uh main- mainly business data processing

This utterance has two kinds dfsfluencies The broken-off wordnain-is called
a fragment. Words likeuh andum are calledfillers or filled pauses Should we
consider these to be words? Again, it depends on the applicdt we are building an
automatic dictation system based on automatic speechmiimrg we might want to
eventually strip out the disfluencies.

But we also sometimes keep disfluencies around. How disfligrrson is can
be used to identify them, or to detect whether they are sicessconfused. Disfluen-
cies also often occur with particular syntactic structusssthey may help in parsing
and word prediction. Stolcke and Shriberg (1996) found f@meple that treatingh
as a word improves next-word prediction (why might this be®d so most speech
recognition systems treah andumas words’

Are capitalized tokens lik€heyand uncapitalized tokens likbeythe same word?
These are lumped together in speech recognition, whileddrqf-speech-tagging cap-

2 Clark and Fox Tree (2002) showed thétandumhave different meanings. What do you think they are?
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WORDFORM

TYPES
TOKENS

italization is retained as a separate feature. For the feéktsochapter we will assume
our models are not case-sensitive.

How about inflected forms likeatsversuscat? These two words have the same
lemma cat but are different wordforms. Recall from Ch. 3 that a lemma et of
lexical forms having the same stem, the same major pampeéch, and the same
word-sense. Thevordform is the full inflected or derived form of the word. For
morphologically complex languages like Arabic we oftendhée deal with lemmati-
zation. N-grams for speech recognition in English, however, andnalexamples in
this chapter, are based on wordforms.

As we can sed\-gram models, and counting words in general, requires teatav
the kind of tokenization or text normalization that we irtozed in the previous chap-
ter: separating out punctuation, dealing with abbrevietitke m.p.h, normalizing
spelling, and so on.

How many words are there in English? To answer this questiemeed to dis-
tinguishtypes the number of distinct words in a corpus or vocabulary $izérom
tokens, the total numbeN of running words. The following Brown sentence has 16
tokens and 14 types (not counting punctuation):

(4.3) They picnicked by the pool, then lay back on the grass ancelbal the stars.

The Switchboard corpus has about 20,000 wordform typesn(&bout 3 million
wordform tokens) Shakespeare’s complete works have 23@86form types (from
884,647 wordform tokens) (Kucera, 1992) The Brown corpas 61,805 wordform
types from 37,851 lemma types (from 1 million wordform tokgn Looking at a
very large corpus of 583 million wordform tokens, Brown et @992a) found that
it included 293,181 different wordform types. Dictionaiean help in giving lemma
counts; dictionary entries, droldface formsare a very rough upper bound on the
number of lemmas (since some lemmas have multiple boldtacesf). The American
Heritage Dictionary lists 200,000 boldface forms. It sedikesthe larger corpora we
look at, the more word types we find. In general (Gale and Ghur@90) suggest that
the vocabulary size (the number of types) grows with at ld@stsquare root of the
number of tokens (i.e/ > O(v/N).

In the rest of this chapter we will continue to distinguishvioeen types and tokens,
using “types” to mean wordform types.

4.2 SMPLE (UNSMOOTHED) N-GRAMS

(4.4)

Let’s start with some intuitive motivations fdi-grams. We assume that the reader has
acquired some very basic background in probability the@y. goal is to compute the
probability of a wordw given some historyn, or P(w|h). Suppose the histotyis “its
water is so transparent thaand we want to know the probability that the next word is
the

P(thelits water is so transparent that

How can we compute this probability? One way is to estimdtetit relative frequency
counts. For example, we could take a very large corpus, dbentumber of times we
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seethe water is so transparent thand count the number of times this is followed by
the This would be answering the question “Out of the times we thasistoryh, how
many times was it followed by the wosd’, as follows:

P(thelits water is so transparent that
C(its water is so transparent that the
C(its water is so transparent that

(4.5)

With a large enough corpus, such as the web, we can compuge tloeints, and
estimate the probability from Equation (4.5). You shouldsmnow, go to the web and
compute this estimate for yourself.

While this method of estimating probabilities directly finccounts works fine in
many cases, it turns out that even the web isn't big enouglivious good estimates
in most cases. This is because language is creative; neensestare created all the
time, and we won't always be able to count entire sentencesn EBimple extensions
of the example sentence may have counts of zero on the welb ésu?valden Pond’s
water is so transparent that the

Similarly, if we wanted to know the joint probability of antme sequence of words
like its water is so transparentve could do it by asking “out of all possible sequences
of 5 words, how many of them aiies water is so transparefit We would have to
get the count ofts water is so transparenand divide by the sum of the counts of all
possible 5 word sequences. That seems rather a lot to estimat

For this reason, we’ll need to introduce cleverer ways dfresting the probability
of a wordw given a historyh, or the probability of an entire word sequentfe Let's
start with a little formalizing of notation. In order to reggent the probability of a
particular random variabl¥; taking on the value “the”, oP(X; = “the”), we will use
the simplificationP(the). We'll represent a sequence Nfwords either asvy ... Wy
orwj. For the joint probability of each word in a sequence havinmsicular value
PX=wy,Y =wp,Z=ws,....) we'll use P(wy, Wy, ..., Wp).

Now how can we compute probabilities of entire sequenceHikwy, wa, ..., w,)?
One thing we can do is to decompose this probability usingttaén rule of proba-
bility :

(X2|X1) (Xsle)...P(xn|xer

P(X1...%n) P(X1
ﬁ P(XXK

(4.6)

Applying the chain rule to words, we get:

P(WY) = P(wi)P(Wz|w1)P(wslwj) ... P(wn|w] )

I_l Wk|V\)( 1

4.7)

The chain rule shows the link between computing the joinbphility of a sequence
and computing the conditional probability of a word giverewous words. Equation
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BIGRAM

(4.8)

(4.9)

(4.10)

MARKOV

N-GRAM

(4.11)

(4.12)

MAXIMUM
LIKELIHOOD
ESTIMATION

MLE

NORMALIZING

(4.7) suggests that we could estimate the joint probabdftan entire sequence of
words by multiplying together a number of conditional prbitides. But using the
chain rule doesn't really seem to help us! We don’t know any weacompute the
exact probability of a word given a long sequence of precgamnrds,P(wn|V\/‘1*1).
As we said above, we can't just estimate by counting the nummihbtmes every word
occurs following every long string, because language istore and any particular
context might have never occurred before!

The intuition of theN-gram model is that instead of computing the probability of
a word given its entire history, we wilipproximate the history by just the last few
words.

The bigram model, for example, approximates the probability of a worcigy
all the previous wordP(wn|va1) by using only the conditional probability of the
preceding wordP(wn|wnh_1). In other words, instead of computing the probability

P(thegWalden Pond’s water is so transparent that
we approximate it with the probability

P(thdthat)

When we use a bigram model to predict the conditional prditabf the next word
we are thus making the following approximation:

P(Wn |\Nn:|_71) ~ P(Wn |anl)

This assumption that the probability of a word depends onlyhe previous word
is called aMarkov assumption. Markov models are the class of probabilistideto
that assume that we can predict the probability of some éutnit without looking too
far into the past. We can generalize the bigram (which loglesword into the past) to
the trigram (which looks two words into the past) and thuseN-gram (which looks
N — 1 words into the past).

Thus the general equation for thiNsgram approximation to the conditional proba-
bility of the next word in a sequence is:

P(Wn|wj ) ~ P(Wn|W2:h+1)

Given the bigram assumption for the probability of an indial word, we can
compute the probability of a complete word sequence by gubsy Equation (4.10)
into Equation (4.7):

n
P(wi) ~ [ P(wi|Wi-1)
k=1
How do we estimate these bigramMgram probabilities? The simplest and most
intuitive way to estimate probabilities is calléthximum Likelihood Estimation, or
MLE . We get the MLE estimate for the parameters ofNugram model by taking
counts from a corpus, ambrmalizing them so they lie between 0 and 1.
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For example, to compute a particular bigram probability efaad y given a previ-
ous wordx, we’ll compute the count of the bigra@(xy) and normalize by the sum of
all the bigrams that share the same first ward

C(an:]_Wn)
> wC(Wn-1w)
We can simplify this equation, since the sum of all bigramrdeuhat start with a

given wordw,_1 must be equal to the unigram count for that wagd 1. (The reader
should take a moment to be convinced of this):

(4.13) P(Wn|Wn-1) =

C(Wn—1Wn)
C(anl)

Let's work through an example using a mini-corpus of thredesgces. We'll first
need to augment each sentence with a special syribol at the beginning of the
sentence, to give us the bigram context of the first word. Méslo need a special
end-symbok/ s>.4

(414) P(Wn|Wn71) =

<s> | am Sam </ s>
<s> Sam | am </s>
<s> 1 do not |ike green eggs and ham </ s>

Here are the calculations for some of the bigram probadisliiom this corpus
P(I | <s>) =% = .67 P(Sam <s>):%: 33 Plan1)=%=.67
P(</s> Sam=3=05 P(Sanfjam=3=.5 P(do|1)=%=.33

For the general case of MLE-gram parameter estimation:

C(WR:iIHW”)
CWhN+1)
Equation 4.15 (like equation 4.14) estimatesithgram probability by dividing the

observed frequency of a particular sequence by the obs&rauency of a prefix. This

FRECUAINE  ratio is called aelative frequency. We said above that this use of relative frequencies
as a way to estimate probabilities is an example of Maximukelifiood Estimation or
MLE. In Maximum Likelihood Estimation, the resulting paratar set maximizes the
likelihood of the training s€t given the modeM (i.e.,P(T|M)). For example, suppose
the word Chineseoccurs 400 times in a corpus of a million words like the Brown
corpus. What is the probability that a random word selectechfsome other text of
say a miIIion words will be the wor€hines® The MLE estimate of its probability
is 1000000or .0004. Now.0004 is not the best possible estimate of the probability of
Chineseoccurring in all situations; it might turn out that in some I@ER corpus or
contextChineseis a very unlikely word. But it is the probability that makesmost

(4.15) P(Wn Wi 3 1) =

n—

3 For probabilistic models, normalizing means dividing byngototal count so that the resulting probabili-
ties fall legally between 0 and 1.

4 As Chen and Goodman (1998) point out, we need the end-symbmbke the bigram grammar a true
probability distribution. Without an end-symbol, the samte probabilities for all sentences of a given length
would sum to one, and the probability of the whole languagelvbe infinite.
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likely that Chinese will occur 400 times in a million-word corpuse Will see ways to
modify the MLE estimates slightly to get better probabikstimates in Sec. 4.5.

Let's move on to some examples from a slightly larger corfmas tour 14-word
example above. We'll use data from the now-defunct Berk&egtaurant Project,
a dialogue system from the last century that answered qusséibout a database of
restaurants in Berkeley, California (Jurafsky et al., )9%ere are some sample user
queries, lowercased and with no punctuation (a represemtatrpus of 9332 sentences
is on the website):

can you tell me about any good cantonese restaurants close by
mid priced thai food is what i'm looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are avaéabl
i'm looking for a good place to eat breakfast

when is caffe venezia open during the day

Fig. 4.1 shows the bigram counts from a piece of a bigram granfrom the Berke-
ley Restaurant Project. Note that the majority of the vahreszero. In fact, we have
chosen the sample words to cohere with each other; a mateigted from a random
set of seven words would be even more sparse.

| | i | want|] to | eat | chinese] food | lunch | spend]|
[ 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese| 1 0 0 0 0 82 1 0
food 15| 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
Figure 4.1  Bigram counts for eight of the words (out ¥f= 1446) in the Berkeley
Restaurant Project corpus of 9332 sentences.

Fig. 4.2 shows the bigram probabilities after normaliza{idividing each row by
the following unigram counts):

i want to eat chinese | food lunch spend
2533 927 2417 746 158 1093 341 278

Here are a few other useful probabilities:

P(i | <s>)=0.25 P(engl i sh| want ) =0.0011
P(f ood| engli sh)=05 P(</s>| food)=0.68

Now we can compute the probability of sentenceslikant English foodr | want
Chinese foody simply multiplying the appropriate bigram probabilgitogether, as
follows:
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TRIGRAM

| i | want| to | eat [ chinese| food | lunch | spend |
i 0.002 0.33| 0 0.0036 0 0 0 0.00079

want 0.0022 | O 0.66 0.0011] 0.0065 | 0.0065 0.0054{ 0.0011

to 0.00083 0O 0.0017| 0.28 0.00083 O 0.0025| 0.087
eat 0 0 0.0027, 0 0.021 0.0027, 0.056 | O
chinesg| 0.0063 | 0 0 0 0 0.52 0.0063 0

food 0.014 0 0.014 | 0 0.00092 0.0037, O 0

lunch 0.0059 | O 0 0 0 0.0029 0 0
spend || 0.0036 | O 0.0036 0 0 0 0 0
Figure 4.2  Bigram probabilities for eight words in the Berkeley Restant Project cor-
pus of 9332 sentences.

P(<s> i want english food </s>)
= P(i | <s>)P(want | | )P(engl i sh| want )
P(f ood| engl i sh)P(</ s>| f ood)
= .25%.33x.0011x 0.5x 0.68
= =.000031

We leave it as an exercise for the reader to compute the pitipab i want chinese
food But that exercise does suggest that we'll want to think abdaut what kinds of
linguistic phenomena are captured in bigrams. Some of tivi probabilities above
encode some facts that we think of as strictly syntactic tnnealike the fact that what
comes afteeatis usually a noun or an adjective, or that what comes #ftisrusually a
verb. Others might be more cultural than linguistic, like tbw probability of anyone
asking for advice on finding English food.

Although we will generally show bigram models in this chadta pedagogical
purposes, note that when there is sufficient training dataareemore likely to use
trigram models, which condition on the previous two words rathenttie previous
word. To compute trigram probabilities at the very begignif sentence, we can use
two pseudo-words for the first trigram (i.€(] | <s><s>).

4.3 TRAINING AND TESTSETS

TRAINING SET
TEST SET

The N-gram model is a good example of the kind of statistical medieat we will
be seeing throughout speech and language processing. dtheiities of arN-gram
model come from the corpus it is trained on. In general, thrarpaters of a statistical
model are trained on some set of data, and then we apply thelstodsome new data
in some task (such as speech recognition) and see how welivibid. Of course this
new data or task won't be the exact same data we trained on.

We can formalize this idea of training on some data, andrigstn some other
data by talking about these two data sets &raiaing set and atest set(or atraining
corpus and atest corpug. Thus when using a statistical model of language given
some corpus of relevant data, we start by dividing the ddtatimaining and test sets.



10

Chapter 4. N-grams

EVALUATE

HELD-OUT

DEVELOPMENT

We train the statistical parameters of the model on theitrgiset, and then use this
trained model to compute probabilities on the test set.

This training-and-testing paradigm can also be usesivauatedifferentN-gram
architectures. Suppose we want to compare different lagggoeodels (such as those
based orN-grams of different ordernl, or using the differensmoothing algorithms
to be introduced in Sec. 4.5). We can do this by taking a cogmalsdividing it into
a training set and a test set. Then we train the two diffekegram models on the
training set and see which one better models the test setwBalt does it mean to
“model the test set™? There is is a useful metric for how wejheaen statistical model
matches a test corpus, calleérplexity, introduced on page 13. Perplexity is based on
computing the probability of each sentence in the test stifitively, whichever model
assigns a higher probability to the test set (hence moreatsty predicts the test set)
is a better model.

Since our evaluation metric is based on test set probahilgymportant not to let
the test sentences into the training set. Suppose we amg toycompute the probability
of a particular “test” sentence. If our test sentence is@ftte training corpus, we will
mistakenly assign it an artificially high probability whetroiccurs in the test set. We
call this situatiortraining on the test set Training on the test set introduces a bias that
makes the probabilities all look too high and causes hugimacies in perplexity.

In addition to training and test sets, other divisions obdate often useful. Some-
times we need an extra source of data to augment the traieingsich extra data is
called aheld-out set, because we hold it out from our training set when we wain
N-gram counts. The held-out corpus is then used to set soreemdhameters; for ex-
ample we will see the use of held-out data to set interpaiatieights ininterpolated
N-gram models in Sec. 4.6. Finally, sometimes we need to havtihe test sets. This
happens because we might use a particular test set so oftewehimplicitly tune to
its characteristics. Then we would definitely need a freshget which is truly unseen.
In such cases, we call the initial test set ttevelopmenttest set ordevset We will
discuss development test sets again in Ch. 5.

How do we divide our data into training, dev, and test sets&¥d'ts a tradeoff, since
we want our test set to be as large as possible and a smalétenty be accidentally
unrepresentative. On the other hand, we want as much tgadisita as possible. At the
minimum, we would want to pick the smallest test set that give enough statistical
power to measure a statistically significant differenceveen two potential models.
In practice, we often just divide our data into 80% trainii§% development, and
10% test. Given a large corpus that we want to divide intaingj and test, test data
can either be taken from some continuous sequence of teégeitise corpus, or we
can remove smaller “stripes” of text from randomly seleqgbedts of our corpus and
combine them into a test set.

4.3.1 N-gram Sensitivity to the Training Corpus

The N-gram model, like many statistical models, is very depehdenthe training
corpus. One implication of this is that the probabilitieseofencode very specific facts
about a given training corpus. Another implication is thegrams do a better and
better job of modeling the training corpus as we increasedhe ofN.
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We can visualize both of these facts by borrowing the teamm@f Shannon (1951)
and Miller and Selfridge (1950), of generating random secds from differeniN-
gram models. It's simplest to visualize how this works fag tinigram case. Imagine
all the words of English covering the probability space kesw 0 and 1, each word
covering an interval equal to its frequency. We choose agamnealue between 0 and
1, and print out the word whose interval includes the realeale have chosen. We
continue choosing random numbers and generating wordsaetandomly generate
the sentence-final tokexy s>. The same technique can be used to generate bigrams
by first generating a random bigram that starts wigh» (according to its bigram prob-
ability), then choosing a random bigram to follow it (againcording to its conditional
probability), and so on.

To give an intuition for the increasing power of higher-ardegrams, Fig. 4.3
shows random sentences generated from unigram, bigragrartyj and quadrigram
models trained on Shakespeare’s works.

e To him swallowed confess hear both. Which. Of save on traibfe ay device and
rote life have

e Every enter now severally so, let

e Hill he late speaks; or! a more to leg less first you enter
e Are where exeunt and sighs have rise excellency took ofepgSteave we. near; vile
like

e What means, sir. | confess she? then all sorts, he is trintaicap
e\Why dost stand forth thy canopy, forsooth; he is this palgdit the King Henry. Live
king. Follow.
e\What we, hath got so she that | rest and sent to scold and rtzdnfeupt, nor the firgt
gentleman?
eEnter Menenius, if it so many good direction found’st thoteastrong upon commarjd
of fear not a liberal largess given away, Falstaff! Exeunt

e Sweet prince, Falstaff shall die. Harry of Monmouth'’s grave

Unigram

Bigram

g e This shall forbid it should be branded, if renown made it gmpt
-g e Indeed the duke; and had a very good friend.
e Fly, and will rid me these news of price. Therefore the saslioéparting, as they say,
~ tisdone.
5 e King Henry. What! | will go seek the traitor Gloucester. Erésome of the watch. A
2 great banquet servd in;
8 e Will you not tell me who | am?
& e Itcannot be but so.

e Indeed the short and the long. Marry, 'tis a noble Lepidus.

Figure 4.3  Sentences randomly generated from fdligram models computed fronj
Shakespeare’s works. All characters were mapped to lovser @ad punctuation marks
were treated as words. Output was hand-corrected for ¢izpiian to improve readability.

The longer the context on which we train the model, the mofepent the sen-
tences. In the unigram sentences, there is no coherenbrebatween words, nor any
sentence-final punctuation. The bigram sentences have wempéocal word-to-word
coherence (especially if we consider that punctuation toas a word). The trigram
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and quadrigram sentences are beginning to look a lot lik&e&peeare. Indeed a care-
ful investigation of the quadrigram sentences shows theyt thok a little too much
like Shakespeare. The worttcannot be but sare directly fromKing John This is
because, not to put the knock on Shakespeare, his oeuvrevenydarge as corpora
go (N = 884,647V = 29,066), and oulN-gram probability matrices are ridiculously
sparse. There ak&? = 844 000,000 possible bigrams alone, and the number of possi-
ble quadrigrams i¥/* = 7 x 10'. Thus once the generator has chosen the first quadri-
gram (t cannot be byt there are only five possible continuatiotisaf, I, he thou and
s0); indeed for many quadrigrams there is only one continnatio

To get an idea of the dependence of a grammar on its trainindets look at
an N-gram grammar trained on a completely different corpibe Wall Street Jour-
nal (WSJ) newspaper. Shakespeare trelWall Street Journadre both English, so
we might expect some overlap between dligrams for the two genres. In order to
check whether this is true, Fig. 4.4 shows sentences geaddrgtunigram, bigram, and
trigram grammars trained on 40 million words from WSJ.

unigram: Months the my and issue of year foreign new exchange’s séjgtemere
recession exchange new endorsed a acquire to six executives

bigram: Last December through the way to preserve the Hudson cdipod. B. E. C.
Taylor would seem to complete the major central plannerspairt five percent of U.
S. E. has already old M. X. corporation of living on infornzatisuch as more frequently
fishing to keep her

trigram: They also point to ninety nine point six billion dollars framo hundred four oh
six three percent of the rates of interest stores as Mexid@Baazil on market conditions

Figure 4.4  Sentences randomly generated from three ordeks@fam computed from
40 million words ofthe Wall Street JournalAll characters were mapped to lower case and
punctuation marks were treated as words. Output was hamnected for capitalization to
improve readability.

Compare these examples to the pseudo-Shakespeare ind-ig¢tdile superficially
they both seem to model “English-like sentences” there i8alsly no overlap what-
soever in possible sentences, and little if any overlap @avemall phrases. This stark
difference tells us that statistical models are likely topbetty useless as predictors if
the training sets and the test sets are as different as Siestesand WSJ.

How should we deal with this problem when we buldgram models? In general
we need to be sure to use a training corpus that looks likessticorpus. We especially
wouldn’t choose training and tests from differgy@nresof text like newspaper text,
early English fiction, telephone conversations, and welepag§ometimes finding ap-
propriate training text for a specific new task can be diffidiol build N-grams for text
prediction in SMS (Short Message Service), we need a trgioampus of SMS data.
To build N-grams on business meetings, we would need to have corptianstribed
business meetings.

For general research where we know we want written Englishdba’t have a
domain in mind, we can use a balanced training corpus th&ides cross sections
from different genres, such as the 1-million-word Brownmes of English (Francis and
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Kucera, 1982) or the 100-million-word British National @as (Leech et al., 1994).
Recent research has also studied ways to dynamiadtpt language models to
different genres; see Sec. 4.9.4.

4.3.2 Unknown Words: Open versus closed vocabulary tasks

Sometimes we have a language task in which we know all the sshiat can occur,

vocrl3EY - and hence we know the vocabulary siZen advance. Thelosed vocabularyas-
sumption is the assumption that we have such a lexicon, aidtte test set can only
contain words from this lexicon. The closed vocabulary tasis assumes there are no
unknown words.

But of course this is a simplification; as we suggested eatlie number of unseen
words grows constantly, so we can’t possibly know in advaxeetly how many there
are, and we’d like our model to do something reasonable waémt We call these

oov  unseen eventsnknown words, orout of vocabulary (OOV) words. The percentage
of OOV words that appear in the test set is called@@V rate.
OPEN VOCABULARY An open vocabularysystem is one where we model these potential unknown words
in the test set by adding a pseudo-word cakédNK>. We can train the probabilities
of the unknown word modetUNK> as follows:

1. Choose a vocabularyword list) which is fixed in advance.

2. Convertin the training set any word that is not in this set (any OOV dydo the
unknown word tokerrUNK> in a text normalization step.

3. Estimate the probabilities fok UNK> from its counts just like any other regular
word in the training set.

4.4 BEVALUATING N-GRAMS: PERPLEXITY

The best way to evaluate the performance of a language medelémbed it in an
application and measure the total performance of the agiit. Such end-to-end
cEXIRNSC  evaluation is calle@xtrinsic evaluation, and also sometimes call@uvivo evaluation
INVIVO (Sparck Jones and Galliers, 1996). Extrinisic evaluatiotihé only way to know if a
particular improvement in a component is really going tghék task at hand. Thus
for speech recognition, we can compare the performancemfanguage models by
running the speech recognizer twice, once with each largomglel, and seeing which
gives the more accurate transcription.

Unfortunately, end-to-end evaluation is often very expansevaluating a large
speech recognition test set, for example, takes hours or @é&gs. Thus we would
like a metric that can be used to quickly evaluate potentigkbvements in a language

AiRnaine model. Anintrinsitic evaluation metric is one which measures the quality of a model
independent of any applicatiorPerplexity is the most common intrinsic evaluation
metric for N-gram language models. While an (intrinsic) improvemerpénplexity
does not guarantee an (extrinsic) improvement in speecynémon performance (or
any other end-to-end metric), it often correlates with sincprovements. Thus it is
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PERPLEXITY

(4.16)

(4.17)

(4.18)

commonly used as a quick check on an algorithm and an imprermem perplexity
can then be confirmed by an end-to-end evaluation.

The intuition of perplexity is that given two probabilisticodels, the better model
is the one that has a tighter fit to the test data, or predietsi#tails of the test data
better. We can measure better prediction by looking at tbleadility the model assigns
to the test data; the better model will assign a higher priibato the test data.

More formally, theperplexity (sometimes calleBP for short) of a language model
on atest set is a function of the probability that the languagdel assigns to that test

set. For a test s&al/ = wiw,...wy, the perplexity is the probability of the test set,
normalized by the number of words:

PRW) = P(WiWp...wy) N

N1
P(W1W2 ... WN

We can use the chain rule to expand the probabilitywof

y N 1
PRW) = \/HW

Thus if we are computing the perplexity bf with a bigram language model, we

get:
N 1
PRW) = \/ iIJP(wi|wi,1)

Note that because of the inverse in Equation (4.17), theshigfie conditional prob-
ability of the word sequence, the lower the perplexity. Tigimizing perplexity
is equivalent to maximizing the test set probability acaogdo the language model.
What we generally use for word sequence in Equation (4.1Epomtion (4.18) is the
entire sequence of words in some test set. Since of coursesdljuence will cross
many sentence boundaries, we need to include the begin-rahixdemtence markers
<s> and</ s> in the probability computation. We also need to include thd-ef-
sentence market/ s> (but not the beginning-of-sentence marke>) in the total
count of word token$\.

There is another way to think about perplexity: aswheéghted average branching
factor of alanguage. The branching factor of a language is the nuafipessible next
words that can follow any word. Consider the task of recaggithe digits in English
(zero, one, two,..., nine), given that each of the 10 digitsuo with equal probability
P= %). The perplexity of this mini-language is in fact 10. To se&ttimagine a string
of digits of lengthN. By Equation (4.17), the perplexity will be:

PRAW) = P(WiWs...wy) N
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(4.19)

CLOSED
VOCABULARY

But now suppose that the number zero is really frequent aodred.0 times more
often than other numbers. Now we should expect the perglexite lower, since most
of the time the next number will be zero. Thus although th@bhéng factor is still 10,
the perplexity or weighted branching factor is smaller. \&&vk this calculation as an
exercise to the reader.

We'll see in Sec. 4.10 that perplexity is also closely ralate the information-
theoretic notion of entropy.

Finally, let's see an example of how perplexity can be usecbtopare threé\-
gram models. We trained unigram, bigram, and trigram grarsima 38 million words
(including start-of-sentence tokens) from the Wall Stieeitrnal, using a 19,979 word
vocabulary? We then computed the perplexity of each of these models ost a¢¢ of
1.5 million words via Equation (4.65). The table below shdles perplexity of a 1.5
million word WSJ test set according to each of these grammars

N-gram Ordef| Unigram| Bigram| Trigram
Perplexity 962 170 109

As we see above, the more information thegram gives us about the word se-
guence, the lower the perplexity (since as Equation (4 idyed, perplexity is related
inversely to the likelihood of the test sequence accordirtyé model).

Note that in computing perplexities tikegram modeP must be constructed with-
out any knowledge of the test set. Any kind of knowledge of téwt set can cause
the perplexity to be artificially low. For example, we defirazbve theclosed vocab-
ulary task, in which the vocabulary for the test set is specifieddvaace. This can
greatly reduce the perplexity. As long as this knowledgedavided equally to each of
the models we are comparing, the closed vocabulary petplean still be useful for
comparing models, but care must be taken in interpretingehkelts. In general, the
perplexity of two language models is only comparable if theg the same vocabulary.

4.5 SVOOTHING

Never do | ever want
to hear another word!
There isn't one,
| haven't heard!

5 More specifically, Katz-style backoff grammars with Googkiig discounting trained on 38 million
words from the WSJO corpus (LDC, 1993), open-vocabulaimguhe <UNK> token; see later sections for
definitions.
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SPARSE DATA

SMOOTHING

LAPLACE
SMOOTHING

Eliza Doolittle in Alan
Jay Lerner's My Fair
Lady

There is a major problem with the maximum likelihood estimaprocess we have
seen for training the parameters of ldrgram model. This is the problem eparse
data caused by the fact that our maximum likelihood estimate veaget on a particular
set of training data. For any-gram that occurred a sufficient number of times, we
might have a good estimate of its probability. But becaugecanpus is limited, some
perfectly acceptable English word sequences are bound tig®ng from it. This
missing data means that thegram matrix for any given training corpus is bound to
have a very large number of cases of putative “zero prolialigrams” that should
really have some non-zero probability. Furthermore, theEMihethod also produces
poor estimates when the counts are non-zero but still small.

We need a method which can help get better estimates for #erseor low-
frequency counts. Zero counts turn out to cause anothergmagpdem. Theperplexity
metric defined above requires that we compute the probabilieach test sentence.
But if a test sentence has &hgram that never appeared in the training set, the Maxi-
mum Likelihood estimate of the probability for this-gram, and hence for the whole
test sentence, will be zero! This means that in order to et@laur language mod-
els, we need to modify the MLE method to assign some non-zerogbility to any
N-gram, even one that was never observed in training.

For these reasons, we’ll want to modify the maximum liketidcestimates for
computingN-gram probabilities, focusing on tHé-gram events that we incorrectly
assumed had zero probability. We use the temoothingfor such modifications that
address the poor estimates that are due to variability inlsiata sets. The name
comes from the fact that (looking ahead a bit) we will be shg\ little bit of proba-
bility mass from the higher counts, and piling it instead lo@ zero counts, making the
distribution a little less jagged.

In the next few sections we will introduce some smoothingatgms and show
how they modify the Berkeley Restaurant bigram probabdith Fig. 4.2.

4.5.1 Laplace Smoothing

One simple way to do smoothing might be just to take our matfigigram counts,
before we normalize them into probabilities, and add ondltihva counts. This algo-
rithm is calledLaplace smoothing or Laplace’s Law (Lidstone, 1920; Johnson, 1932;
Jeffreys, 1948). Laplace smoothing does not perform welligh to be used in modern
N-gram models, but we begin with it because it introduces ntdrifie concepts that
we will see in other smoothing algorithms and also gives usedul baseline.

Let’s start with the application of Laplace smoothing tograim probabilities. Re-
call that the unsmoothed maximum likelihood estimate ofitthigram probability of
the wordw; is its countc; normalized by the total number of word tokexs

P(w) = %

Laplace smoothing merely adds one to each count (henceétnale nameadd-
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ADD-ONE

(4.20)

(4.21)

DISCOUNTING

DISCOUNT

one smoothing). Since there akewords in the vocabulary, and each one got incre-
mented, we also need to adjust the the denominator to takeaguount the extrsl
observation$.

ci+1
FlaplacéWi) = m

Instead of changing both the numerator and denominatardtrigsenient to describe
how a smoothing algorithm affects the numerator, by defigingdjusted countc*.
This adjusted count is easier to compare directly with theBMiounts, and can be
turned into a probability like an MLE count by normalizing Ny To define this count,
since we are only changing the numerator, in addition toragidne we’ll also need to
multiply by a normalization factoi%:

. N
Ci = (C|+1)m

We can now turrc® into a probabilityp;” by normalizing byN.

A related way to view smoothing is aiscounting (lowering) some non-zero
counts in order to get the probability mass that will be assijto the zero counts.
Thus instead of referring to the discounted couwritsve might describe a smoothing
algorithm in terms of a relativdiscount d., the ratio of the discounted counts to the
original counts:

Now that we have the intuition for the unigram case, let’s sthaur Berkeley
Restaurant Project bigrams. Fig. 4.5 shows the add-onethewaounts for the bi-
grams in Fig. 4.1.

| | i | want] to | eat | chinese] food | lunch| spend]|
i 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese|| 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1
Figure 4.5 Add-one smoothed bigram counts for eight of the words (o ef 1446)
in the Berkeley Restaurant Project corpus of 9332 sentences

Fig. 4.6 shows the add-one smoothed probabilities for theabis in Fig. 4.2. Re-
call that normal bigram probabilities are computed by ndizitey each row of counts
by the unigram count:

6 What happens to oW values if we don’t increase the denominator?
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C(Wn—1Wn)
C(Wn-1)
For add-one smoothed bigram counts we need to augment tgeammcount by
the number of total word types in the vocabulary

(4.22) P(Wn|Wn-1) =

C(an:]_Wn) + 1
C(anl) +V

Thus each of the unigram counts given in the previous seetitimeed to be
augmented by = 1446. The result is the smoothed bigram probabilities in &if.

(4.23) PliaplacéW” Wn-1) =

| i | want | to | eat | chinese] food | lunch | spend |
i 0.0015| 0.21 0.00025 0.0025 | 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.0004 0.0004q 0.0014| 0.00046 0.0078 | 0.0014 | 0.02 0.00044

chinese| 0.0012 | 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 | 0.00062
food 0.0063 | 0.00039 0.0063 | 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 | 0.0005q 0.0005¢ 0.00056 0.0005 0.0011| 0.00054 0.00056
spend 0.0012 | 0.00058 0.0012 | 0.00058 0.00058 0.00058 0.00058 0.00058

Figure 4.6  Add-one smoothed bigram probabilities for eight of the veofdut ofV = 1446) in the BeRP
corpus of 9332 sentences.

It is often convenient to reconstruct the count matrix so &e see how much a
smoothing algorithm has changed the original counts. Thegested counts can be
computed by Equation (4.24). Fig. 4.7 shows the reconstdumbunts.

[C(Wn—_1Wn) + 1] x C(Wn_1)

(4.24) C" (Wn_1Wn) = Coun 1) +V
| | i | want] to | eat | chinesq food| lunch] spend
i 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 44 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinesg| 0.2 0.098] 0.098| 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38| 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16| 0.16 0.16

Figure 4.7  Add-one reconstituted counts for eight words Yo 1446) in the BeRP
corpus of 9332 sentences.

Note that add-one smoothing has made a very big change totimscC(want to)
changed from 608 to 238! We can see this in probability spacedl: P(to|want)
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GOOD-TURING

WITTEN-BELL
DISCOUNTING
KNEYSER-NEY

SMOOTHING

SINGLETON

(4.25)

(4.26)

decreases from .66 in the unsmoothed case to .26 in the setbcdise. Looking at the
discountd (the ratio between new and old counts) shows us how strikitig! counts
for each prefix word have been reduced; the discount for thesiwant tois .39,
while the discount foChinese foods .10, a factor of 10!

The sharp change in counts and probabilities occurs betaassuch probability
mass is moved to all the zeros. We could move a bit less massidingaa frac-
tional count rather than 1 (adilsmoothing; (Lidstone, 1920; Johnson, 1932; Jeffreys,
1948)), but this method requires a method for choosidgnamically, results in an in-
appropriate discount for many counts, and turns out to givmts with poor variances.
For these and other reasons (Gale and Church, 1994), well better smoothing
methods foN-grams like the ones we’ll see in the next section.

4.5.2 Good-Turing Discounting

There are a number of much better discounting algorithmisatteaonly slightly more
complex than add-one smoothing. In this section we intreduee of them, known as
Good-Turing smoothing.

The intuition of a number of discounting algorithms (Goodifg, Witten-Bell
discounting, andKneyser-Ney smoothing is to use the count of things you've seen
onceto help estimate the count of things you'mever seenThe Good-Turing algo-
rithm was first described by Good (1953), who credits Turintihwhe original idea.
The basic insight of Good-Turing smoothing is to re-estartae amount of probabil-
ity mass to assign tdl-grams with zero counts by looking at the numbeNafjrams
that occurred one time. A word d&-gram (or any event) that occurs once is called a
singleton, or ahapax legomenon The Good-Turing intuition is to use the frequency
of singletons as a re-estimate of the frequency of zero4dnignams.

Let's formalize the algorithm. The Good-Turing algorithsndased on computing
N¢, the number oN-grams that occut times. We refer to the number bfgrams that
occurctimes as thérequency of frequencyc. So applying the idea to smoothing the
joint probability of bigramsNp is the number of bigrams with countB; the number
of bigrams with count 1 (singletons), and so on. We can thfrdach of the\; as a bin
which stores the number of differeNtgrams that occur in the training set with that
frequencyc. More formally:

NC: z 1

x:count(x)=c

The MLE count fo\; is c. The Good-Turing estimate replaces this with a smoothed
countc*, as a function ofN, 1:

Nei1
Ne

We can use (Equation (4.26)) to replace the MLE counts fothallbinsNz, Np,
and so on. Instead of using this equation directly to revesté the smoothed coucit
for No, we use the following equation for the probabilRg, for things that had zero
countNp, or what we might call thenissing mass

¢ = (c+1)
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(4.27)

(4.28)

P51 (things with frequency zero in training= %

HereN; is the count of items in bin 1, i.e. that were seen once initngirandN
is the total number of items we have seen in training. Equd#c27) thus gives the
probability that theN + 1st bigram we see will be one that we never saw in training.
Showing that (Equation (4.27)) follows from (Equation @)Ris left as Exercise 4.8
for the reader.

The Good-Turing method was first proposed for estimatingthuilations of ani-
mal species. Let’s consider an illustrative example froim domain created by Joshua
Goodman and Stanley Chen. Suppose we are fishing in a lakeBvgiplecies (bass,
carp, catfish, eel, perch, salmon, trout, whitefish) and we lsaen 6 species with the
following counts: 10 carp, 3 perch, 2 whitefish, 1 trout, Insah, and 1 eel (so we
haven't yet seen the catfish or bass). What is the probatikittithe next fish we catch
will be a new species, i.e., one that had a zero frequencyritraining set, i.e., in this
case either a catfish or a bass?

The MLE countc of a hitherto-unseen species (bass or catfish) is 0. But Equa-
tion (4.27) tells us that the probability of a new fish being afithese unseen species
is =, sinceNy is 3 andN is 18:

. . . . - Np. 3
P& (things with frequency zero in training= N - 18

What is the probability that the next fish will be another tfburhe MLE count
for trout is 1, so the MLE estimated probabilityi%. But the Good-Turing estimate
must be lower, since we just sto% of our probability mass to use on unseen events!
We'll need to discount the MLE probabilities for trout, pbrearp, etc. In summary,
the revised counts® and Good-Turing smoothed probabilitipg 1 for species with
count O (like bass or catfish) or count 1 (like trout, salmareel) are as follows:

unseen (bass or catfish) trout

c 0 1
MLE p |[p==0 &
c* c*(trout)= 2 x m—i =2x3$=.67

GT pg || psr(unseen)= N = 2 = 17| pgy(trout) = 87 = L = 037

Note that the revised couat for eel was discounted from= 1.0 toc* = .67, (thus
leaving some probability magg;(unseen)= 1% = .17 for the catfish and bass). And
since we know there were 2 unknown species, the probabilithenext fish being
specifically a catfish ip(catfish)= 3 x 2 = .085.

Fig. 4.8 gives two examples of the application of Good-Tgscounting to bi-
gram grammars, one on the BeRP corpus of 9332 sentenceslagdraeexample com-
puted from 22 million words from the Associated Press (ARyswire by Church and
Gale (1991) . For both examples the first column shows thetague., the number of
observed instances of a bigram. The second column showsitheear of bigrams that
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SIMPLE
GOOD-TURING

(4.29)

(4.30)

(4.31)

had this count. Thus 449,721 of the AP bigrams have a count ®h2 third column
showsc*, the Good-Turing re-estimation of the count.

AP Newswire I Berkeley Restaurant

¢ (MLE) Ne c (GT) ¢ (MLE) Ne c (GT)

74,671,100,000 0.00002}0 2,081,496 0.00255
2,018,046  0.446 5315 0.53396
449,721  1.26 1419 1.35729
188,933 2.24 642  2.37383]
105,668 3.24 381 4.08136!
68,379 4.22 311 3.78135

48,190 5.19 196  4.50000

Figure 4.8 Bigram “frequencies of frequencies” and Good-Turing rereations for
the 22 million AP bigrams from Church and Gale (1991) and ftbenBerkeley Restaurant
corpus of 9332 sentences.

OO~ WNEO
OO~ WNELO
SO O ivH=0O ¢

4.5.3 Some advanced issues in Good-Turing estimation

Good-Turing estimation assumes that the distribution offiéégram is binomial (Church
et al., 1991) and assumes we knbly; the number of bigrams we haven't seen. We
know this because given a vocabulary size/ofthe total number of bigrams 2,
hencelNg is V2 minus all the bigrams we have seen.

There are a number of additional complexities in the use ofdsturing. For
example, we don't just use the raMg values in Equation (4.26). This is because
the re-estimate* for N; depends o1, hence Equation (4.26) is undefined when
Ncr1 = 0. Such zeros occur quite often. In our sample problem aldovexample,
sinceN4 = 0, how can we computid3? One solution to this is calleBimple Good-
Turing (Gale and Sampson, 1995). In Simple Good-Turing, after wepede the bins
Nc, but before we compute Equation (4.26) from them, we smdumtiNt counts to
replace any zeros in the sequence. The simplest thing isgusiplace the valudl;
with a value computed from a linear regression which is fit &piN. to ¢ in log space
(see Gale and Sampson (1995) for details):

log(Nc) = a+b log(c)

In addition, in practice, the discounted estimateis not used for all counts.
Large counts (where > k for some threshold) are assumed to be reliable. Katz
(1987) suggests settingat 5. Thus we define

c"=cforc>k

The correct equation far* when some is introduced (from Katz (1987)) is:

N (k+1)Nyy g
R L
c'= I , forl<c<k.
[\
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Second, with Good-Turing discounting as with any othersitisual to trealN-
grams with low raw counts (especially counts of 1) as if thertavere 0, i.e., to apply
Good-Turing discounting to these as if they were unseen.

It turns out that Good-Turing discounting is not used bylftsediscountingN-
grams; it is only used in combination with the backoff andeipblation algorithms
described in the next sections.

4.6 INTERPOLATION

BACKOFF
INTERPOLATION

(4.32)

(4.33)

(4.34)

The discounting we have been discussing so far can help siodvproblem of zero
frequencyN-grams. But there is an additional source of knowledge wedrtaw on.

If we are trying to comput®(wn|wn_1Wn_2), but we have no examples of a particular
trigramwy,_2Wnh_1Wy,, We can instead estimate its probability by using the bigpaoi-
ability P(wn|wn_1). Similarly, if we don’t have counts to compuéw,|wn_1), we can
look to the unigraniP(wy).

There are two ways to use tiisgram “hierarchy” backoff andinterpolation. In
backoff, if we have non-zero trigram counts, we rely solattloe trigram counts. We
only “back off” to a lower ordeiN-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the bitity estimates from
all theN-gram estimators, i.e., we do a weighted interpolationigfam, bigram, and
unigram counts.

In simple linear interpolation, we combine different oréegrams by linearly in-
terpolating all the models. Thus we estimate the trigranbabdity P(wn|wWnh_1Wn_2)
by mixing together the unigram, bigram, and trigram prolités, each weighted by a
A

IS(Wn|Wn—1Wn—2) = AP(Wn|Wh_1Wn_2)
+A2P(Wn|Wn-1)

Z)\i=1

In a slightly more sophisticated version of linear integimn, eachh weight is
computed in a more sophisticated way, by conditioning orctiteext. This way if we
have particularly accurate counts for a particular bigram,assume that the counts
of the trigrams based on this bigram will be more trustwgrtfoywe can make thes
for those trigrams higher and thus give that trigram moregivein the interpolation.
Equation (4.34) shows the equation for interpolation wihtext-conditioned weights:

such that thés sum to 1:

FA)(Wn|Wn72anl) = )\1(VV2:%)P(Wn|Wn—2Wn71)
+A2(Wh~3)P(Wn|Wh 1)
+A3(Wj5)P(Wh)
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How are thesa values set? Both the simple interpolation and conditiontrt
ew-our  polationAs are learned from held-out corpus. Recall from Sec. 4.3 that a held-out
corpus is an additional training corpus that we use not tth&dti-gram counts, but to
set other parameters. In this case we can use such data e 3etdlues. We can do
this by choosing th@ values which maximize the likelihood of the held-out corpus
That is, we fix theN-gram probabilities and then search for thealues that when
plugged into Equation (4.32) give us the highest probatilitthe held-out set, There
are various ways to find this optimal setXs. One way is to use tHeM algorithm to
be defined in Ch. 6, which is an iterative learning algoritimaxt ttonverges on locally
optimalAs (Baum, 1972; Dempster et al., 1977; Jelinek and Mercef)198

4.7 BACKOFF

While simple interpolation is indeed simple to understand enplement, it turns out
that there are a number of better algorithms. One of theszcisdff N-gram modeling.
The version of backoff that we describe uses Good-Turingodisting as well. It was
introduced by Katz (1987), hence this kind of backoff witsaiunting is also called

KATZ BACKOFF Katz backoff. In a Katz backoffN-gram model, if theN-gram we need has zero counts,
we approximate it by backing off to th&l{1)-gram. We continue backing off until we
reach a history that has some counts:

(4.35) (WL ) = P*(Wn|Wnn:h+1)a if C(W)_n41) >0
| Ty G(V‘ﬂ:h+1)Pkatz(Wn|\/\ﬂ:h+2), otherwise.

Equation (4.35) shows that the Katz backoff probabilitydoN-gram just relies on
the (discounted) probability* if we've seen thidN-gram before (i.e. if we have non-
zero counts). Otherwise, we recursively back off to the Katibability for the shorter-
history (N-1)-gram. We'll define the discounted probabilRy, the normalizing factor
a, and other details about dealing with zero counts in Secl 4Based on these details,
the trigram version of backoff might be represented asdl¢where for pedagogical
clarity, since it's easy to confuse the indiogsw;_1 and so on, we refer to the three
words in a sequence asy, zin that order):

p* (Z|X, y), if C(Xv Y, Z) >0
(4.36) Phat2xy) = ¢ a(xY)Peatz(2ly),  elseifC(xy) >0
P*(2), otherwise.
P(2ly), if C(y,2) >0
3 -
(4.37) Pkatz(2) { a(y)P*(z), otherwise.

Katz backoff incorporates discounting as an integral pathe algorithm. Our
previous discussions of discounting showed how a metheddikod-Turing could be
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(4.38)

(4.39)

used to assign probability mass to unseen events. For sitgplve assumed that these
unseen events were all equally probable, and so the prdigabéss got distributed
evenly among all unseen events. Katz backoff gives us arbette to distribute the
probability mass among unseen trigram events, by relyinghfsrmation from uni-
grams and bigrams. We use discounting to tell us how muchpothability mass to
set aside for all the events we haven’t seen and backoffltagdiow to distribute this
probability.

Discounting is implemented by using discounted probagdiP*(-) rather than
MLE probabilitiesP(+) in Equation (4.35) and Equation (4.37).

Why do we need discounts advalues in Equation (4.35) and Equation (4.37)?
Why couldn’t we just have three sets of MLE probabilitieshaitit weights? Because
without discounts and weights, the result of the equation would not be a true prob-
ability! The MLE estimates oP(wq|w]_y ) are true probabilities; if we sum the
probability of allw; over a giverN-gram context, we should get 1:

> P(wilwjwi) =1

But if that is the case, if we use MLE probabilities but backtofa lower order
model when the MLE probability is zero, we would be adding&xirobability mass
into the equation, and the total probability of a word wouddgveater than 1!

Thus any backoff language model must also be discounted. PThe used to
discount the MLE probabilities to save some probability snfas the lower ordeN-
grams. Thea is used to ensure that the probability mass from all the lowvder
N-grams sums up to exactly the amount that we saved by disoguhe higher-order
N-grams. We defin®* as the discounted() estimate of the conditional probability
of anN-gram, (and save for MLE probabilities):

c (WnanH)
c(Wh N 1)

Because on average the (discoun&dyill be less thare, this probabilityP* will
be slightly less than the MLE estimate, which is

c(Wh_ni1)
cwr—t )

n—N-+1

P*(Wn W)\, p) =

This will leave some probability mass for the lower oréiegrams which is then
distributed by thex weights; details of computing are in Sec. 4.7.1. Fig. 4.9 shows
the Katz backoff bigram probabilities for our 8 sample wortsnputed from the BeRP
corpus using the SRILM toolkit.

4.7.1 Advanced: Details of computing Katz backoftx and P*

In this section we give the remaining details of the compaitedf the discounted prob-
ability P* and the backoff weights (w).

We begin witha, which passes the left-over probability mass to the loweeor
N-grams. Let’s represent the total amount of left-over pbiliig mass by the function
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| | i | want [ to | eat | chinese | food [ lunch | spend |
i 0.0014 0.326 0.00248  0.00355 0.000205 0.0017 0.00073  0.000489
want 0.00134 0.00152] 0.656 0.000483 0.00455 0.00455 0.00384] 0.000483
to 0.000512 0.00152] 0.00165 0.284 0.000512] 0.0017 0.00175 0.0873
eat 0.00101 0.00152] 0.00166| 0.00189 0.0214 0.00166/ 0.0563 0.000585
chinesg| 0.00283 0.00152] 0.00248 0.00189 0.000205 0.519 0.00283  0.000585
food 0.0137 0.00152] 0.0137 0.00189 0.000409 0.00366/ 0.00073 0.000585
lunch 0.00363 0.00152] 0.00248 0.00189 0.000205 0.00131] 0.00073 0.000585
spend 0.00161 0.00152] 0.00161f 0.00189 0.000205 0.0017 0.00073  0.000585
Figure 4.9 Good-Turing smoothed bigram probabilities for eight wofosV = 1446) in the BeRP corpus pf
9332 sentences, computing by using SRILM, witk 5 and counts of 1 replaced by 0.

B, a function of the N-1)-gram context. For a giverNf1)-gram context, the total
left-over probability mass can be computed by subtractiomfl the total discounted

probability mass for alN-grams starting with that context:

(@.40) B =1 5 P
Wn:C(Wn_n41)>0

This gives us the total probability mass that we are readyidwildute to all (-
1)-gram (e.g., bigrams if our original model was a trigrar&ach individual N-1)-
gram (bigram) will only get a fraction of this mass, so we naedormalize3 by the
total probability of all the -1)-grams (bigrams) that begin sorilegram (trigram)
which has zero count. The final equation for computing howhrprobability mass to
distribute from arN-gram to ani{-1)-gram is represented by the function

BOWE-N-1)
S ol ,1)-0 Phatz(Wn Wi 2)
1= Sunewn_y,p)>0P" (Wn[Wh 1)
1= Swncw .)>0P" (Wn|Wnn:h+2)

aWh Ty, g) =

(4.41) =

Note thata is a function of the preceding word string, that is,vgf 3 ;; thus
the amount by which we discount each trigrad), @nd the mass that gets reassigned
to lower orderN-grams ¢) are recomputed for everyN¢1)-gram that occurs in any

N-gram.

We only need to specify what to do when the counts offdai)-gram context are

0, (i.e., wherc(w)) "3, ;) = 0) and our definition is complete:

(4.42) PhatZWnlWh & 1) = Pkatz(WnlWh 1 2) if c(Wj_N.q) =0

and

(4.43) P* (Wn W)~} 1) = O if c(whNy1) =0
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and

(4.44) BWoh1) =1 if c(Wh 1) =0
4.8 PRACTICAL ISSUES TOOLKITS AND DATA FORMATS

Let's now examine hoviN-gram language models are represented. We represent and
compute language model probabilities in log format, in otdeavoid underflow and

also to speed up computation. Since probabilities are (fipiten) less than 1, the
more probabilities we multiply together the smaller thedarat becomes. Multiplying
enoughN-grams together would result in numerical underflow. By gding prob-
abilities instead of raw probabilities, the numbers areamsmall. Since adding in

log space is equivalent to multiplying in linear space, wabme log probabilities by
adding them. Besides avoiding underflow, addition is fasteompute than multipli-
cation. Since we do all computation and storage in log spbee, ever need to report
probabilities we just take the exp of the logprob:

(4.45) P1L X P2 X p3 x ps = exp(log p1 +logpz + log p3 + log pa)

Backoff N-gram language models are generally storedRPA format. An N-
gram in ARPA format is an ASCII file with a small header follaivby a list of all
the non-zerdN-gram probabilities (all the unigrams, followed by bigrariwdlowed by
trigrams, and so on). Eadi-gram entry is stored with its discounted log probability
(in log,o format) and its backoff weightt. Backoff weights are only necessary for
N-grams which form a prefix of a long&-gram, so nax is computed for the highest
orderN-gram (in this case the trigram) Brgrams ending in the end-of-sequence token
<s>. Thus for a trigram grammatr, the format of edd¢tgram is:

unigram: logo™(wi) W logo(w;)
bigram:  logp™ (wi[wi 1) Wi—1Wi logar(wi—1w;)
trigram:  logp* (Wi |Wi—2,Wi—1) Wi_2Wi_1W;
Fig. 4.10 shows an ARPA formatted LM file with selectéedyrams from the BeRP

corpus. Given one of these trigrams, the probabHity|x,y) for the word sequence
X,¥,Z can be computed as follows (repeated from (4.37)):

P*(zlx,y), if C(x,y,2) >0
(4.46) Peatz(Zxy) = ¢ a(xY)Pat2y),  elseifC(xy) >0
P*(2), otherwise.
Py, fCva>0
(4.47) Pkatz(z|y) - {O((y)F’*(Z), otherwise.

Toolkits: There are two commonly used available toolkits for buildiagguage
models, the SRILM toolkit (Stolcke, 2002) and the Cambrid@idU toolkit (Clark-
son and Rosenfeld, 1997). Both are publicly available, ae fsimilar functionality.
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\ dat a\

ngram 1=1447
ngram 2=9420
ngram 3=5201

\ 1-grans:

-0.8679678 </ s>

-99 <s> -1.068532
-4.743076 chow-fun -0.1943932
-4.266155 fries -0.5432462
-3.175167 t hur sday -0.7510199
-1.776296 want -1.04292

\ 2-grans:

-0.6077676 <s> i -0.6257131
-0.4861297 i want 0. 0425899
-2.832415 to drink -0. 06423882
-0.5469525 to eat -0.008193135
-0.09403705 today </s>

\ 3-grans:

-2.579416 <s> i prefer

-1. 148009 <s> about fifteen

-0.4120701 to go to

-0.3735807 ne a list

-0.260361 at jupiter </ s>

-0.260361 a nmal aysi an  restaurant

\ end\

Figure 4.10 ARPA format forN-grams, showing some samplegrams. Each is rep-
resented by &éogproh, the word sequencey; ...wy, followed by the log backoff weight.
Note that nax is computed for the highest-ordsrgram or forN-grams ending irks>.

In training mode, each toolkit takes a raw text file, one secaeoer line with words
separated by white-space, and various parameters such asigrN, the type of dis-
counting (Good Turing or Kneser-Ney, discussed in Sec1¥.and various thresholds.
The output is a language model in ARPA format. In perplexitdecoding mode, the
toolkits take a language model in ARPA format, and a sentena@®rpus, and pro-
duce the probability and perplexity of the sentence or cerpBoth also implement
many advanced features to be discussed later in this chapden following chapters,
including skipN-grams, word lattices, confusion networks, afi@ram pruning.

4.9 ADVANCED ISSUES INLANGUAGE MODELING

KNESER-NEY

4.9.1 Advanced Smoothing Methods: Kneser-Ney Smoothing

In this section we give a brief introduction to the most commtgaised moderiN-gram
smoothing method, the interpolat&deser-Neyalgorithm.

Kneser-Ney has its roots in a discounting method ca#lbdolute discounting
Absolute discounting is a much better method of computireyased countx than the
Good-Turing discount formula we saw in Equation (4.26),dolaen frequencies-of-
frequencies. To get the intuition, let’s revisit the Goagkifig estimates of the bigram
c* extended from Fig. 4.8 and reformatted below:
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ABSOLUTE
DISCOUNTING

(4.48)

(4.49)

(4.50)

c(MLE)[0 1 [2 [3 |4 [5 |6 |7 [8 |9
¢ (GT) [[0.00002700.446| 1.26| 2.24|3.244.225.19| 6.21| 7.24] 8.25

The astute reader may have noticed that except for the iraagetl counts for 0
and 1, all the other re-estimated coudtsould be estimated pretty well by just sub-
tracting 0.75 from the MLE courd! Absolute discountingformalizes this intuition,
by subtracting a fixed (absolute) discownfrom each count. The intuition is that we
have good estimates already for the high counts, and a sisatiuhtd won't affect
them much. It will mainly modify the smaller counts, for whive don’t necessarily
trust the estimate anyway. The equation for absolute digtoy applied to bigrams
(assuming a proper coefficiemton the backoff to make everything sum to one) is:

C(wi_1wi)-D if C(wi_qwi) >0
Pabsolutd Wi [Wi_1) = { Cwi—1) (Wi | i)
o (Wi ) Pabsolutd Wi ), otherwise.

In practice, we might also want to keep distinct discountigadl for the 0 and 1
counts.

Kneser-Ney discounting(Kneser and Ney, 1995) augments absolute discounting
with a more sophisticated way to handle the backoff distidou Consider the job of
predicting the next word in this sentence, assuming we ackifg off to a unigram
model:

| can’t see without my reading

The wordglassesseems much more likely to follow here than the werdncisca
But Franciscois in fact more common, so a unigram model will prefer iglasses
We would like to capture the intuition that althou§hanciscois frequent, it is only
frequent after the wor&an i.e. in the phras&an Francisco The wordglasseshas a
much wider distribution.

Thus instead of backing off to the unigram MLE count (the nemtf times the
wordw has been seen), we want to use a completely different badistffoution! We
want a heuristic that more accurately estimates the nunillienes we might expect to
see wordv in a new unseen context. The Kneser-Ney intuition is to basestimate
on thenumber of different contexts word w has appearedffords that have appeared
in more contexts are more likely to appear in some new coatewell. We can express
this new backoff probability, the “continuation probatyifi as follows:

[{wi_1:C(wi_1w;) > 0}]
Ywi {Wi-1: C(Wi—1wi) > O}
The Kneser-Ney backoff intuition can be formalized as foqagain assuming a
proper coefficientt on the backoff to make everything sum to one):

PCONTINUATION (Wi ) =

Cwi_1wi)—D : .
Pin (Wi [Wi_1) = Cwi—1) if C(wi—1wi) >0
e o () LWL i) O} otherwise.

Swj {Wi—1:C(wi—1wi) >0}

Finally, it turns out to be better to use amerpolated rather tharbackoff form
of Kneser-Ney. While Sec. 4.6 showed thiaear interpolation is not as successful



Section 4.9.

Advanced Issues in Language Modeling 29

INTERPOLATED
KNESER-NEY

(4.51)

CLASS-BASED
N-GRAM

CLUSTER N-GRAM

IBM CLUSTERING

as Katz backoff, it turns out that more powerful interpathiteodels, such as interpo-
lated Kneser-Ney, work better than their backoff versitmterpolated Kneser-Ney
discounting can be computed with an equation like the fathawomitting the compu-
tation ofB):

C(wi,lwi) -D
C(wi-1)

[{wi—1: C(wi_1wi) > O}
Yw [{wi-1:C(wi—1w;) > O}

Pan (Wi [Wi—1) = + B(w)

Afinal practical note: it turns out that any interpolationaebcan be represented as
a backoff model, hence stored in ARPA backoff format. We $yndp the interpolation
when we build the model, so the ‘bigram’ probability storadhe backoff format is
really ‘bigram already interpolated with unigram’.

4.9.2 Class-based N-grams

Theclass-based N-granor cluster N-gram is a variant of theN-gram that uses infor-
mation about word classes or clusters. Class-basgtams can be useful for dealing
with sparsity in the training data. Suppose for a flight reaon system we want to
compute the probability of the bigratb Shanghaibut this bigram never occurs in the
training set. Instead, our training data had.ondon to Beijing, andto Denver If we
knew that these were all cities, and assunfifiganghadoes appear in the training set
in other contexts, we could predict the likelihood of a citylédwing from.

There are many variants of clustérgrams. The simplest one is sometimes known
asIBM clustering, after its originators (Brown et al., 1992b). IBM clustegiis a kind
of hard clustering, in which each word can belong to only one class. The model est
mates the conditional probability of a worgl by multiplying two factors: the probabil-
ity of the word’s class; given the preceding classes (based oMNagram of classes),
and the probability ofv; givenc;. Here is the IBM model in bigram form:

P(wilwi—1) ~ P(ci|,ci-1) x P(wi[ci)

If we had a training corpus in which we knew the class for eaohdwthe maxi-
mum likelihood estimate (MLE) of the probability of the wogten the class and the
probability of the class given the previous class could bamated as follows:

P(wlc) = %

ClusterN-grams are generally used in two ways. In dialog systemsZ&hwe of-
ten hand-design domain-specific word classes. Thus forlimesinformation system,
we might use classes likelTYNAME, AIRLINE, DAYOFWEEK, Or MONTH. In other
cases, we can automatically induce the classes by clugtedrds in a corpus (Brown
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ADAPTATION

(4.52)

CACHE

et al., 1992b). Syntactic categories like part-of-speagh tlon’t seem to work well as
classes (Niesler et al., 1998).

Whether automatically induced or hand-designed, clustgrams are generally
mixed with regular word-basdd-grams.

4.9.3 Language Model Adaptation and Using the Web

One of the most exciting recent developments in languagestimzdis language model
adaptation. This is relevant when we have only a small amount of in-dontraining
data, but a large amount of data from some other domain. Weraemon the larger
out-of-domain dataset and adapt our models to the smalbinaih set. (lyer and
Ostendorf, 1997, 1999a, 1999b; Bacchiani and Roark, 2088¢#ani et al., 2004).

An obvious large data source for this type of adaptationesikb. Indeed, use of
the web does seem to be helpful in language modeling. Thdestnpay to apply the
web to improve, say, trigram language models is to use seagines to get counts for
wiWows andwiwows, and then compute:

Buvet = Cweb(W1W2W3)
¢ Cuwveb(W1W2)

We can then mixpyep With a conventionaN-gram (Berger and Miller, 1998; Zhu
and Rosenfeld, 2001). We can also use more sophisticateblication methods that
make use of topic or class dependencies, to find domainareielata on the web data
(Bulyko et al., 2003).

In practice it is difficult or impossible to download everygeafrom the web in
order to comput&l-grams. For this reason most uses of web data rely on pagéscoun
from search engines. Page counts are only an approximatetual counts for many
reasons: a page may containfsgram multiple times, most search engines round off
their counts, punctuation is deleted, and the counts thieasmay be adjusted due to
link and other information. It seems that this kind of noiges not hugely affect the
results of using the web as a corpus (Keller and Lapata, 208i&v and Hearst, 2005),
although it is possible to perform specific adjustmentshsagfitting a regression to
predict actual word counts from page counts (Zhu and Rokgr#@01).

4.9.4 Using Longer Distance Information: A Brief Summary

There are many methods for incorporating longer-distanogaxt intoN-gram model-
ing. While we have limited our discussion mainly to bigrand @amgrams, state-of-the-
art speech recognition systems, for example, are basedngeralistanceN-grams,
especially 4-grams, but also 5-grams. Goodman (2006) sthtives with 284 million
words of training data, 5-grams do improve perplexity ssayeer 4-grams, but not
by much. Goodman checked contexts up to 20-grams, and ftwatatter 6-grams,
longer contexts weren'’t useful, at least not with 284 milliwords of training data.
Many models focus on more sophisticated ways to get longastte information.
For example people tend to repeat words they have used bétuus if a word is used
once in a text, it will probably be used again. We can capthi® fact by acache
language model (Kuhn and De Mori, 1990). For example to usegram cache model
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TOPIC-BASED

(4.53)

LATENT SEMANTIC
INDEXING

TRIGGER

SKIP N-GRAMS

VARIABLE-LENGTH
-GRAM

to predict word of a test corpus, we create a unigram grammar from the pnegedirt
of the test corpus (words 1 ie- 1) and mix this with our convention&l-gram. We
might use only a shorter window from the previous words, @athan the entire set.
Cache language models are very powerful in any applicatidrese we have perfect
knowledge of the words. Cache models work less well in dosadnere the previous
words are not known exactly. In speech applications, forrgda, unless there is some
way for users to correct errors, cache models tend to “lotlerrors they made on
earlier words.

The fact that words are often repeated in a text is a symptoemrobre general
fact about words; texts tend to beout things. Documents which are about particular
topics tend to use similar words. This suggests that we doaid separate language
models for different topics. Itopic-basedlanguage models (Chen et al., 1998; Gildea
and Hofmann, 1999), we try to take advantage of the fact tiffareint topics will have
different kinds of words. For example we can train differfamguage models for each
topict, and then mix them, weighted by how likely each topic is gitlemhistoryh:

p(wlh) = Z P(wW[t)P(t[h)

A very similar class of models relies on the intuition thataming words are se-
mantically similar to preceding words in the text. These misdise a measure of
semantic word association such as ldtent semantic indexingdescribed in Ch. 20
(Coccaro and Jurafsky, 1998; Bellegarda, 1999, 2000), dinendictionaries or the-
sauri (Demetriou et al., 1997) to compute a probability damea word’s similarity to
preceding words, and then mix it with a conventioNagram.

There are also various ways to extend Mwgram model by having the previous
(conditioning) word be something other than a fixed windovpvious words. For
example we can choose as a predictor a word calle@yger which is not adjacent
but which is very related (has high mutual information witig word we are trying to
predict (Rosenfeld, 1996; Niesler and Woodland, 1999; Zdwudi Lua, 1998). Or we
can createskip N-grams, where the preceding context ‘skips over’ some intermediat
words, for example computing a probability suchR{sv|wi_1,w;_3). We can also
use extra previous context just in cases where a longer @sgsmrticularly frequent
or predictive, producing &ariable-length N-gram (Ney et al., 1994; Kneser, 1996;
Niesler and Woodland, 1996).

In general, using very large and rich contexts can resukig large language mod-
els. Thus these models are often pruned by removing lowgtnitity events. Pruning
is also essential for using language models on small plagauch as cellphones (Stol-
cke, 1998; Church et al., 2007).

Finally, there is a wide body of research on integrating &ifgated linguistic
structures into language modeling. Language models bassghtactic structure from
probabilistic parsers are described in Ch. 14. Languagestadzhsed on the current
speech act in dialogue are described in Ch. 24.
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4.10 ADVANCED: INFORMATION THEORY BACKGROUND

ENTROPY

(4.54)

| got the horse right here
Frank LoesseiGuys and Dolls

We introduced perplexity in Sec. 4.4 as a way to evaliddgram models on a
test set. A betteN-gram model is one which assigns a higher probability to &se t
data, and perplexity is a normalized version of the prolitgituf the test set. Another
way to think about perplexity is based on the informatioeettetic concept of cross-
entropy. In order to give another intuition into perplexity a metric, this section gives
a quick review of fundamental facts fromformation theory including the concept
of cross-entropy that underlies perplexity. The interséader should consult a good
information theory textbook like Cover and Thomas (1991).

Perplexity is based on the information-theoretic notionross-entropy, which we
will now work toward defining Entropy is a measure of information, and is invaluable
throughout speech and language processing. It can be usethesic for how much
information there is in a particular grammar, for how welligegn grammar matches
a given language, for how predictive a givlhrgram grammar is about what the next
word could be. Given two grammars and a corpus, we can usepgrit tell us which
grammar better matches the corpus. We can also use entrepynioare how difficult
two speech recognition tasks are, and also to measure hdvagalen probabilistic
grammar matches human grammars.

Computing entropy requires that we establish a randomhiar¥athat ranges over
whatever we are predicting (words, letters, parts of spedehset of which we’ll call
X), and that has a particular probability function, callpix). The entropy of this
random variabl& is then

H(X) == p(x)log, p(x)

XEX

The log can in principle be computed in any base. If we use &g, the resulting
value of entropy will be measured bits.

The most intuitive way to define entropy for computer sciatis to think of the
entropy as a lower bound on the number of bits it would takencode a certain
decision or piece of information in the optimal coding scleem

Cover and Thomas (1991) suggest the following example. imestpat we want
to place a bet on a horse race but it is too far to go all the wagotikers Racetrack,
and we'd like to send a short message to the bookie to tell Himaswhorse to bet on.
Suppose there are eight horses in this particular race.

One way to encode this message is just to use the binary egpagion of the
horse’s number as the code; thus horse 1 woul@®¥, horse 2010, horse 3011,
and so on, with horse 8 coded @80. If we spend the whole day betting, and each
horse is coded with 3 bits, on average we would be sending®bitrace.

Can we do better? Suppose that the spread is the actuabdigin of the bets
placed, and that we represent it as the prior probabilityaehéhorse as follows:
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Horse 1 % Horse 5 &
1
Horse 2 3 |Horse 6 6—14

1
Horse 3 5 Horse 7 a

1 1
Horse 4 18 Horse 8 ga

The entropy of the random variabl¢ that ranges over horses gives us a lower
bound on the number of bits, and is:

i=8
H(X) = —_;p(iﬂog p(i)

= —3logi-Zlogl-ilogl-log—a(&logd)
(4.55) — 2bits

A code that averages 2 bits per race can be built by using shoadings for more
probable horses, and longer encodings for less probaldesiofor example, we could
encode the most likely horse with the codleand the remaining horses &6, then
110,1110,111100,111101,111110, and111111.

What if the horses are equally likely? We saw above that if sedian equal-length
binary code for the horse numbers, each horse took 3 bitsde, @ the average was
3. Is the entropy the same? In this case each horse would lrebability of%. The
entropy of the choice of horses is then:

(4.56) H(X)f—lzs:—Llog:—Lf—log:—Lf3bits
' 1;8 8 8

Until now we have been computing the entropy of a single WeiaBut most of
what we will use entropy for involvesequenced-or a grammar, for example, we will
be computing the entropy of some sequence of wavds {wo, w1, Ws, ..., Wy}. One
way to do this is to have a variable that ranges over sequafieesrds. For example
we can compute the entropy of a random variable that rangasativfinite sequences
of words of lengtm in some languagk as follows:

(4.57) Hw,We, ... Wh) = — 5 p(W)log p(Wy)
WeL
ENTROPY RATE We could define thentropy rate (we could also think of this as thger-word

entropy) as the entropy of this sequence divided by the number of svord

1 1
(4.58) HH(W{‘)=—— Z p(W") log p(W()

NwfreL

But to measure the true entropy of a language, we need todmrstquences of
infinite length. If we think of a language as a stochastic psst. that produces a
sequence of words, its entropy r&tél ) is defined as:
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(4.59)

(4.60)

STATIONARY

CROSS-ENTROPY

(4.61)

HL) = — lim SH Wy e, i)

n—oo N

1
= —lim = p(wi,...,Wn)logp(wa,...,wn)
n—oo N =8

The Shannon-McMillan-Breiman theorem (Algoet and Cové&88; Cover and
Thomas, 1991) states that if the language is regular inioestays (to be exact, if it is
both stationary and ergodic),

. 1
H(L) = rllmo n logp(wiws. .. Wh)

That s, we can take a single sequence that is long enougtamhsf summing over
all possible sequences. The intuition of the Shannon-MekHBreiman theorem is
that a long enough sequence of words will contain in it mamgoshorter sequences,
and that each of these shorter sequences will reoccur imtlyet sequence according
to their probabilities.

A stochastic process is said to Bwtionary if the probabilities it assigns to a
sequence are invariant with respect to shifts in the timexndn other words, the
probability distribution for words at timeis the same as the probability distribution
at timet+ 1. Markov models, and hendé-grams, are stationary. For example, in
a bigram,P is dependent only o _;. So if we shift our time index by, P is
still dependent o, x_1. But natural language is not stationary, since as we will
see in Ch. 12, the probability of upcoming words can be depeihdn events that
were arbitrarily distant and time dependent. Thus ourstiedil models only give an
approximation to the correct distributions and entropfasadural language.

To summarize, by making some incorrect but convenient sfyipd assumptions,
we can compute the entropy of some stochastic process mgtakiery long sample
of the output, and computing its average log probabilitytHe next section we talk
about the why and howvhywe would want to do this (i.e., for what kinds of problems
would the entropy tell us something useful), dmmvto compute the probability of a
very long sequence.

4.10.1 Cross-Entropy for Comparing Models

In this section we introduceross-entropy, and discuss its usefulness in comparing
different probabilistic models. The cross-entropy is us&fhen we don’t know the
actual probability distributiorp that generated some data. It allows us to use some
which is a model ofp (i.e., an approximation tp). The cross-entropy ah on p is
defined by:

H(p,m) = lim ——\AZLp Wi, ..., Wn)logm(wy, ..., Wn)

n—oo

That is, we draw sequences according to the probabilityiligton p, but sum the
log of their probabilities according to.
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(4.62)

(4.63)

(4.64)

PERPLEXITY

(4.65)

Again, following the Shannon-McMillan-Breiman theoreror, & stationary ergodic
process:

H(p,m) = rI]imm—:—rtlogm(wlwz...wn)

This means that, as for entropy, we can estimate the crdasspgrof a modemon
some distributiorp by taking a single sequence that is long enough instead afsugn
over all possible sequences.

What makes the cross entropy useful is that the cross enkidpym) is an upper
bound on the entropi (p). For any modein:

H(p) <H(p,m)

This means that we can use some simplified madébd help estimate the true
entropy of a sequence of symbols drawn according to prabapil The more accurate
m is, the closer the cross entropi(p,m) will be to the true entropyH(p). Thus
the difference betweeH (p,m) andH(p) is a measure of how accurate a model is.
Between two modelsy and mp, the more accurate model will be the one with the
lower cross-entropy. (The cross-entropy can never be ltvaar the true entropy, so a
model cannot err by underestimating the true entropy).

We are finally ready to see the relation between perplexity @oss-entropy as
we saw it in Equation (4.62). Cross-entropy is defined in timét| as the length of
the observed word sequence goes to infinity. We will need anoxjpmation to cross-
entropy, relying on a (sufficiently long) sequence of fixeajgih. This approximation
to the cross-entropy of a model = P(w; |wi_n1...Wi_1) on a sequence of wordd
is:

1
H(W) = N logP(wiwsy ... wy)

Theperplexity of a modelP on a sequence of wordfg is now formally defined as the
exp of this cross-entropy:

Perplexityw) = 2HW)
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4.11 ADVANCED: THE ENTROPY OFENGLISH AND ENTROPY RATE

(4.66)

CONSTANCY

As we suggested in the previous section, the cross-entrbpgme modeim can be
used as an upper bound on the true entropy of some procesainMse this method to
get an estimate of the true entropy of English. Why should are about the entropy
of English?

One reason is that the true entropy of English would give uslid bwer bound
for all of our future experiments on probabilistic grammakeother is that we can use
the entropy values for English to help understand what pdridanguage provide the
most information (for example, is the predictability of His mainly based on word
order, on semantics, on morphology, on constituency, oragrpatic cues?) This can
help us immensely in knowing where to focus our languageetiogl efforts.

There are two common methods for computing the entropy ofi§ngThe first
was employed by Shannon (1951), as part of his groundbrgakank in defining the
field of information theory. His idea was to use human subjetd to construct a psy-
chological experiment that requires them to guess striftgtters. By looking at how
many guesses it takes them to guess letters correctly westiarage the probability of
the letters, and hence the entropy of the sequence.

The actual experiment is designed as follows: we presenbjeciwith some En-
glish text and ask the subject to guess the next letter. Tihjests will use their knowl-
edge of the language to guess the most probable letterHtiestetxt most probable next,
and so on. We record the number of guesses it takes for thectubjguess correctly.
Shannon'’s insight was that the entropy of the number-osgegsequence is the same
as the entropy of English. (The intuition is that given thenber-of-guesses sequence,
we could reconstruct the original text by choosing thén“most probable” letter when-
ever the subject took guesses). This methodology requires the use of letter gsess
rather than word guesses (since the subject sometimes hasato exhaustive search
of all the possible letters!), so Shannon computedpbeletter entropy of English
rather than the per-word entropy. He reported an entropy3bits (for 27 characters
(26 letters plus space)). Shannon'’s estimate is likely ttmbéow, since it is based on a
single text Jefferson the Virginiabhy Dumas Malone). Shannon notes that his subjects
had worse guesses (hence higher entropies) on other textsgaper writing, scien-
tific work, and poetry). More recent variations on the Shamexperiments include the
use of a gambling paradigm where the subjects get to bet ametkidetter (Cover and
King, 1978; Cover and Thomas, 1991).

The second method for computing the entropy of English halpsd the single-
text problem that confounds Shannon’s results. This metbad take a very good
stochastic model, train it on a very large corpus, and useassign a log-probability
to a very long sequence of English, using the Shannon-MaktiBreiman theorem:

H(English < r',i”l,_% logm(wiwsa. .. W)

For example, Brown et al. (1992a) trained a trigram languagéel on 583 million
words of English (293,181 different types) and used it to pota the probability of
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the entire Brown corpus (1,014,312 tokens). The trainini dzclude newspapers,
encyclopedias, novels, office correspondence, procegdirthe Canadian parliament,
and other miscellaneous sources.

They then computed the character entropy of the Brown cdypusing their word-
trigram grammar to assign probabilities to the Brown corpossidered as a sequence
of individual letters. They obtained an entropy of bits per character (where the set
of characters included all the 95 printable ASCII chara)ter

The average length of English written words (including g)dtas been reported
at 5.5 letters (Nadas, 1984). If this is correct, it mearsd the Shannon estimate of
1.3 bits per letter corresponds to a per-word perplexity4® fbr general English. The
numbers we report earlier for the WSJ experiments are Signifiy lower than this,
since the training and test set came from the same subsafipiglish. That is, those
experiments underestimate the complexity of English ésithe Wall Street Journal
looks very little like Shakespeare, for example)

A number of scholars have independently made the intrigairggestion that en-
tropy rate plays a role in human communication in generaidhlom, 1990; Van Son
et al., 1998; Aylett, 1999; Genzel and Charniak, 2002; Van &ud Pols, 2003). The
idea is that people speak so as to keep the rate of informb&omg transmitted per
second roughly constant, i.e., transmitting a constantbeurof bits per second, or
maintaining a constant entropy rate. Since the most effici@y of transmitting in-
formation through a channel is at a constant rate, languageeawen have evolved
for such communicative efficiency (Plotkin and Nowak, 2000here is a wide vari-
ety of evidence for the constant entropy rate hypothesise €ass of evidence, for
speech, shows that speakers shorten predictable wordgHheg take less time to say
predictable words) and lengthen unpredictable words (Ayl999; Jurafsky et al.,
2001; Aylett and Turk, 2004). In another line of researchpZ& and Charniak (2002,
2003) show that entropy rate constancy makes predictiomg éfve entropy of individ-
ual sentences from a text. In particular, they show thatatjmts that local measures
of sentence entropy which ignore previous discourse coffimxexample theN-gram
probability of sentence), should increase with the ser@unenber, and they document
this increase in corpora. Keller (2004) provides evideheg ¢ntropy rate plays a role
for the addressee as well, showing a correlation betweerrtrepy of a sentence
and the processing effort it causes in comprehension, asurezhby reading times in
eye-tracking data.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The underlying mathematics of tiNegram was first proposed by Markov (1913), who
used what are now callédarkov chains (bigrams and trigrams) to predict whether an
upcoming letter in PushkinBugene Onegimwould be a vowel or a consonant. Markov
classified 20,000 letters as V or C and computed the bigrarnrigmdm probability that

a given letter would be a vowel given the previous one or twieile. Shannon (1948)
appliedN-grams to compute approximations to English word sequenBesed on
Shannon’s work, Markov models were commonly used in engingglinguistic, and
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psychological work on modeling word sequences by the 1950s.

In a series of extremely influential papers starting with @Bky (1956) and in-
cluding Chomsky (1957) and Miller and Chomsky (1963), Noamo@sky argued that
“finite-state Markov processes”, while a possibly usefujiaeering heuristic, were in-
capable of being a complete cognitive model of human gramsal&nowledge. These
arguments led many linguists and computational lingusignore work in statistical
modeling for decades.

The resurgence di-gram models came from Jelinek, Mercer, Bahl, and collesigue
at the IBM Thomas J. Watson Research Center, who were infildmge Shannon, and
Baker at CMU, who was influenced by the work of Baum and colleag Indepen-
dently these two labs successfully usedyrams in their speech recognition systems
(Baker, 1990; Jelinek, 1976; Baker, 1975; Bahl et al., 1988nek, 1990). A trigram
model was used in the IBM TANGORA speech recognition systetiné 1970s, but
the idea was not written up until later.

Add-one smoothing derives from Laplace’s 1812 law of susioces and was first
applied as an engineering solution to the zero-frequenallem by Jeffreys (1948)
based on an earlier Add-K suggestion by Johnson (1932) |éinshwith the Add-one
algorithm are summarized in Gale and Church (1994). The Gawthg algorithm was
first applied to the smoothing &f-gram grammars at IBM by Katz, as cited in Nadas
(1984). Church and Gale (1991) give a good description of3bed-Turing method,
as well as the proof. Sampson (1996) also has a useful disaussGood-Turing.
Jelinek (1990) summarizes this and many other early langoegglel innovations used
in the IBM language models.

A wide variety of different language modeling and smoothiaghniques were
tested through the 1980’s and 1990’s, including WittentBelcounting (Witten and
Bell, 1991), varieties of class-based models (Jelinek01%heser and Ney, 1993;
Heeman, 1999; Samuelsson and Reichl, 1999), and otherdg@upl., 1992). In
the late 1990’s, Chen and Goodman produced a very influesdiads of papers with
a comparison of different language models (Chen and Goodfr&86, 1998, 1999;
Goodman, 2006). They performed a number of carefully cdett@xperiments com-
paring different discounting algorithms, cache modelassibased (cluster) models,
and other language model parameters. They showed the adeandf Interpolated
Kneser-Ney, which has since become one of the most poputeerdumethods for
language modeling. These papers influenced our discussitiisi chapter, and are
recommended reading if you have further interest in langumagdeling.

As we suggested earlier in the chapter, recent researchgudge modeling has fo-
cused on adaptation, on the use of sophisticated lingusistictures based on syntactic
and dialogue structure, and on very very laiggrams. For example in 2006, Google
publicly released a very large setidfgrams that is a useful research resource, consist-
ing of all the five-word sequences that appear at least 4Gtiroen 1,024,908,267,229
words of running text; there are 1,176,470,663 five-wordiseges using over 13 mil-
lion unique words types (Franz and Brants, 2006). Largedagg models generally
need to be pruned to be practical, using techniques suclobk&&({1998) and Church
et al. (2007).
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412 SUMMARY

This chapter introduced thé-gram, one of the oldest and most broadly useful practical
tools in language processing.

EXERCISES

4.1

4.2
4.3

e An N-gram probability is the conditional probability of a worivgn the previous

N — 1 words. N-gram probabilities can be computed by simply counting in a
corpus and normalizing (thelaximum Likelihood Estimate) or they can be
computed by more sophisticated algorithms. The advantafjegrams is that
they take advantage of lots of rich lexical knowledge. A dismtage for some
purposes is that they are very dependent on the corpus theytraemed on.

Smoothingalgorithms provide a better way of estimating the probgbdf N-
grams than Maximum Likelihood Estimation. Commonly uskedram smooth-

ing algorithms rely on lower-ordéd-gram counts vidackoff or interpolation.

Both backoff and interpolation require discounting sucKiasser-Ney, Witten-

Bell or Good-Turing discounting.

N-gramlanguage modelsre evaluated by separating the corpus int@iming
setand atest set training the model on the training set, and evaluating erteist

set. Theperplexity 27 of of the language model on a test set is used to compare
language models.

Write out the equation for trigram probability estimationddifying Eq. 4.14).

Write a program to compute unsmoothed unigrams and bigrams.

Run yourN-gram program on two different small corpora of your choigeu

might use email text or newsgroups). Now compare the stsisf the two corpora.
What are the differences in the most common unigrams bettheetwvo? How about
interesting differences in bigrams?

4.4
4.5
4.6
4.7
4.8

Add an option to your program to generate random sentences.

Add an option to your program to do Good-Turing discounting.

Add an option to your program to implement Katz backoff.

Add an option to your program to compute the perplexity ofsh set.

(Adapted from Michael Collins). Prove Equation (4.27) giviequation (4.26)

and any necessary assumptions. That is, show that givenbalglity distribution
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BAG OF WORDS

BAG GENERATION

AUTHORSHIP
ATTRIBUTION

defined by the GT formula in Equation (4.26) for thetems seen in training, that the
probability of the next, (i.e.N + 1st) item being unseen in training can be estimated
by Equation (4.27). You may make any necessary assumptiottiss proof, including
assuming that al; are non-zero.

4.9 (Advanced) Suppose someone took all the words in a sentemttecardered
them randomly. Write a program which take as input sudtag@ of wordsand pro-
duces as output a guess at the original order. You will neezhtd-gram grammar
produced by youlN-gram program (on some corpus), and you will need to use the
Viterbi algorithm introduced in the next chapter. This taslsometimes callebag
generation

4.10 The field ofauthorship attribution is concerned with discovering the author
of a particular text. Authorship attribution is importantany fields, including his-
tory, literature, and forensic linguistics. For example dtidler and Wallace (1964)
applied authorship identification techniques to discovieo wrroteThe Federalispa-
pers. The Federalist papers were written in 1787-1788 byaklder Hamilton, John
Jay and James Madison to persuade New York to ratify the t&itates Constitution.
They were published anonymously, and as a result, althoogte ©f the 85 essays
were clearly attributable to one author or another, theastiip of 12 were in dispute
between Hamilton and Madison. Foster (1989) applied astipridentification tech-
niques to suggest that W.SFsineral Elegyfor William Peter might have been written
by William Shakespeare (he turned out to be wrong on this,cre) that the anony-
mous author oPrimary Colors the roman a clef about the Clinton campaign for the
American presidency, was journalist Joe Klein (Foster6)99

A standard technique for authorship attribution, first usgdosteller and Wal-
lace, is a Bayesian approach. For example, they trainedtzapiistic model of the
writing of Hamilton and another model on the writings of Msali, then computed the
maximume-likelihood author for each of the disputed essay®re are many complex
factors that go into these models, including vocabularywsed length, syllable struc-
ture, rhyme, grammar; see Holmes (1994) for a summary. Tgpsoach can also be
used for identifying which genre a text comes from.

One factor in many models is the use of rare words. As a simgbecximation
to this one factor, apply the Bayesian method to the atiobubf any particular text.
You will need three things: a text to test and two potentidhats or genres, with a
large on-line text sample of each. One of them should be thecoauthor. Train
a unigram language model on each of the candidate authors.atdonly going to
use thesingletonunigrams in each language model. You will compB{&@ |A;), the
probability of the text given author or gendg, by (1) taking the language model from
A1, (2) by multiplying together the probabilities of all theigrams that only occur once
in the “unknown” text and (3) taking the geometric mean ofsthé.e., thenth root,
wheren is the number of probabilities you multiplied). Do the samaeA;. Choose
whichever is higher. Did it produce the correct candidate?
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