
DRAFT

Speech and Language Processing: An introduction to speech r ecognition, natural
language processing, and computational linguistics. Dani el Jurafsky & James H.
Martin. Copyright c© 2007, All rights reserved. Draft of October 12, 2007. Do not
cite without permission.

3
WORDS &
TRANSDUCERS

How can there be any sin in sincere?
Where is the good in goodbye?

Meredith Willson,The Music Man

Ch. 2 introduced the regular expression, showing for example how a single search
string could help us find bothwoodchuckandwoodchucks. Hunting for singular or
plural woodchucks was easy; the plural just tacks ans on to the end. But suppose we
were looking for another fascinating woodland creatures; let’s say afox, and afish,
that surlypeccaryand perhaps a Canadianwild goose. Hunting for the plurals of these
animals takes more than just tacking on ans. The plural offox is foxes; of peccary,
peccaries; and ofgoose, geese. To confuse matters further, fish don’t usually change
their form when they are plural1.

It takes two kinds of knowledge to correctly search for singulars and plurals of
these forms.Orthographic rules tell us that English words ending in-y are pluralized
by changing the-y to -i- and adding an-es. Morphological rules tell us thatfishhas a
null plural, and that the plural ofgooseis formed by changing the vowel.

The problem of recognizing that a word (likefoxes) breaks down into component
morphemes (fox and-es) and building a structured representation of this fact is called
morphological parsing.MORPHOLOGICAL

PARSING

Parsingmeans taking an input and producing some sort of linguistic structure for it.PARSING

We will use the term parsing very broadly throughout this book, including many kinds
of structures that might be produced; morphological, syntactic, semantic, discourse; in
the form of a string, or a tree, or a network. Morphological parsing or stemming applies
to many affixes other than plurals; for example we might need to take any English verb
form ending in-ing (going, talking, congratulating) and parse it into its verbal stem
plus the-ing morpheme. So given thesurfaceor input form going, we might want toSURFACE

produce the parsed formVERB-go + GERUND-ing.
Morphological parsing is important throughout speech and language processing. It

plays a crucial role in Web search for morphologically complex languages like Rus-
sian or German; in Russian the wordMoscowhas different endings in the phrases
Moscow, of Moscow, from Moscow, and so on. We want to be able to automatically

1 (see e.g., Seuss (1960))
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search for the inflected forms of the word even if the user onlytyped in the base form.
Morphological parsing also plays a crucial role in part-of-speech tagging for these mor-
phologically complex languages, as we will see in Ch. 5. It isimportant for producing
the large dictionaries that are necessary for robust spell-checking. We will need it in
machine translation to realize for example that the French wordsva andaller should
both translate to forms of the English verbgo.

To solve the morphological parsing problem, why couldn’t wejust store all the
plural forms of English nouns and-ing forms of English verbs in a dictionary and do
parsing by lookup? Sometimes we can do this, and for example for English speech
recognition this is exactly what we do. But for many NLP applications this isn’t pos-
sible because-ing is aproductive suffix; by this we mean that it applies to every verb.PRODUCTIVE

Similarly -sapplies to almost every noun. Productive suffixes even applyto new words;
thus the new wordfax can automatically be used in the-ing form: faxing. Since new
words (particularly acronyms and proper nouns) are createdevery day, the class of
nouns in English increases constantly, and we need to be ableto add the plural mor-
pheme-s to each of these. Additionally, the plural form of these new nouns depends
on the spelling/pronunciation of the singular form; for example if the noun ends in-z
then the plural form is-esrather than-s. We’ll need to encode these rules somewhere.

Finally, we certainly cannot list all the morphological variants of every word in
morphologically complex languages like Turkish, which haswords like:

(3.1) uygarlaştıramadıklarımızdanmışsınızcasına
uygar
civilized

+laş
+BEC

+tır
+CAUS

+ama
+NABL

+dık
+PART

+lar
+PL

+ımız
+P1PL

+dan
+ABL

+mış
+PAST

+sınız
+2PL

+casına
+AsIf

“(behaving) as if you are among those whom we could not civilize”

The various pieces of this word (themorphemes) have these meanings:

+BEC “become”
+CAUS the causative verb marker (‘cause to X’)
+NABL “not able”
+PART past participle form
+P1PL 1st person pl possessive agreement
+2PL 2nd person pl
+ABL ablative (from/among) case marker
+AsIf derivationally forms an adverb from a finite verb

Not all Turkish words look like this; the average Turkish word has about three mor-
phemes. But such long words do exist; indeed Kemal Oflazer, who came up with this
example, notes (p.c.) that verbs in Turkish have 40,000 possible forms not counting
derivational suffixes. Adding derivational suffixes, such as causatives, allows a the-
oretically infinite number of words, since causativizationcan be repeated in a single
word (You cause X to cause Y to . . . do W). Thus we cannot store all possible Turkish
words in advance, and must do morphological parsing dynamically.

In the next section we survey morphological knowledge for English and some other
languages. We then introduce the key algorithm for morphological parsing, thefinite-
state transducer. Finite-state transducers are a crucial technology throughout speech
and language processing, so we will return to them again in later chapters.
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After describing morphological parsing, we will introducesome related algorithms
in this chapter. In some applications we don’t need to parse aword, but we do need to
map from the word to its root or stem. For example in information retrieval and web
search (IR), we might want to map fromfoxesto fox; but might not need to also know
that foxesis plural. Just stripping off such word endings is calledstemming in IR. WeSTEMMING

will describe a simple stemming algorithm called thePorter stemmer.
For other speech and language processing tasks, we need to know that two words

have a similar root, despite their surface differences. Forexample the wordssang, sung,
andsingsare all forms of the verbsing. The wordsingis sometimes called the common
lemmaof these words, and mapping from all of these tosing is calledlemmatization.2LEMMATIZATION

Next, we will introduce another task related to morphological parsing.Tokeniza-
tion or word segmentationis the task of separating out (tokenizing) words from run-TOKENIZATION

ning text. In English, words are often separated from each other by blanks (whites-
pace), but whitespace is not always sufficient; we’ll need tonotice thatNew Yorkand
rock ’n’ roll are individual words despite the fact that they contain spaces, but for many
applications we’ll need to separateI’m into the two wordsI andam.

Finally, for many applications we need to know how similar two words are ortho-
graphically. Morphological parsing is one method for computing this similarity, but
another is to just compare the strings of letters to see how similar they are. A common
way of doing this is with theminimum edit distance algorithm, which is important
throughout NLP. We’ll introduce this algorithm and also show how it can be used in
spell-checking.

3.1 SURVEY OF (MOSTLY) ENGLISH MORPHOLOGY

Morphology is the study of the way words are built up from smaller meaning-bearing
units,morphemes. A morpheme is often defined as the minimal meaning-bearing unitMORPHEMES

in a language. So for example the wordfox consists of a single morpheme (the mor-
phemefox) while the wordcatsconsists of two: the morphemecat and the morpheme
-s.

As this example suggests, it is often useful to distinguish two broad classes of
morphemes:stemsandaffixes. The exact details of the distinction vary from languageSTEMS

AFFIXES to language, but intuitively, the stem is the “main” morpheme of the word, supplying
the main meaning, while the affixes add “additional” meanings of various kinds.

Affixes are further divided intoprefixes, suffixes, infixes, andcircumfixes. Pre-
fixes precede the stem, suffixes follow the stem, circumfixes do both, and infixes are
inserted inside the stem. For example, the wordeatsis composed of a stemeat and
the suffix-s. The wordunbuckleis composed of a stembuckleand the prefixun-. En-
glish doesn’t have any good examples of circumfixes, but manyother languages do.
In German, for example, the past participle of some verbs is formed by addingge- to
the beginning of the stem and-t to the end; so the past participle of the verbsagen(to
say) isgesagt(said). Infixes, in which a morpheme is inserted in the middleof a word,

2 Lemmatization is actually more complex, since it sometimesinvolves deciding on which sense of a word
is present. We return to this issue in Ch. 20.
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occur very commonly for example in the Philipine language Tagalog. For example the
affix um, which marks the agent of an action, is infixed to the Tagalog stemhingi “bor-
row” to producehumingi. There is one infix that occurs in some dialects of English in
which the taboo morphemes “f**king” or “bl**dy” or others like them are inserted in
the middle of other words (“Man-f**king-hattan”, “abso-bl**dy-lutely” 3) (McCawley,
1978).

A word can have more than one affix. For example, the wordrewriteshas the prefix
re-, the stemwrite, and the suffix-s. The wordunbelievablyhas a stem (believe) plus
three affixes (un-, -able, and-ly). While English doesn’t tend to stack more than four
or five affixes, languages like Turkish can have words with nine or ten affixes, as we
saw above. Languages that tend to string affixes together like Turkish does are called
agglutinative languages.

There are many ways to combine morphemes to create words. Four of these meth-
ods are common and play important roles in speech and language processing:inflec-
tion, derivation, compounding, andcliticization .INFLECTION

DERIVATION

COMPOUNDING

CLITICIZATION

Inflection is the combination of a word stem with a grammatical morpheme, usu-
ally resulting in a word of the same class as the original stem, and usually filling some
syntactic function like agreement. For example, English has the inflectional morpheme
-s for marking theplural on nouns, and the inflectional morpheme-edfor marking the
past tense on verbs.Derivation is the combination of a word stem with a grammatical
morpheme, usually resulting in a word of adifferentclass, often with a meaning hard
to predict exactly. For example the verbcomputerizecan take the derivational suffix
-ation to produce the nouncomputerization. Compounding is the combination of mul-
tiple word stems together. For example the noundoghouseis the concatenation of the
morphemedogwith the morphemehouse. Finally, cliticization is the combination of
a word stem with aclitic . A clitic is a morpheme that acts syntactically like a word,CLITIC

but is reduced in form and attached (phonologically and sometimes orthographically)
to another word. For example the English morpheme’ve in the wordI’ve is a clitic, as
is the French definite articlel’ in the wordl’opera. In the following sections we give
more details on these processes.

3.1.1 Inflectional Morphology

English has a relatively simple inflectional system; only nouns, verbs, and sometimes
adjectives can be inflected, and the number of possible inflectional affixes is quite
small.

English nouns have only two kinds of inflection: an affix that marksplural and anPLURAL

affix that markspossessive. For example, many (but not all) English nouns can either
appear in the bare stem orsingular form, or take a plural suffix. Here are examples ofSINGULAR

the regular plural suffix-s (also spelled-es), and irregular plurals:

Regular Nouns Irregular Nouns

Singular cat thrush mouse ox
Plural cats thrushes mice oxen

3 Alan Jay Lerner, the lyricist of My Fair Lady, bowdlerized the latter toabso-bloomin’lutelyin the lyric to
“Wouldn’t It Be Loverly?” (Lerner, 1978, p. 60).
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While the regular plural is spelled-s after most nouns, it is spelled-esafter words
ending in-s (ibis/ibises), -z (waltz/waltzes), -sh (thrush/thrushes), -ch (finch/finches),
and sometimes-x (box/boxes). Nouns ending in-y preceded by a consonant change the
-y to -i (butterfly/butterflies).

The possessive suffix is realized by apostrophe +-s for regular singular nouns
(llama’s) and plural nouns not ending in-s (children’s) and often by a lone apostro-
phe after regular plural nouns (llamas’) and some names ending in-s or -z (Euripides’
comedies).

English verbal inflection is more complicated than nominal inflection. First, En-
glish has three kinds of verbs;main verbs, (eat, sleep, impeach), modal verbs (can,
will, should), andprimary verbs (be, have, do) (using the terms of Quirk et al., 1985).
In this chapter we will mostly be concerned with the main and primary verbs, because
it is these that have inflectional endings. Of these verbs a large class areregular, that isREGULAR

to say all verbs of this class have the same endings marking the same functions. These
regular verbs (e.g.walk, or inspect) have four morphological forms, as follow:

Morphological Form Classes Regularly Inflected Verbs
stem walk merge try map
-s form walks merges tries maps
-ing participle walking merging trying mapping
Past form or-edparticiple walked merged tried mapped

These verbs are called regular because just by knowing the stem we can predict
the other forms by adding one of three predictable endings and making some regular
spelling changes (and as we will see in Ch. 7, regular pronunciation changes). These
regular verbs and forms are significant in the morphology of English first because they
cover a majority of the verbs, and second because the regularclass isproductive. As
discussed earlier, a productive class is one that automatically includes any new words
that enter the language. For example the recently-created verb fax (My mom faxedme
the note from cousin Everett) takes the regular endings-ed, -ing, -es. (Note that the-s
form is spelledfaxesrather thanfaxs; we will discuss spelling rules below).

The irregular verbs are those that have some more or less idiosyncratic forms ofIRREGULAR VERBS

inflection. Irregular verbs in English often have five different forms, but can have as
many as eight (e.g., the verbbe) or as few as three (e.g.cut or hit). While constituting
a much smaller class of verbs (Quirk et al. (1985) estimate there are only about 250
irregular verbs, not counting auxiliaries), this class includes most of the very frequent
verbs of the language.4 The table below shows some sample irregular forms. Note that
an irregular verb can inflect in the past form (also called thepreterite) by changing itsPRETERITE

vowel (eat/ate), or its vowel and some consonants (catch/caught), or with no change at
all (cut/cut).

4 In general, the more frequent a word form, the more likely it is to have idiosyncratic properties; this is due
to a fact about language change; very frequent words tend to preserve their form even if other words around
them are changing so as to become more regular.
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Morphological Form ClassesIrregularly Inflected Verbs
stem eat catch cut
-s form eats catches cuts
-ing participle eating catching cutting
Past form ate caught cut
-ed/-enparticiple eaten caught cut

The way these forms are used in a sentence will be discussed inthe syntax and se-
mantics chapters but is worth a brief mention here. The-s form is used in the “habitual
present” form to distinguish the third-person singular ending (She jogs every Tuesday)
from the other choices of person and number (I/you/we/they jog every Tuesday). The
stem form is used in the infinitive form, and also after certain other verbs (I’d rather
walk home, I want to walk home). The-ing participle is used in theprogressivecon-PROGRESSIVE

struction to mark present or ongoing activity (It is raining), or when the verb is treated
as a noun; this particular kind of nominal use of a verb is called agerund use:FishingGERUND

is fine if you live near water.The-ed/-enparticiple is used in theperfect constructionPERFECT

(He’s eaten lunch already) or the passive construction (The verdict was overturned
yesterday).

In addition to noting which suffixes can be attached to which stems, we need to
capture the fact that a number of regular spelling changes occur at these morpheme
boundaries. For example, a single consonant letter is doubled before adding the-ing
and-edsuffixes (beg/begging/begged). If the final letter is “c”, the doubling is spelled
“ck” ( picnic/picnicking/picnicked). If the base ends in a silent-e, it is deleted before
adding-ing and-ed(merge/merging/merged). Just as for nouns, the-sending is spelled
-esafter verb stems ending in-s (toss/tosses) , -z, (waltz/waltzes) -sh, (wash/washes)
-ch, (catch/catches) and sometimes-x (tax/taxes). Also like nouns, verbs ending in-y
preceded by a consonant change the-y to -i (try/tries).

The English verbal system is much simpler than for example the European Spanish
system, which has as many as fifty distinct verb forms for eachregular verb. Fig. 3.1
shows just a few of the examples for the verbamar, ‘to love’. Other languages can
have even more forms than this Spanish example.

Present Imperfect Future Preterite Present Conditional Imperfect Future
Indicative Indicative Subjnct. Subjnct. Subjnct.

1SG amo amaba amaré amé ame amarı́a amara amare
2SG amas amabas amarás amaste ames amarı́as amaras amares
3SG ama amaba amará amó ame amarı́a amara amáreme
1PL amamos amábamos amaremos amamos amemos amarı́amos amáramos amáremos
2PL amáis amabais amaréis amasteis améis amarı́ais amarais amareis
3PL aman amaban amarán amaron amen amarı́an amaran amaren

Figure 3.1 To love in Spanish. Some of the inflected forms of the verbamar in Euro-
pean Spanish.1SGstands for “first person singular”, 3PL for “third person plural”, and so
on.
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3.1.2 Derivational Morphology

While English inflection is relatively simple compared to other languages, derivation
in English is quite complex. Recall that derivation is the combination of a word stem
with a grammatical morpheme, usually resulting in a word of adifferentclass, often
with a meaning hard to predict exactly.

A very common kind of derivation in English is the formation of new nouns, of-
ten from verbs or adjectives. This process is callednominalization. For example,NOMINALIZATION

the suffix-ation produces nouns from verbs ending often in the suffix-ize (computer-
ize→ computerization). Here are examples of some particularly productive English
nominalizing suffixes.

Suffix Base Verb/AdjectiveDerived Noun

-ation computerize (V) computerization
-ee appoint (V) appointee
-er kill (V) killer
-ness fuzzy (A) fuzziness

Adjectives can also be derived from nouns and verbs. Here areexamples of a few
suffixes deriving adjectives from nouns or verbs.

Suffix Base Noun/VerbDerived Adjective

-al computation (N) computational
-able embrace (V) embraceable
-less clue (N) clueless

Derivation in English is more complex than inflection for a number of reasons.
One is that it is generally less productive; even a nominalizing suffix like -ation, which
can be added to almost any verb ending in-ize, cannot be added to absolutely ev-
ery verb. Thus we can’t say *eatationor *spellation(we use an asterisk (*) to mark
“non-examples” of English). Another is that there are subtle and complex meaning
differences among nominalizing suffixes. For examplesincerityhas a subtle difference
in meaning fromsincereness.

3.1.3 Cliticization

Recall that a clitic is a unit whose status lies in between that of an affix and a word. The
phonological behavior of clitics is like affixes; they tend to be short and unaccented (we
will talk more about phonology in Ch. 8). Their syntactic behavior is more like words,
often acting as pronouns, articles, conjunctions, or verbs. Clitics preceding a word are
calledproclitics, while those following areenclitics.PROCLITICS

ENCLITICS English clitics include these auxiliary verbal forms:

Full Form Clitic Full Form Clitic

am ’m have ’ve
are ’re has ’s
is ’s had ’d
will ’ll would ’d
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Note that the clitics in English are ambiguous; Thusshe’scan meanshe isor she
has. Except for a few such ambiguities, however, correctly segmenting off clitics in
English is simplified by the presence of the apostrophe. Clitics can be harder to parse
in other languages. In Arabic and Hebrew, for example, the definite article (the; Al in
Arabic,ha in Hebrew) is cliticized on to the front of nouns. It must be segmented off
in order to do part-of-speech tagging, parsing, or other tasks. Other Arabic proclitics
include prepositions likeb ‘by/with’, and conjunctions likew ‘and’. Arabic also has
encliticsmarking certain pronouns. For example the wordand by their virtueshas
clitics meaningand, by, andtheir, a stemvirtue, and a plural affix. Note that since
Arabic is read right to left, these would actually appear ordered from right to left in an
Arabic word.

proclitic proclitic stem affix enclitic
Arabic w b Hsn At hm
Gloss and by virtue s their

3.1.4 Non-concatenative Morphology

The kind of morphology we have discussed so far, in which a word is composed of a
string of morphemes concatenated together is often calledconcatenative morphology.CONCATENATIVE

A number of languages have extensivenon-concatenative morphology, in which mor-
phemes are combined in more complex ways. The Tagalog infixation example above is
one example of non-concatenative morphology, since two morphemes (hingi andum)
are intermingled.

Another kind of non-concatenative morphology is calledtemplatic morphology
or root-and-pattern morphology. This is very common in Arabic, Hebrew, and other
Semitic languages. In Hebrew, for example, a verb (as well asother parts-of-speech)
is constructed using two components: a root, consisting usually of three consonants
(CCC) and carrying the basic meaning, and a template, which gives the ordering of
consonants and vowels and specifies more semantic information about the resulting
verb, such as the semantic voice (e.g., active, passive, middle). For example the He-
brew tri-consonantal rootlmd, meaning ‘learn’ or ‘study’, can be combined with the
active voice CaCaC template to produce the wordlamad, ‘he studied’, or the inten-
sive CiCeC template to produce the wordlimed, ‘he taught’, or the intensive passive
template CuCaC to produce the wordlumad, ‘he was taught’. Arabic and Hebrew com-
bine this templatic morphology with concatenative morphology (like the cliticization
example shown in the previous section).

3.1.5 Agreement

We introduced the plural morpheme above, and noted that plural is marked on both
nouns and verbs in English. We say that the subject noun and the main verb in English
have toagree in number, meaning that the two must either be both singular or bothAGREE

plural. There are other kinds of agreement processes. For example nouns, adjectives,
and sometimes verbs in many languages are marked forgender. A gender is a kindGENDER

of equivalence class that is used by the language to categorize the nouns; each noun
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falls into one class. Many languages (for example Romance languages like French,
Spanish, or Italian) have 2 genders, which are referred to asmasculine and feminine.
Other languages (like most Germanic and Slavic languages) have three (masculine,
feminine, neuter). Some languages, for example the Bantu languages of Africa, have
as many as 20 genders. When the number of classes is very large, we often refer to
them asnoun classesinstead of genders.NOUN CLASSES

Gender is sometimes marked explicitly on a noun; for exampleSpanish masculine
words often end in-o and feminine words in-a. But in many cases the gender is not
marked in the letters or phones of the noun itself. Instead, it is a property of the word
that must be stored in a lexicon. We will see an example of thisin Fig. 3.2.

3.2 FINITE-STATE MORPHOLOGICALPARSING

Let’s now proceed to the problem of parsing morphology. Our goal will be to take
input forms like those in the first and third columns of Fig. 3.2, produce output forms
like those in the second and fourth column.

English Spanish
Input Morphologically Input Morphologically Gloss

Parsed Output Parsed Output
cats cat +N +PL pavos pavo +N +Masc +Pl ‘ducks’
cat cat +N +SG pavo pavo +N +Masc +Sg ‘duck’
cities city +N +Pl bebo beber +V +PInd +1P +Sg ‘I drink’
geese goose +N +Pl canto cantar +V +PInd +1P +Sg ‘I sing’
goose goose +N +Sg canto canto +N +Masc +Sg ‘song’
goose goose +V puse poner +V +Perf +1P +Sg ‘I was able’
gooses goose +V +1P +Sg vino venir +V +Perf +3P +Sg ‘he/she came’
merging merge +V +PresPart vino vino +N +Masc +Sg ‘wine’
caught catch +V +PastPart lugar lugar +N +Masc +Sg ‘place’
caught catch +V +Past

Figure 3.2 Output of a morphological parse for some English and Spanishwords. Span-
ish output modified from the Xerox XRCE finite-state languagetools.

The second column contains the stem of each word as well as assorted morpho-
logical features. These features specify additional information about the stem. ForFEATURES

example the feature+N means that the word is a noun;+Sg means it is singular,+Pl
that it is plural. Morphological features will be referred to again in Ch. 5 and in more
detail in Ch. 16; for now, consider+Sg to be a primitive unit that means “singular”.
Spanish has some features that don’t occur in English; for example the nounslugarand
pavoare marked+Masc (masculine). Because Spanish nouns agree in gender with ad-
jectives, knowing the gender of a noun will be important for tagging and parsing.

Note that some of the input forms (likecaught, goose, canto, or vino) will be am-
biguous between different morphological parses. For now, we will consider the goal of
morphological parsing merely to list all possible parses. We will return to the task of
disambiguating among morphological parses in Ch. 5.
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In order to build a morphological parser, we’ll need at leastthe following:

1. lexicon: the list of stems and affixes, together with basic information about themLEXICON

(whether a stem is a Noun stem or a Verb stem, etc.).
2. morphotactics: the model of morpheme ordering that explains which classes ofMORPHOTACTICS

morphemes can follow other classes of morphemes inside a word. For example,
the fact that the English plural morpheme follows the noun rather than preceding
it is a morphotactic fact.

3. orthographic rules: thesespelling rules are used to model the changes that
occur in a word, usually when two morphemes combine (e.g., they→ ie spelling
rule discussed above that changescity + -s to citiesrather thancitys).

The next section will discuss how to represent a simple version of the lexicon just
for the sub-problem of morphological recognition, including how to use FSAs to model
morphotactic knowledge.

In following sections we will then introduce the finite-state transducer (FST) as a
way of modeling morphological features in the lexicon, and addressing morphological
parsing. Finally, we show how to use FSTs to model orthographic rules.

3.3 BUILDING A FINITE-STATE LEXICON

A lexicon is a repository for words. The simplest possible lexicon would consist of
an explicit list of every word of the language (everyword, i.e., including abbreviations
(“AAA”) and proper names (“Jane” or “Beijing”)) as follows:

a, AAA, AA, Aachen, aardvark, aardwolf, aba, abaca, aback, .. .

Since it will often be inconvenient or impossible, for the various reasons we dis-
cussed above, to list every word in the language, computational lexicons are usually
structured with a list of each of the stems and affixes of the language together with a
representation of the morphotactics that tells us how they can fit together. There are
many ways to model morphotactics; one of the most common is the finite-state au-
tomaton. A very simple finite-state model for English nominal inflection might look
like Fig. 3.3.

q0 q1 q2

reg-noun plural -s

irreg-sg-noun

irreg-pl-noun

Figure 3.3 A finite-state automaton for English nominal inflection.

The FSA in Fig. 3.3 assumes that the lexicon includes regularnouns (reg-noun)
that take the regular-splural (e.g.,cat, dog, fox, aardvark). These are the vast majority
of English nouns since for now we will ignore the fact that theplural of words likefox



DRAFT

Section 3.3. Building a Finite-State Lexicon 11

have an insertede: foxes. The lexicon also includes irregular noun forms that don’t
take-s, both singularirreg-sg-noun (goose, mouse) and pluralirreg-pl-noun (geese,
mice).

reg-noun irreg-pl-noun irreg-sg-noun plural

fox geese goose -s
cat sheep sheep
aardvark mice mouse

A similar model for English verbal inflection might look likeFig. 3.4.

q0
q1 q3

reg-verb-stem
past (-ed)

irreg-verb-stem

reg-verb-stem

q2

irreg-past-verb-form

past participle (-ed)

present participle (-ing)
3sg (-s)

Figure 3.4 A finite-state automaton for English verbal inflection

This lexicon has three stem classes (reg-verb-stem, irreg-verb-stem, and irreg-past-
verb-form), plus four more affix classes (-ed past,-ed participle,-ing participle, and
third singular-s):

reg-verb- irreg-verb- irreg-past- past past-part pres-part 3sg
stem stem verb

walk cut caught -ed -ed -ing -s
fry speak ate
talk sing eaten
impeach sang

English derivational morphology is significantly more complex than English inflec-
tional morphology, and so automata for modeling English derivation tend to be quite
complex. Some models of English derivation, in fact, are based on the more complex
context-free grammars of Ch. 12 (Sproat, 1993).

Consider a relatively simpler case of derivation: the morphotactics of English ad-
jectives. Here are some examples from Antworth (1990):

big, bigger, biggest, cool, cooler, coolest, coolly
happy, happier, happiest, happily red, redder, reddest
unhappy, unhappier, unhappiest, unhappily real, unreal, really
clear, clearer, clearest, clearly, unclear, unclearly
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An initial hypothesis might be that adjectives can have an optional prefix (un-), an
obligatory root (big, cool, etc.) and an optional suffix (-er, -est, or -ly). This might
suggest the the FSA in Fig. 3.5.

q0 q1 q2

un- adj-root

∋

q3

-er  -est  -ly

Figure 3.5 An FSA for a fragment of English adjective morphology: Antworth’s Pro-
posal #1.

Alas, while this FSA will recognize all the adjectives in thetable above, it will also
recognize ungrammatical forms likeunbig, unfast, oranger, or smally. We need to set
up classes of roots and specify their possible suffixes. Thusadj-root1 would include
adjectives that can occur withun-and-ly (clear, happy, andreal) while adj-root2 will
include adjectives that can’t (big, small), and so on.

This gives an idea of the complexity to be expected from English derivation. As a
further example, we give in Figure 3.6 another fragment of anFSA for English nominal
and verbal derivational morphology, based on Sproat (1993), Bauer (1983), and Porter
(1980). This FSA models a number of derivational facts, suchas the well known
generalization that any verb ending in-izecan be followed by the nominalizing suffix
-ation (Bauer, 1983; Sproat, 1993). Thus since there is a wordfossilize, we can predict
the wordfossilizationby following statesq0, q1, andq2. Similarly, adjectives ending
in -al or -ableat q5 (equal, formal, realizable) can take the suffix-ity, or sometimes
the suffix-nessto stateq6 (naturalness, casualness). We leave it as an exercise for the
reader (Exercise 3.1) to discover some of the individual exceptions to many of these
constraints, and also to give examples of some of the variousnoun and verb classes.

q0 q1 q2

nouni -ize/V
q3

-ation/N
q4

adj-al

q5
q6

-er/N-able/A

-ness/N

-ity/N

adj-al

q7
q8

q9verbj
-ive/A

adj-ous
-ly/Adv

-ness/N

q10 q11

-ly/Adv
-ful/A-ative/A

verbk

nounl

Figure 3.6 An FSA for another fragment of English derivational morphology.

We can now use these FSAs to solve the problem ofmorphological recognition;
that is, of determining whether an input string of letters makes up a legitimate English
word or not. We do this by taking the morphotactic FSAs, and plugging in each “sub-
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lexicon” into the FSA. That is, we expand each arc (e.g., thereg-noun-stemarc) with
all the morphemes that make up the set ofreg-noun-stem. The resulting FSA can then
be defined at the level of the individual letter.

f

o

∋c

g

s

o

x

ta

o s e

e e s e

Figure 3.7 Expanded FSA for a few English nouns with their inflection. Note that this
automaton will incorrectly accept the inputfoxs. We will see beginning on page 19 how to
correctly deal with the insertede in foxes.

Fig. 3.7 shows the noun-recognition FSA produced by expanding the Nominal In-
flection FSA of Fig. 3.3 with sample regular and irregular nouns for each class. We can
use Fig. 3.7 to recognize strings likeaardvarksby simply starting at the initial state,
and comparing the input letter by letter with each word on each outgoing arc, and so
on, just as we saw in Ch. 2.

3.4 FINITE-STATE TRANSDUCERS

We’ve now seen that FSAs can represent the morphotactic structure of a lexicon, and
can be used for word recognition. In this section we introduce the finite-state trans-
ducer. The next section will show how transducers can be applied to morphological
parsing.

A transducer maps between one representation and another; afinite-state trans-
ducer or FST is a type of finite automaton which maps between two sets of symbols.FST

We can visualize an FST as a two-tape automaton which recognizes or generatespairs
of strings. Intuitively, we can do this by labeling each arc in the finite-state machine
with two symbol strings, one from each tape. Fig. 3.8 shows anexample of an FST
where each arc is labeled by an input and output string, separated by a colon.

The FST thus has a more general function than an FSA; where an FSA defines a
formal language by defining a set of strings, an FST defines arelation between sets of
strings. Another way of looking at an FST is as a machine that reads one string and
generates another. Here’s a summary of this four-fold way ofthinking about transduc-
ers:

• FST as recognizer:a transducer that takes a pair of strings as input and outputs
acceptif the string-pair is in the string-pair language, andreject if it is not.
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q0

aa:b

q1

b:
b:a

b:b

a:ba

∋

Figure 3.8 A finite-state transducer, modified from Mohri (1997).

• FST as generator:a machine that outputs pairs of strings of the language. Thus
the output is a yes or no, and a pair of output strings.

• FST as translator: a machine that reads a string and outputs another string

• FST as set relater:a machine that computes relations between sets.

All of these have applications in speech and language processing. For morphologi-
cal parsing (and for many other NLP applications), we will apply the FST as translator
metaphor, taking as input a string of letters and producing as output a string of mor-
phemes.

Let’s begin with a formal definition. An FST can be formally defined with 7 pa-
rameters:

Q a finite set ofN statesq0,q1, . . . ,qN−1

Σ a finite set corresponding to the input alphabet

∆ a finite set corresponding to the output alphabet

q0 ∈Q the start state

F ⊆Q the set of final states

δ(q,w) the transition function or transition matrix between states; Given a
stateq∈ Q and a stringw∈ Σ∗, δ(q,w) returns a set of new states
Q′ ∈ Q. δ is thus a function fromQ×Σ∗ to 2Q (because there are
2Q possible subsets ofQ). δ returns a set of states rather than a
single state because a given input may be ambiguous in which state
it maps to.

σ(q,w) the output function giving the set of possible output strings for each
state and input. Given a stateq ∈ Q and a stringw ∈ Σ∗, σ(q,w)
gives a set of output strings, each a stringo∈ ∆∗. σ is thus a func-
tion fromQ×Σ∗ to 2∆∗

Where FSAs are isomorphic to regular languages, FSTs are isomorphic toregu-
lar relations. Regular relations are sets of pairs of strings, a natural extension of theREGULAR

RELATIONS

regular languages, which are sets of strings. Like FSAs and regular languages, FSTs
and regular relations are closed under union, although in general they are not closed
under difference, complementation and intersection (although some useful subclasses
of FSTsareclosed under these operations; in general FSTs that are not augmented with
the ǫ are more likely to have such closure properties). Besides union, FSTs have two
additional closure properties that turn out to be extremelyuseful:
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• inversion: The inversion of a transducerT (T−1) simply switches the input andINVERSION

output labels. Thus ifT maps from the input alphabetI to the output alphabetO,
T−1 maps fromO to I .
• composition: If T1 is a transducer fromI1 to O1 andT2 a transducer fromO1 toCOMPOSITION

O2, thenT1◦T2 maps fromI1 to O2.

Inversion is useful because it makes it easy to convert a FST-as-parser into an FST-
as-generator.

Composition is useful because it allows us to take two transducers that run in series
and replace them with one more complex transducer. Composition works as in algebra;
applyingT1 ◦T2 to an input sequenceS is identical to applyingT1 to S and thenT2 to
the result; thusT1◦T2(S) = T2(T1(S)).

Fig. 3.9, for example, shows the composition of[a:b]+ with [b:c]+ to produce
[a:c]+ .

q0 q1

a:c

a:c
q0 q1

b:c
b:c

q0 q1

a:b

a:b
=

Figure 3.9 The composition of[a:b]+ with [b:c]+ to produce[a:c]+ .

Theprojection of an FST is the FSA that is produced by extracting only one sidePROJECTION

of the relation. We can refer to the projection to the left or upper side of the relation as
theupper or first projection and the projection to the lower or right side of the relation
as thelower or secondprojection.

3.4.1 Sequential Transducers and Determinism

Transducers as we have described them may be nondeterministic, in that a given input
may translate to many possible output symbols. Thus using general FSTs requires the
kinds of search algorithms discussed in Ch. 2, making FSTs quite slow in the general
case. This suggests that it would nice to have an algorithm toconvert a nondeterministic
FST to a deterministic one. But while every non-deterministic FSA is equivalent to
some deterministic FSA, not all finite-state transducers can be determinized.

Sequential transducers, by contrast, are a subtype of transducers that are deter-SEQUENTIAL
TRANSDUCERS

ministic on their input. At any state of a sequential transducer, each given symbol of
the input alphabetΣ can label at most one transition out of that state. Fig. 3.10 gives
an example of a sequential transducer from Mohri (1997); note that here, unlike the
transducer in Fig. 3.8, the transitions out of each state aredeterministic based on the
state and the input symbol. Sequential transducers can haveepsilon symbols in the
output string, but not on the input.

Sequential transducers are not necessarily sequential on their output. Mohri’s trans-
ducer in Fig. 3.10 is not, for example, since two distinct transitions leaving state 0 have
the same output (b). Since the inverse of a sequential transducer may thus not be se-
quential, we always need to specify the direction of the transduction when discussing
sequentiality. Formally, the definition of sequential transducers modifies theδ andσ
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q0 q1

b:
a:b

b:b

a:ba

∋

Figure 3.10 A sequential finite-state transducer, from Mohri (1997).

functions slightly;δ becomes a function fromQ×Σ∗ to Q (rather than to 2Q), andσ
becomes a function fromQ×Σ∗ to ∆∗ (rather than to 2∆

∗
).

One generalization of sequential transducers is thesubsequential transducer(Schützenberger,SUBSEQUENTIAL
TRANSDUCER

1977), which generates an additional output string at the final states, concatenating it
onto the output produced so far.

What makes sequential and subsequential transducers important is their efficiency;
because they are deterministic on input, they can be processed in time proportional to
the number of symbols in the input (they are linear in their input length) rather than
proportional to some much larger number which is a function of the number of states.
Another advantage of subsequential transducers is that there exist efficient algorithms
for their determinization (Mohri, 1997) and minimization (Mohri, 2000), extending the
algorithms for determinization and minimization of finite-state automata that we saw
in Ch. 2. also an equivalence algorithm.

While both sequential and subsequential transducers are deterministic and efficient,
neither of them is able to handle ambiguity, since they transduce each input string
to exactly one possible output string. Since ambiguity is a crucial property of natu-
ral language, it will be useful to have an extension of subsequential transducers that
can deal with ambiguity, but still retain the efficiency and other useful properties of
sequential transducers. One such generalization of subsequential transducers is the
p-subsequentialtransducer. Ap-subsequentialtransducer allows forp(p≥ 1) final
output strings to be associated with each final state (Mohri,1996). They can thus han-
dle a finite amount of ambiguity, which is useful for many NLP tasks. Fig. 3.11 shows
an example of a 2-subsequential FST.

q0
q1

a:a

b:a q2

q3

a:a

b:b

a

b

Figure 3.11 A 2-subsequential finite-state transducer, from Mohri (1997).

Mohri (1996, 1997) show a number of tasks whose ambiguity canbe limited in this
way, including the representation of dictionaries, the compilation of morphological
and phonological rules, and local syntactic constraints. For each of these kinds of
problems, he and others have shown that they arep-subsequentializable, and thus can
be determinized and minimized. This class of transducers includes many, although not
necessarily all, morphological rules.
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3.5 FSTS FORMORPHOLOGICALPARSING

Let’s now turn to the task of morphological parsing. Given the inputcats, for instance,
we’d like to outputcat +N +Pl, telling us thatcat is a plural noun. Given the Spanish
input bebo(‘I drink’), we’d like to output beber +V +PInd +1P +Sgtelling us that
bebois the present indicative first person singular form of the Spanish verbbeber, ‘to
drink’.

In thefinite-state morphologyparadigm that we will use, we represent a word as
a correspondence between alexical level, which represents a concatenation of mor-
phemes making up a word, and thesurface level, which represents the concatenationSURFACE

of letters which make up the actual spelling of the word. Fig.3.12 shows these two
levels for (English)cats.

c +N +Pl

c a t s  

Lexical

Surface

Figure 3.12 Schematic examples of the lexical and surface tapes; the actual transducers
will involve intermediate tapes as well.

For finite-state morphology it’s convenient to view an FST ashaving two tapes. The
upper or lexical tape, is composed from characters from one alphabetΣ. The lowerLEXICAL TAPE

or surface tape, is composed of characters from another alphabet∆. In the two-level
morphology of Koskenniemi (1983), we allow each arc only to have a singlesymbol
from each alphabet. We can then combine the two symbol alphabetsΣ and∆ to create
a new alphabet,Σ′, which makes the relationship to FSAs quite clear.Σ′ is a finite
alphabet of complex symbols. Each complex symbol is composed of an input-output
pair i : o; one symboli from the input alphabetΣ, and one symbolo from an output
alphabet∆, thusΣ′ ⊆ Σ×∆. Σ and∆ may each also include the epsilon symbolǫ. Thus
where an FSA accepts a language stated over a finite alphabet of single symbols, such
as the alphabet of our sheep language:

Σ = {b,a, !}(3.2)

an FST defined this way accepts a language stated overpairsof symbols, as in:

Σ′ = {a : a, b : b, ! : ! , a : !, a : ǫ, ǫ : !}(3.3)

In two-level morphology, the pairs of symbols inΣ′ are also calledfeasible pairs. ThusFEASIBLE PAIRS

each feasible pair symbola : b in the transducer alphabetΣ′ expresses how the symbol
a from one tape is mapped to the symbolb on the other tape. For examplea : ǫ means
that ana on the upper tape will correspond tonothingon the lower tape. Just as for
an FSA, we can write regular expressions in the complex alphabetΣ′. Since it’s most
common for symbols to map to themselves, in two-level morphology we call pairs like
a : a default pairs, and just refer to them by the single lettera.DEFAULT PAIRS
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We are now ready to build an FST morphological parser out of our earlier morpho-
tactic FSAs and lexica by adding an extra “lexical” tape and the appropriate morpho-
logical features. Fig. 3.13 shows an augmentation of Fig. 3.3 with the nominal mor-
phological features (+Sg and+Pl ) that correspond to each morpheme. The symbol
ˆ indicates amorpheme boundary, while the symbol# indicates aword boundary.MORPHEME

BOUNDARY

#

WORD BOUNDARY

The morphological features map to the empty stringǫ or the boundary symbols since
there is no segment corresponding to them on the output tape.

q0

q1

q�reg-noun

irreg-pl-noun

irreg-sg-noun q2

q3

q4

q5

q6

+N

+N

+N

+Pl

+Pl
#

#

#

^s#+Sg

+Sg

∋

∋

∋

Figure 3.13 A schematic transducer for English nominal number inflection Tnum. The
symbols above each arc represent elements of the morphological parse in the lexical tape;
the symbols below each arc represent the surface tape (or theintermediate tape, to be
described later), using the morpheme-boundary symbol ˆ andword-boundary marker #.
The labels on the arcs leavingq0 are schematic, and need to be expanded by individual
words in the lexicon.

In order to use Fig. 3.13 as a morphological noun parser, it needs to be expanded
with all the individual regular and irregular noun stems, replacing the labelsreg-noun
etc. In order to do this we need to update the lexicon for this transducer, so that irreg-
ular plurals likegeesewill parse into the correct stemgoose +N +Pl . We do this
by allowing the lexicon to also have two levels. Since surface geesemaps to lexical
goose , the new lexical entry will be “g:g o:e o:e s:s e:e ”. Regular forms
are simpler; the two-level entry forfox will now be “f:f o:o x:x ”, but by relying
on the orthographic convention thatf stands forf:f and so on, we can simply refer to
it as fox and the form forgeeseas “g o:e o:e s e ”. Thus the lexicon will look
only slightly more complex:

reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e s e goose
cat sheep sheep
aardvark m o:i u:ǫ s:c e mouse

The resulting transducer, shown in Fig. 3.14, will map plural nouns into the stem
plus the morphological marker+Pl , and singular nouns into the stem plus the mor-
phological marker+Sg. Thus a surfacecatswill map to cat +N +Pl . This can be
viewed in feasible-pair format as follows:
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0

f

o

3 4

1 2

6

7

c

g

^s#

o

x

ta

o s e

o o s e

5
+N

∋

+N

∋

+N

∋

g

c

f

a

o x

e e s e

esoo

t

+Pl

+Sg

+Sg

+Pl
#

#

#

Figure 3.14 A fleshed-out English nominal inflection FSTTlex, expanded fromTnum
by replacing the three arcs with individual word stems (onlya few sample word stems are
shown).

c:c a:a t:t +N: ǫ +Pl:ˆs#

Since the output symbols include the morpheme and word boundary markers ˆ and
#, the lower labels Fig. 3.14 do not correspond exactly to thesurface level. Hence we
refer to tapes with these morpheme boundary markers in Fig. 3.15 asintermediate
tapes; the next section will show how the boundary marker is removed.

f o +N +Pl

f o #

Lexical

Intermediate

Figure 3.15 A schematic view of the lexical and intermediate tapes.

3.6 TRANSDUCERS ANDORTHOGRAPHICRULES

The method described in the previous section will successfully recognize words like
aardvarksand mice. But just concatenating the morphemes won’t work for cases
where there is a spelling change; it would incorrectly reject an input likefoxesand
accept an input likefoxs. We need to deal with the fact that English often requires
spelling changes at morpheme boundaries by introducingspelling rules (or ortho-SPELLING RULES

graphic rules) This section introduces a number of notations for writing such rules
and shows how to implement the rules as transducers. In general, the ability to im-
plement rules as a transducer turns out to be useful throughout speech and language
processing. Here’s some spelling rules:
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Name Description of Rule Example

Consonant 1-letter consonant doubled before-ing/-ed beg/begging
doubling
E deletion Silent e dropped before-ing and-ed make/making
E insertion e added after-s,-z,-x,-ch, -shbefore-s watch/watches
Y replacement-y changes to-ie before-s, -i before-ed try/tries
K insertion verbs ending withvowel + -cadd-k panic/panicked

We can think of these spelling changes as taking as input a simple concatenation of
morphemes (the “intermediate output” of the lexical transducer in Fig. 3.14) and pro-
ducing as output a slightly-modified (correctly-spelled) concatenation of morphemes.
Fig. 3.16 shows in schematic form the three levels we are talking about: lexical, inter-
mediate, and surface. So for example we could write an E-insertion rule that performs
the mapping from the intermediate to surface levels shown inFig. 3.16. Such a rule

f o +N +Pl

f o #Intermediate

f oSurface

Lexical

Figure 3.16 An example of the lexical, intermediate, and surface tapes.Between each
pair of tapes is a two-level transducer; the lexical transducer of Fig. 3.14 between the
lexical and intermediate levels, and the E-insertion spelling rule between the intermediate
and surface levels. The E-insertion spelling rule inserts an e on the surface tape when the
intermediate tape has a morpheme boundary ˆ followed by the morpheme-s.

might say something like “insert aneon the surface tape just when the lexical tape has
a morpheme ending inx (or z, etc) and the next morpheme is-s”. Here’s a formalization
of the rule:

ǫ→ e /







x
s
z







ˆ s#(3.4)

This is the rule notation of Chomsky and Halle (1968); a rule of the form a→
b/c d means “rewritea asb when it occurs betweenc andd”. Since the symbol
ǫ means an empty transition, replacing it means inserting something. Recall that the
symbol ˆ indicates a morpheme boundary. These boundaries are deleted by including
the symbol ˆ:ǫ in the default pairs for the transducer; thus morpheme boundary markers
are deleted on the surface level by default. The # symbol is a special symbol that marks
a word boundary. Thus (3.4) means “insert ane after a morpheme-finalx, s, or z, and
before the morphemes”. Fig. 3.17 shows an automaton that corresponds to this rule.

The idea in building a transducer for a particular rule is to express only the con-
straints necessary for that rule, allowing any other stringof symbols to pass through
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qq qq1 q2

q5

other

^:   
other
#

s:e

^:s

^:

z, x

##, other

#,other

z,s,x

z,s,x

z,s,x

∋ ∋

∋

∋

Figure 3.17 The transducer for the E-insertion rule of (3.4), extended from a similar
transducer in Antworth (1990). We additionally need to delete the # symbol from the
surface string; this can be done either by interpreting the symbol # as the pair #:ǫ, or by
postprocessing the output to remove word boundaries.

unchanged. This rule is used to ensure that we can only see theǫ:e pair if we are in the
proper context. So stateq0, which models having seen only default pairs unrelated to
the rule, is an accepting state, as isq1, which models having seen az, s, orx. q2 models
having seen the morpheme boundary after thez, s, or x, and again is an accepting state.
Stateq3 models having just seen the E-insertion; it is not an accepting state, since the
insertion is only allowed if it is followed by thesmorpheme and then the end-of-word
symbol#.

Theothersymbol is used in Fig. 3.17 to safely pass through any parts ofwords that
don’t play a role in the E-insertion rule.othermeans “any feasible pair that is not in
this transducer”. So for example when leaving stateq0, we go toq1 on thez, s, or x
symbols, rather than following theotherarc and staying inq0. The semantics ofother
depends on what symbols are on other arcs; since# is mentioned on some arcs, it is (by
definition) not included inother, and thus, for example, is explicitly mentioned on the
arc fromq2 to q0.

A transducer needs to correctly reject a string that appliesthe rule when it shouldn’t.
One possible bad string would have the correct environment for the E-insertion, but
have no insertion. Stateq5 is used to ensure that thee is always inserted whenever the
environment is appropriate; the transducer reachesq5 only when it has seen ans after
an appropriate morpheme boundary. If the machine is in stateq5 and the next symbol
is #, the machine rejects the string (because there is no legal transition on# from q5).
Fig. 3.18 shows the transition table for the rule which makesthe illegal transitions
explicit with the “–” symbol.

The next section will show a trace of this E-insertion transducer running on a sam-
ple input string.
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State\ Input s:s x:x z:z ˆ:ǫ ǫ:e # other
q0: 1 1 1 0 - 0 0
q1: 1 1 1 2 - 0 0
q2: 5 1 1 0 3 0 0
q3 4 - - - - - -
q4 - - - - - 0 -
q5 1 1 1 2 - - 0

Figure 3.18 The state-transition table for E-insertion rule of Fig. 3.17, extended from a
similar transducer in Antworth (1990).

3.7 COMBINING FST LEXICON AND RULES

We are now ready to combine our lexicon and rule transducers for parsing and generat-
ing. Fig. 3.19 shows the architecture of a two-level morphology system, whether used
for parsing or generating. The lexicon transducer maps between the lexical level, with
its stems and morphological features, and an intermediate level that represents a simple
concatenation of morphemes. Then a host of transducers, each representing a single
spelling rule constraint, all run in parallel so as to map between this intermediate level
and the surface level. Putting all the spelling rules in parallel is a design choice; we
could also have chosen to run all the spelling rules in series(as a long cascade), if we
slightly changed each rule.

f o x +N +PL

f o x ^ s #

f o x e s

LEXICON-FST

FST
1

FST
n

orthographic rules

Figure 3.19 Generating or parsing with FST lexicon and rules

The architecture in Fig. 3.19 is a two-levelcascadeof transducers. Cascading twoCASCADE

automata means running them in series with the output of the first feeding the input to
the second. Cascades can be of arbitrary depth, and each level might be built out of
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many individual transducers. The cascade in Fig. 3.19 has two transducers in series:
the transducer mapping from the lexical to the intermediatelevels, and the collection
of parallel transducers mapping from the intermediate to the surface level. The cascade
can be run top-down to generate a string, or bottom-up to parse it; Fig. 3.20 shows a
trace of the systemacceptingthe mapping fromfox +N +PL to foxes.

f o +N +Pl

f o #Intermediate

f oSurface

Lexical

0 1 2 5 6 7T
lex

T
e-insert

0 0 0 1 2 4 03

Figure 3.20 Acceptingfoxes: The lexicon transducerTlex from Fig. 3.14 cascaded with
the E-insertion transducer in Fig. 3.17.

The power of finite-state transducers is that the exact same cascade with the same
state sequences is used when the machine is generating the surface tape from the lexical
tape, or when it is parsing the lexical tape from the surface tape. For example, for
generation, imagine leaving the Intermediate and Surface tapes blank. Now if we run
the lexicon transducer, givenfox +N +PL , it will producefoxˆs#on the Intermediate
tape via the same states that it accepted the Lexical and Intermediate tapes in our earlier
example. If we then allow all possible orthographic transducers to run in parallel, we
will produce the same surface tape.

Parsing can be slightly more complicated than generation, because of the problem
of ambiguity. For example,foxescan also be a verb (albeit a rare one, meaning “toAMBIGUITY

baffle or confuse”), and hence the lexical parse forfoxescould befox +V +3Sg as
well asfox +N +PL . How are we to know which one is the proper parse? In fact, for
ambiguous cases of this sort, the transducer is not capable of deciding.Disambiguat-
ing will require some external evidence such as the surroundingwords. ThusfoxesisDISAMBIGUATING

likely to be a noun in the sequenceI saw two foxes yesterday, but a verb in the sequence
That trickster foxes me every time!. We will discuss such disambiguation algorithms in
Ch. 5 and Ch. 20. Barring such external evidence, the best ourtransducer can do is just
enumerate the possible choices; so we can transducefoxˆs#into bothfox +V +3SG
andfox +N +PL .

There is a kind of ambiguity that we need to handle: local ambiguity that occurs
during the process of parsing. For example, imagine parsingthe input verbassess.
After seeingass, our E-insertion transducer may propose that thee that follows is
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inserted by the spelling rule (for example, as far as the transducer is concerned, we
might have been parsing the wordasses). It is not until we don’t see the# afterasses,
but rather run into anothers, that we realize we have gone down an incorrect path.

Because of this non-determinism, FST-parsing algorithms need to incorporate some
sort of search algorithm. Exercise 3.7 asks the reader to modify the algorithm for non-
deterministic FSA recognition in Fig.?? in Ch. 2 to do FST parsing.

Note that many possible spurious segmentations of the input, such as parsingassess
as ˆaˆsˆsesˆs will be ruled out since no entry in the lexicon will match this string.

Running a cascade, particularly one with many levels, can beunwieldy. Luckily,
we’ve already seen how to compose a cascade of transducers inseries into a single
more complex transducer. Transducers in parallel can be combined byautomaton
intersection. The automaton intersection algorithm just takes the Cartesian product ofINTERSECTION

the states, i.e., for each stateqi in machine 1 and stateq j in machine 2, we create a new
stateqi j . Then for any input symbola, if machine 1 would transition to stateqn and
machine 2 would transition to stateqm, we transition to stateqnm. Fig. 3.21 sketches
how this intersection (∧) and composition (◦) process might be carried out.

LEXICON-FST

FST1 FSTn

LEXICON-FST

FSTA   (=FST1 ^ FST2 ^ ... ^ FSTN)

LEXICON-FST

o

FSTA

}intersect
! compose

Figure 3.21 Intersection and composition of transducers.

Since there are a number of rule→FST compilers, it is almost never necessary in
practice to write an FST by hand. Kaplan and Kay (1994) give the mathematics that
define the mapping from rules to two-level relations, and Antworth (1990) gives details
of the algorithms for rule compilation. Mohri (1997) gives algorithms for transducer
minimization and determinization.

3.8 LEXICON-FREE FSTS: THE PORTER STEMMER

While building a transducer from a lexicon plus rules is the standard algorithm for
morphological parsing, there are simpler algorithms that don’t require the large on-line
lexicon demanded by this algorithm. These are used especially in Information Retrieval
(IR) tasks like web search (Ch. 23), in which a query such as a Boolean combination
of relevantkeywords or phrases, e.g., (marsupial OR kangaroo OR koala) returnsKEYWORDS

documents that have these words in them. Since a document with the wordmarsupials
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might not match the keywordmarsupial, some IR systems first run a stemmer on the
query and document words. Morphological information in IR is thus only used to
determine that two words have the same stem; the suffixes are thrown away.

One of the most widely used suchstemmingalgorithms is the simple and efficientSTEMMING

Porter (1980) algorithm, which is based on a series of simplecascaded rewrite rules.
Since cascaded rewrite rules are just the sort of thing that could be easily implemented
as an FST, we think of the Porter algorithm as a lexicon-free FST stemmer (this idea
will be developed further in the exercises (Exercise 3.6). The algorithm contains rules
like these:

ATIONAL → ATE (e.g., relational→ relate)
ING→ ǫ if stem contains vowel (e.g., motoring→ motor)

See Porter (1980) or Martin Porter’s official homepage for the Porter stemmer for more
details.

Krovetz (1993) showed that stemming tends to somewhat improve the performance
of information retrieval, especially with smaller documents (the larger the document,
the higher the chance the keyword will occur in the exact formused in the query).
Nonetheless, not all IR engines use stemming, partly because of stemmer errors such
as these noted by Krovetz:

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analysis analyzes
generalization generic matrices matrix
numerical numerous noise noisy
policy police sparse sparsity

3.9 WORD AND SENTENCE TOKENIZATION

We have focused so far in this chapter on a problem of segmentation: how words
can be segmented into morphemes. We turn now to a brief discussion of the very
related problem of segmenting running text into words and sentences. This task is
calledtokenization.TOKENIZATION

Word tokenization may seem very simple in a language like English that separates
words via a special ‘space’ character. As we will see below, not every language does
this (Chinese, Japanese, and Thai, for example, do not). Buta closer examination
will make it clear that whitespace is not sufficient by itself. Consider the following
sentences from a Wall Street Journal and New York Times article, respectively:

Mr. Sherwood said reaction to Sea Containers’ proposal
has been "very positive." In New York Stock Exchange
composite trading yesterday, Sea Containers closed at
$62.625, up 62.5 cents.
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‘‘I said, ‘what’re you? Crazy?’ ’’ said Sadowsky. ‘‘I
can’t afford to do that.’’

Segmenting purely on white-space would produce words like these:

cents. said, positive." Crazy?

We could address these errors by treating punctuation, in addition to whitespace, as a
word boundary. But punctuation often occurs word internally, in examples likem.p.h,,
Ph.D., AT&T, cap’n, 01/02/06, andgoogle.com. Similarly, assuming that we want62.5
to be a word, we’ll need to avoid segmenting every period, since that will segment this
into 62 and 5. Number expressions introduce other complications as well; while com-
mas normally appear at word boundaries, commas are used inside numbers in English,
every three digits:555,500.50. Languages differ on punctuation styles for numbers;
many continental European languages like Spanish, French,and German, by contrast,
uses a comma to mark the decimal point, and spaces (or sometimes periods) where
English puts commas:555 500,50.

Another useful task a tokenizer can do for us is to expand clitic contractions that
are marked by apostrophes, for example convertingwhat’re above to the two tokens
what are, andwe’re to we are. This task is complicated by the fact that apostrophes
are quite ambiguous, since they are also used as genitive markers (as inthe book’s over
or in Containers’above) or as quotative markers (as in‘what’re you? Crazy?’above).
Such contractions occur in other alphabetic languages, including articles and pronouns
in French (j’ai , l’homme). While these contractions tend to be clitics, not all clitics are
marked this way with contraction. In general, then, segmenting and expanding clitics
can be done as part of the process of morphological parsing presented earlier in the
chapter.

Depending on the application, tokenization algorithms mayalso tokenize multi-
word expressions likeNew Yorkor rock ’n’ roll , which requires a multiword expression
dictionary of some sort. This makes tokenization intimately tied up with the task of
detecting names, dates, and organizations, which is callednamed entity detectionand
will be discussed in Ch. 22.

In addition to word segmentation,sentence segmentationis a crucial first step inSENTENCE
SEGMENTATION

text processing. Segmenting a text into sentences is generally based on punctuation.
This is because certain kinds of punctuation (periods, question marks, exclamation
points) tend to mark sentence boundaries. Question marks and exclamation points are
relatively unambiguous markers of sentence boundaries. Periods, on the other hand, are
more ambiguous. The period character ‘.’ is ambiguous between a sentence boundary
marker and a marker of abbreviations likeMr. or Inc. The previous sentence that you
just read showed an even more complex case of this ambiguity,in which the final period
of Inc. marked both an abbreviation and the sentence boundary marker. For this reason,
sentence tokenization and word tokenization tend to be addressed jointly.

In general, sentence tokenization methods work by buildinga binary classifier
(based on a sequence of rules, or on machine learning) which decides if a period is
part of the word or is a sentence boundary marker. In making this decision, it helps to
know if the period is attached to a commonly used abbreviation; thus an abbreviation
dictionary is useful.
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State-of-the-art methods for sentence tokenization are based on machine learning
and will be introduced in later chapters. But a useful first step can still be taken via a
sequence of regular expressions. We introduce here the firstpart; a word tokenization
algorithm. Fig. 3.22 gives a simple Perl word tokenization algorithm based on Grefen-
stette (1999). The algorithm is quite minimal, designed mainly to clarify many of the
segmentation issues we discussed in previous paragraphs.

The algorithm consists of a sequence of regular expression substitution rules. The
first rule separates unambiguous punctuation like questionmarks and parentheses. The
next rule segments commas unless they are inside numbers. Wethen disambiguate
apostrophes and pull off word-final clitics. Finally, we deal with periods, using a (toy)
abbreviation dictionary and some heuristics for detectingother abbreviations.

#!/usr/bin/perl

$letternumber = "[A-Za-z0-9]";
$notletter = "[ˆA-Za-z0-9]";
$alwayssep = "[\\?!()\";/\\|‘]";
$clitic = "(’|:|-|’S|’D|’M|’LL|’RE|’VE|N’T|’s|’d|’m|’ ll|’re|’ve|n’t)";

$abbr{"Co."} = 1; $abbr{"Dr."} = 1; $abbr{"Jan."} = 1; $abbr {"Feb."} = 1;

while ($line = <>){ # read the next line from standard input

# put whitespace around unambiguous separators
$line =˜ s/$alwayssep/ $& /g;

# put whitespace around commas that aren’t inside numbers
$line =˜ s/([ˆ0-9]),/$1 , /g;
$line =˜ s/,([ˆ0-9])/ , $1/g;

# distinguish singlequotes from apostrophes by
# segmenting off single quotes not preceded by letter
$line =˜ s/ˆ’/$& /g;
$line =˜ s/($notletter)’/$1 ’/g;

# segment off unambiguous word-final clitics and punctuati on
$line =˜ s/$clitic$/ $&/g;
$line =˜ s/$clitic($notletter)/ $1 $2/g;

# now deal with periods. For each possible word
@possiblewords=split(/\s+/,$line);
foreach $word (@possiblewords) {

# if it ends in a period,
if (($word =˜ /$letternumber\./)

&& !($abbr{$word}) # and isn’t on the abbreviation list
# and isn’t a sequence of letters and periods (U.S.)
# and doesn’t resemble an abbreviation (no vowels: Inc.)

&& !($word =˜
/ˆ([A-Za-z]\.([A-Za-z]\.)+|[A-Z][bcdfghj-nptvxz]+\. )$/)) {

# then segment off the period
$word =˜ s/\.$/ \./;

}
# expand clitics
$word =˜s/’ve/have/;
$word =˜s/’m/am/;
print $word," ";

}
print "\n";

}

Figure 3.22 A sample English tokenization script, adapted from Grefenstette (1999)
and Palmer (2000). A real script would have a longer abbreviation dictionary.
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The fact that a simple tokenizer can be build with such simpleregular expression
patterns suggest that tokenizers like the one in Fig. 3.22 can be easily implemented in
FSTs. This is indeed the case, and (Karttunen et al., 1996) and (Beesley and Karttunen,
2003) give descriptions of such FST-based tokenizers.

3.9.1 Segmentation in Chinese

We mentioned above that some languages, including Chinese,Japanese, and Thai, do
not use spaces to mark potential word-boundaries. Alternative segmentation methods
are used for these languages.

In Chinese, for example, words are composed of characters known ashanzi. Each
character generally represents a single morpheme and is pronounceable as a single
syllable. Words on average are about 2.4 characters long. A simple algorithm that does
remarkably well for segmenting Chinese, and is often used asa baseline comparison for
more advanced methods, is a version of greedy search calledmaximum matching orMAXIMUM MATCHING

sometimesmaxmatch. The algorithm requires a dictionary (wordlist) of the language.
The maximum matching algorithm starts by pointing at the beginning of a string. It

chooses the longest word in the dictionary that matches the input at the current position.
The pointer is then advanced past each character in that word. If no word matches, the
pointer is instead advanced one character (creating a one-character word). The algo-
rithm is then iteratively applied again starting from the new pointer position. To help
visualize this algorithm, Palmer (2000) gives an English analogy, which approximates
the Chinese situation by removing the spaces from the English sentencethe table down
thereto producethetabledownthere. The maximum match algorithm (given a long En-
glish dictionary) would first match the wordthetain the input, since that is the longest
sequence of letters that matches a dictionary word. Starting from the end oftheta, the
longest matching dictionary word isbled, followed byownand thenthere, producing
the incorrect sequencetheta bled own there.

The algorithm seems to work better in Chinese (with such short words) than in
languages like English with long words, as our failed example shows. Even in Chinese,
however, maxmatch has a number of weakness, particularly with unknown words
(words not in the dictionary) orunknown genres(genres which differ a lot from the
assumptions made by the dictionary builder).

There is an annual competition (technically called abakeoff) for Chinese segmen-
tation algorithms. These most successful modern algorithms for Chinese word seg-
mentation are based on machine learning from hand-segmented training sets. We will
return to these algorithms after we introduce probabilistic methods in Ch. 5.
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3.10 DETECTING AND CORRECTINGSPELLING ERRORS

ALGERNON: But my own sweet Cecily, I have never written you any letters.
CECILY: You need hardly remind me of that, Ernest. I remember only too well
that I was forced to write your letters for you. I wrote alwaysthree times a week,
and sometimes oftener.
ALGERNON: Oh, do let me read them, Cecily?
CECILY: Oh, I couldn’t possibly. They would make you far too conceited. The
three you wrote me after I had broken off the engagement are sobeautiful, and
so badly spelled, that even now I can hardly read them withoutcrying a little.

Oscar Wilde,The Importance of being Earnest

Like Oscar Wilde’s fabulous Cecily, a lot of people were thinking about spelling during
the last turn of the century. Gilbert and Sullivan provide many examples.The Gondo-
liers’ Giuseppe, for example, worries that his private secretaryis “shaky in his spelling”
while Iolanthe’s Phyllis can “spell every word that she uses”. Thorstein Veblen’s ex-
planation (in his 1899 classicThe Theory of the Leisure Class) was that a main purpose
of the “archaic, cumbrous, and ineffective” English spelling system was to be diffi-
cult enough to provide a test of membership in the leisure class. Whatever the social
role of spelling, we can certainly agree that many more of us are like Cecily than like
Phyllis. Estimates for the frequency of spelling errors in human typed text vary from
0.05% of the words in carefully edited newswire text to 38% indifficult applications
like telephone directory lookup (Kukich, 1992).

In this section we introduce the problem of detecting and correcting spelling errors.
Since the standard algorithm for spelling error correctionis probabilistic, we will con-
tinue our spell-checking discussion later in Ch. 5 after we define the probabilistic noisy
channel model.

The detection and correction of spelling errors is an integral part of modern word-
processors and search engines, and is also important in correcting errors inoptical
character recognition (OCR), the automatic recognition of machine or hand-printedOCR

characters, andon-line handwriting recognition, the recognition of human printed or
cursive handwriting as the user is writing.

Following Kukich (1992), we can distinguish three increasingly broader problems:

1. non-word error detection: detecting spelling errors that result in non-words
(like graffefor giraffe).

2. isolated-word error correction: correcting spelling errors that result in non-
words, for example correctinggraffe to giraffe, but looking only at the word in
isolation.

3. context-dependent error detection and correction:using the context to help
detect and correct spelling errors even if they accidentally result in an actual
word of English (real-word errors ). This can happen from typographical er-REALWORD

ERRORS

rors (insertion, deletion, transposition) which accidentally produce a real word
(e.g.,therefor three), or because the writer substituted the wrong spelling of a
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homophone or near-homophone (e.g.,dessertfor desert, or piecefor peace).

Detecting non-word errors is generally done by marking any word that is not found
in a dictionary. For example, the misspellinggraffeabove would not occur in a dictio-
nary. Some early research (Peterson, 1986) had suggested that such spelling dictionar-
ies would need to be kept small, because large dictionaries contain very rare words that
resemble misspellings of other words. For example the rare wordswontor veeryare
also common misspelling ofwon’t andvery. In practice, Damerau and Mays (1989)
found that while some misspellings were hidden by real wordsin a larger dictionary,
the larger dictionary proved more help than harm by avoidingmarking rare words as
errors. This is especially true with probabilistic spell-correction algorithms that can
use word frequency as a factor. Thus modern spell-checking systems tend to be based
on large dictionaries.

The finite-state morphological parsers described throughout this chapter provide a
technology for implementing such large dictionaries. By giving a morphological parser
for a word, an FST parser is inherently a word recognizer. Indeed, an FST morpho-
logical parser can be turned into an even more efficient FSA word recognizer by using
theprojection operation to extract the lower-side language graph. Such FST dictionar-
ies also have the advantage of representing productive morphology like the English-s
and-ed inflections. This is important for dealing with new legitimate combinations of
stems and inflection . For example, a new stem can be easily added to the dictionary,
and then all the inflected forms are easily recognized. This makes FST dictionaries es-
pecially powerful for spell-checking in morphologically rich languages where a single
stem can have tens or hundreds of possible surface forms.5

FST dictionaries can thus help with non-word error detection. But how about error
correction? Algorithms for isolated-word error correction operate by finding words
which are the likely source of the errorful form. For example, correcting the spelling
errorgrafferequires searching through all possible words likegiraffe, graf, craft, grail,
etc, to pick the most likely source. To choose among these potential sources we need a
distance metricbetween the source and the surface error. Intuitively,giraffe is a more
likely source thangrail for graffe, becausegiraffe is closer in spelling tograffe than
grail is to graffe. The most powerful way to capture this similarity intuitionrequires
the use of probability theory and will be discussed in Ch. 4. The algorithm underlying
this solution, however, is the non-probabilisticminimum edit distance algorithm that
we introduce in the next section.

3.11 MINIMUM EDIT DISTANCE

Deciding which of two words is closer to some third word in spelling is a special case of
the general problem ofstring distance. The distance between two strings is a measureDISTANCE

of how alike two strings are to each other.

5 Early spelling error detectors for English, by contrast, simply allowed any word to have any suffix – thus
Unix SPELLaccepts bizarre prefixed words likemisclamandantiundogginglyand suffixed words based on
the like thehoodandtheness.
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Many important algorithms for finding string distance rely on some version of the
minimum edit distancealgorithm, named by Wagner and Fischer (1974) but indepen-MINIMUM EDIT

DISTANCE

dently discovered by many people; see the History section ofCh. 6 for a discussion
of the history of these algorithms. The minimum edit distance between two strings is
the minimum number of editing operations (insertion, deletion, substitution) needed to
transform one string into another. For example the gap between the wordsintention
andexecutionis five operations, shown in Fig. 3.23 as analignment between the twoALIGNMENT

strings. Given two sequences, analignment is a correspondance between substrings of
the two sequences. Thus I aligns with the empty string, N withE, T with X, and so on.
Beneath the aligned strings is another representation; a series of symbols expressing an
operation list for converting the top string into the bottom string; d for deletion, s for
substitution, i for insertion.

I N T E * N T I O N
| | | | | | | | | |

* E X E C U T I O N
d s s i s

Figure 3.23 Representing the minimum edit distance between two stringsas analign-
ment. The final row gives the operation list for converting the topstring into the bottom
string; d for deletion, s for substitution, i for insertion.

We can also assign a particular cost or weight to each of theseoperations. The
Levenshteindistance between two sequences is the simplest weighting factor in which
each of the three operations has a cost of 1 (Levenshtein, 1966).6 Thus the Levenshtein
distance betweenintentionandexecutionis 5. Levenshtein also proposed an alternate
version of his metric in which each insertion or deletion hasa cost of one, and substitu-
tions are not allowed (equivalent to allowing substitution, but giving each substitution a
cost of 2, since any substitution can be represented by one insertion and one deletion).
Using this version, the Levenshtein distance betweenintentionandexecutionis 8.

The minimum edit distance is computed bydynamic programming. DynamicDYNAMIC
PROGRAMMING

programming is the name for a class of algorithms, first introduced by Bellman (1957),
that apply a table-driven method to solve problems by combining solutions to subprob-
lems. This class of algorithms includes the most commonly-used algorithms in speech
and language processing; besides minimum edit distance, these include theViterbi and
forward algorithms (Ch. 6), and theCYK andEarley algorithm (Ch. 13).

The intuition of a dynamic programming problem is that a large problem can be
solved by properly combining the solutions to various subproblems. For example,
consider the sequence or “path” of transformed words that comprise the minimum edit
distance between the stringsintentionandexecutionshown in Fig. 3.24.

Imagine some string (perhaps it isexention) that is in this optimal path (what-
ever it is). The intuition of dynamic programming is that ifexentionis in the optimal

6 We assume that the substitution of a letter for itself, e.g. substitutiont for t, has zero cost.
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Figure 3.24 Operation list transformingintentionto execution(after Kruskal 1983)

operation-list, then the optimal sequence must also include the optimal path fromin-
tentionto exention. Why? If there were a shorter path fromintentionto exentionthen
we could use it instead, resulting in a shorter overall path,and the optimal sequence
wouldn’t be optimal, thus leading to a contradiction.

Dynamic programming algorithms for sequence comparison work by creating a
distance matrix with one column for each symbol in the targetsequence and one row
for each symbol in the source sequence (i.e., target along the bottom, source along the
side). For minimum edit distance, this matrix is theedit-distancematrix. Each cell
edit-distance[i,j] contains the distance between the firsti characters of the target and
the first j characters of the source. Each cell can be computed as a simple function of
the surrounding cells; thus starting from the beginning of the matrix it is possible to fill
in every entry. The value in each cell is computed by taking the minimum of the three
possible paths through the matrix which arrive there:

distance[i, j] = min







distance[i−1, j]+ ins-cost(targeti−1)
distance[i−1, j−1]+subst-cost(sourcej−1, targeti−1)
distance[i, j−1]+del-cost(sourcej−1))

(3.5)

The algorithm itself is summarized in Fig. 3.25, while Fig. 3.26 shows the results
of applying the algorithm to the distance betweenintentionandexecutionassuming the
version of Levenshtein distance in which the insertions anddeletions each have a cost
of 1 (ins-cost(·) = del-cost(·) = 1), and substitutions have a cost of 2 (except substitution
of identical letters has zero cost).

Knowing the minimum edit distance is useful for algorithms like finding potential
spelling error corrections. But the edit distance algorithm is important in another way;
with a small change, it can also provide the minimum costalignment between two
strings. Aligning two strings is useful throughout speech and language processing. In
speech recognition, minimum edit distance alignment is used to compute word error
rate in speech recognition (Ch. 9). Alignment plays a role inmachine translation, in
which sentences in a parallel corpus (a corpus with a text in two languages) need to be
matched up to each other.

In order to extend the edit distance algorithm to produce an alignment, we can start
by visualizing an alignment as a path through the edit distance matrix. Fig. 3.27 shows
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function M IN-EDIT-DISTANCE(target, source) returns min-distance

n←LENGTH(target)
m←LENGTH(source)
Create a distance matrixdistance[n+1,m+1]
Initialize the zeroth row and column to be the distance from the empty string

distance[0,0] = 0
for each columni from 1 to n do

distance[i,0]←distance[i-1,0] + ins-cost(target[i])
for each rowj from 1 to mdo

distance[0,j]←distance[0,j-1] + del-cost(source[j])
for each columni from 1 to n do

for each rowj from 1 to mdo
distance[i, j]←M IN( distance[i−1, j] + ins-cost(targeti−1),

distance[i−1, j−1] + subst-cost(sourcej−1, targeti−1),
distance[i, j−1] + del-cost(sourcej−1))

return distance[n,m]

Figure 3.25 The minimum edit distance algorithm, an example of the classof dynamic
programming algorithms. The various costs can either be fixed (e.g.∀x, ins-cost(x) = 1),
or can be specific to the letter (to model the fact that some letters are more likely to be
inserted than others). We assume that there is no cost for substituting a letter for itself (i.e.
subst-cost(x,x) = 0).

n 9 8 9 10 11 12 11 10 9 8
o 8 7 8 9 10 11 10 9 8 9
i 7 6 7 8 9 10 9 8 9 10
t 6 5 6 7 8 9 8 9 10 11
n 5 4 5 6 7 8 9 10 11 10
e 4 3 4 5 6 7 8 9 10 9
t 3 4 5 6 7 8 7 8 9 8
n 2 3 4 5 6 7 8 7 8 7
i 1 2 3 4 5 6 7 6 7 8
# 0 1 2 3 4 5 6 7 8 9

# e x e c u t i o n

Figure 3.26 Computation of minimum edit distance betweenintentionandexecution
via algorithm of Fig. 3.25, using Levenshtein distance withcost of 1 for insertions or
deletions, 2 for substitutions. In italics are the initial values representing the distance from
the empty string.

this path with the boldfaced cell. Each boldfaced cell represents an alignment of a pair
of letters in the two strings. If two boldfaced cells occur inthe same row, there will
be an insertion in going from the source to the target; two boldfaced cells in the same
column indicates a deletion.

Fig. 3.27 also shows the intuition of how to compute this alignment path. The com-
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putation proceeds in two steps. In the first step, we augment the minimum edit distance
algorithm to store backpointers in each cell. The backpointer from a cell points to the
previous cell (or cells) that were extended from in enteringthe current cell. We’ve
shown a schematic of these backpointers in Fig. 3.27, after asimilar diagram in Gus-
field (1997). Some cells have multiple backpointers, because the minimum extension
could have come from multiple previous cells. In the second step, we perform aback-
trace. In a backtrace, we start from the last cell (at the final row and column), andBACKTRACE

follow the pointers back through the dynamic programming matrix. Each complete
path between the final cell and the initial cell is a minimum distance alignment. Exer-
cise 3.12 asks you to modify the minimum edit distance algorithm to store the pointers
and compute the backtrace to output an alignment.

n 9 ↓ 8 ւ←↓ 9 ւ←↓ 10 ւ←↓ 11 ւ←↓ 12 ↓ 11 ↓ 10 ↓ 9 ւ 8
o 8 ↓ 7 ւ←↓ 8 ւ←↓ 9 ւ←↓ 10 ւ←↓ 11 ↓ 10 ↓ 9 ւ 8 ← 9
i 7 ↓ 6 ւ←↓ 7 ւ←↓ 8 ւ←↓ 9 ւ←↓ 10 ↓ 9 ւ 8 ← 9 ← 10
t 6 ↓ 5 ւ←↓ 6 ւ←↓ 7 ւ←↓ 8 ւ←↓ 9 ւ 8 ← 9 ← 10 ←↓ 11
n 5 ↓ 4 ւ←↓ 5 ւ←↓ 6 ւ←↓ 7 ւ←↓ 8 ւ←↓ 9 ւ←↓ 10 ւ←↓ 11 ւ↓ 10
e 4 ւ 3 ← 4 ւ← 5 ← 6 ← 7 ←↓ 8 ւ←↓ 9 ւ←↓ 10 ↓ 9
t 3 ւ←↓ 4 ւ←↓ 5 ւ←↓ 6 ւ←↓ 7 ւ←↓ 8 ւ 7 ←↓ 8 ւ←↓ 9 ↓ 8
n 2 ւ←↓ 3 ւ←↓ 4 ւ←↓ 5 ւ←↓ 6 ւ←↓ 7 ւ←↓ 8 ↓ 7 ւ←↓ 8 ւ 7
i 1 ւ←↓ 2 ւ←↓ 3 ւ←↓ 4 ւ←↓ 5 ւ←↓ 6 ւ←↓ 7 ւ 6 ← 7 ← 8
# 0 1 2 3 4 5 6 7 8 9

# e x e c u t i o n

Figure 3.27 When entering a value in each cell, we mark which of the 3 neighboring
cells we came from with up to three arrows. After the table is full we compute analign-
ment (minimum edit path) via abacktrace, starting at the8 in the upper right corner
and following the arrows. The sequence of boldfaced distances represents one possible
minimum cost alignment between the two strings.

There are various publicly available packages to compute edit distance, including
UNIX diff , and the NISTsclite program (NIST, 2005); Minimum edit distance
can also be augmented in various ways. The Viterbi algorithm, for example, is an
extension of minimum edit distance which uses probabilistic definitions of the oper-
ations. In this case instead of computing the “minimum edit distance” between two
strings, we are interested in the “maximum probability alignment” of one string with
another. The Viterbi algorithm is crucial in probabilistictasks like speech recognition
and part-of-speech tagging.

3.12 HUMAN MORPHOLOGICALPROCESSING

In this section we briefly survey psycholinguistic studies on how multi-morphemic
words are represented in the minds of speakers of English. For example, consider the
word walk and its inflected formswalks, andwalked. Are all three in the human lexi-
con? Or merelywalkalong with-edand-s? How about the wordhappyand its derived
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formshappilyandhappiness? We can imagine two ends of a theoretical spectrum of
representations. Thefull listing hypothesis proposes that all words of a language areFULL LISTING

listed in the mental lexicon without any internal morphological structure. On this view,
morphological structure is simply an epiphenomenon, andwalk, walks, walked, happy,
andhappilyare all separately listed in the lexicon. This hypothesis iscertainly unten-
able for morphologically complex languages like Turkish. Theminimum redundancyMINIMUM

REDUNDANCY

hypothesis suggests that only the constituent morphemes are represented in the lexicon,
and when processingwalks, (whether for reading, listening, or talking) we must access
both morphemes (walkand-s) and combine them.

Some of the earliest evidence that the human lexicon represents at least some mor-
phological structure comes fromspeech errors, also calledslips of the tongue. In
conversational speech, speakers often mix up the order of the words or sounds:

if you breakit it’ll drop

In slips of the tongue collected by Fromkin and Ratner (1998)and Garrett (1975),
inflectional and derivational affixes can appear separatelyfrom their stems. The ability
of these affixes to be produced separately from their stem suggests that the mental
lexicon contains some representation of morphological structure.

it’s not only us who have screw looses(for “screws loose”)
wordsof rule formation (for “rules of word formation”)
easy enoughly(for “easily enough”)

More recent experimental evidence suggests that neither the full listing nor the
minimum redundancy hypotheses may be completely true. Instead, it’s possible that
some but not all morphological relationships are mentally represented. Stanners et al.
(1979), for example, found that some derived forms (happiness, happily) seem to be
stored separately from their stem (happy), but that regularly inflected forms (pouring)
are not distinct in the lexicon from their stems (pour). They did this by using a repe-
tition priming experiment. In short, repetition priming takes advantage of the fact that
a word is recognized faster if it has been seen before (if it isprimed). They foundPRIMED

that lifting primedlift , andburnedprimedburn, but for exampleselectivedidn’t prime
select. Marslen-Wilson et al. (1994) found thatspokenderived words can prime their
stems, but only if the meaning of the derived form is closely related to the stem. For
examplegovernmentprimesgovern, butdepartmentdoes not primedepart. Marslen-
Wilson et al. (1994) represent a model compatible with theirown findings as follows:

department depart govern

-al -ure -s

-ing

Figure 3.28 Marslen-Wilson et al. (1994) result: Derived words are linked to their
stems only if semantically related.

In summary, these early results suggest that (at least) productive morphology like
inflection does play an online role in the human lexicon. Morerecent studies have
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shown effects of non-inflectional morphological structureon word reading time as well,
such as themorphological family size. The morphological family size of a word is theMORPHOLOGICAL

FAMILY SIZE

number of other multimorphemic words and compounds in whichit appears; the family
for fear, for example, includesfearful, fearfully, fearfulness, fearless, fearlessly, fear-
lessness, fearsome,andgodfearing(according to the CELEX database), for a total size
of 9. Baayen and colleagues (Baayen et al., 1997; De Jong et al., 2002; Moscoso del
Prado Martı́n et al., 2004) have shown that words with a larger morphological family
size are recognized faster. Recent work has further shown that word recognition speed
is effected by the total amount ofinformation (or entropy) contained by the morpho-
logical paradigm (Moscoso del Prado Martı́n et al., 2004); entropy will be introduced
in the next chapter.

3.13 SUMMARY

This chapter introducedmorphology, the arena of language processing dealing with
the subparts of words, and thefinite-state transducer, the computational device that is
important for morphology but will also play a role in many other tasks in later chapters.
We also introducedstemming, word and sentence tokenization, andspelling error
detection.

Here’s a summary of the main points we covered about these ideas:

• Morphological parsing is the process of finding the constituentmorphemesin
a word (e.g.,cat +N +PL for cats).
• English mainly usesprefixes andsuffixes to expressinflectional andderiva-

tional morphology.
• English inflectional morphology is relatively simple and includes person and

number agreement (-s) and tense markings (-edand-ing).
• English derivational morphology is more complex and includes suffixes like

-ation, -ness, -ableas well as prefixes likeco-andre-.
• Many constraints on the Englishmorphotactics(allowable morpheme sequences)

can be represented by finite automata.
• Finite-state transducersare an extension of finite-state automata that can gen-

erate output symbols.
• Important operations for FSTs includecomposition, projection, andintersec-

tion.
• Finite-state morphologyandtwo-level morphologyare applications of finite-

state transducers to morphological representation and parsing.
• Spelling rulescan be implemented as transducers.
• There are automatic transducer-compilers that can producea transducer for any

simple rewrite rule.
• The lexicon and spelling rules can be combined bycomposingandintersecting

various transducers.
• ThePorter algorithm is a simple and efficient way to dostemming, stripping

off affixes. It is not as accurate as a transducer model that includes a lexicon,
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but may be preferable for applications likeinformation retrieval in which exact
morphological structure is not needed.

• Word tokenization can be done by simple regular expressions substitutions or
by transducers.

• Spelling error detection is normally done by finding words which are not in a
dictionary; an FST dictionary can be useful for this.

• The minimum edit distance between two strings is the minimum number of
operations it takes to edit one into the other. Minimum edit distance can be
computed bydynamic programming, which also results in analignment of the
two strings.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Despite the close mathematical similarity of finite-state transducers to finite-state au-
tomata, the two models grew out of somewhat different traditions. Ch. 2 described how
the finite automaton grew out of Turing’s (1936) model of algorithmic computation,
and McCulloch and Pitts finite-state-like models of the neuron. The influence of the
Turing machine on the transducer was somewhat more indirect. Huffman (1954) pro-
posed what was essentially a state-transition table to model the behavior of sequential
circuits, based on the work of Shannon (1938) on an algebraicmodel of relay circuits.
Based on Turing and Shannon’s work, and unaware of Huffman’swork, Moore (1956)
introduced the termfinite automaton for a machine with a finite number of states
with an alphabet of input symbols and an alphabet of output symbols. Mealy (1955)
extended and synthesized the work of Moore and Huffman.

The finite automata in Moore’s original paper, and the extension by Mealy differed
in an important way. In a Mealy machine, the input/output symbols are associated
with the transitions between states. In a Moore machine, theinput/output symbols
are associated with the state. The two types of transducers are equivalent; any Moore
machine can be converted into an equivalent Mealy machine and vice versa. Further
early work on finite-state transducers, sequential transducers, and so on, was conducted
by Salomaa (1973), Schützenberger (1977).

Early algorithms for morphological parsing used either thebottom-up or top-down
methods that we will discuss when we turn to parsing in Ch. 13.An early bottom-up
affix-stripping approach as Packard’s (1973) parser for ancient Greek whichitera-
tively stripped prefixes and suffixes off the input word, making note of them, and then
looked up the remainder in a lexicon. It returned any root that was compatible with
the stripped-off affixes. AMPLE (A Morphological Parser forLinguistic Exploration)
(Weber and Mann, 1981; Weber et al., 1988; Hankamer and Black, 1991) is another
early bottom-up morphological parser. Hankamer’s (1986) keCi is a an early top-down
generate-and-testor analysis-by-synthesismorphological parser for Turkish which is
guided by a finite-state representation of Turkish morphemes. The program begins
with a morpheme that might match the left edge of the word, andapplies every possi-
ble phonological rule to it, checking each result against the input. If one of the outputs
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succeeds, the program then follows the finite-state morphotactics to the next morpheme
and tries to continue matching the input.

The idea of modeling spelling rules as finite-state transducers is really based on
Johnson’s (1972) early idea that phonological rules (to be discussed in Ch. 7) have
finite-state properties. Johnson’s insight unfortunatelydid not attract the attention of
the community, and was independently discovered by Ronald Kaplan and Martin Kay,
first in an unpublished talk (Kaplan and Kay, 1981) and then finally in print (Kaplan
and Kay, 1994) (see page?? for a discussion of multiple independent discoveries).
Kaplan and Kay’s work was followed up and most fully worked out by Koskenniemi
(1983), who described finite-state morphological rules forFinnish. Karttunen (1983)
built a program called KIMMO based on Koskenniemi’s models.Antworth (1990)
gives many details of two-level morphology and its application to English. Besides
Koskenniemi’s work on Finnish and that of Antworth (1990) onEnglish, two-level or
other finite-state models of morphology have been worked outfor many languages,
such as Turkish (Oflazer, 1993) and Arabic (Beesley, 1996). Barton et al. (1987)
bring up some computational complexity problems with two-level models, which are
responded to by Koskenniemi and Church (1988). Readers withfurther interest in
finite-state morphology should turn to Beesley and Karttunen (2003). Readers with
further interest in computational models of Arabic and Semitic morphology should see
Smrž (1998), Kiraz (2001), Habash et al. (2005).

A number of practical implementations of sentence segmentation were available by
the 1990s. Summaries of sentence segmentation history and various algorithms can be
found in Palmer (2000), Grefenstette (1999), and Mikheev (2003). Word segmentation
has been studied especially in Japanese and Chinese. While the max-match algorithm
we describe is very commonly used as a baseline, or when a simple but accurate al-
gorithm is required, more recent algorithms rely on stochastic and machine learning
algorithms; see for example such algorithms as Sproat et al.(1996), Xue and Shen
(2003), and Tseng et al. (2005).

Gusfield (1997) is an excellent book covering everything youcould want to know
about string distance, minimum edit distance, and related areas.

Students interested in further details of the fundamental mathematics of automata
theory should see Hopcroft and Ullman (1979) or Lewis and Papadimitriou (1988).
Roche and Schabes (1997) is the definitive mathematical introduction to finite-state
transducers for language applications, and together with Mohri (1997) and Mohri (2000)
give many useful algorithms such as those for transducer minimization and deter-
minization.

The CELEX dictionary is an extremely useful database for morphological analysis,
containing full morphological parses of a large lexicon of English, German, and Dutch
(Baayen et al., 1995).

Roark and Sproat (2007) is a general introduction to computational issues in mor-
phology and syntax. Sproat (1993) is an older general introduction to computational
morphology.



DRAFT

Section 3.13. Summary 39

EXERCISES

3.1 Give examples of each of the noun and verb classes in Fig. 3.6,and find some
exceptions to the rules.

3.2 Extend the transducer in Fig. 3.17 to deal withsh andch .

3.3 Write a transducer(s) for the K insertion spelling rule in English.

3.4 Write a transducer(s) for the consonant doubling spelling rule in English.

3.5 The Soundex algorithm (Odell and Russell, 1922; Knuth, 1973) is a method com-
monly used in libraries and older Census records for representing people’s names. It
has the advantage that versions of the names that are slightly misspelled or otherwise
modified (common, for example, in hand-written census records) will still have the
same representation as correctly-spelled names. (e.g., Jurafsky, Jarofsky, Jarovsky, and
Jarovski all map to J612).

a. Keep the first letter of the name, and drop all occurrences ofnon-initial a, e, h, i,
o, u, w, y

b. Replace the remaining letters with the following numbers:

b, f, p, v→ 1
c, g, j, k, q, s, x, z→ 2
d, t→ 3
l → 4
m, n→ 5
r→ 6

c. Replace any sequences of identical numbers , only if they derive from two or
more letters that wereadjacentin the original name, with a single number (i.e.,
666→ 6).

d. Convert to the formLetter Digit Digit Digit by dropping digits past
the third (if necessary) or padding with trailing zeros (if necessary).

The exercise: write a FST to implement the Soundex algorithm.

3.6 Implement one of the steps of the Porter Stemmer as a transducer.

3.7 Write the algorithm for parsing a finite-state transducer, using the pseudo-code in-
troduced in Chapter 2. You should do this by modifying the algorithmND-RECOGNIZE

in Fig. ?? in Chapter 2.

3.8 Write a program that takes a word and, using an on-line dictionary, computes
possible anagrams of the word, each of which is a legal word.

3.9 In Fig. 3.17, why is there az, s, xarc fromq5 to q1?

3.10 Computing minimum edit distances by hand, figure out whetherdrive is closer
to brief or todivers, and what the edit distance is. You may use any version ofdistance
that you like.
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3.11 Now implement a minimum edit distance algorithm and use yourhand-computed
results to check your code.

3.12 Augment the minimum edit distance algorithm to output an alignment; you will
need to store pointers and add a stage to compute the backtrace.
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