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25 MACHINE TRANSLATION

The process of translating comprises in its essence the whole secret
of human understanding and social communication.

Attributed to Hans-Georg Gadamer

What is translation? On a platter
A poet’s pale and glaring head,

A parrot’s screech, a monkey’s chatter,
And profanation of the dead.

Nabokov,On Translating Eugene Onegin

Proper words in proper places
Jonathan Swift

This chapter introduces techniques formachine translation(MT ), the use of com-MACHINE
TRANSLATION

MT puters to automate some or all of the process of translating from one language to an-
other. Translation, in its full generality, is a difficult, fascinating, and intensely human
endeavor, as rich as any other area of human creativity. Consider the following passage
from the end of Chapter 45 of the 18th-century novelThe Story of the Stone, also called
Dream of the Red Chamber, by Cao Xue Qin (Cao, 1792), transcribed in the Mandarin
dialect:

dai yu zi zai chuang shang gan nian bao chai. . . you ting jian chuang wai zhu shao xiang
ye zhe shang, yu sheng xi li, qing han tou mu, bu jue you di xia lei lai.

Fig. 25.1 shows the English translation of this passage by David Hawkes, in sen-
tences labeled E1-E4. For ease of reading, instead of giving the Chinese, we have shown
the English glosses of each Chinese wordIN SMALL CAPS. Wordsin blueare Chinese
words not translated into English, or English words not in the Chinese. We have shown
alignment lines between words that roughly correspond in the two languages.

Consider some of the issues involved in this translation. First, the English and
Chinese texts are very different structurally and lexically. The four English sentences
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Figure 25.1 A Chinese passage fromDream of the Red Chamber, with the Chinese words represented by En-
glish glossesIN SMALL CAPS. Alignment lines are drawn between ‘Chinese’ words and their English translations.
Words in italics are Chinese words not translated into English, or English words not in the original Chinese.

(notice the periods in blue) correspond to one long Chinese sentence. The word order
of the two texts is very different, as we can see by the many crossed alignment lines in
Fig. 25.1. The English has many more words than the Chinese, as we can see by the
large number of English words marked in blue. Many of these differences are caused
by structural differences between the two languages. For example, because Chinese
rarely marks verbal aspect or tense; the English translation has additional words like
as, turned to, andhad begun, and Hawkes had to decide to translate Chinesetou as
penetrated, rather than saywas penetratingor had penetrated. Chinese has less articles
than English, explaining the large number of bluethes. Chinese also uses far fewer
pronouns than English, so Hawkes had to insertsheandher in many places into the
English translation.

Stylistic and cultural differences are another source of difficulty for the transla-
tor. Unlike English names, Chinese names are made up of regular content words with
meanings. Hawkes chose to use transliterations (Daiyu) for the names of the main
characters but to translate names of servants by their meanings (Aroma, Skybright).
To make the image clear for English readers unfamiliar with Chinese bed-curtains,
Hawkes translatedma (‘curtain’) ascurtains of her bed. The phrasebamboo tip plan-
tain leaf, although elegant in Chinese, where such four-character phrases are a hallmark
of literate prose, would be awkward if translated word-for-word into English, and so
Hawkes used simplybamboos and plantains.

Translation of this sort clearly requires a deep and rich understanding of the source
language and the input text, and a sophisticated, poetic, and creative command of the
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target language. The problem of automatically performing high-quality literary trans-
lation between languages as different as Chinese to Englishis thus far too hard to
automate completely.

However, even non-literary translations between such similar languages as English
and French can be difficult. Here is an English sentence from the Hansards corpus of
Canadian parliamentary proceedings, with its French translation:

English: Following a two-year transitional period, the new Foodstuffs Ordinance for Min-
eral Water came into effect on April 1, 1988. Specifically, itcontains more stringent re-
quirements regarding quality consistency and purity guarantees.
French: La nouvelle ordonnance fèdèrale sur les denrées alimentaires concernant entre
autres les eaux minérales, entrée en vigueur le ler avril 1988 aprés une période transitoire
de deux ans. exige surtout une plus grande constance dans la qualité et une garantie de la
pureté.
French gloss: THE NEW ORDINANCE FEDERAL ON THE STUFF FOOD CONCERNING

AMONG OTHERS THE WATERS MINERAL CAME INTO EFFECT THE1ST APRIL 1988
AFTER A PERIOD TRANSITORY OF TWO YEARS REQUIRES ABOVE ALL A LARGER

CONSISTENCY IN THE QUALITY AND A GUARANTEE OF THE PURITY.

Despite the strong structural and vocabulary overlaps between English and French,
such translation, like literary translation, still has to deal with differences in word order
(e.g., the location of thefollowing a two-year transitional periodphrase) and in struc-
ture (e.g., English uses the nounrequirementswhile the French uses the verbexige
‘ REQUIRE’).

Nonetheless, such translations are much easier, and a number of non-literary trans-
lation tasks can be addressed with current computational models of machine transla-
tion, including: (1) tasks for which arough translation is adequate, (2) tasks where
a humanpost-editor is used, and (3) tasks limited to smallsublanguagedomains in
which fully automatic high quality translation (FAHQT) is still achievable.

FULLY AUTOMATIC
HIGH QUALITY
TRANSLATION

Information acquisition on the web is the kind of task where arough translation
may still be useful. Suppose you were at the market this morning and saw some lovely
plátanos(plantains, a kind of banana) at the local Caribbean grocerystore and you
want to know how to cook them. You go to the web, and find the following recipe:

Platano en Naranja Para 6 personas
3 Plátanos maduros 2 cucharadas de mantequilla derretida
1 taza de jugo (zumo) de naranja 5 cucharadas de azúcar morena o blanc
1/8 cucharadita de nuez moscada en polvo 1 cucharada de ralladura de naranja
1 cucharada de canela en polvo (opcional)

Pelar los plátanos, cortarlos por la mitad y, luego, a lo largo. Engrasar una fuente o pirex con
margarina. Colocar los plátanos y bañarlos con la mantequilla derretida. En un recipiente
hondo, mezclar el jugo (zumo) de naranja con el azúcar, jengibre, nuez moscada y ralladura
de naranja. Verter sobre los plátanos y hornear a 325◦ F. Los primeros 15 minutos, dejar los
pátanos cubiertos, hornear 10 o 15 minutos más destapandolos plátanos

An MT engine produces the following translation:
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Platano in Orange For 6 people
3 Bananas mature 2 tablespoon melted butter
1 cup juice (juice) orange 5 tablespoons brown sugar or white
1/8 teaspoon nutmeg powder 1 tablespoon ralladura orange
1 tablespoon cinnamon powder (optional)

Peel bananas, cut in half and then along. Grease a source or pirex with margarine. Put bananas
and showering them with the melted butter. In a deep bowl, mixthe juice (juice) orange with the
sugar, ginger, nutmeg and ralladura orange. Pour over bananas and bake to 350◦ F. The first 15
minutes, leave covered bananas, bake 10 to 15 minutes more uncovering bananas.

While there are still lots of confusions in this translation(is it for bananas or plan-
tains? What exactly is the pot we should use? What isralladura?) it’s probably
enough, perhaps after looking up one or two words, to get a basic idea of something to
try in the kitchen with your new purchase!

An MT system can also be used to speed-up the human translation process, by pro-
ducing a draft translation that is fixed up in apost-editingphase by a human translator.POSTEDITING

Strictly speaking, systems used in this way are doingcomputer-aided human trans-
lation (CAHT or CAT) rather than (fully automatic) machine translation. This model

COMPUTERAIDED
HUMAN

TRANSLATION

of MT usage is effective especially for high volume jobs and those requiring quick
turn-around, such as the translation of software manuals for localization to reach newLOCALIZATION

markets.
Weather forecasting is an example of asublanguagedomain that can be modeledSUBLANGUAGE

completely enough to use raw MT output even without post-editing. Weather fore-
casts consist of phrases likeCloudy with a chance of showers today and Thursday,
or Outlook for Friday: Sunny. This domain has a limited vocabulary and only a few
basic phrase types. Ambiguity is rare, and the senses of ambiguous words are easily
disambiguated based on local context, using word classes and semantic features such
as WEEKDAY, PLACE, or TIME POINT. Other domains that are sublanguage-like in-
clude equipment maintenance manuals, air travel queries, appointment scheduling, and
restaurant recommendations.

Applications for machine translation can also be characterized by the number and
direction of the translations. Localization tasks like translations of computer manuals
require one-to-many translation (from English into many languages). One-to-many
translation is also needed for non-English speakers aroundthe world to access web
information in English. Conversely, many-to-one translation (into English) is relevant
for anglophone readers who need the gist of web content written in other languages.
Many-to-many translation is relevant for environments like the European Union, where
23 official languages (at the time of this writing) need to be intertranslated.

Before we turn to MT systems, we begin in section 25.1 by summarizing key differ-
ences among languages. The three classic models for doing MTare then presented in
Sec. 25.2: thedirect, transfer, andinterlingua approaches. We then investigate in de-
tail modernstatistical MT in Secs. 25.3-25.8, finishing in Sec. 25.9 with a discussion
of evaluation.
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25.1 WHY IS MACHINE TRANSLATION SO HARD?

We began this chapter with some of the issues that made it hardto translateThe Story
of the Stonefrom Chinese to English. In this section we look in more detail about
what makes translation difficult. We’ll discuss what makes languages similar or dif-
ferent, includingsystematicdifferences that we can model in a general way, as well
as idiosyncratic and lexical differences that must be dealt with one by one. These
differences between languages are referred to astranslation divergencesand an un-TRANSLATION

DIVERGENCES

derstanding of what causes them will help us in building models that overcome the
differences (Dorr, 1994).

25.1.1 Typology

When you accidentally pick up a radio program in some foreignlanguage it seems like
chaos, completely unlike the familiar languages of your everyday life. But there are
patterns in this chaos, and indeed, some aspects of human language seem to beuniver-
sal, holding true for every language. Many universals arise from the functional role ofUNIVERSAL

language as a communicative system by humans. Every language, for example, seems
to have words for referring to people, for talking about women, men, and children, eat-
ing and drinking, for being polite or not. Other universals are more subtle; for example
Ch. 5 mentioned that every language seems to have nouns and verbs.

Even when languages differ, these differences often have systematic structure. The
study of systematic cross-linguistic similarities and differences is calledtypology (CroftTYPOLOGY

(1990), Comrie (1989)). This section sketches some typological facts about crosslin-
guistic similarity and difference.

Morphologically , languages are often characterized along two dimensions ofvari-
ation. The first is the number of morphemes per word, ranging from isolating lan-ISOLATING

guages like Vietnamese and Cantonese, in which each word generally has one mor-
pheme, topolysynthetic languages like Siberian Yupik (“Eskimo”), in which a singlePOLYSYNTHETIC

word may have very many morphemes, corresponding to a whole sentence in English.
The second dimension is the degree to which morphemes are segmentable, ranging
from agglutinative languages like Turkish (discussed in Ch. 3), in which morphemesAGGLUTINATIVE

have relatively clean boundaries, tofusion languages like Russian, in which a singleFUSION

affix may conflate multiple morphemes, like-omin the wordstolom, (table-SG-INSTR-
DECL1) which fuses the distinct morphological categories instrumental, singular, and
first declension.

Syntactically, languages are perhaps most saliently different in the basic word or-
der of verbs, subjects, and objects in simple declarative clauses. German, French,
English, and Mandarin, for example, are allSVO (Subject-Verb-Object) languages,SVO

meaning that the verb tends to come between the subject and object. Hindi and Japanese,
by contrast, areSOV languages, meaning that the verb tends to come at the end of basicSOV

clauses, while Irish, Arabic, and Biblical Hebrew areVSO languages. Two languagesVSO

that share their basic word-order type often have other similarities. For exampleSVO
languages generally haveprepositionswhile SOV languages generally havepostposi-
tions.
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For example in the following SVO English sentence, the verbadoresis followed
by its argument VPlistening to music, the verblistening is followed by its argument
PPto music, and the prepositionto is followed by its argumentmusic. By contrast, in
the Japanese example which follows, each of these orderingsis reversed; both verbs
areprecededby their arguments, and the postposition follows its argument.

(25.1) English: He adores listening to music
Japanese:kare

he
ha ongaku

music
wo
to

kiku
listening

no ga daisuki
adores

desu

Another important dimension of typological variation has to do with argument
structure and linking of predicates with their arguments, such as the difference be-
tween head-marking and dependent-marking languages (Nichols, 1986). Head-HEADMARKING

marking languages tend to mark the relation between the headand its dependents on
the head. Dependent-marking languages tend to mark the relation on the non-head.
Hungarian, for example, marks the possessive relation withan affix (A) on the head
noun (H), where English marks it on the (non-head) possessor:

(25.2) English:
Hungarian:

the
az
the

man-A’s
ember
man

Hhouse
Hház-Aa
house-his

Typological variation in linking can also relate to how the conceptual properties of an
event are mapped onto specific words. Talmy (1985) and (1991)noted that languages
can be characterized by whether direction of motion and manner of motion are marked
on the verb or on the “satellites”: particles, prepositional phrases, or adverbial phrases.
For example a bottle floating out of a cave would be described in English with the
direction marked on the particleout, while in Spanish the direction would be marked
on the verb:

(25.3) English: The bottle floated out.
Spanish: La

The
botella
bottle

salió
exited

flotando.
floating.

Verb-framed languages mark the direction of motion on the verb (leaving theVERBFRAMED

satellites to mark the manner of motion), like Spanishacercarse‘approach’,alcan-
zar ‘reach’,entrar ‘enter’, salir ‘exit’. Satellite-framed languages mark the directionSATELLITEFRAMED

of motion on the satellite (leaving the verb to mark the manner of motion), like En-
glishcrawl out, float off, jump down, walk over to, run after. Languages like Japanese,
Tamil, and the many languages in the Romance, Semitic, and Mayan languages fami-
lies, are verb-framed; Chinese as well as non-Romance Indo-European languages like
English, Swedish, Russian, Hindi, and Farsi, are satellite-framed (Talmy, 1991; Slobin,
1996).

Finally, languages vary along a typological dimension related to the things they can
omit. Many languages require that we use an explicit pronounwhen talking about a
referent that is given in the discourse. In other languages,however, we can sometimes
omit pronouns altogether as the following examples from Spanish and Chinese show,
using the/0-notation introduced in Ch. 21:

(25.4) [El jefe]i dio con un libro./0i Mostró a un descifrador ambulante.
[The boss]came upon a book.[He] showed it to a wandering decoder.
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(25.5) CHINESE EXAMPLE

Languages which can omit pronouns in these ways are calledpro-drop languages.PRODROP

Even among the pro-drop languages, their are marked differences in frequencies of
omission. Japanese and Chinese, for example, tend to omit far more than Spanish. We
refer to this dimension asreferential density; languages which tend to use more pro-REFERENTIAL

DENSITY

nouns are more referentially dense than those that use more zeros. Referentially sparse
languages, like Chinese or Japanese, that require the hearer to do more inferential work
to recover antecedents are calledcold languages. Languages that are more explicit andCOLD

make it easier for the hearer are calledhot languages. The termshot andcold are bor-HOT

rowed from Marshall McLuhan’s (1964) distinction between hot media like movies,
which fill in many details for the viewer, versus cold media like comics, which require
the reader to do more inferential work to fill out the representation (Bickel, 2003).

Each typological dimension can cause problems when translating between lan-
guages that differ along them. Obviously translating from SVO languages like English
to SOV languages like Japanese requires huge structural reorderings, since all the con-
stituents are at different places in the sentence. Translating from a satellite-framed to
a verb-framed language, or from a head-marking to a dependent-marking language,
requires changes to sentence structure and constraints on word choice. Languages
with extensive pro-drop, like Chinese or Japanese, cause huge problems for translation
into non-pro-drop languages like English, since each zero has to be identified and the
anaphor recovered.

25.1.2 Other Structural Divergences

Many structural divergences between languages are based ontypological differences.
Others, however, are simply idiosyncratic differences that are characteristic of partic-
ular languages or language pairs. For example in English theunmarked order in a
noun-phrase has adjectives precede nouns, but in French andSpanish adjectives gener-
ally follow nouns.1

(25.6)
Spanish bruja verde French maison bleue

witch green house blue
English “green witch” “blue house”

Chinese relative clauses are structured very differently than English relative clauses,
making translation of long Chinese sentences very complex.

Language-specific constructions abound. English, for example, has an idiosyn-
cratic syntactic construction involving the wordtherethat is often used to introduce a
new scene in a story, as inthere burst into the room three men with guns. To give an
idea of how trivial, yet crucial, these differences can be, think of dates. Dates not only
appear in various formats — typically DD/MM/YY in British English, MM/DD/YY
in American English, and YYMMDD in Japanese—but the calendars themselves may
also differ. Dates in Japanese, for example, are often relative to the start of the current
Emperor’s reign rather than to the start of the Christian Era.

1 As always, there are exceptions to this generalization, such asgalore in English andgros in French;
furthermore in French some adjectives can appear before thenoun with a different meaning;route mauvaise
‘bad road, badly-paved road’ versusmauvaise route‘wrong road’ (Waugh, 1976).
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25.1.3 Lexical Divergences

Lexical divergences also cause huge difficulties in translation. We saw in Ch. 20, for
example, that the English source language wordbasscould appear in Spanish as the
fish lubina or the instrumentbajo. Thus translation often requires solving the exact
same problems as word sense disambiguation, and the two fields are closely linked.

In English the wordbassis homonymous; the two senses of the word are not closely
related semantically, and so it is natural that we would haveto disambiguate in order
to translate. Even in cases of polysemy, however, we often have to disambiguate if
the target language doesn’t have the exact same kind of polysemy. The English word
know, for example, is polysemous; it can refer to knowing of a factor proposition (I
know that snow is white) or familiarity with a person or location (I know Jon Stewart).
It turns out that translating these different senses requires using distinct French verbs,
including the verbsconnâıtre, andsavoir. Savoir is generally used with sentential
complements to indicate knowledge or mental representation of a fact or proposition,
or verbal complements to indicate knowledge of how to do something (e.g., WordNet
3.0 senses #1, #2, #3).Connâıtre is generally used with NP complements to indicate
familiarity or acquaintance with people, entities, or locations (e.g., WordNet 3.0 senses
#4, #7). Similar distinctions occur in German, Chinese, andmany other languages:

(25.7) English: I know he just bought a book.

(25.8) French: Je sais qu’il vient d’acheter un livre.

(25.9) English: I know John.

(25.10) French: Je connais Jean.

Thesavoir/connâıtredistinction corresponds to different groups of WordNet senses.
Sometimes, however, a target language will make a distinction that is not even recog-
nized in fine-grained dictionaries. German, for example, uses two distinct words for
what in English would be called awall: Wandfor walls inside a building, andMauerfor
walls outside a building. Similarly, where English uses theword brother for any male
sibling, both Japanese and Chinese have distinct words forolder brotherandyounger
brother(Chinesegegeanddidi, respectively).

In addition to these distinctions, lexical divergences canbe grammatical. For ex-
ample, a word may translate best to a different part-of-speech in the target language.
Many English sentences involving the verblike must be translated into German using
the adverbialgern; thusshe likes to singmaps tosie singt gerne(SHE SINGS LIK-
INGLY ).

In translation, we can think of sense disambiguation as a kind of specification; we
have to make a vague word likeknowor bassmore specific in the target language. This
kind of specification is also quite common with grammatical differences. Sometimes
one language places more grammatical constraints on word choice than another. French
and Spanish, for example, marks gender on adjectives, so an English translation into
French requires specifying adjective gender. English distinguishes gender in pronouns
where Mandarin does not; thus translating a third-person singular pronountā from
Mandarin to English (he, she, or it) requires deciding who the original referent was. In
Japanese, because there is no single word foris, the translator must choose betweeniru
or aru, based on whether the subject is animate or not.
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The way that languages differ in lexically dividing up conceptual space may be
more complex than this one-to-many translation problem, leading to many-to-many
mappings. For example Fig. 25.2 summarizes some of the complexities discussed by
Hutchins and Somers (1992) in relating Englishleg, foot, andpaw, to the Frenchjambe,
pied, patte, etc.

Figure 25.2 The complex overlap between Englishleg, foot, etc, and various French
translations likepattediscussed by Hutchins and Somers (1992) .

Further, one language may have alexical gap, where no word or phrase, short ofLEXICAL GAP

an explanatory footnote, can express the meaning of a word inthe other language. For
example, Japanese does not have a word forprivacy, and English does not have a word
for Japaneseoyakokoor Chinesexiáo(we make do with the awkward phrasefilial piety
for both).

25.2 CLASSICAL MT & THE VAUQUOIS TRIANGLE

The next few sections introduce the classical pre-statistical architectures for machine
translation. Real systems tend to involve combinations of elements from these three
architectures; thus each is best thought of as a point in an algorithmic design space
rather than as an actual algorithm.

In direct translation, we proceed word-by-word through the source language text,
translating each word as we go. Direct translation uses a large bilingual dictionary,
each of whose entries is a small program with the job of translating one word. In
transfer approaches, we first parse the input text, and then apply rules to transform the
source language parse structure into a target language parse structure. We then gener-
ate the target language sentence from the parse structure. In interlingua approaches,
we analyze the source language text into some abstract meaning representation, called
an interlingua . We then generate into the target language from this interlingual repre-
sentation.

A common way to visualize these three approaches is withVauquois triangleVAUQUOIS TRIANGLE

shown in Fig. 25.3. The triangle shows the increasing depth of analysis required (on
both the analysis and generation end) as we move from the direct approach through
transfer approaches, to interlingual approaches. In addition, it shows the decreasing
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amount of transfer knowledge needed as we move up the triangle, from huge amounts
of transfer at the direct level (almost all knowledge is transfer knowledge for each
word) through transfer (transfer rules only for parse treesor thematic roles) through
interlingua (no specific transfer knowledge).

Figure 25.3 The Vauquois triangle.

In the next sections we’ll see how these algorithms address some of the four trans-
lation examples shown in Fig. 25.4

English Mary didn’t slap the green witch

⇒ Spanish Maria
Mary

no
not

dió
gave

una
a

bofetada
slap

a
to

la
the

bruja
witch

verde
green

English The green witch is at home this week

⇒ German Diese
this

Woche
week

ist
is

die
the

grüne
green

Hexe
witch

zu
at

Hause.
house

English He adores listening to music

⇒ Japanesekare
he

ha ongaku
music

wo
to

kiku
listening

no ga daisuki
adores

desu

Chinese cheng long
Jackie Chan

dao
to

xiang gang
Hong Kong

qu
go

⇒ English Jackie Chan went to Hong Kong

Figure 25.4 Example sentences used throughout the chapter.

25.2.1 Direct Translation

In direct translation , we proceed word-by-word through the source language text,DIRECT
TRANSLATION

translating each word as we go. We make use of no intermediatestructures, except for
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shallow morphological analysis; each source word is directly mapped onto some target
word. Direct translation is thus based on a large bilingual dictionary; each entry in the
dictionary can be viewed as a small program whose job is to translate one word. After
the words are translated, simple reordering rules can apply, for example for moving
adjectives after nouns when translating from English to French.

The guiding intuition of the direct approach is that we translate by incrementally
transforming the source language text into a target language text. While the pure
direct approach is no longer used, this transformational intuition underlies all modern
systems, both statistical and non-statistical.

Figure 25.5 Direct machine translation. The major component, indicated by size here,
is the bilingual dictionary.

Let’s look at a simplified direct system on our first example, translating from En-
glish into Spanish:

(25.11) Mary didn’t slap the green witch

Maria
Mary

no
not

dió
gave

una
a

bofetada
slap

a
to

la
the

bruja
witch

verde
green

The four steps outlined in Fig. 25.5 would proceed as shown inFig. 25.6.
Step 2 presumes that the bilingual dictionary has the phrasedar una bofetada a

as the Spanish translation of Englishslap. The local reordering step 3 would need
to switch the adjective-noun ordering fromgreen witchto bruja verde. And some
combination of ordering rules and the dictionary would dealwith the negation and
past tense in Englishdidn’t. These dictionary entries can be quite complex; a sample
dictionary entry from an early direct English-Russian system is shown in Fig. 25.7.

While the direct approach can deal with our simple Spanish example, and can han-
dle single-word reorderings, it has no parsing component orindeed any knowledge
about phrasing or grammatical structure in the source or target language. It thus cannot
reliably handle longer-distance reorderings, or those involving phrases or larger struc-
tures. This can happen even in languages very similar to English, like German, where
adverbs likeheute(‘today’) occur in different places, and the subject (e.g.,die grüne
Hexe) can occur after the main verb, as shown in Fig. 25.8.

Input: Mary didn’t slap the green witch
After 1: Morphology Mary DO-PAST not slap the green witch
After 2: Lexical Transfer Maria PAST no dar una bofetada a la verde bruja
After 3: Local reordering Maria no dar PAST una bofetada a la bruja verde
After 4: Morphology Maria no dió una bofetada a la bruja verde

Figure 25.6 An example of processing in a direct system
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function DIRECT TRANSLATE MUCH/MANY (word) returns Russian translation

if preceding word ishowreturn skol’ko
else ifpreceding word isasreturn stol’ko zhe
else ifword is much

if preceding word isveryreturn nil
else if following word is a nounreturn mnogo

else /* word is many */
if preceding word is a preposition and following word is a nounreturn mnogii
else return mnogo

Figure 25.7 A procedure for translatingmuchand many into Russian, adapted from
Hutchins’ (1986, pg. 133) discussion of Panov 1960. Note thesimilarity to decision list
algorithms for word sense disambiguation.

Figure 25.8 Complex reorderings necessary when translating from English to German.
German often puts adverbs in initial position that English would more naturally put later.
German tensed verbs often occur in second position in the sentence, causing the subject
and verb to be inverted.

Similar kinds of reorderings happen between Chinese (wheregoal PPs often oc-
cur preverbally) and English (where goal PPs must occur postverbally), as shown in
Fig. 25.9.

Figure 25.9 Chinese goal PPs often occur preverbally, unlike in English
.

Finally, even more complex reorderings occur when we translate from SVO to SOV
languages, as we see in the English-Japanese example from Yamada and Knight (2002):

(25.12) He adores listening to music
kare
he

ha ongaku
music

wo
to

kiku
listening

no ga daisuki
adores

desu

These three examples suggest that the direct approach is toofocused on individual
words, and that in order to deal with real examples we’ll needto add phrasal and
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structural knowledge into our MT models. We’ll flesh out thisintuition in the next
section.

25.2.2 Transfer

As Sec. 25.1 illustrated, languages differ systematicallyin structural ways. One strat-
egy for doing MT is to translate by a process of overcoming these differences, altering
the structure of the input to make it conform to the rules of the target language. This
can be done by applyingcontrastive knowledge, that is, knowledge about the differ-CONTRASTIVE

KNOWLEDGE

ences between the two languages. Systems that use this strategy are said to be based
on thetransfer model.TRANSFER MODEL

The transfer model presupposes a parse of the source language, and is followed
by a generation phase to actually create the output sentence. Thus, on this model,
MT involves three phases:analysis, transfer, andgeneration, where transfer bridges
the gap between the output of the source language parser and the input to the target
language generator.

It is worth noting that a parse for MT may differ from parses required for other pur-
poses. For example, suppose we need to translateJohn saw the girl with the binoculars
into French. The parser does not need to bother to figure out where the prepositional
phrase attaches, because both possibilities lead to the same French sentence.

Once we have parsed the source language, we’ll need rules forsyntactic transfer
andlexical transfer. The syntactic transfer rules will tell us how to modify the source
parse tree to resemble the target parse tree.

Nominal

Adj Noun

⇒ Nominal

Noun Adj

Figure 25.10 A simple transformation that reorders adjectives and nouns

Figure 25.10 gives an intuition for simple cases like adjective-noun reordering; we
transform one parse tree, suitable for describing an English phrase, into another parse
tree, suitable for describing a Spanish sentence. Thesesyntactic transformationsareSYNTACTIC

TRANSFORMATIONS

operations that map from one tree structure to another.
The transfer approach and this rule can be applied to our example Mary did not

slap the green witch. Besides this transformation rule, we’ll need to assume that the
morphological processing figures out thatdidn’t is composed ofdo-PASTplusnot, and
that the parser attaches the PAST feature onto the VP. Lexical transfer, via lookup in
the bilingual dictionary, will then removedo, changenot to no, and turnslap into the
phrasedar una bofetada a, with a slight rearrangement of the parse tree, as suggested
in Fig. 25.11.

For translating from SVO languages like English to SOV languages like Japanese,
we’ll need even more complex transformations, for moving the verb to the end, chang-
ing prepositions into postpositions, and so on. An example of the result of such rules is
shown in Fig. 25.12. An informal sketch of some transfer rules is shown in Fig. 25.13.



DRAFT

14 Chapter 25. Machine Translation

VP[+PAST]

Neg

not

VP

V

slap

NP

DT

the

Nominal

Adj

green

Noun

witch

⇒ VP[+PAST]

Neg

not

VP

V

slap

NP

DT

the

Nominal

Noun

witch

Adj

green

⇒ VP[+PAST]

Neg

no

VP

V

dar

NP

DT

una

NN

bofetada

PP

IN

a

NP

DT

la

Nominal

Noun

bruja

Adj

verde

Figure 25.11 A further sketch of the transfer approach.

VB

PRP

He

VB1

adores

VB2

VB

listening

TO

TO

to

NN

music

⇒ VB

PRP

He

VB2

TO

NN

music

TO

to

VB

listening

VB1

adores

Figure 25.12 The result of syntactic transformations from English order(SVO) to
Japanese order (SOV) for the sentenceHe adores listening to music(kare ha ongaku wo
kiku no ga daisuki desu), after Yamada and Knight (2001). This transform would require
rules for moving verbs after their NP and VP complements, andchanging prepositions to
postpositions.

English to Spanish:

1. NP→ Adjective1 Noun2 ⇒ NP→ Noun2 Adjective1

Chinese to English:

2. VP→ PP[+Goal] V ⇒ VP→ V PP[+Goal]
English to Japanese:

3. VP→ V NP ⇒ VP→ NP V
4. PP→ P NP ⇒ PP→ NP P
5. NP→ NP1 Rel. Clause2 ⇒ NP→ Rel. Clause2 NP1

Figure 25.13 An informal description of some transformations.

Transfer systems can be based on richer structures than justpure syntactic parses.
For example a transfer based system for translating Chineseto English might have rules
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to deal with the fact shown in Fig. 25.9 that in Chinese PPs that fill the semantic role
GOAL (like to the storein I went to the store) tend to appear before the verb, while in
English these goal PPs must appear after the verb. In order tobuild a transformation
to deal with this and related PP ordering differences, the parse of the Chinese must
including thematic structure, so as to distinguishBENEFACTIVE PPs (which must oc-
cur before the verb) fromDIRECTION andLOCATIVE PPs (which preferentially occur
before the verb) fromRECIPIENT PPs (which occur after) (Li and Thompson, 1981).
We discussed how to do this kind of semantic role labeling in Ch. 20. Using semantic
roles in this way is generally calledsemantic transfer; a simple such transformationSEMANTIC

TRANSFER

is shown in Fig. 25.13.
In addition to syntactic transformations, transfer-basedsystems need to have lex-

ical transfer rules. Lexical transfer is generally based ona bilingual dictionary, just
as for direct MT. The dictionary itself can also be used to deal with problems of lex-
ical ambiguity. For example the English wordhomehas many possible translations
in German, includingnach Hause(in the sense ofgoing home) Heim (in the sense of
a home game), Heimat(in the sense ofhomeland, home country, or spiritual home),
andzu Hause(in the sense of beingat home). In this case, the phraseat homeis very
likely to be translatedzu Hause, and so the bilingual dictionary can list this translation
idiomatically.

Many cases of lexical transfer are too complex to deal with via a phrasal dictionary.
In these cases transfer systems can do disambiguation during the source language anal-
ysis, by applying the sense disambiguation techniques of Ch. 20.

25.2.3 Combining direct and tranfer approaches in classic MT

Although the transfer metaphor offers the ability to deal with more complex source
language phenomena than the direct approach, it turns out the simple SVO→ SOV
rules we’ve described above are not sufficient. In practice,we need messy rules which
combine rich lexical knowledge of both languages with syntactic and semantic features.
We briefly saw an example of such a rule for changingslap to dar una bofetada a.

For this reason, commercial MT systems tend to be combinations of the direct
and transfer approaches, using rich bilingual dictionaries, but also using taggers and
parsers. The Systran system, for example, as described in Hutchins and Somers (1992),
Senellart et al. (2001), has three components. First is a shallow analysisstage, includ-
ing:

• morphological analysis and part of speech tagging
• chunking of NPs, PPs, and larger phrases
• shallow dependency parsing (subjects, passives, head-modifiers)

Next is atransfer phase, including:

• translation of idioms,
• word sense disambiguation
• assigning prepositions based on governing verbs

Finally, in thesynthesisstage, the system:

• applies a rich bilingual dictionary to do lexical translation
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• deals with reorderings
• performs morphological generation

Thus like the direct system, the Systran system relies for much of its processing on
the bilingual dictionary, which has lexical, syntactic, and semantic knowledge. Also
like a direct system, Systran does reordering in a post-processing step. But like a
transfer system, many of the steps are informed by syntacticand shallow semantic
processing of the source language.

25.2.4 The Interlingua Idea: Using Meaning

One problem with the transfer model is that it requires a distinct set of transfer rules
for each pair of languages. This is clearly suboptimal for translation systems employed
in many-to-many multilingual environments like the European Union.

This suggests a different perspective on the nature of translation. Instead of directly
transforming the words of the source language sentence intothe target language, the
interlingua intuition is to treat translation as a process of extracting the meaning of
the input and then expressing that meaning in the target language. If this could be
done, an MT system could do without contrastive knowledge, merely relying on the
same syntactic and semantic rules used by a standard interpreter and generator for the
language. The amount of knowledge needed would then be proportional to the number
of languages the system handles, rather than to the square.

This scheme presupposes the existence of a meaning representation, orinterlingua ,INTERLINGUA

in a language-independent canonical form, like the semantic representations we saw in
Ch. 17. The idea is for the interlingua to represent all sentences that mean the “same”
thing in the same way, regardless of the language they happento be in. Translation in
this model proceeds by performing a deep semantic analysis on the input from language
X into the interlingual representation and generating fromthe interlingua to language
Y.

What kind of representation scheme can we use as an interlingua? The predicate
calculus, or a variant such as minimal recursion semantics,is one possibility. Semantic
decomposition into some kind of atomic semantic primitivesis another. We will illus-
trate a third common approach, a simple event-based representation, in which events
are linked to their arguments via a small fixed set of thematicroles. Whether we use
logics or other representations of events, we’ll need to specify temporal and aspectual
properties of the events, and we’ll also need to represent non-eventive relationships
between entities, such as thehas-colorrelation betweengreenandwitch. Fig. 25.14
shows a possible interlingual representation forMary did not slap the green witchas a
unification-style feature structure.

We can create these interlingual representation from the source language text using
thesemantic analyzertechniques of Ch. 18 and Ch. 20; using a semantic role labeler
to discover theAGENT relation betweenMaryand theslapevent, or theTHEME relation
between thewitch and theslapevent. We would also need to do disambiguation of the
noun-modifier relation to recognize that the relationship betweengreenandwitch is
thehas-colorrelation, and we’ll need to discover that this event has negative polarity
(from the worddidn’t). The interlingua thus requires more analysis work than the
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Figure 25.14 Interlingual representation ofMary did not slap the green witch.

transfer model, which only required syntactic parsing (or at most shallow thematic role
labeling). But generation can now proceed directly from theinterlingua with no need
for syntactic transformations.

In addition to doing without syntactic transformations, the interlingual system does
without lexical transfer rules. Recall our earlier problemof whether to translateknow
into French assavoir or connâıtre. Most of the processing involved in making this
decision is not specific to the goal of translating into French; German, Spanish, and
Chinese all make similar distinctions, and furthermore thedisambiguation ofknowinto
concepts such asHAVE-A-PROPOSITION-IN-MEMORY and BE-ACQUAINTED-WITH-
ENTITY is also important for other NLU applications that require word-senses. Thus
by using such concepts in an interlingua, a larger part of thetranslation process can
be done with general language processing techniques and modules, and the processing
specific to the English-to-French translation task can be eliminated or at least reduced,
as suggested in Fig. 25.3.

The interlingual model has its own problems. For example, inorder to trans-
late from Japanese to Chinese the universal interlingua must include concepts such
asELDER-BROTHER andYOUNGER-BROTHER. Using these same concepts translat-
ing from German-to-English would then require large amounts of unnecessary disam-
biguation. Furthermore, doing the extra work involved by the interlingua commitment
requires exhaustive analysis of the semantics of the domainand formalization into
an ontology. Generally this is only possible in relatively simple domains based on a
database model, as in the air travel, hotel reservation, or restaurant recommendation do-
mains, where the database definition determines the possible entities and relations. For
these reasons, interlingual systems are generally only used in sublanguage domains.

25.3 STATISTICAL MT

The three classic architectures for MT (direct, transfer, and interlingua) all provide
answers to the questions of what representations to use and what steps to perform to
translate. But there is another way to approach the problem of translation: to focus on
the result, not the process. Taking this perspective, let’sconsider what it means for a
sentence to be a translation of some other sentence.
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This is an issue to which philosophers of translation have given a lot of thought.
The consensus seems to be, sadly, that it is impossible for a sentence in one language to
be a translation of a sentence in other, strictly speaking. For example, one cannot really
translate Hebrewadonai roi(‘the Lord is my shepherd’) into the language of a culture
that has no sheep. On the one hand, we can write something thatis clear in the target
language, at some cost in fidelity to the original, somethinglike the Lord will look after
me. On the other hand, we can be faithful to the original, at the cost of producing
something obscure to the target language readers, perhaps like the Lord is for me like
somebody who looks after animals with cotton-like hair. As another example, if we
translate the Japanese phrasefukaku hansei shite orimasu, aswe apologize, we are not
being faithful to the meaning of the original, but if we producewe are deeply reflecting
(on our past behavior, and what we did wrong, and how to avoid the problem next
time), then our output is unclear or awkward. Problems such as these arise not only for
culture-specific concepts, but whenever one language uses ametaphor, a construction,
a word, or a tense without an exact parallel in the other language.

So, true translation, which is both faithful to the source language and natural as
an utterance in the target language, is sometimes impossible. If you are going to go
ahead and produce a translation anyway, you have to compromise. This is exactly
what translators do in practice: they produce translationsthat do tolerably well on both
criteria.

This provides us with a hint for how to do MT. We can model the goal of translation
as the production of an output that maximizes some value function that represents the
importance of both faithfulness and fluency. Statistical MTis the name for a class
of approaches that do just this, by building probabilistic models of faithfulness and
fluency, and then combining these models to choose the most probable translation. If
we chose the product of faithfulness and fluency as our quality metric, we could model
the translation from a source language sentenceS to a target language sentenceT̂ as:

best-translation̂T = argmaxT faithfulness(T,S) fluency(T)

This intuitive equation clearly resembles the Bayesiannoisy channel modelwe’ve
seen in Ch. 5 for spelling and Ch. 9 for speech. Let’s make the analogy perfect and
formalize the noisy channel model for statistical machine translation.

First of all, for the rest of this chapter, we’ll assume we aretranslating from a
foreign language sentenceF = f1, f2, ..., fm to English. For some examples we’ll use
French as the foreign language, and for others Spanish. But in each case we are trans-
lating into English (although of course the statistical model also works for translating
out of English). In a probabilistic model, the best English sentenceÊ = e1,e2, ...,el

is the one whose probabilityP(E|F) is the highest. As is usual in the noisy channel
model, we can rewrite this via Bayes rule:

Ê = argmaxEP(E|F)

= argmaxE
P(F|E)P(E)

P(F)

= argmaxEP(F|E)P(E)(25.13)

We can ignore the denominatorP(F) inside the argmax since we are choosing the best
English sentence for a fixed foreign sentenceF , and henceP(F) is a constant. The
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resulting noisy channel equation shows that we need two components: atranslation
model P(F|E), and alanguage modelP(E).TRANSLATION

MODEL

LANGUAGE MODEL

Ê = argmax
E∈English

translation model
︷ ︸︸ ︷

P(F |E)

language model
︷ ︸︸ ︷

P(E)(25.14)

Notice that applying the noisy channel model to machine translation requires that
we think of things backwards, as shown in Fig. 25.15. We pretend that the foreign
(source language) inputF we must translate is a corrupted version of some English
(target language) sentenceE, and that our task is to discover the hidden (target lan-
guage) sentenceE that generated our observation sentenceF.

noisy sentence

source sentence

noisy channel

decoder

Mary did not slap...
Harry did not wrap...
...

Larry did not nap...

guess at source:
noisy 1

noisy 2
noisy N

Mary did not slap

the green witch.

Mary did not slap

the green witch

Maria no dió una bofetada 

a la bruja verde

Language Model P(E) x Translation Model P(F|E)

Figure 25.15 The noisy channel model of statistical MT. If we are translating a source
language French to a target language English, we have to think of ’sources’ and ’targets’
backwards. We build a model of the generation process from anEnglish sentence through
a channel to a French sentence. Now given a French sentence totranslate, we pretend it is
the output of an English sentence going through the noisy channel, and search for the best
possible ‘source’ English sentence.

The noisy channel model of statistical MT thus requires three components to trans-
late from a French sentenceF to an English sentenceE:

• A language modelto computeP(E)

• A translation model to computeP(F |E)

• A decoder, which is givenF and produces the most probableE

Of these three components, we have already introduced the language modelP(E) in
Ch. 4. Statistical MT systems are based on the sameN-gram language models as speech
recognition and other applications. The language model component is monolingual,
and so acquiring training data is relatively easy.

The next few sections will therefore concentrate on the other two components, the
translation model and the decoding algorithm.
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25.4 P(F |E): THE PHRASE-BASED TRANSLATION MODEL

The job of the translation model, given an English sentenceE and a foreign sentence
F , is to assign a probability thatE generatesF . While we can estimate these probabil-
ities by thinking about how each individual word is translated, modern statistical MT
is based on the intuition that a better way to compute these probabilities is by consid-
ering the behavior ofphrases. As we see in Fig. 25.16, repeated from page 12, entire
phrases often need to be translated and moved as a unit. The intuition of phrase-basedPHRASEBASED

statistical MT is to use phrases (sequences of words) as wellas single words as the
fundamental units of translation.

Figure 25.16 Phrasal reorderings necessary when generating German fromEnglish;
repeated from Fig. 25.8.

There are a wide variety of phrase-based models; in this section we will sketch
the model of Koehn et al. (2003). We’ll use a Spanish example,seeing how the
phrase-based model computes the probability P(Maria no dió una bofetada a la bruja
verde|Mary did not slap the green witch).

The generative story of phrase-based translation has threesteps. First we group the
English source words into phrases ¯e1, ē2...ēI . Next we translate each English phrase ¯ei

into a Spanish phrasēf j . Finally each of the Spanish phrases is (optionally) reordered.
The probability model for phrase-based translation relieson atranslation proba-

bility and adistortion probability . The factorφ( f̄ j |ēi) is the translation probability
of generating Spanish phrasēf j from English phrase ¯ei . The reordering of the Spanish
phrases is done by thedistortion probabilityd. Distortion in statistical machine trans-DISTORTION

lation refers to a word having a different (‘distorted’) position in the Spanish sentence
than it had in the English sentence; it is thus a measure of thedistancebetween the
positions of a phrase in the two languages. The distortion probability in phrase-based
MT means the probability of two consecutive English phrasesbeing separated in Span-
ish by a span (of Spanish words) of a particular length. More formally, the distortion
is parameterized byd(ai−bi−1), whereai is the start position of the foreign (Spanish)
phrase generated by theith English phrase ¯ei , andbi−1 is the end position of the for-
eign (Spanish) phrase generated by thei−1th English phrase ¯ei−1. We can use a very
simple distortion probability, in which we simply raise some small constantα to the
distortion.d(ai−bi−1) = α|ai−bi−1−1|. This distortion model penalizes large distortions
by giving lower and lower probability the larger the distortion.

The final translation model for phrase-based MT is:
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P(F |E) =
I

∏
i=1

φ( f̄i , ēi)d(ai−bi−1)(25.15)

Let’s consider the following particular set of phrases for our example sentences:2

Position 1 2 3 4 5
English Mary did not slap the green witch
Spanish Maria no dió una bofetada a la bruja verde

Since each phrase follows directly in order (nothing moves around in this example,
unlike the German example in (25.16)) the distortions are all 1, and the probability
P(F |E) can be computed as:

P(F|E) = P(Maria,Mary)×d(1)×P(no|did not)×d(1)×

P(dió una bofetada|slap)×d(1)×P(a la|the)×d(1)×

P(bruja verde|green witch)×d(1)(25.16)

In order to use the phrase-based model, we need two more things. We need a
model ofdecoding, so we can go from a surface Spanish string to a hidden English
string. And we need a model oftraining , so we can learn parameters. We’ll introduce
the decoding algorithm in Sec. 25.8. Let’s turn first to training.

How do we learn the simple phrase-based translation probability model in (25.15)?
The main set of parameters that needs to be trained is the set of phrase translation
probabilitiesφ( f̄i , ēi).

These parameters, as well as the distortion constantα, could be set if only we had a
large bilingual training set, in which each Spanish sentence was paired with an English
sentence, and if furthermore we knew exactly which phrase inthe Spanish sentence
was translated by which phrase in the English sentence. We call such a mapping a
phrase alignment.PHRASE ALIGNMENT

The table of phrases above showed an implicit alignment of the phrases for this sen-
tence, for examplegreen witchaligned withbruja verde. If we had a large training set
with each pair of sentences labeled with such a phrase alignment, we could just count
the number of times each phrase-pair occurred, and normalize to get probabilities:

φ( f̄ , ē) =
count( f̄ , ē)

∑ f̄ count( f̄ , ē)
(25.17)

We could store each phrase pair( f̄ , ē), together with its probabilityφ( f̄ , ē), in a
largephrase translation table.PHRASE

TRANSLATION TABLE

Alas, we don’t have large hand-labeled phrase-aligned training sets. But it turns
that we can extract phrases from another kind of alignment called aword alignment.WORD ALIGNMENT

A word alignment is different than a phrase alignment, because it shows exactly which

2 Exactly which phrases we use depends on which phrases are discovered in the training process, as de-
scribed in Sec. 25.7; thus for example if we don’t see the phrasegreen witchin our training data, we would
have to translategreenandwitch independently.
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Spanish word aligns to which English word inside each phrase. We can visualize a
word alignment in various ways. Fig. 25.17 and Fig. 25.18 show a graphical model
and an alignment matrix, respectively, for a word alignment.

Figure 25.17 A graphical model representation of a word alignment between the En-
glish and Spanish sentences. We will see later how to extractphrases.

.

Figure 25.18 An alignment matrix representation of a word alignment between the
English and Spanish sentences. We will see later how to extract phrases.

.

The next section introduces a few algorithms for deriving word alignments. We
then show in Sec. 25.7 how we can extract a phrase table from word alignments, and
finally in Sec. 25.8 how the phrase table can be used in decoding.

25.5 ALIGNMENT IN MT

All statistical translation models are based on the idea of aword alignment. A wordWORD ALIGNMENT

alignment is a mapping between the source words and the target words in a set of
parallel sentences.

Fig. 25.19 shows a visualization of an alignment between theEnglish sentenceAnd
the program has been implementedand the French sentenceLe programme áet́e mis en
application. For now, we assume that we already know which sentences in the English
text aligns with which sentences in the French text.

In principle, we can have arbitrary alignment relationships between the English
and French word. But the word alignment models we will present (IBM Models 1
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Figure 25.19 An alignment between an English and a French sentence, afterBrown
et al. (1993). Each French word aligns to a single English word.

and 3 and the HMM model) make a more stringent requirement, which is that each
French word comes from exactly one English word; this is consistent with Fig. 25.19.
One advantage of this assumption is that we can represent an alignment by giving the
index number of the English word that the French word comes from. We can thus
represent the alignment shown in Fig. 25.19 asA = 2,3,4,5,6,6,6. This is a very
likely alignment. A very unlikely alignment, by contrast, might beA= 3,3,3,3,3,3,3.

We will make one addition to this basic alignment idea, whichis to allow words to
appear in the foreign sentence that don’t align to any word inthe English sentence. We
model these words by assuming the existence of a NULL Englishword e0 at position
0. Words in the foreign sentence that are not in the English sentence, calledspurious
words, may be generated bye0. Fig. 25.20 shows the alignment of spurious SpanishaSPURIOUS WORDS

to English NULL.3

Figure 25.20 The alignment of thespuriousSpanish worda to the English NULL word
e0.

While the simplified model of alignment above disallows many-to-one or many-
to-many alignments, we will discuss more powerful translation models that allow such
alignments. Here are two such sample alignments; in Fig. 25.21 we see an alignment
which is many-to-one; each French word does not align to a single English word, al-
though each English word does align to a single French word.

Fig. 25.22 shows an even more complex example, in which multiple English words
don’t have any moneyjointly align to the French wordssont d́emunis. Suchphrasal
alignments will be necessary for phrasal MT, but it turns out they can’t be directly
generated by the IBM Model 1, Model 3, or HMM word alignment algorithms.

3 While this particulara might instead be aligned to Englishslap, there are many cases of spurious words
which have no other possible alignment site.
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Figure 25.21 An alignment between an English and a French sentence, in which each
French word does not align to a single English word, but each English word aligns to one
French word. Adapted from Brown et al. (1993).

Figure 25.22 An alignment between an English and a French sentence, in which there
is a many-to-many alignment between English and French words. Adapted from Brown
et al. (1993).

25.5.1 IBM Model 1

We’ll describe two alignment models in this section: IBM Model 1 and the HMM
model (we’ll also sketch the fertility-based IBM Model 3 in the advanced section).
Both arestatistical alignmentalgorithms. For phrase-based statistical MT, we use the
alignment algorithms just to find the best alignment for a sentence pair(F,E), in order
to help extract a set of phrases. But it is also possible to usethese word alignment
algorithms as a translation modelP(F,E) as well. As we will see, the relationship
between alignment and translation can be expressed as follows:

P(F |E) = ∑
A

P(F,A|E)

We’ll start with IBM Model 1, so-called because it is the firstand simplest of five
models proposed by IBM researchers in a seminal paper (Brownet al., 1993).

Here’s the general IBM Model 1 generative story for how we generate a Spanish
sentence from an English sentenceE = e1,e2, ...,eI of lengthI :

1. Choose a lengthK for the Spanish sentence, henceforthF = f1, f2, ..., fK .
2. Now choose an alignmentA = a1,a2, ...,aJ between the English and Spanish

sentences.
3. Now for each positionj in the Spanish sentence, chose a Spanish wordf j by

translating the English word that is aligned to it.

Fig. 25.23 shows a visualization of this generative process.
Let’s see how this generative story assigns a probabilityP(F|E) of generating the

Spanish sentenceF from the English sentenceE. We’ll use this terminology:

• ea j is the English word that is aligned to the Spanish wordf j .
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Figure 25.23 The three steps of IBM Model 1 generating a Spanish sentence and align-
ment from an English sentence.

• t( fx,ey) is the probability of translatingey by fx (i.e. P( fx|ey)

We’ll work our way backwards from step 3. So suppose we already knew the length
J and the alignmentA, as well as the English sourceE. The probability of the Spanish
sentence would be:

P(F|E,A) =
J

∏
j=1

t( f j |ea j )(25.18)

Now let’s formalize steps 1 and 2 of the generative story. This is the probability
P(A|E) of an alignmentA (of lengthJ) given the English sentenceE. IBM Model 1
makes the (very) simplifying assumption that each alignment is equally likely. How
many possible alignments are there between an English sentence of lengthI and a
Spanish sentence of lengthJ? Again assuming that each Spanish word must come
from one of theI English words (or the 1 NULL word), there are(I + 1)J possible
alignments. Model 1 also assumes that the probability of choosing lengthJ is some
small constantε. The combined probability of choosing a lengthJ and then choosing
any particular one of the(I +1)J possible alignments is:

P(A|E) =
ε

(I +1)J(25.19)

We can combine these probabilities as follows:

P(F,A|E) = P(F |E,A)×P(A|E)

=
ε

(I +1)J

J

∏
j=1

t( f j |ea j )(25.20)

This probability,P(F,A|E), is the probability of generating a Spanish sentenceF
via a particular alignment. In order to compute the total probability P(F |E) of gener-
atingF , we just sum over all possible alignments:
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P(F |E) = ∑
A

P(F,A|E)

= ∑
A

ε
(I +1)J

J

∏
j=1

t( f j |ea j )(25.21)

Equation (25.21) shows the generative probability model for Model 1, as it assigns
a probability to each possible Spanish sentence.

In order to find the best alignment between a pair of sentencesF andE, we need a
way todecodeusing this probabilistic model. It turns out there is a very simple poly-
nomial algorithm for computing the best (Viterbi) alignment with Model 1, because the
best alignment for each word is independent of the decision about best alignments of
the surrounding words:

Â = argmax
A

P(F,A|E)

= argmax
A

ε
(I +1)J

J

∏
j=1

t( f j |ea j )

= argmax
a j

t( f j |ea j ) 1 < j < J(25.22)

Training for Model 1 is done by the EM algorithm, which we willcover in Sec. 25.6.

25.5.2 HMM Alignment

Now that we’ve seen Model 1, it should be clear that it makes some really appalling
simplifying assumptions. One of the most egregious is the assumption that all align-
ments are equally likely. One way in which this is a bad assumption is that align-
ments tend to preservelocality; neighboring words in English are often aligned with
neighboring words in Spanish. If we look back at the Spanish/English alignment in
Fig. 25.17, for example, we can see that this locality in the neighboring alignments.
The HMM alignment model captures this kind of locality by conditioning each align-
ment decision on previous decisions. Let’s see how this works.

The HMM alignment model is based on the familiar HMM model we’ve now seen
in many chapters. As with IBM Model 1, we are trying to computeP(F,A|E). The
HMM model is based on a restructuring of this probability using the chain rule as
follows:

P( f J
1 ,aJ

1|e
I
1) = P(J|eI

1)×
J

∏
j=1

P( f j ,a j | f
j−1

1 ,a j−1
1 ,eI

1)

= P(J|eI
1)×

J

∏
j−1

P(a j | f
j−1

1 ,a j−1
1 ,eI

1)×P( f j | f
j−1

1 ,a j
1,e

I
1)(25.23)
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Via this restructuring, we can think ofP(F,A|E) as being computable from proba-
bilities of three types: a length probabilityP(J|eI

1), an alignment probabilityP(a j | f
j−1

1 ,a j−1
1 ,eI

1),

and a lexicon probabilityP( f j | f
j−1

1 ,a j
1,e

I
1).

We next make some standard Markov simplifying assumptions.We’ll assume that
the probability of a particular alignmenta j for Spanish wordj is only dependent on
the previous aligned positiona j−1. We’ll also assume that the probability of a Spanish
word f j is dependent only on the aligned English wordea j at positiona j :

P(a j | f
j−1

1 ,a j−1
1 ,eI

1) = P(a j |a j−1, I)(25.24)

P( f j | f
j−1

1 ,a j
1,e

I
1) = P( f j |ea j )(25.25)

Finally, we’ll assume that the length probability can be approximated just asP(J|I).
Thus the probabilistic model for HMM alignment is:

P( f J
1 ,aJ

1|e
I
1) = P(J|I)×

J

∏
j=1

P(a j |a j−1, I)P( f j |ea j )(25.26)

To get the total probability of the Spanish sentenceP( f J
1 |e

I
1) we need to sum over

all alignments:

P( f J
1 |e

I
1) = P(J|I)×∑

A

J

∏
j=1

P(a j |a j−1, I)P( f j |ea j )(25.27)

As we suggested at the beginning of the section, we’ve conditioned the alignment
probabilityP(a j |a j−1, I) on the previous aligned word, to capture the locality of align-
ments. Let’s rephrase this probability for a moment asP(i|i′, I), wherei will stand for
the absolute positions in the English sentence of consecutive aligned states in the Span-
ish sentence. We’d like to make these probabilities dependent not on the absolute word
positionsi andi′, but rather on thejump width between words; the jump width is theJUMP WIDTH

distance between their positionsi′− i. This is because our goal is to capture the fact that
‘the English words that generate neighboring Spanish wordsare likely to be nearby’.
We thus don’t want to be keeping separate probabilities for each absolute word position
like P(7|6,15) andP(8|7,15). Instead, we compute alignment probabilities by using a
non-negative function of the jump width:

P(i|i′, I) =
c(i− i′)

∑I
i′′=1c(i′′− i′)

(25.28)

Let’s see how this HMM model gives the probability of a particular alignment of
our English-Spanish sentences; we’ve simplified the sentence slightly.

Thus the probabilityP(F,A|E) for this particular alignment of our simplified sen-
tenceMaria dió una bofetada a la bruja verdeis the product of:

P(F,A|E) = P(J|I)×P(Maria|Mary)×P(2|1,5)×

t(dió|slapped)×P(2|2,5)×T(una|slapped)×P(2|2,5)× . . .(25.29)



DRAFT

28 Chapter 25. Machine Translation

Figure 25.24 The HMM alignment model generating fromMary slappped the green
witch, showing the alignment and lexicon components of the probability P(F,A|E) for this
particular alignment.

There are also more sophisticated augmentations to the basic HMM alignment
model. These include adding NULL words in the English sourcewhich can be used to
align with Spanish words that don’t align with English words, or conditioning the align-
ment onC(ea j−1), the word class of the preceding target word:P(a j |a j−1, I ,C(ea j−1))
(Och and Ney, 2003; Toutanova et al., 2002).

The main advantage of the HMM alignment model is that there are well-understood
algorithms both for decoding and for training. For decoding, we can use the Viterbi al-
gorithm introduced in Ch. 5 and Ch. 6 to find the best (Viterbi)alignment for a sentence
pair (F,E). For training, we can use the Baum-Welch algorithm, as summarized in the
next section.

25.6 TRAINING ALIGNMENT MODELS

All statistical translation models are trained using a large parallel corpus. A parallel
corpus, parallel text, orbitext is a text that is available in two languages. For example,PARALLEL CORPUS

BITEXT the proceedings of the Canadian parliament are kept in both French and English. Each
sentence spoken in parliament is translated, producing a volume with running text in
both languages. These volumes are calledHansards, after the publisher of the BritishHANSARDS

parliamentary proceedings. Similarly, theHong Kong Hansardscorpus contains theHONG KONG
HANSARDS

proceedings of the Hong Kong SAR Legislative Council in bothEnglish and Chinese.
Both of these corpora contain tens to hundreds of millions ofwords. Other parallel
corpora have been made available by the United Nations. It ispossible to make parallel
corpora out of literary translations, but this is less common for MT purposes, partly
because it is difficult to acquire the legal rights to fiction,but mainly because, as we
saw at the beginning of the chapter, translating fiction is very difficult and translations
are not very literal. Thus statistical systems tend to be trained on very literal translations
such as Hansards.

The first step in training is to segment the corpus into sentences. This task is called
sentence segmentationor sentence alignment. The simplest methods align sentencesSENTENCE

SEGMENTATION

SENTENCE
ALIGNMENT

based purely on their length in words or characters, withoutlooking at the contents of
the words in the sentences. The intuition is that if we see a long sentence in roughly
the same position in each language of the parallel text, we might suspect these sen-
tences are translations. This intuition can be implementedby a dynamic programming
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algorithm. More sophisticated algorithms also make use of information about word
alignments. Sentence alignment algorithms are run on a parallel corpus before training
MT models. Sentences which don’t align to anything are thrown out, and the remaining
aligned sentences can be used as a training set. See the end ofthe chapter for pointers
to more details on sentence segmentation.

Once we have done sentence alignment, the input to our training algorithm is a
corpus consisting ofS sentence pairs{(Fs,Es) : s = 1. . .S}. For each sentence pair
(Fs,Es) the goal is to learn an alignmentA = aJ

1 and the component probabilities (t for
Model 1, and the lexicon and alignment probabilities for theHMM model).

25.6.1 EM for Training Alignment Models

If each sentence pair(Fs,Es) was already hand-labeled with a perfect alignment, learn-
ing the Model 1 or HMM parameters would be trivial. For example, to get a maximum
likelihood estimates in Model 1 for the translation probability t(verde,green), we would
just count the number of timesgreenis aligned toverde, and normalize by the total
count ofgreen.

But of course we don’t know the alignments in advance; all we have are theprob-
abilities of each alignment. Recall that Eq˙ 25.20 showed that if we already had
good estimates for the Model 1t parameter, we could use this to compute probabil-
ities P(F,A|E) for alignments. GivenP(F,A|E), we can generate the probability of an
alignment just by normalizing:

P(A|E,F) =
P(A,F |E)

∑AP(A,F |E)

So, if we had a rough estimate of the Model 1t parameters, we could compute the
probability for each alignment. Then instead of estimatingthet probabilities from the
(unknown) perfect alignment, we would estimate them from each possible alignment,
and combine these estimates weighted by the probability of each alignment. For exam-
ple if there were two possible alignments, one of probability .9 and one of probability
.1, we would estimate thet parameters separately from the two alignments and mix
these two estimates with weights of .9 and .1.

Thus if we had model 1 parameters already, we couldre-estimatethe parameters,
by using the parameters to compute the probability of each possible alignment, and
then using the weighted sum of alignments to re-estimate themodel 1 parameters. This
idea of iteratively improving our estimates of probabilities is a special case of theEM
algorithm that we introduced in Ch. 6, and that we saw again for speech recognition
in Ch. 9. Recall that we use the EM algorithm when we have a variable that we can’t
optimize directly because it ishidden. In this case the hidden variable is the alignment.
But we can use the EM algorithm to estimate the parameters, compute alignments from
these estimates, use the alignments to re-estimate the parameters, and so on!

Let’s walk through an example inspired by Knight (1999b), using a simplified ver-
sion of Model 1, in which we ignore the NULL word, and we only consider a subset of
the alignments (ignoring alignments for which an English word aligns with no Spanish
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word). Hence we compute the simplified probabilityP(A,F |E) as follows:

P(A,F|E) =
J

∏
j=1

t( f j |ea j )(25.30)

The goal of this example is just to give an intuition of EM applied to this task; the
actual details of Model 1 training would be somewhat different.

The intuition of EM training is that in the E-step, we computeexpected counts
for thet parameter based on summing over the hidden variable (the alignment), while
in the M-step, we compute the maximum likelihood estimate ofthet probability from
these counts.

Let’s see a few stages of EM training of this parameter on a a corpus of two sen-
tences:

green house the house
casa verde la casa

The vocabularies for the two languages areE = {green,house,the}andS= {casa,la,verde}.
We’ll start with uniform probabilities:

t(casa|green) = 1
3 t(verde|green) = 1

3 t(la|green) = 1
3

t(casa|house) = 1
3 t(verde|house) = 1

3 t(la|house) = 1
3

t(casa|the) = 1
3 t(verde|the) = 1

3 t(la|the) = 1
3

Now let’s walk through the steps of EM:

E-step 1: Compute the expected countsE[count(t( f ,e))] for all word pairs( f j ,ea j )

E-step 1a: We first need to computeP(a, f |e), by multiplying all thet probabilities, following
Eq. 25.30

green house green house the house the house

casa verde casa verde la casa la casa
P(a, f |e) = t(casa,green) P(a, f |e) = t(verde,green) P(a, f |e) = t(la,the) P(a, f |e) = t(casa,the)
× t(verde,house) × t(casa,house) × t(casa,house) × t(la,house)

= 1
3 ×

1
3 = 1

9 = 1
3 ×

1
3 = 1

9 = 1
3 ×

1
3 = 1

9 = 1
3 ×

1
3 = 1

9

E-step 1b: NormalizeP(a, f |e) to getP(a|e, f ), using the following:

P(a|e, f ) =
P(a, f |e)

∑aP(a, f |e)

The resulting values ofP(a| f ,e) for each alignment are as follows:

green house green house the house the house

casa verde casa verde la casa la casa
P(a| f ,e) = 1/9

2/9 = 1
2 P(a| f ,e) = 1/9

2/9 = 1
2 P(a| f ,e) = 1/9

2/9 = 1
2 P(a| f ,e) = 1/9

2/9 = 1
2

E-step 1c: Compute expected (fractional) counts, by weighting each count byP(a|e, f )
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tcount(casa|green) = 1
2 tcount(verde|green) = 1

2 tcount(la|green) = 0 total(green) = 1

tcount(casa|house) = 1
2 + 1

2 tcount(verde|house) = 1
2 tcount(la|house) = 1

2 total(house) = 2

tcount(casa|the) = 1
2 tcount(verde|the) = 0 tcount(la|the) = 1

2 total(the) = 1

M-step 1: Compute the MLE probability parameters by normalizing the tcounts to sum to one.

t(casa|green) = 1/2
1 = 1

2 t(verde|green) = 1/2
1 = 1

2 t(la|green) = 0
1 = 0

t(casa|house) = 1
2 = 1

2 t(verde|house) = 1/2
2 = 1

4 t(la|house) = 1/2
2 = 1

4

t(casa|the) = 1/2
1 = 1

2 t(verde|the) = 0
1 = 0 t(la|the) = 1/2

1 = 1
2

Note that each of the correct translations have increased inprobability from the ini-
tial assignment; for example the translationcasafor househas increased in probability
from 1

3 to 1
2.

E-step 2a: We re-computeP(a, f |e), again by multiplying all thet probabilities, following
Eq. 25.30

green house green house the house the house

casa verde casa verde la casa la casa
P(a, f |e) = t(casa,green) P(a, f |e) = t(verde,green) P(a, f |e) = t(la,the) P(a, f |e) = t(casa,the)
× t(verde,house) × t(casa,house) × t(casa,house) × t(la,house)

= 1
2 ×

1
4 = 1

8 = 1
2 ×

1
2 = 1

4 = 1
2 ×

1
2 = 1

4 = 1
2 ×

1
4 = 1

8

Note that the two correct alignments are now higher in probability than the two
incorrect alignments. Performing the second and further round of E-steps and M-steps
is left as Exercise 25.6 for the reader.

We have shown that EM can be used to learn the parameters for a simplified version
of Model 1. Our intuitive algorithm, however, requires thatwe enumerate all possible
alignments. For a long sentence, enumerating every possible alignment would be very
inefficient. Luckily in practice there is a very efficient version of EM for Model 1 that
efficiently and implicitly sums over all alignments.

We also use EM, in the form of the Baum-Welch algorithm, for learning the param-
eters of the HMM model.

25.7 SYMMETRIZING ALIGNMENTS FORPHRASE-BASED MT

The reason why we needed Model 1 or HMM alignments was to buildword alignments
on the training set, so that we could extract aligned pairs ofphrases.

Unfortunately, HMM (or Model 1) alignments are insufficientfor extracting pair-
ings of Spanish phrases with English phrases. This is because in the HMM model,
each Spanish word must be generated from a single English word; we cannot gen-
erate a Spanish phrase from multiple English words. The HMM model thus cannot
align a multiword phrase in the source language with a multiword phrase in the target
language.
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We can, however, extend the HMM model to produce phrase-to-phrase alignments
for a pair of sentences(F,E), via a method that’s often calledsymmetrizing. First,SYMMETRIZING

we train two separate HMM aligners, an English-to-Spanish aligner and a Spanish-to-
English aligner. We then align (F,E) using both aligners. We can then combine these
alignments in clever ways to get an alignment that maps phrases to phrases.

To combine the alignments, we start by taking theintersection of the two align-INTERSECTION

ments, as shown in Fig. 25.25. The intersection will containonly places where the
two alignments agree, hence the high-precision aligned words. We can also separately
compute theunion of these two alignments. The union will have lots of less accurately
aligned words. We can then build a classifier to select words from the union, which we
incrementally add back in to this minimal intersective alignment.

Figure 25.25 Intersection of English-to-Spanish and Spanish-to-English alignments to
produce a high-precision alignment. Alignment can then be expanded with points from
both alignments to produce an alignment like that shown in Fig. 25.26. After Koehn
(2003b).

Fig. 25.26 shows an example of the resulting word alignment.Note that it does
allow many-to-one alignments in both directions. We can nowharvest all phrase pairs
that are consistent with this word alignment. A consistent phrase pair is one in which
all the words are aligned only with each other, and not to any external words. Fig. 25.26
also shows some phrases consistent with the alignment.

Once we collect all the aligned phrases pairs from the entiretraining corpus, we
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(Maria, Mary), (no, did not),
(slap, dió una bofetada), (verde, green),
(a la, the), (bruja, witch),
(Maria no, Mary did not),
(no dió una bofetada, did not slap),
(dió una bofetada a la, slap the),
(bruja verde, green witch),
(a la bruja verde, the green witch),. . .

Figure 25.26 A better phrasal alignment for thegreen witchsentence, computed by
starting with the intersection alignment in Fig. 25.25 and adding points from the union
alignment, using the algorithm of Och and Ney (2003). On the right, some of the phrases
consistent with this alignment, after Koehn (2003b).

can compute the maximum likelihood estimate for the phrase translation probability of
a particular pair as follows:

φ( f̄ , ē) =
count( f̄ , ē)

∑ f̄ count( f̄ , ē)
(25.31)

We can now store each phrase( f̄ , ē), together with its probabilityφ( f̄ , ē), in a large
phrase translation table. The decoding algorithm discussed in the next section canPHRASE

TRANSLATION TABLE

use this phrase translation table to compute the translation probability.

25.8 DECODING FORPHRASE-BASED STATISTICAL MT

The remaining component of a statistical MT system is the decoder. Recall that the
job of the decoder is to take a foreign (Spanish) source sentenceF and produce the
best (English) translationE according to the product of the translation and language
models:

Ê = argmax
E∈English

translation model
︷ ︸︸ ︷

P(F |E)

language model
︷ ︸︸ ︷

P(E)(25.32)

Finding the sentence which maximizes the translation and language model proba-
bilities is asearchproblem, and decoding is thus a kind of search. Decoders in MTare
based onbest-first search, a kind ofheuristic or informed search; these are search
algorithms that are informed by knowledge from the problem domain. Best-first search
algorithms select a noden in the search space to explore based on an evaluation function
f (n). MT decoders are variants of a specific kind of best-first search calledA∗ search.
A∗ search was first implemented for machine translation by IBM (Brown et al., 1995),
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based on IBM’s earlier work on A∗ search for speech recognition (Jelinek, 1969). As
we discussed in Sec.??, for historical reasons A∗ search and its variants are commonly
calledstack decodingin speech recognition and sometimes also in machine transla-STACK DECODING

tion.
Let’s begin in Fig. 25.27 with a generic version of stack decoding for machine

translation. The basic intuition is to maintain apriority queue (traditionally referred
to as astack) with all the partial translation hypotheses, together with their scores.

function STACK DECODING(source sentence)returns target sentence

initialize stack with a null hypothesis
loop do

pop best hypothesish off of stack
if h is a complete sentence,return h
for each possible expansionh′ of h

assign a score toh′

pushh′ onto stack

Figure 25.27 Generic version of stack or A∗ decoding for machine translation. A hy-
pothesis is expanded by choosing a single word or phrase to translate. We’ll see a more
fleshed-out version of the algorithm in Fig. 25.30.

Let’s now describe stack decoding in more detail. While the original IBM statistical
decoding algorithms were for word-based statistical MT, wewill describe the applica-
tion to phrase-based decoding in the publicly available MT decoderPharaoh (Koehn,
2004).

In order to limit the search space in decoding, we don’t want to search through
the space of all English sentences; we only want to consider the ones that are possible
translations forF . To help reduce the search space, we only want to consider sentences
that include words or phrases which are possible translations of words or phrases in the
Spanish sentenceF . We do this by searching thephrase translation tabledescribed
in the previous section, for all possible English translations for all possible phrases in
F .

A sample lattice of possible translation options is shown inFig. 25.28 drawn from
Koehn (2003a, 2004). Each of these options consists of a Spanish word or phrase,
the English translation, and the phrase translation probability φ. We’ll need to search
through combinations of these to find the best translation string.

Now let’s walk informally through the stack decoding example in Fig. 25.29, pro-
ducing an English translation ofMary dió una bofetada a la bruja verdeleft to right.
For the moment we’ll make the simplifying assumption that there is a single stack, and
that there is no pruning.

We start with the null hypothesis as the initialsearch state, in which we have
selected no Spanish words and produced no English translation words. We nowexpand
this hypothesis by choosing each possible source word or phrase which could generate
an English sentence-initial phrase. Fig. 25.29a shows thisfirst ply of the search. For
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verdelaabofetadaunadiónoMaria bruja

Mary not

did not

no

did not give

give a slap to greenthe witch

a slap to green witch

slap to the

to

the

slap the witch

Figure 25.28 The lattice of possible English translations for words and phrases in a
particular sentenceF , taken from the entire aligned training set. After Koehn (2003a)

Figure 25.29 Three stages in stack decoding ofMaria no dió una bofetada a la bruja verde(simplified by
assuming a single stack and no pruning). The nodes in blue, onthe fringe of the search space, are all on the stack,
and areopennodes still involved in the search. Nodes in gray areclosednodes which have been popped off the
stack.

example the top state represents the hypothesis that the English sentence starts with
Mary, and the Spanish wordMaria has been covered (the asterisk for the first word is
marked with an M). Each state is also associated with a cost, discussed below. Another
state at this ply represents the hypothesis that the Englishtranslation starts with the
word No, and that Spanishno has been covered. This turns out to be the lowest-cost
node on the queue, so we pop it off the queue and push all its expansions back on the
queue. Now the stateMary is the lowest cost, so we expand it;Mary did not is now
the lowest cost translation so far, so will be the next to be expanded. We can then
continue to expand the search space until we have states (hypotheses) that cover the
entire Spanish sentence, and we can just read off an English translation from this state.
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We mentioned that each state is associated with a cost which,as we’ll see below,
is used to guide the search, The cost combines thecurrent cost with an estimate of
the future cost. Thecurrent cost is the total probability of the phrases that have been
translated so far in the hypothesis, i.e. the product of the translation, distortion, and
language model probabilities. For the set of partially translated phrasesS= (F,E), this
probability would be:

cost(E,F) = ∏
i∈S

φ( f̄i , ēi)d(ai−bi−1)P(E)(25.33)

The future cost is our estimate of the cost of translating theremainingwords in the
Spanish sentence. By combining these two factors, the statecost gives an estimate of
the total probability of the search path for the eventual complete translation sentence
E passing through the current node. A search algorithm based only on the current cost
would tend to select translations that had a few high-probability words at the beginning,
at the expense of translations with a higher overall probability. 4 For the future cost,
it turns out to be far too expensive to compute the true minimum probability for all
possible translations. Instead, we approximate this cost by ignoring the distortion cost
and just finding the sequence of English phrases which has theminimum product of
the language model and translation model costs, which can beeasily computed by the
Viterbi algorithm.

This sketch of the decoding process suggests that we search the entire state space of
possible English translations. But we can’t possibly afford to expand the entire search
space, because there are far too many states; unlike in speech recognition, the need
for distortion in MT means there is (at least) a distinct hypothesis for every possible
ordering of the English words!5

For this reason MT decoders, like decoders for speech recognition, all require some
sort of pruning. Pharaoh and similar decoders use a version of beam-search pruning,BEAMSEARCH

PRUNING

just as we saw in decoding for speech recognition and probabilistic parsing. Recall
that in beam-search pruning, at every iteration we keep onlythe most promising states,
and prune away unlikely (high-cost) states (those ‘outsidethe search beam’). We could
modify the search sequence depicted in Fig. 25.29, by pruning away all bad (high-cost)
states at every ply of the search, and expanding only the beststate. In fact, in Pharaoh,
instead of expanding only the best state, we expand all states within the beam; thus
Pharaoh is technicallybeam searchrather thanbest-first searchor A∗ search.

More formally, at each ply of the search we keep around a stack(priority queue) of
states. The stack only fitsn entries. At every ply of the search, we expand all the states
on the stack, push them onto the stack, order them by cost, keep the bestn entries and
delete the rest.

We’ll need one final modification. While in speech we just usedone stack for stack
decoding, in MT we’ll use multiple stacks, because we can’t easily compare the cost
of hypotheses that translate different numbers of foreign words. So we’ll usem stacks,
where stacksm includes all hypotheses that coverm foreign words. When we expand a

4 We saw this same kind of cost function for A∗ search in speech recognition, where we used the A∗

evaluation function:f ∗(p) = g(p)+h∗(p).
5 Indeed, as Knight (1999a) shows, decoding even in IBM Model 1with a bigram language model is
equivalent to the difficult class of problems known asNP-complete.
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hypothesis by choosing a phrase to translate, we’ll insert the new state into the correct
stack for the number of foreign words covered. Then we’ll usebeam-search inside each
of these stacks, keep onlyn hypotheses for each of them stacks. The final multi-stack
version of beam search stack decoding is shown in Fig. 25.30.

function BEAM SEARCH STACK DECODER(source sentence)returns target sentence

initialize hypothesisStack[0..nf]
push initial null hypothesis on hypothesisStack[0]
for i←0 tonf-1

for each hyp in hypothesisStack[i]
for eachnew hypthat can be derived fromhyp

nf[new hyp]←number of foreign words covered bynew hyp
addnew hyp to hypothesisStack[nf[newhyp]]
prune hypothesisStack[nf[newhyp]]

find best hypothesisbesthyp in hypothesisStack[nf]
return best path that leads tobesthypvia backtrace

Figure 25.30 Pharaoh beam search multi-stack decoding algorithm, adapted from
(Koehn, 2003a, 2004). For efficiency, most decoders don’t store the entire foreign and
English sentence in each state, requiring that we backtraceto find the state path from the
initial to the final state so we can generate the entire English target sentence.

There are a number of additional issues in decoding that mustbe dealt with. All
decoders attempt to limit somewhat the exponential explosion in the search space by
recombining hypotheses. . We saw hypothesis recombination in theExact N-BestRECOMBINING

HYPOTHESES

algorithm of Sec.??. In MT, we can merge any two hypotheses that are sufficiently
similar (cover the same foreign words, have the same last-two English words, and have
the same end of the last foreign phrase covered).

In addition, it turns out that decoders for phrasal MT optimize a slightly different
function than the one we presented in Eq. 25.32. In practice,it turns out that we need
to add another factor, which serves to penalize sentences which are too short. Thus the
decoder is actually choosing the sentence which maximizes:

Ê = argmax
E∈English

translation model
︷ ︸︸ ︷

P(F |E)

language model
︷ ︸︸ ︷

P(E)

short sentence penalty
︷ ︸︸ ︷

ωlength(E)(25.34)

This final equation is extremely similar to the use of the wordinsertion penalty in
speech recognition in Eq.??.
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25.9 MT EVALUATION

Evaluating the quality of a translation is an extremely subjective task, and disagree-
ments about evaluation methodology are rampant. Nevertheless, evaluation is essen-
tial, and research on evaluation methodology has played an important role from the
earliest days of MT (Miller and Beebe-Center, 1958) to the present. Broadly speaking,
we attempt to evaluate translations along two dimensions, corresponding to thefidelity
andfluencydiscussed in Sec. 25.3.

25.9.1 Using Human Raters

The most accurate evaluations use human raters to evaluate each translation along each
dimension. For example, along the dimension offluency, we can ask how intelligible,
how clear, how readable, or how natural is the MT output (the target translated text).
There are two broad ways to use human raters to answer these questions. One method
is to give the raters a scale, for example from 1 (totally unintelligible) to 5 (totally
intelligible), and ask them to rate each sentence or paragraph of the MT output. We
can use distinct scales for any of the aspects of fluency, suchasclarity , naturalness,
or style. The second class of methods relies less on the conscious decisions of the
participants. For example, we can measure the time it takes for the raters to read each
output sentence or paragraph. Clearer or more fluent sentences should be faster or
easier to read. We can also measure fluency with theclozetask (Taylor, 1953, 1957).CLOZE

The cloze task is a metric used often in psychological studies of reading. The rater
sees an output sentence with a word replaced by a space (for example, every 8th word
might be deleted). Raters have to guess the identity of the missing word. Accuracy at
the cloze task, i.e. average success of raters at guessing the missing words, generally
correlates with how intelligible or natural the MT output is.

A similar variety of metrics can be used to judge the second dimension,fidelity .
Two common aspects of fidelity which are measured areadequacyandinformative-
ness. Theadequacyof a translation is whether it contains the information thatexistedADEQUACY

in the original. We measure adequacy by using raters to assign scores on a scale. If we
have bilingual raters, we can give them the source sentence and a proposed target sen-
tence, and rate, perhaps on a 5-point scale, how much of the information in the source
was preserved in the target. If we only have monolingual raters, but we have a good
human translation of the source text, we can give the monolingual raters the human
reference translation and a target machine translation, and again rate how much infor-
mation is preserved. Theinformativenessof a translation is a task-based evaluationINFORMATIVENESS

of whether there is sufficient information in the MT output toperform some task. For
example we can give raters multiple-choice questions aboutthe content of the material
in the source sentence or text. The raters answer these questions based only on the MT
output. The percentage of correct answers is an informativeness score.

Another set of metrics attempt to judge the overall quality of a translation, combin-
ing fluency and fidelity. For example, the typical evaluationmetric for MT output to be
post-edited is theedit costof post-editing the MT output into a good translation. ForEDIT COST

POSTEDITING example, we can measure the number of words, the amount of time, or the number of
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keystrokes required for a human to correct the output to an acceptable level.

25.9.2 Automatic Evaluation: Bleu

While humans produce the best evaluations of machine translation output, running
a human evaluation can be very time-consuming, taking days or even weeks. It is
useful to have an automatic metric that can be run relativelyfrequently to quickly
evaluate potential system improvements. In order to have such convenience, we would
be willing for the metric to be much worse than human evaluation, as long as there was
some correlation with human judgments.

In fact there are a number of such heuristic methods, such asBleu, NIST, TER,
Precision and Recall, andMETEOR (see references at the end of the chapter). The
intuition of these automatic metrics derives from Miller and Beebe-Center (1958), who
pointed out that a good MT output is one which is very similar to a human translation.
For each of these metrics, we assume that we already have one or more human trans-
lations of the relevant sentences. Now given an MT output sentence, we compute the
translation closeness between the MT output and the human sentences. An MT output
is ranked as better if on average it is closer to the human translations. The metrics differ
on what counts as ‘translation closeness’.

In the field of automatic speech recognition, the metric for ‘transcription closeness’
is word error rate, which is the minimum edit distance to a human transcript. But
in translation, we can’t use the same word error rate metric,because there are many
possible translations of a source sentence; a very good MT output might look like one
human translation, but very unlike another one. For this reason, most of the metrics
judge an MT output by comparing it to multiple human translations.

Each of these metrics thus require that we get human translations in advance for a
number of test sentences. This may seem time-consuming, butthe hope is that we can
reuse this translated test set over and over again to evaluate new ideas.

For the rest of this section, let’s walk through one of these metrics, theBleu metric,
following closely the original presentation in Papineni etal. (2002). In Bleu we rank
each MT output by a weighted average of the number ofN-gram overlaps with the
human translations.

Fig. 25.31 shows an intuition, from two candidate translations of a Chinese source
sentence (Papineni et al., 2002), shown with three reference human translations of the
source sentence. Note that Candidate 1 shares many more words (shown in blue) with
the reference translations than Candidate 2.

Let’s look at how the Bleu score is computed, starting with just unigrams. Bleu is
based on precision. A basic unigram precision metric would be to count the number
of words in the candidate translation (MT output) that occurin some reference transla-
tion, and divide by the total number of words in the candidatetranslation. If a candidate
translation had 10 words, and 6 of them occurred in at least one of the reference trans-
lations, we would have a precision of 6/10= 0.6. Alas, there is a flaw in using simple
precision: it rewards candidates that have extra repeated words. Fig. 25.32 shows an
example of a pathological candidate sentence composed of multiple instances of the
single wordthe. Since each of the 7 (identical) words in the candidate occurin one of
the reference translations, the unigram precision would be7/7!
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Figure 25.31 Intuition for Bleu: one of two candidate translations of a Chinese source sentence shares more
words with the reference human translations.

Figure 25.32 A pathological example showing why Bleu uses a modified precision
metric. Unigram precision would be unreasonably high (7/7). Modified unigram precision
is appropriately low (2/7).

In order to avoid this problem, Bleu uses amodified N-gram precisionmetric. WeMODIFIED NGRAM
PRECISION

first count the maximum number of times a word is used in any single reference trans-
lation. The count of eachcandidateword is then clipped by this maximumreference
count. Thus the modified unigram precision in the example in Fig. 25.32 would be
2/7, since Reference 1 has a maximum of 2thes. Going back to Chinese example in
Fig. 25.32, Candidate 1 has a modified unigram precision of 17/18, while Candidate 2
has one of 8/14.

We compute the modified precision similarly for higher orderN-grams as well. The
modified bigram precision for Candidate 1 is 10/17, and for Candidate 2 is 1/13. The
reader should check these numbers for themselves on Fig. 25.31.

To compute a score over the whole testset, Bleu first computestheN-gram matches
for each sentence, and add together the clipped counts over all the candidates sentences,
and divide by the total number of candidateN-grams in the testset. The modified
precision score is thus:

pn =

∑
C∈{Candidates}

∑
n-gram∈C

Countclip(n-gram)

∑
C′∈{Candidates}

∑
n-gram’∈C′

Count(n-gram’)
(25.35)

Bleu uses unigram, bigrams, trigrams, and often quadrigrams; it combines these
modifiedN-gram precisions together by taking their geometric mean.

In addition, Bleu adds a further penalty to penalize candidate translations that are
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too short. Consider the candidate translationof the, compared with References 1-3
in Fig. 25.31 above. Because this candidate is so short, and all its words appear in
some translation, its modified unigram precision is inflatedto 2/2. Normally we deal
with these problems by combining precision withrecall. But as we discussed above,
we can’t use recall over multiple human translations, sincerecall would require (in-
correctly) that a good translation must contain contains lots of N-grams fromevery
translation. Instead, Bleu includes a brevity penalty overthe whole corpus. Letc be
the total length of the candidate translation corpus. We compute theeffective refer-
ence lengthr for that corpus by summing, for each candidate sentence, thelengths of
the best matches. The brevity penalty is then an exponentialin r/c. In summary:

BP =

{
1 if c > r
e(1−r/c) if c≤ r

Bleu = BP×exp

(

1
N

N

∑
n=1

logpn

)

(25.36)

While automatic metrics like Bleu (or NIST, METEOR, etc) have been very useful
in quickly evaluating potential system improvements, and match human judgments in
many cases, they have certain limitations that are important to consider. First, many of
them focus on very local information. Consider slightly moving a phrase in Fig. 25.31
slightly to produce a candidate like:Ensures that the military it is a guide to action
which always obeys the commands of the party. This sentence would have an identical
Bleu score to Candidate 1, although a human rater would give it a lower score.

Furthermore, the automatic metrics probably do poorly at comparing systems that
have radically different architectures. Thus Bleu, for example, is known to perform
poorly (i.e. not agree with human judgments of translation quality) when evaluating the
output of commercial systems like Systran againstN-gram-based statistical systems, or
even when evaluating human-aided translation against machine translation (Callison-
Burch et al., 2006).

We can conclude that automatic metrics are most appropriatewhen evaluating in-
cremental changes to a single system, or comparing systems with very similar archi-
tectures.

25.10 ADVANCED: SYNTACTIC MODELS FORMT

The earliest statistical MT systems (like IBM Models 1, 2 and3) were based on words
as the elementary units. The phrase-based systems that we described in earlier sections
improved on these word-based systems by using larger units,thus capturing larger
contexts and providing a more natural unit for representinglanguage divergences.

Recent work in MT has focused on ways to move even further up the Vauquois
hierarchy, from simple phrases to larger and hierarchical syntactic structures.

It turns out that it doesn’t work just to constrain each phrase to match the syntactic
boundaries assigned by traditional parsers (Yamada and Knight, 2001). Instead, mod-
ern approaches attempt to assign a parallel syntactic tree structure to a pair of sentences
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in different languages, with the goal of translating the sentences by applying reordering
operations on the trees. The mathematical model for these parallel structures is known
as atransduction grammar. These transduction grammars can be viewed as an ex-TRANSDUCTION

GRAMMAR

plicit implementation of thesyntactic transfer systems that we introduced on page 14,
but based on a modern statistical foundation.

A transduction grammar (also called asynchronous grammar) describes a struc-SYNCHRONOUS
GRAMMAR

turally correlated pair of languages. From a generative perspective, we can view a
transduction grammar as generating pairs of aligned sentences in two languages. For-
mally, a transduction grammar is a generalization of the finite-state transducers we saw
in Ch. 3. There are a number of transduction grammars and formalisms used for MT,
most of which are generalizations of context-free grammarsto the two-language situ-
ation. Let’s consider one of the most widely used such modelsfor MT, the inversion
transduction grammar (ITG).

INVERSION
TRANSDUCTION

GRAMMAR

In an ITG grammar, each non-terminal generates two separatestrings. There are
three types of these rules. A lexical rule like the following:

N→ witch/bruja

generates the wordwitchon one stream, andbrujaon the second stream. A nonterminal
rule in square brackets like:

S→ [NP VP]

generates two separate streams, each ofNP VP. A non-terminal in angle brackets, like

Nominal→ 〈Adj N〉

generates two separate streams, withdifferent orderings: Adj N in one stream, andN
Adj in the other stream.

Fig. 25.33 shows a sample grammar with some simple rules. Note that each lexical
rule derives distinct English and Spanish word strings, that rules in square brackets
([]) generate two identical non-terminal right-hand sides, and that the one rule in angle
brackets (〈〉) generates different orderings in Spanish from English.

Thus an ITG parse tree is a single joint structure which spansover the two observed
sentences:

(25.37) (a) [S [NP Mary] [VP didn’t [VP slap [PP [NP the [Nom green witch]]]]]]
(b) [S [NP Marı́a] [VP no [VP dió una bofetada [PPa [NP la [Nom bruja verde]]]]]]

Each non-terminal in the parse derives two strings, one for each language. Thus
we could visualize the two sentences in a single parse, wherethe angle brackets mean
that the order of theAdj N constituentsgreen witchandbruja verdeare generated in
opposite order in the two languages:

[S [NP Mary/Marı́a] [VP didn’t/no [VP slap/dió una bofetada [PPε/a [NP the/la〈Nom witch/bruja green/verde〉]]]]]

There are a number of related kinds of synchronous grammars,including syn-
chronous context-free grammars (Chiang, 2005), multitextgrammars (Melamed, 2003),
lexicalized ITGs (Melamed, 2003; Zhang and Gildea, 2005), and synchronous tree-
adjoining and tree-insertion grammars (Shieber and Schabes, 1992; Shieber, 1994;
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S → [NP VP]
NP → [Det Nominal] | Maria/Marı́a

Nominal → 〈Adj Noun〉
VP → [V PP] | [Negation VP]

Negation→ didn’t/no
V → slap/dió una bofetada

PP → [P NP]
P → ε/a | from/de

Det → the/la | the/le
Adj → green/verde

N → witch/bruja

Figure 25.33 A mini Inversion Transduction Grammar grammar for thegreen witch
sentence.

Nesson et al., 2006). The synchronous CFG system of Chiang (2005), for example,
learns hierarchical pairs of rules that capture the fact that Chinese relative clauses ap-
pear to the left of their head, while English relative clauses appear to the right of their
head:

<① de②, the② that①>

Other models for translation by aligning parallel parse trees including (Wu, 2000;
Yamada and Knight, 2001; Eisner, 2003; Melamed, 2003; Galley et al., 2004; Quirk
et al., 2005; Wu and Fung, 2005).

25.11 ADVANCED: IBM M ODEL 3 FOR FERTILITY-BASED ALIGN-
MENT

The seminal IBM paper that began work on statistical MT proposed five models for
MT. We saw IBM’s Model 1 in Sec. 25.5.1. Models 3, 4 and 5 all usethe important
concept offertility . We’ll introduce Model 3 in this section; our description here is
influenced by Kevin Knight’s nice tutorial (Knight, 1999b).Model 3 has a more com-
plex generative model than Model 1. The generative model from an English sentence
E = e1,e2, ...,eI has 5 steps:

1. For each English wordei , we choose afertility φi .6 The fertility is the numberFERTILITY

of (zero or more) Spanish words that will be generated fromei , and is dependent
only onei .

2. We also need to generate Spanish words from the NULL English word. Recall
that we defined these earlier asspurious words. Instead of having a fertility forSPURIOUS WORDS

NULL, we’ll generate spurious words differently. Every time we generate an

6 This φ is not related to theφ that was used in phrase-based translation.
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English word, we consider (with some probability) generating a spurious word
(from NULL).

3. We now know how many Spanish words to generate from each English word.
So now for each of these Spanish potential words, generate itby translating its
aligned English word. As with Model 1, the translation will be based only on
the English word. Spurious Spanish words will be generated by translating the
NULL word into Spanish.

4. Move all the non-spurious words into their final positionsin the Spanish sen-
tence.

5. Insert the spurious Spanish words in the remaining open positions in the Spanish
sentence.

Fig. 25.34 shows a visualization of the Model 3 generative process

Figure 25.34 The five steps of IBM Model 3 generating a Spanish sentence andalign-
ment from an English sentence.

Model 3 has more parameters than Model 1. The most important are then, t, d,N

T

D

and p1 probabilities. The fertility probabilityφi of a wordei is represented by the

P1

parametern. So we will usen(1|green) to represent the probability that Englishgreen
will produce one Spanish word,n(2|green) is the probability that Englishgreenwill
produce two Spanish words,n(0|did) is the probability that Englishdid will produce
no Spanish words, and so on. Like IBM Model 1, Model 3 has a translation probability
t( f j |ei). Next, the probability that expresses the word position that English words end
up in in the Spanish sentence is thedistortion probability, which is conditioned on theDISTORTION
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English and Spanish sentence lengths. The distortion probability d(1,3,6,7) expresses
the probability that the English worde1 will align to Spanish wordf3, given that the
English sentence has length 6, and the Spanish sentence is oflength 7.

As we suggested above, Model 3 does not use fertility probabilities liken(1|NULL),
or n(3|NULL) to decide how many spurious foreign words to generate from English
NULL. Instead, each time Model 3 generates a real word, it generates a spurious word
for the target sentence with probabilityp1. This way, longer source sentences will nat-
urally generate more spurious words. Fig. 25.35 shows a slightly more detailed version
of the 5 steps of the Model 3 generative story using these parameters.

1. for eachEnglish wordei , 1 < i < I , we choose a fertilityφi with probabilityn(φi |ei)
2. Using these fertilities andp1, determineφ0, the number of spurious Spanish words, and
hencem.
3. for each i, 0 < i < I

for each k, 1 < k < φi
Choose a Spanish wordτik with probabilityt(τik,ei)

4. for each i, 1 < i < I
for each k, 1 < k < φi

Choose a target Spanish positionπik with probabilityd(πik, i, I ,J)
5. for each k, 1 < k < φ0

Choose a target Spanish positionπ0k from one of the available Spanish slots, for a
total probability of 1

φ0!

Figure 25.35 The Model 3 generative story for generating a Spanish sentence from an
English sentence. Remember that we are not translating fromEnglish to Spanish; this is
just the generative component of the noisy channel model. Adapted from Knight (1999b).

Switching for a moment to the task of French to English translation, Fig. 25.36
shows some of thet and φ parameters learned for French-English translation from
Brown et al. (1993). Note thatthe in general translates to a French article likele, but
sometimes it has a fertility of 0, indicating that English uses an article where French
does not. Conversely, note thatfarmersprefers a fertility of 2, and the most likely
translations areagriculteursandles, indicating that here French tends to use an article
where English does not.

Now that we have seen the generative story for Model 3, let’s build the equation
for the probability assigned by the model. The model needs toassigns a probability
P(F |E) of generating the Spanish sentenceF from the English sentenceE. As we did
with Model 1, we’ll start by showing how the model gives the probability P(F,A|E),
the probability of generating sentenceF via a particular alignmentA. Then we’ll sum
over all alignments to get the totalP(F|E).

In order to computeP(F,A|E), we’ll need to multiply the main three factorsn, t,
andd, for generating words, translating them into Spanish, and moving them around.
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the farmers not
f t( f |e) φ n(φ|e) f t( f |e) φ n(φ|e) f t( f |e) φ n(φ|e)
le 0.497 1 0.746 agriculteurs 0.442 2 0.731 ne 0.497 2 0.735
la 0.207 0 0.254 les 0.418 1 0.228 pas 0.442 0 0.154
les 0.155 cultivateurs 0.046 0 0.039 non 0.029 1 0.107
l’ 0.086 producteurs 0.021 rien 0.011
ce 0.018
cette 0.011

Figure 25.36 Examples of Model 3 parameters from the Brown et al. (1993) French-
English translation system, for three English words. Note that bothfarmersandnot are
likely to have fertilities of 2.

So a first pass atP(F,A|E) would be:

I

∏
i=1

n(φi |ei)×
J

∏
j=1

t( f j |ea j )×
J

∏
j=1

d( j|a j , I ,J)(25.38)

But (25.38) isn’t sufficient as it stands; we need to add factors for generating spu-
rious words, for inserting them into the available slots, and a factor having to do with
the number of ways (permutations) a word can align with multiple words. Equation
(25.39) gives the true final equation for IBM Model 3, in Knight’s modification of the
original formula. We won’t give the details of these additional factors, but encourage
the interested reader to see the original presentation in Brown et al. (1993) and the very
clear explanation of the equation in Knight (1999b).

P(F,A|E) =

generate spurious
︷ ︸︸ ︷
(

J−φ0

φ0

)

pJ−2φ0
0 pφ0

1 ×

insert spurious
︷︸︸︷

1
φ0!

×

multi-align permutations
︷ ︸︸ ︷

I

∏
i=0

φi !

×
I

∏
i=1

n(φi |ei)×
J

∏
j=1

t( f j |ea j )×
J

∏
j :a j 6=0

d( j|a j , I ,J)(25.39)

Once again, in order to get the total probability of the Spanish sentence we’ll need
to sum over all possible alignments:

P(F |E) = ∑
A

P(F,A|E)

We can also make it more explicit exactly how we sum over alignments (and also
emphasize the incredibly large number of possible alignments) by expressing this for-
mula as follows, where we specify an alignment by specifyingthe aligned Englisha j

for each of theJ words in the foreign sentence:

P(F |E) =
J

∑
a1=0

J

∑
a2=0

· · ·
I

∑
aJ=0

P(F,A|E)
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25.11.1 Training for Model 3

Given a parallel corpus, training the translation model forIBM Model 3 means setting
values for then, d, t, andp1 parameters.

As we noted for Model 1 and HMM models, if the training-corpuswas hand-labeled
with perfect alignments, getting maximum likelihood estimates would be simple. Con-
sider the probabilityn(0|did) that a word likedid would have a zero fertility. We could
estimate this from an aligned corpus just by counting the number of timesdid aligned
to nothing, and normalize by the total count ofdid. We can do similar things for the
t translation probabilities. To train the distortion probability d(1,3,6,7), we similarly
count the number of times in the corpus that English worde1 maps to Spanish wordf3
in English sentences of length 6 that are aligned to Spanish sentences of length 7. Let’s
call this counting function dcount. We’ll again need a normalization factor;

d(1,3,6,7) =
dcount(1,3,6,7)

∑I
i=1dcount(i,3,6,7)

(25.40)

Finally, we need to estimatep1. Again, we look at all the aligned sentences in
the corpus; let’s assume that in the Spanish sentences thereare a total ofN words.
From the alignments for each sentence, we determine that a total of S Spanish words
are spurious, i.e. aligned to English NULL. ThusN−S of the words in the Spanish
sentences were generated by real English words. AfterSof theseN−SSpanish words,
we generate a spurious word. The probabilityp1 is thusS/(N−S).

Of course, we don’t have hand-alignments for Model 3. We’ll need to use EM
to learn the alignments and the probability model simultaneously. With Model 1 and
the HMM model, there were efficient ways to do training without explicitly summing
over all alignments. Unfortunately, this is not true for Model 3; we actually would
need to compute all possible alignments. For a real pair of sentences, with 20 English
words and 20 Spanish words, and allowing NULL and allowing fertilities, there are a
very large number of possible alignments (determining the exact number of possible
alignments is left as Exercise 25.7). Instead, we approximate by only considering
the best few alignments. In order to find the best alignments without looking at all
alignments, we can use an iterative or bootstrapping approach. In the first step, we
train the simpler IBM Model 1 or 2 as discussed above. Then we use these Model 2
parameters to evaluateP(A|E,F), giving a way to find the best alignments to bootstrap
Model 3. See Brown et al. (1993) and Knight (1999b) for details.

25.12 ADVANCED: LOG-LINEAR MODELS FORMT

While statistical MT was first based on the noisy channel model, much recent work
combines the language and translation models via a log-linear model in which we di-
rectly search for the sentence with the highest posterior probability:

Ê = argmax
E

P(E|F)(25.41)
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This is done by modelingP(E|F) via a set ofM feature functionshm(E,F), each of
which has a parameterλm. The translation probability is then:

P(E|F) =
exp[∑M

m=1 λmhm(E,F)]

∑E′ exp[∑M
m=1 λmhm(E′,F)]

(25.42)

The best sentence is thus:

Ê = argmax
E

P(E|F)

= argmax
E

exp[
M

∑
m=1

λmhm(E,F)](25.43)

In practice, the noisy channel model factors (the language modelP(E) and trans-
lation modelP(F|E)), are still the most important feature functions in the log-linear
model, but the architecture has the advantage of allowing for arbitrary other features as
well; a common set of features would include:

• the language modelP(E)

• the translation modelP(F |E)

• thereverse translation modelP(E|F),
REVERSE

TRANSLATION
MODEL

• lexicalized versions of both translation models,
• aword penalty,WORD PENALTY

• aphrase penaltyPHRASE PENALTY

• anunknown word penalty.UNKNOWN WORD
PENALTY

See Foster (2000), Och and Ney (2002, 2004) for more details.
Log-linear models for MT could be trained using the standardmaximum mutual

information criterion.
In practice, however, log-linear models are instead trained to directly optimize eval-

uation metrics like Bleu in a method known asMinimum Error Rate Training , orMINIMUM ERROR
RATE TRAINING

MERT (Och, 2003; Chou et al., 1993).MERT

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Work on models of the process and goals of translation goes back at least to Saint
Jerome in the fourth century (Kelley, 1979). The development of logical languages,
free of the imperfections of human languages, for reasoningcorrectly and for com-
municating truths and thereby also for translation, has been pursued at least since the
1600s (Hutchins, 1986).

By the late 1940s, scant years after the birth of the electronic computer, the idea
of MT was raised seriously (Weaver, 1955). In 1954 the first public demonstration of
a MT system prototype (Dostert, 1955) led to great excitement in the press (Hutchins,
1997). The next decade saw a great flowering of ideas, prefiguring most subsequent
developments. But this work was ahead of its time — implementations were limited
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by, for example, the fact that pending the development of disks there was no good way
to store dictionary information.

As high quality MT proved elusive (Bar-Hillel, 1960), a growing consensus on the
need for better evaluation and more basic research in the newfields of formal and com-
putational linguistics, culminating in the famous ALPAC (Automatic Language Pro-
cessing Advisory Committee) report of 1966 (Pierce et al., 1966), led in the mid 1960s
to a dramatic cut in funding for MT. As MT research lost academic respectability, the
Association for Machine Translation and Computational Linguistics dropped MT from
its name. Some MT developers, however, persevered, slowly and steadily improving
their systems, and slowly garnering more customers. Systran in particular, developed
initially by Peter Toma, has been continuously improved over 40 years. Its earliest
uses were for information acquisition, for example by the U.S. Air Force for Rus-
sian documents; and in 1976 an English-French edition was adopted by the European
Community for creating rough and post-editable translations of various administrative
documents. Another early successful MT system was Météo,which translated weather
forecasts from English to French; incidentally, its original implementation (1976), used
“Q-systems”, an early unification model.

The late 1970s saw the birth of another wave of academic interest in MT. One
strand attempted to apply meaning-based techniques developed for story understand-
ing and knowledge engineering (Carbonell et al., 1981). There were wide discussions
of interlingual ideas through the late 1980s and early 1990s(Tsujii, 1986; Nirenburg
et al., 1992; Ward, 1994; Carbonell et al., 1992). MeanwhileMT usage was increasing,
fueled by globalization, government policies requiring the translation of all documents
into multiple official languages, and the proliferation of word processors and then per-
sonal computers.

Modern statistical methods began to be applied in the early 1990s, enabled by the
development of large bilingual corpora and the growth of theweb. Early on, a num-
ber of researchers showed that it was possible to extract pairs of aligned sentences
from bilingual corpora (Kay and Röscheisen, 1988, 1993; Warwick and Russell, 1990;
Brown et al., 1991; Gale and Church, 1991, 1993). The earliest algorithms made use
of the words of the sentence as part of the alignment model, while others relied solely
on other cues like sentence length in words or characters.

At the same time, the IBM group, drawing directly on algorithms for speech recog-
nition (many of which had themselves been developed originally at IBM!) proposed
theCandide system, based on the IBM statistical models we have described (BrownCANDIDE

et al., 1990, 1993). These papers described the probabilistic model and the param-
eter estimation procedure. The decoding algorithm was never published, but it was
described in a patent filing (Brown et al., 1995). The IBM workhad a huge impact
on the research community, and by the turn of this century, much or most academic
research on machine translation was statistical. Progresswas made hugely easier by
the development of publicly-available toolkits, particularly tools extended from the
EGYPT toolkit developed by the Statistical Machine Translation team in during theEGYPT

summer 1999 research workshop at the Center for Language andSpeech Processing at
the Johns Hopkins University. These include theGIZA++ aligner, developed by FranzGIZA++

Josef Och by extending the GIZA toolkit (Och and Ney, 2003), which implements IBM
models 1-5 as well as the HMM alignment model.
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Initially most research implementations focused on IBM Model 3, but very quickly
researchers moved to phrase-based models. While the earliest phrase-based translation
model was IBM Model 4 (Brown et al., 1993), modern models derive from Och’s
(1998) work onalignment templates. Key phrase-based translation models include
Marcu and Wong (2002), Zens et al. (2002). Venugopal et al. (2003), Koehn et al.
(2003), Tillmann (2003) Och and Ney (2004), Deng and Byrne (2005), and Kumar and
Byrne (2005),

Other work on MT decoding includes theA∗ decoders of Wang and Waibel (1997)
and Germann et al. (2001), and the polynomial-time decoder for binary-branching
stochastic transduction grammar of Wu (1996).

The most recent open-source MT toolkit is the phrase-basedMOSESsystem (KoehnMOSES

et al., 2006; Koehn and Hoang, 2007; Zens and Ney, 2007). MOSES developed out of
thePHARAOH publicly available phrase-based stack decoder, developedby PhilippPHARAOH

Koehn (Koehn, 2004, 2003b), which extended theA∗ decoders of (Och et al., 2001)
and Brown et al. (1995) and extended the EGYPT tools discussed above.

Modern research continues on sentence and word alignment aswell; more recent
algorithms include Moore (2002, 2005), Fraser and Marcu (2005), Callison-Burch et al.
(2005), Liu et al. (2005).

Research on evaluation of machine translation began quite early. Miller and Beebe-
Center (1958) proposed a number of methods drawing on work inpsycholinguistics.
These included the use of cloze and Shannon tasks to measure intelligibility, as well
as a metric of edit distance from a human translation, the intuition that underlies all
modern automatic evaluation metrics like Bleu. The ALPAC report included an early
evaluation study conducted by John Carroll that was extremely influential (Pierce et al.,
1966, Appendix 10). Carroll proposed distinct measures forfidelity and intelligibility,
and had specially trained human raters score them subjectively on 9-point scales. More
recent work on evaluation has focused on coming up with automatic metrics, include
the work on Bleu discussed in Sec. 25.9.2 (Papineni et al., 2002), as well as related mea-
sures likeNIST (Doddington, 2002),TER (Translation Error Rate) (Snover et al.,
2006),Precision and Recall(Turian et al., 2003), andMETEOR (Banerjee and Lavie,
2005).

Good surveys of the early history of MT are Hutchins (1986) and (1997). The
textbook by Hutchins and Somers (1992) includes a wealth of examples of language
phenomena that make translation difficult, and extensive descriptions of some histori-
cally significant MT systems. Nirenburg et al. (2002) is a comprehensive collection of
classic readings in MT. (Knight, 1999b) is an excellent tutorial introduction to Statisti-
cal MT.

Academic papers on machine translation appear in standard NLP journals and con-
ferences, as well as in the journalMachine Translationand in the proceedings of vari-
ous conferences, including MT Summit, organized by the International Association for
Machine Translation, the individual conferences of its three regional divisions, (Asso-
ciation for MT in the Americas – AMTA, European Association for MT – EAMT, and
Asia-Pacific Association for MT – AAMT), and the Conference on Theoretical and
Methodological Issue in Machine Translation (TMI).
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EXERCISES

25.1 Select at random a paragraph of Ch. 12 which describes a fact about English
syntax. a) Describe and illustrate how your favorite foreign language differs in this
respect. b) Explain how a MT system could deal with this difference.

25.2 Choose a foreign language novel in a language you know. Copy down the short-
est sentence on the first page. Now look up the rendition of that sentence in an English
translation of the novel. a) For both original and translation, draw parse trees. b) For
both original and translation, draw dependency structures. c) Draw a case structure
representation of the meaning which the original and translation share. d) What does
this exercise suggest to you regarding intermediate representations for MT?

25.3 Version 1 (for native English speakers): Consider the following sentence:

These lies are like their father that begets them; gross as a mountain, open, pal-
pable.

Henry IV, Part 1, act 2, scene 2

Translate this sentence into some dialect of modern vernacular English. For exam-
ple, you might translate it into the style of a New York Times editorial or an Economist
opinion piece, or into the style of your favorite televisiontalk-show host.

Version 2 (for native speakers of other languages): Translate the following sentence
into your native language.

One night my friend Tom, who had just moved into a new apartment, saw a
cockroach scurrying about in the kitchen.

For either version, now:
a) Describe how you did the translation: What steps did you perform? In what order

did you do them? Which steps took the most time? b) Could you write a program that
would translate using the same methods that you did? Why or why not? c) What
aspects were hardest for you? Would they be hard for a MT system? d) What aspects
would be hardest for a MT system? are they hard for people too?e) Which models
are best for describing various aspects of your process (direct, transfer, interlingua
or statistical)? f) Now compare your translation with thoseproduced by friends or
classmates. What is different? Why were the translations different?

25.4 Type a sentence into a MT system (perhaps a free demo on the web) and see
what it outputs. a) List the problems with the translation. b) Rank these problems
in order of severity. c) For the two most severe problems, suggest the probable root
cause.

25.5 Build a very simple direct MT system for translating from some language you
know at least somewhat into English (or into a language in which you are relatively
fluent), as follows. First, find some good test sentences in the source language. Reserve
half of these as a development test set, and half as an unseen test set. Next, acquire a
bilingual dictionary for these two languages (for many languages, limited dictionaries
can be found on the web that will be sufficient for this exercise). Your program should
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translate each word by looking up its translation in your dictionary. You may need
to implement some stemming or simple morphological analysis. Next, examine your
output, and do a preliminary error analysis on the development test set. What are
the major sources of error? Write some general rules for correcting the translation
mistakes. You will probably want to run a part-of-speech tagger on the English output,
if you have one. Then see how well your system runs on the test set.

25.6 Continue the calculations for the EM example on page 30, performing the sec-
ond and third round of E-steps and M-steps.

25.7 (Derived from Knight (1999b)) How many possible Model 3 alignments are
there between a 20-word English sentence and a 20-word Spanish sentence, allowing
for NULL and fertilities?
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