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MACHINE TRANSLATION

The process of translating comprises in its essence theavgaakret
of human understanding and social communication.
Attributed to Hans-Georg Gadamer

What is translation? On a platter
A poet’s pale and glaring head,

A parrot’s screech, a monkey'’s chatter,
And profanation of the dead.
Nabokov,0n Translating Eugene Onegin

Proper words in proper places
Jonathan Swift

TRAN A CHING This chapter introduces techniquesiieachine translation(MT ), the use of com-
mt  puters to automate some or all of the process of translatorg bne language to an-
other. Translation, in its full generality, is a difficulgdcinating, and intensely human
endeavor, as rich as any other area of human creativity.i@ertbe following passage
from the end of Chapter 45 of the 18th-century noMe¢ Story of the Stonalso called
Dream of the Red Chamhéry Cao Xue Qin (Cao, 1792), transcribed in the Mandarin
dialect:

dai yu zi zai chuang shang gan nian bao chai. . . you ting jiaraie wai zhu shao xiang
ye zhe shang, yu sheng xi li, ging han tou mu, bu jue you di xikie

Fig. 25.1 shows the English translation of this passage bydXdawkes, in sen-
tences labeled EE,. For ease of reading, instead of giving the Chinese, we Hawers
the English glosses of each Chinese worédMALL CAPS. Wordsin blueare Chinese
words not translated into English, or English words not em@hinese. We have shown
alignment lines between words that roughly correspond in the two laggs.

Consider some of the issues involved in this translatiorrstFthe English and
Chinese texts are very different structurally and lexicallhe four English sentences
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C1 DAIYU ALONE ON BED TOP THINK BAOCHAI

, As she lay there alone Daiyu's thoughts turned toBaochai .|

2 AGAIN LISTEN-TO  WINDOW OUTSIDE BAMBOO  TIP PLANTAIN LEAF OF ON-TOP RAIN SOUND SIGH DRIP

2 Then she listened to the insistent rustle of the rain on the bamboos and plantains outside her window

C, CLEAR coOLD

3 The coldness penetrated the curtains of her bed.§

PENE'II'RATE CUR'II'AIN

E, Almost without noticing it she had begun to cry

NOT

FEELING FALL DOWN TEARS COME

I l

Figure 25.1

glish glossesN SMALL cAPS. Alignment lines are drawn between ‘Chinese’ words and tBeglish translations.
Words in italics are Chinese words not translated into Bhglor English words not in the original Chinese.

A

Chinese passage froBream of the Red Chamherith the Chinese words represented by En-

(notice the periods in blue) correspond to one long Chinestesce. The word order
of the two texts is very different, as we can see by the mangsealignment lines in
Fig. 25.1. The English has many more words than the Chinesegacan see by the
large number of English words marked in blue. Many of thefferdinces are caused
by structural differences between the two languages. Famele, because Chinese
rarely marks verbal aspect or tense; the English transldtas additional words like
as turned tq andhad begunand Hawkes had to decide to translate Chirteseas
penetratedrather than sawas penetratingr had penetratedChinese has less articles
than English, explaining the large number of bthes. Chinese also uses far fewer
pronouns than English, so Hawkes had to insbgandherin many places into the
English translation.

Stylistic and cultural differences are another source &icdity for the transla-
tor. Unlike English names, Chinese names are made up ofaregohtent words with
meanings. Hawkes chose to use transliterati@ayu) for the names of the main
characters but to translate names of servants by their mgsu(Aroma, Skybright).
To make the image clear for English readers unfamiliar withn€se bed-curtains,
Hawkes translatetha (‘curtain’) ascurtains of her bedThe phrasdamboo tip plan-
tain leaf although elegantin Chinese, where such four-charactasphk are a hallmark
of literate prose, would be awkward if translated word+f@rd into English, and so
Hawkes used simpligamboos and plantains

Translation of this sort clearly requires a deep and richeustdnding of the source
language and the input text, and a sophisticated, poetitcarative command of the
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target language. The problem of automatically performiigdptguality literary trans-
lation between languages as different as Chinese to Englitthus far too hard to
automate completely.

However, even non-literary translations between suchair@inguages as English
and French can be difficult. Here is an English sentence franHansards corpus of
Canadian parliamentary proceedings, with its French katins:

English: Following a two-year transitional period, the new Fooffst@rdinance for Min-
eral Water came into effect on April 1, 1988. Specificallycantains more stringent re-
quirements regarding quality consistency and purity gutees.

French: La nouvelle ordonnance federale sur les denrées alairestconcernant entre
autres les eaux minérales, entrée en vigueur le ler 2888 hprés une période transitoire
de deux ans. exige surtout une plus grande constance damalil# @t une garantie de la
pureté.

French gloss: THE NEW ORDINANCE FEDERAL ON THE STUFF FOOD CONCERNING
AMONG OTHERS THE WATERS MINERAL CAME INTO EFFECT THELST APRIL 1988
AFTER A PERIOD TRANSITORY OF TWO YEARS REQUIRES ABOVE ALL A LRGER
CONSISTENCY IN THE QUALITY AND A GUARANTEE OF THE PURITY

Despite the strong structural and vocabulary overlapséatviEnglish and French,
such translation, like literary translation, still has watlwith differences in word order
(e.g., the location of théollowing a two-year transitional perioghrase) and in struc-
ture (e.g., English uses the notaguirementswhile the French uses the vedxige
‘REQUIRE).

Nonetheless, such translations are much easier, and a nofimn-literary trans-
lation tasks can be addressed with current computationdetla®f machine transla-
tion, including: (1) tasks for which eough translation is adequate, (2) tasks where
a humanpost-editor is used, and (3) tasks limited to smallblanguagedomains in
whichfully automatic high quality translation (FAHQT) is still achievable.

Information acquisition on the web is the kind of task whemoagh translation
may still be useful. Suppose you were at the market this mgrand saw some lovely
platanos(plantains, a kind of banana) at the local Caribbean grostme and you
want to know how to cook them. You go to the web, and find thefailhg recipe:

Platano en Naranja Para 6 personas
3 Platanos maduros 2 cucharadas de mantequilla derretida
1 taza de jugo (zumo) de naranja 5 cucharadas de azUcarami#anc

1/8 cucharadita de nuez moscada en polvo 1 cucharada diurallde naranja

1 cucharada de canela en polvo (opcional)

Pelar los platanos, cortarlos por la mitad y, luego, a lodar Engrasar una fuente o pirex con
margarina. Colocar los platanos y bafiarlos con la mant#gulerretida. En un recipiente
hondo, mezclar el jugo (zumo) de naranja con el azlicar,ipagnuez moscada y ralladura
de naranja. Verter sobre los platanos y hornear a 325 Los primeros 15 minutos, dejar los
patanos cubiertos, hornear 10 o 15 minutos mas destaplosdplatanos

An MT engine produces the following translation:
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Platano in Orange For 6 people

3 Bananas mature 2 tablespoon melted butter

1 cup juice (juice) orange 5 tablespoons brown sugar or white

1/8 teaspoon nutmeg powder 1 tablespoon ralladura orange

1 tablespoon cinnamon powder (optional)

Peel bananas, cut in half and then along. Grease a sourcerex piith margarine. Put bananas
and showering them with the melted butter. In a deep bowlimeijuice (juice) orange with the
sugar, ginger, nutmeg and ralladura orange. Pour over basand bake to 350F. The first 15
minutes, leave covered bananas, bake 10 to 15 minutes moogaenng bananas.

While there are still lots of confusions in this translati{@it for bananas or plan-
tains? What exactly is the pot we should use? Whatlgdura?) it's probably
enough, perhaps after looking up one or two words, to getia mesa of something to
try in the kitchen with your new purchase!

An MT system can also be used to speed-up the human tramstaboess, by pro-
ducing a draft translation that is fixed up ipast-editing phase by a human translator.
Strictly speaking, systems used in this way are daogputer-aided human trans-
lation (CAHT or CAT) rather than (fully automatic) machine tranigla. This model
of MT usage is effective especially for high volume jobs ahdse requiring quick
turn-around, such as the translation of software manualedalization to reach new
markets.

Weather forecasting is an example adiblanguagedomain that can be modeled
completely enough to use raw MT output even without postivegli Weather fore-
casts consist of phrases likdoudy with a chance of showers today and Thursday
or Outlook for Friday: Sunny This domain has a limited vocabulary and only a few
basic phrase types. Ambiguity is rare, and the senses ofgaobs words are easily
disambiguated based on local context, using word classkesemantic features such
asSWEEKDAY, PLACE, or TIME POINT. Other domains that are sublanguage-like in-
clude equipment maintenance manuals, air travel quepesjatment scheduling, and
restaurant recommendations.

Applications for machine translation can also be charasdrby the number and
direction of the translations. Localization tasks likengkations of computer manuals
require one-to-many translation (from English into manyglaages). One-to-many
translation is also needed for non-English speakers arthmavorld to access web
information in English. Conversely, many-to-one trariska{into English) is relevant
for anglophone readers who need the gist of web contentenritt other languages.
Many-to-many translation is relevant for environments like European Union, where
23 official languages (at the time of this writing) need to heitranslated.

Before we turn to MT systems, we begin in section 25.1 by surizing key differ-
ences among languages. The three classic models for doingr&fhen presented in
Sec. 25.2: thdirect, transfer, andinterlingua approaches. We then investigate in de-
tail modernstatistical MT in Secs. 25.3-25.8, finishing in Sec. 25.9 with a discussion
of evaluation.
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25.1 WWHY IS MACHINE TRANSLATION SO HARD?

We began this chapter with some of the issues that made ittbaranslateThe Story
of the Stondrom Chinese to English. In this section we look in more dethbut
what makes translation difficult. We’'ll discuss what makasguages similar or dif-
ferent, includingsystematicdifferences that we can model in a general way, as well
asidiosyncratic and lexical differences that must be dealt with one by oneesgh
DHENSLATION— differences between languages are referred tmaaslation divergencesand an un-
derstanding of what causes them will help us in building ni®deat overcome the
differences (Dorr, 1994).

25.1.1 Typology

When you accidentally pick up a radio program in some foré&agguage it seems like
chaos, completely unlike the familiar languages of yourgday life. But there are
patterns in this chaos, and indeed, some aspects of huntgrelge seem to haniver-
unversaL  sal, holding true for every language. Many universals arisenftbe functional role of
language as a communicative system by humans. Every laagitagxample, seems
to have words for referring to people, for talking about wormaen, and children, eat-
ing and drinking, for being polite or not. Other universals more subtle; for example
Ch. 5 mentioned that every language seems to have nouns gl ve
Even when languages differ, these differences often hastemsatic structure. The
Tvroogy  study of systematic cross-linguistic similarities andefiénces is calletypology (Croft
(1990), Comrie (1989)). This section sketches some typodddacts about crosslin-
guistic similarity and difference.
Morphologically, languages are often characterized along two dimensiovesribf
isolaivg —— ation. The first is the number of morphemes per word, rangiom fisolating lan-
guages like Viethamese and Cantonese, in which each woet@gnhas one mor-
POLYSYNTHETIC pheme, tgpolysynthetic languages like Siberian Yupik (“Eskimo”), in which a single
word may have very many morphemes, corresponding to a whateisce in English.
The second dimension is the degree to which morphemes aneeséaple, ranging
acaLuTnaTve  from agglutinative languages like Turkish (discussed in Ch. 3), in which monpbe
FUSION have relatively clean boundaries, fission languages like Russian, in which a single
affix may conflate multiple morphemes, likemin the wordstolom (tableSG-INSTR-
DEcL1) which fuses the distinct morphological categories instental, singular, and
first declension.
Syntactically, languages are perhaps most saliently different in theclvesid or-
der of verbs, subjects, and objects in simple declaratimasgs. German, French,
V0 English, and Mandarin, for example, are 8VO (Subject-Verb-Object) languages,
meaning that the verb tends to come between the subject gext.ddindi and Japanese,
sov by contrast, ar&0V languages, meaning that the verb tends to come at the endiof ba
vso  clauses, while Irish, Arabic, and Biblical Hebrew &80 languages. Two languages
that share their basic word-order type often have othelaiities. For exampl&VO
languages generally hapeepositionswhile SOV languages generally hapestposi-
tions.
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(25.1)

HEAD-MARKING

(25.2)

(25.3)

VERB-FRAMED

SATELLITE-FRAMED

(25.4)

For example in the following SVO English sentence, the \ambresis followed
by its argument VHistening to musicthe verblisteningis followed by its argument
PPto music and the prepositioto is followed by its argumenhusic By contrast, in
the Japanese example which follows, each of these orddsgsersed; both verbs
areprecededy their arguments, and the postposition follows its arguime

English: He adores listening to music
Japanese:kare ha ongaku wo kiku no ga daisuki desu
he music to listening adores

Another important dimension of typological variation hasdo with argument
structure andlinking of predicates with their arguments, such as the differemee b
tween head-marking and dependent-marking languages (Nichols, 1986). Head-
marking languages tend to mark the relation between the &eddts dependents on
the head. Dependent-marking languages tend to mark th#retan the non-head.
Hungarian, for example, marks the possessive relation avithffix (A) on the head
noun (H), where English marks it on the (non-head) possessor

English:  the man®'s Hhouse
Hungarian: az ember Hhaz#a
the man house-his

Typological variation in linking can also relate to how trenceptual properties of an
event are mapped onto specific words. Talmy (1985) and (18&#&H that languages
can be characterized by whether direction of motion and masinmotion are marked
on the verb or on the “satellites”: particles, prepositigptaases, or adverbial phrases.
For example a bottle floating out of a cave would be describelnglish with the
direction marked on the particteut, while in Spanish the direction would be marked
on the verb:

English: The bottle floated out.
Spanish: La botella sali6 flotanda
The bottle exited floating.

Verb-framed languages mark the direction of motion on the verb (leavhmg t
satellites to mark the manner of motion), like Sparasiercarse'approach’,alcan-
zar ‘reach’,entrar‘enter’, salir ‘exit’. Satellite-framedlanguages mark the direction
of motion on the satellite (leaving the verb to mark the marafemotion), like En-
glish crawl out, float off jump downwalk over tq run after. Languages like Japanese,
Tamil, and the many languages in the Romance, Semitic, andManguages fami-
lies, are verb-framed; Chinese as well as hon-Romance Euwlopean languages like
English, Swedish, Russian, Hindi, and Farsi, are satdti@med (Talmy, 1991; Slobin,
1996).

Finally, languages vary along a typological dimensiontegldo the things they can
omit. Many languages require that we use an explicit pronehien talking about a
referent that is given in the discourse. In other langudyasever, we can sometimes
omit pronouns altogether as the following examples fromn&eand Chinese show,
using thed-notation introduced in Ch. 21:

[El jefe] dio con un libro.0; Mostr6 a un descifrador ambulante.
[The bossjcame upon a booKHe] showed it to a wandering decoder.
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(25.5)

PRO-DROP

REFERENTIAL
DENSITY

COLD
HOT

(25.6)

CHINESE EXAMPLE

Languages which can omit pronouns in these ways are gadtedrop languages.
Even among the pro-drop languages, their are marked diffesein frequencies of
omission. Japanese and Chinese, for example, tend to amitfiee than Spanish. We
refer to this dimension a®ferential density; languages which tend to use more pro-
nouns are more referentially dense than those that use ragre. Referentially sparse
languages, like Chinese or Japanese, that require therbedemore inferential work
to recover antecedents are caltedd languages. Languages that are more explicit and
make it easier for the hearer are calleat languages. The ternt®tandcold are bor-
rowed from Marshall McLuhan's (1964) distinction betweest media like movies,
which fill in many details for the viewer, versus cold medkelcomics, which require
the reader to do more inferential work to fill out the repreéagon (Bickel, 2003).

Each typological dimension can cause problems when ttamglaetween lan-
guages that differ along them. Obviously translating frovi©Sanguages like English
to SOV languages like Japanese requires huge structurdendéngs, since all the con-
stituents are at different places in the sentence. Trangl&bm a satellite-framed to
a verb-framed language, or from a head-marking to a depé&mdarking language,
requires changes to sentence structure and constraint®ahchioice. Languages
with extensive pro-drop, like Chinese or Japanese, cauge fmoblems for translation
into non-pro-drop languages like English, since each zasoth be identified and the
anaphor recovered.

25.1.2 Other Structural Divergences

Many structural divergences between languages are basggaogical differences.
Others, however, are simply idiosyncratic differences #ra characteristic of partic-
ular languages or language pairs. For example in Englistutimearked order in a
noun-phrase has adjectives precede nouns, but in Frenc®pamish adjectives gener-
ally follow nouns.!

Spanish bruja verde French maison bleue
witch green house blue
English “green witch” “blue house”

Chinese relative clauses are structured very differehdig English relative clauses,
making translation of long Chinese sentences very complex.

Language-specific constructions abound. English, for gt@nhas an idiosyn-
cratic syntactic construction involving the wottterethat is often used to introduce a
new scene in a story, as there burst into the room three men with guii® give an
idea of how trivial, yet crucial, these differences can hak of dates. Dates not only
appear in various formats — typically DD/MM/YY in British Etish, MM/DD/YY
in American English, and YYMMDD in Japanese—hbut the calesdaemselves may
also differ. Dates in Japanese, for example, are oftenveltt the start of the current
Emperor’s reign rather than to the start of the Christian Era

1 As always, there are exceptions to this generalizationh sisgalore in English andgros in French;
furthermore in French some adjectives can appear beforotine with a different meaningpute mauvaise
‘bad road, badly-paved road’ versosuvaise routenrong road’ (Waugh, 1976).
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(25.7)
(25.8)
(25.9)
(25.10)

25.1.3 Lexical Divergences

Lexical divergences also cause huge difficulties in traimsia We saw in Ch. 20, for
example, that the English source language wmadscould appear in Spanish as the
fish lubina or the instrumenbajo. Thus translation often requires solving the exact
same problems as word sense disambiguation, and the twe &isddclosely linked.

In English the wordassis homonymous; the two senses of the word are not closely
related semantically, and so it is natural that we would hawtisambiguate in order
to translate. Even in cases of polysemy, however, we oftee tadisambiguate if
the target language doesn’t have the exact same kind ofgralysThe English word
know for example, is polysemous; it can refer to knowing of a facproposition [
know that snow is whijeor familiarity with a person or locatiorl know Jon Stewajt
It turns out that translating these different senses requising distinct French verbs,
including the verbsonndtre, andsavoir. Savoiris generally used with sentential
complements to indicate knowledge or mental represemtafi@ fact or proposition,
or verbal complements to indicate knowledge of how to do sbmeg (e.g., WordNet
3.0 senses #1, #2, #3Lonndtre is generally used with NP complements to indicate
familiarity or acquaintance with people, entities, or lbeas (e.g., WordNet 3.0 senses
#4, #7). Similar distinctions occur in German, Chinese, maghy other languages:

English: | know he just bought a book.
French: Je sais qu’il vient d’acheter un livre.

English: | know John.
French: Je connais Jean.

Thesavoir/connétre distinction corresponds to different groups of WordNetsssn
Sometimes, however, a target language will make a distingtiat is not even recog-
nized in fine-grained dictionaries. German, for examplesusvo distinct words for
what in English would be calledwall: Wandfor walls inside a building, anlauerfor
walls outside a building. Similarly, where English useswwed brotherfor any male
sibling, both Japanese and Chinese have distinct wordslder brotherandyounger
brother (Chinesegegeanddidi, respectively).

In addition to these distinctions, lexical divergences bargrammatical. For ex-
ample, a word may translate best to a different part-of-cipée the target language.
Many English sentences involving the vdite must be translated into German using
the adverbiagern, thusshe likes to singnaps tosie singt gerngSHE SINGS LIk-
INGLY).

In translation, we can think of sense disambiguation as @ &irspecificatiorn we
have to make a vague word likeowor bassmore specific in the target language. This
kind of specification is also quite common with grammatiaffedences. Sometimes
one language places more grammatical constraints on woidethan another. French
and Spanish, for example, marks gender on adjectives, sm@lisk translation into
French requires specifying adjective gender. Englishrdjsishes gender in pronouns
where Mandarin does not; thus translating a third-persogusar pronourta from
Mandarin to Englishi{e, she orit) requires deciding who the original referent was. In
Japanese, because there is no single worigfthie translator must choose betwéen
or aru, based on whether the subject is animate or not.
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LEXICAL GAP

The way that languages differ in lexically dividing up coptigal space may be
more complex than this one-to-many translation problemlileg to many-to-many
mappings. For example Fig. 25.2 summarizes some of the exitipk discussed by
Hutchins and Somers (1992) in relating Englisty, foot andpaw, to the Frencliambe,
pied, patte etc.

Figure 25.2  The complex overlap between Engliy, foot, etc, and various French
translations likgpattediscussed by Hutchins and Somers (1992) .

Further, one language may havéeaical gap where no word or phrase, short of
an explanatory footnote, can express the meaning of a wahginther language. For
example, Japanese does not have a worgrieacy, and English does not have a word
for Japaneseyakokoor Chines&iao (we make do with the awkward phrafiiél piety
for both).

25.2 (Q.AssICAL MT & THE VAUQUOIS TRIANGLE

VAUQUOIS TRIANGLE

The next few sections introduce the classical pre-staiktirchitectures for machine
translation. Real systems tend to involve combinationderhents from these three
architectures; thus each is best thought of as a point ingoritiimic design space
rather than as an actual algorithm.

In direct translation, we proceed word-by-word through the sournguage text,
translating each word as we go. Direct translation usesge lailingual dictionary,
each of whose entries is a small program with the job of tedimgl one word. In
transfer approaches, we first parse the input text, and then apply toleansform the
source language parse structure into a target language gtausture. We then gener-
ate the target language sentence from the parse structuirgetlingua approaches,
we analyze the source language text into some abstract nyp@agresentation, called
aninterlingua. We then generate into the target language from this intgukl repre-
sentation.

A common way to visualize these three approaches is Wathquois triangle
shown in Fig. 25.3. The triangle shows the increasing deptmnalysis required (on
both the analysis and generation end) as we move from thetdipproach through
transfer approaches, to interlingual approaches. In iaddiit shows the decreasing
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amount of transfer knowledge needed as we move up the teafigm huge amounts
of transfer at the direct level (almost all knowledge is $&f@n knowledge for each
word) through transfer (transfer rules only for parse treethematic roles) through
interlingua (no specific transfer knowledge).

Conceptual

Conceptual
Generation

Analysis

Semantic
Structure

Semantic
Structure

Semantic
Generation

Shallow
Semantic
Analysis

Syntactic

Parsing Generation

Morphological

Morphological
Generation

Analysis
Source Language Text Target Language Text

Figure 25.3  The Vauquois triangle.

In the next sections we’'ll see how these algorithms addi@se ®f the four trans-
lation examples shown in Fig. 25.4

English Mary didn’t slap the green witch

= Spanish| Maria no did6 una bofetada a la bruja verde
Mary not gave a  slap to the witch green
English The green witch is at home this week

= German | Diese Woche ist die grine Hexe zu Hause.
this week is the green witch at house

English He adores listening to music
= Japanesekare ha ongaku wo kiku no ga daisuki desu
he music to listening adores

Chinese chenglong dao xiang gang qu
Jackie Chanto  Hong Kong go

= English | Jackie Chan went to Hong Kong

Figure 25.4 Example sentences used throughout the chapter.

25.2.1 Direct Translation

In direct translation, we proceed word-by-word through the source language text,

DIRECT
TRANSLATION ) - .
translating each word as we go. We make use of no intermestiatetures, except for
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(25.11)

shallow morphological analysis; each source word is diyesapped onto some target
word. Direct translation is thus based on a large bilingigi@hary; each entry in the
dictionary can be viewed as a small program whose job is tskagée one word. After
the words are translated, simple reordering rules can afplyexample for moving
adjectives after nouns when translating from English tanEhne

The guiding intuition of the direct approach is that we ttatesby incrementally
transforming the source language text into a target language text. Whdeptire
direct approach is no longer used, this transformatiortaltion underlies all modern
systems, both statistical and non-statistical.

forphological lexical transfer using local morphological
Source language text bilingual dictionary reordering generation Target language text

Figure 25.5 Direct machine translation. The major component, inditdtg size here,
is the bilingual dictionary.

Let’s look at a simplified direct system on our first exampianslating from En-
glish into Spanish:

Mary didn'’t slap the green witch

Maria no di6 una bofetadaa la bruja verde
Mary not gave a  slap to the witch green

The four steps outlined in Fig. 25.5 would proceed as showign25.6.

Step 2 presumes that the bilingual dictionary has the phtaseina bofetada a
as the Spanish translation of Englistap. The local reordering step 3 would need
to switch the adjective-noun ordering frogreen witchto bruja verde And some
combination of ordering rules and the dictionary would dedéh the negation and
past tense in Englistiidn’t. These dictionary entries can be quite complex; a sample
dictionary entry from an early direct English-Russian egsis shown in Fig. 25.7.

While the direct approach can deal with our simple Spanisimgte, and can han-
dle single-word reorderings, it has no parsing componennhdeed any knowledge
about phrasing or grammatical structure in the source getdanguage. It thus cannot
reliably handle longer-distance reorderings, or thoselinmg phrases or larger struc-
tures. This can happen even in languages very similar toigdike German, where
adverbs likeheute(‘today’) occur in different places, and the subject (edig, grine
Hex@ can occur after the main verb, as shown in Fig. 25.8.

Input: Mary didn’t slap the green witch

After 1: Morphology Mary DO-PAST not slap the green witch

After 2: Lexical Transfer Maria PAST no dar una bofetada adede brujg

After 3: Local reordering Maria no dar PAST una bofetada arlgebverde

After 4: Morphology Maria no dié una bofetada a la bruja werd
Figure 25.6  An example of processing in a direct system
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(25.12)

function DIRECT_-TRANSLATE_.MUCH/MANY (word) returns Russian translation

if preceding word ishowreturn skol’ko
else ifpreceding word isasreturn stol’ko zhe
else ifword is much
if preceding word isveryreturn nil
else iffollowing word is a nounreturn mnogo
else /* word is many */
if preceding word is a preposition and following word is a noeetairn - mnogii
else return mnogo

Figure 25.7 A procedure for translatinghuchand manyinto Russian, adapted froni
Hutchins’ (1986, pg. 133) discussion of Panov 1960. Notesthlarity to decision list
algorithms for word sense disambiguation.

\The green witch\ is\at home\ this week

Diese Woche]ist bie grine Heerzu Hause\

Figure 25.8 Complex reorderings necessary when translating from Emgi German.
German often puts adverbs in initial position that Englistuld more naturally put later.
German tensed verbs often occur in second position in theses causing the subject
and verb to be inverted.

Similar kinds of reorderings happen between Chinese (wheat PPs often oc-
cur preverbally) and English (where goal PPs must occuivpdsdlly), as shown in
Fig. 25.9.

‘ cheng Iong‘ \dao xiang gang \qu

| Jackie Chan |went |to Hong Kong |

Figure 25.9  Chinese goal PPs often occur preverbally, unlike in English

Finally, even more complex reorderings occur when we tedastom SVO to SOV
languages, as we see in the English-Japanese example froad#and Knight (2002):

He adores listening to music
kare ha ongaku wo kiku no ga daisuki desu
he music to listening adores

These three examples suggest that the direct approachfisciased on individual
words, and that in order to deal with real examples we’ll neeédd phrasal and
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structural knowledge into our MT models. We'll flesh out timsuition in the next
section.

25.2.2 Transfer

As Sec. 25.1 illustrated, languages differ systematidallstructural ways. One strat-
egy for doing MT is to translate by a process of overcomingetdifferences, altering
the structure of the input to make it conform to the rules eftdrget language. This
COMIMASTXE - can be done by applyingpntrastive knowledge that is, knowledge about the differ-
ences between the two languages. Systems that use théeggteat said to be based
TRANSFER MODEL on thetransfer model.

The transfer model presupposes a parse of the source lamgardg) is followed
by a generation phase to actually create the output sentefwes, on this model,
MT involves three phasesinalysis transfer, andgeneration where transfer bridges
the gap between the output of the source language parseharidput to the target
language generator.

It is worth noting that a parse for MT may differ from parseguieed for other pur-
poses. For example, suppose we need to trankbdite saw the girl with the binoculars
into French. The parser does not need to bother to figure oetenthe prepositional
phrase attaches, because both possibilities lead to theeBganch sentence.

Once we have parsed the source language, we’ll need rulsgritactic transfer
andlexical transfer. The syntactic transfer rules will tell us how to modify theusce
parse tree to resemble the target parse tree.

Nominal = Nominal
PN N
Adj Noun Noun Adj

Figure 25.10 A simple transformation that reorders adjectives and nouns

Figure 25.10 gives an intuition for simple cases like adiyeehoun reordering; we

transform one parse tree, suitable for describing an Bmglsase, into another parse
TRANSFORMARGTIE tree, suitable for describing a Spanish sentence. Téyegactic transformationsare
operations that map from one tree structure to another.

The transfer approach and this rule can be applied to our gheavtary did not
slap the green witchBesides this transformation rule, we’'ll need to assumettie
morphological processing figures out tiédn't is composed oflo-PASTplusnot, and
that the parser attaches the PAST feature onto the VP. Udréresfer, via lookup in
the bilingual dictionary, will then removeo, changenotto no, and turnslapinto the
phrasedar una bofetada awith a slight rearrangement of the parse tree, as suggested
in Fig. 25.11.

For translating from SVO languages like English to SOV laamps like Japanese,
we’ll need even more complex transformations, for movirearb to the end, chang-
ing prepositions into postpositions, and so on. An examfileeoresult of such rules is
shown in Fig. 25.12. An informal sketch of some transfersigeshown in Fig. 25.13.
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VP[+PAST] =

Neg VP

|
noty/

|
slap DT

trlle Adj Noun

green witch

NP

Nominal

VP[+PAST]

PN

Neg

not

VP
Neg

NP |
no

\Y

/\.
slap DT  Nominal

| SN
the Noun Adj |
| | dar

witch green

VP[+PAST]

DT

| |
una bofetada 3 pT

VP

NP PP

/\
IN NP

NN
Nominal
| i
la Noun Adj

| |
bruja verde

Figure 25.11 A further sketch of the transfer approach.

PRP

|
He

VB

VB1

|
adoresyB

VB2

TO

| P
listening TO NN
| |

to music

PRP

He

VB

VB2 VB1

TO VB adores

N |
NN TO listening
| |

music to

Figure 25.12 The result of syntactic transformations from English or{®wO) to
Japanese order (SOV) for the senterigeadores listening to musi&are ha ongaku wo
kiku no ga daisuki deguafter Yamada and Knight (2001). This transform would iegju
rules for moving verbs after their NP and VP complements,drahging prepositions tq
postpositions.

English to Spanish: |
NP — Adjective; Nourp = NP — Noumn, Adjective |
Chinese to English: |

|
I1.|

2. ] VP — PP[+Goal] V = VP — V PP[+Goal]
English to Japanese:
3. VP — V NP = VP — NPV
4. PP— P NP = PP— NP P
5. NP — NP; Rel. Clause = NP — Rel. Clause NP,
Figure 25.13 An informal description of some transformations.

Transfer systems can be based on richer structures thapuressyntactic parses.
For example a transfer based system for translating Chtndsgglish might have rules
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to deal with the fact shown in Fig. 25.9 that in Chinese PPsfilhéhe semantic role
GOAL (like to the storen | went to the storgtend to appear before the verb, while in
English these goal PPs must appear after the verb. In ordarileha transformation
to deal with this and related PP ordering differences, thegaf the Chinese must
including thematic structure, so as to distinguBsNEFACTIVE PPs (which must oc-
cur before the verb) frormIRECTION andLOCATIVE PPs (which preferentially occur
before the verb) fronRECIPIENT PPs (which occur after) (Li and Thompson, 1981).
We discussed how to do this kind of semantic role labelinghnZD. Using semantic

sewte roles in this way is generally callesemantic transfer, a simple such transformation
is shown in Fig. 25.13.

In addition to syntactic transformations, transfer-basgstems need to have lex-
ical transfer rules. Lexical transfer is generally basedadsilingual dictionary, just
as for direct MT. The dictionary itself can also be used td eéth problems of lex-
ical ambiguity. For example the English wohdmehas many possible translations
in German, includinghach Haus€in the sense ofjoing homgHeim (in the sense of
a home gamg Heimat(in the sense ofiomelangdhome countryor spiritual home,
andzu Haus€(in the sense of beingt homg. In this case, the phrasg¢ homels very
likely to be translatedu Hauseand so the bilingual dictionary can list this translation
idiomatically.

Many cases of lexical transfer are too complex to deal witghevphrasal dictionary.
In these cases transfer systems can do disambiguatiomgdharsource language anal-
ysis, by applying the sense disambiguation techniques 02Ch

25.2.3 Combining direct and tranfer approaches in classic M

Although the transfer metaphor offers the ability to deathwnore complex source
language phenomena than the direct approach, it turns euwithple SVO— SOV
rules we've described above are not sufficient. In practieeneed messy rules which
combine rich lexical knowledge of both languages with sgtitaand semantic features.
We briefly saw an example of such a rule for changilagpto dar una bofetada a

For this reason, commercial MT systems tend to be combimatid the direct
and transfer approaches, using rich bilingual dictiorsariit also using taggers and
parsers. The Systran system, for example, as describeddhids and Somers (1992),
Senellart et al. (2001), has three components. First islfoshanalysisstage, includ-
ing:

e morphological analysis and part of speech tagging

e chunking of NPs, PPs, and larger phrases

¢ shallow dependency parsing (subjects, passives, headiensd

Next is atransfer phase, including:

o translation of idioms,
¢ word sense disambiguation
e assigning prepositions based on governing verbs

Finally, in thesynthesisstage, the system:

e applies a rich bilingual dictionary to do lexical transtati
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e deals with reorderings
e performs morphological generation

Thus like the direct system, the Systran system relies famadi its processing on
the bilingual dictionary, which has lexical, syntacticdasemantic knowledge. Also
like a direct system, Systran does reordering in a postgasiog step. But like a
transfer system, many of the steps are informed by syntaaticshallow semantic
processing of the source language.

25.2.4 The Interlingua Idea: Using Meaning

One problem with the transfer model is that it requires atistset of transfer rules
for each pair of languages. This is clearly suboptimal fanstation systems employed
in many-to-many multilingual environments like the EurapdJnion.

This suggests a different perspective on the nature oflathiois. Instead of directly
transforming the words of the source language sentencdhipttarget language, the
interlingua intuition is to treat translation as a procesgxracting the meaning of
the input and then expressing that meaning in the targetubsgey If this could be
done, an MT system could do without contrastive knowledgesety relying on the
same syntactic and semantic rules used by a standard igtierpnd generator for the
language. The amount of knowledge needed would then be piropal to the number
of languages the system handles, rather than to the square.

INTERLINGUA This scheme presupposes the existence of a meaning refatésgrorinterlingua,
in a language-independent canonical form, like the semagpiresentations we saw in
Ch. 17. The idea is for the interlingua to represent all sarge that mean the “same”
thing in the same way, regardless of the language they hapgenin. Translation in
this model proceeds by performing a deep semantic analysisedanput from language
X into the interlingual representation and generating ftbminterlingua to language
Y.

What kind of representation scheme can we use as an intealthdhe predicate
calculus, or a variant such as minimal recursion semaigicgie possibility. Semantic
decomposition into some kind of atomic semantic primitiseanother. We will illus-
trate a third common approach, a simple event-based reyatien, in which events
are linked to their arguments via a small fixed set of thenralies. Whether we use
logics or other representations of events, we’ll need tei§peemporal and aspectual
properties of the events, and we’ll also need to represemewentive relationships
between entities, such as thas-colorrelation betweemreenandwitch. Fig. 25.14
shows a possible interlingual representationMary did not slap the green witclis a
unification-style feature structure.

We can create these interlingual representation from theeedanguage text using
thesemantic analyzertechniques of Ch. 18 and Ch. 20; using a semantic role labeler
to discover theGENT relation betweeMary and theslapevent, or theHEME relation
between thevitch and theslapevent. We would also need to do disambiguation of the
noun-maodifier relation to recognize that the relationshépaeengreenand witch is
the has-colorrelation, and we’ll need to discover that this event has tiegaolarity
(from the worddidn’t). The interlingua thus requires more analysis work than the
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[EVENT SLAPPING i
AGENT MARY
TENSE PAST

POLARITY NEGATIVE

WITCH
THEME DEFINITENESS DEF

ATTRIBUTES HAS-COLOR GREEV\]

Figure 25.14 Interlingual representation ®lary did not slap the green witch

transfer model, which only required syntactic parsing (anast shallow thematic role
labeling). But generation can now proceed directly fromittierlingua with no need
for syntactic transformations.

In addition to doing without syntactic transformations thterlingual system does
without lexical transfer rules. Recall our earlier problefiwhether to translatknow
into French assavoir or conndtre. Most of the processing involved in making this
decision is not specific to the goal of translating into Ften@erman, Spanish, and
Chinese all make similar distinctions, and furthermoredisambiguation oknowinto
concepts such asAVE-A-PROPOSITIONIN-MEMORY andBE-ACQUAINTED-WITH-
ENTITY is also important for other NLU applications that requirerd«senses. Thus
by using such concepts in an interlingua, a larger part otrdmeslation process can
be done with general language processing techniques andi@spdnd the processing
specific to the English-to-French translation task can imeiehted or at least reduced,
as suggested in Fig. 25.3.

The interlingual model has its own problems. For examplegriter to trans-
late from Japanese to Chinese the universal interlingua malside concepts such
aSELDER-BROTHER and YOUNGER-BROTHER Using these same concepts translat-
ing from German-to-English would then require large amswftunnecessary disam-
biguation. Furthermore, doing the extra work involved by ititerlingua commitment
requires exhaustive analysis of the semantics of the dommaihformalization into
an ontology. Generally this is only possible in relativeiyngle domains based on a
database model, as in the air travel, hotel reservatioestaurant recommendation do-
mains, where the database definition determines the pessikities and relations. For
these reasons, interlingual systems are generally ontyinsiblanguage domains.

25.3 SATISTICAL MT

The three classic architectures for MT (direct, transfad aterlingua) all provide

answers to the questions of what representations to use hatsteps to perform to
translate. But there is another way to approach the probfaramslation: to focus on

the result, not the process. Taking this perspective, ¢tet'ssider what it means for a
sentence to be a translation of some other sentence.
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(25.13)

This is an issue to which philosophers of translation haverga lot of thought.
The consensus seems to be, sadly, that it is impossible éntarsce in one language to
be a translation of a sentence in other, strictly speakingekample, one cannot really
translate Hebrevadonai roi (‘the Lord is my shepherd’) into the language of a culture
that has no sheep. On the one hand, we can write somethinig tiagar in the target
language, at some cost in fidelity to the original, somettikegthe Lord will look after
me On the other hand, we can be faithful to the original, at tbst ©of producing
something obscure to the target language readers, peikapsd Lord is for me like
somebody who looks after animals with cotton-like hais another example, if we
translate the Japanese phrageku hansei shite orimasaswe apologizewe are not
being faithful to the meaning of the original, but if we praduve are deeply reflecting
(on our past behavior, and what we did wrong, and how to avbal groblem next
time), then our output is unclear or awkward. Problems such as #uése not only for
culture-specific concepts, but whenever one language usesaghor, a construction,
a word, or a tense without an exact parallel in the other laggu

So, true translation, which is both faithful to the sourceglaage and natural as
an utterance in the target language, is sometimes impesdibyou are going to go
ahead and produce a translation anyway, you have to comgeondihis is exactly
what translators do in practice: they produce translatibatsdo tolerably well on both
criteria.

This provides us with a hint for how to do MT. We can model thalgd translation
as the production of an output that maximizes some valugifumthat represents the
importance of both faithfulness and fluency. Statistical MThe name for a class
of approaches that do just this, by building probabilistiedels of faithfulness and
fluency, and then combining these models to choose the malsaple translation. If
we chose the product of faithfulness and fluency as our guaktric, we could model
the translation from a source language sentStoea target language sentenceas:

best-translatiofi = argmax faithfulness(T,S) fluency(T)

This intuitive equation clearly resembles the Bayesiaisy channel modelwve've
seen in Ch. 5 for spelling and Ch. 9 for speech. Let's make tizdogy perfect and
formalize the noisy channel model for statistical machraeslation.

First of all, for the rest of this chapter, we’ll assume we &amslating from a
foreign language sentenée= fq, fp, ..., f; to English. For some examples we'll use
French as the foreign language, and for others Spanish nBagtdh case we are trans-
lating into English (although of course the statistical model also works fangtating
out of English). In a probabilistic model, the best EnglisintenceE = e, e, ....q
is the one whose probabilify(E|F) is the highest. As is usual in the noisy channel
model, we can rewrite this via Bayes rule:

E = argmaxP(E|F)
P(F|E)P(E)
P(F)
argmaxP(F|E)P(E)
We can ignore the denominate(F ) inside the argmax since we are choosing the best
English sentence for a fixed foreign senteficeand hencé®(F) is a constant. The

argmax
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resulting noisy channel equation shows that we need two ooets: aranslation
TRANSLATION model P(F|E), and alanguage modelP(E).
LANGUAGE MODEL
translation modelanguage model
A —— A~
(25.14) E = argmax P(FIE) P(E)
EcEnglish

Notice that applying the noisy channel model to machinesietion requires that
we think of things backwards, as shown in Fig. 25.15. We pictthat the foreign
(source language) inplit we must translate is a corrupted version of some English
(target language) sentenEe and that our task is to discover the hidden (target lan-
guage) sentende that generated our observation sentefice

source sentence
Mary did not slap
the green witch. A ‘ W

Maria no dié una bofetada

a la bruja verde

degoder
Mary did not slap... nolsy 1

Harry did not wrap...
=3 £@3 naisy N
Larry did not nap...

Language Model P(E) x Translation Model P(F|E)

guess at source:

Mary did not slap
the green witch

Figure 25.15 The noisy channel model of statistical MT. If we are trarisa& source
language French to a target language English, we have to dfiilsources’ and 'targets’
backwards. We build a model of the generation process froEnatish sentence through
a channel to a French sentence. Now given a French sentetreestate, we pretend it ig
the output of an English sentence going through the noisgralaand search for the bes
possible ‘source’ English sentence.

—

The noisy channel model of statistical MT thus requiresdto@mponents to trans-
late from a French senten€eto an English sentende:

e A language modeto computeP(E)
e A translation model to computeP(F |E)
e A decoder, which is givenF and produces the most probable

Of these three components, we have already introducedtbadge mode?(E) in
Ch. 4. Statistical MT systems are based on the ddrgeam language models as speech
recognition and other applications. The language modelpoomant is monolingual,
and so acquiring training data is relatively easy.

The next few sections will therefore concentrate on therdthie components, the
translation model and the decoding algorithm.
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25.4 P(F|E): THE PHRASE-BASED TRANSLATION MODEL

PHRASE-BASED

DISTORTION

The job of the translation model, given an English sentdhesd a foreign sentence
F, is to assign a probability th&t generate§. While we can estimate these probabil-
ities by thinking about how each individual word is transthtmodern statistical MT

is based on the intuition that a better way to compute theslegfilities is by consid-
ering the behavior gphrases As we see in Fig. 25.16, repeated from page 12, entire
phrases often need to be translated and moved as a unit. flit@mof phrase-based
statistical MT is to use phrases (sequences of words) asasedingle words as the
fundamental units of translation.

\The green witch\ is\at home\ \this weeH

Diese Woche]ist bie grine Heerzu Hause\

Figure 25.16 Phrasal reorderings necessary when generating GermanEngish;
repeated from Fig. 25.8.

There are a wide variety of phrase-based models; in thisoseate will sketch
the model of Koehn et al. (2003). We'll use a Spanish examggeing how the
phrase-based model computes the probabilid@?{a no di6 una bofetada a la bruja
verddMary did not slap the green witgh

The generative story of phrase-based translation hassheps. First we group the
English source words into phrasese;...e . Next we translate each English phrase —
into a Spanish phrasg. Finally each of the Spanish phrases is (optionally) re@die

The probability model for phrase-based translation raiestranslation proba-
bility and adistortion probability . The factorg(fj|g) is the translation probability
of generating Spanish phraggfrom English phrase. The reordering of the Spanish
phrases is done by thiistortion probabilityd. Distortion in statistical machine trans-
lation refers to a word having a different (‘distorted’) i@ in the Spanish sentence
than it had in the English sentence; it is thus a measure ofigitance between the
positions of a phrase in the two languages. The distortiobaility in phrase-based
MT means the probability of two consecutive English phrdmesg separated in Span-
ish by a span (of Spanish words) of a particular length. Morentlly, the distortion
is parameterized bg(a; — bi_1), whereg; is the start position of the foreign (Spanish)
phrase generated by tfl English phrase;, andb;_1 is the end position of the for-
eign (Spanish) phrase generated byithelth English phrase _1. We can use a very
simple distortion probability, in which we simply raise seremall constanét to the
distortion.d(a; — bj_1) = al@~%-1-1I, This distortion model penalizes large distortions
by giving lower and lower probability the larger the distort

The final translation model for phrase-based MT is:
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(25.15)

(25.16)

PHRASE ALIGNMENT

(25.17)

PHRASE
TRANSLATION TABLE

WORD ALIGNMENT

P(FIE) = _|_"l<p(f7,a>d<eu ~bi_)

Let's consider the following particular set of phrases for example sentencés:

Position| 1 2 3 4 5
English | Mary did not slap the green witch
Spanish| Maria no di6 una bofetada ala bruja verde

Since each phrase follows directly in order (nothing movesiad in this example,
unlike the German example in (25.16)) the distortions ard ,adnd the probability
P(F|E) can be computed as:

P(FIE) = P(Maria,Mary) x d(1) x P(ngdid not) x d(1) x
P(di6 una bofetadalap x d(1) x P(a lalthe) x d(1) x
P(bruja verdggreen witch x d(1)

In order to use the phrase-based model, we need two moresthié need a
model ofdecoding so we can go from a surface Spanish string to a hidden English
string. And we need a model gfining, so we can learn parameters. We’'ll introduce
the decoding algorithm in Sec. 25.8. Let'’s turn first to tiain

How do we learn the simple phrase-based translation prityahbdel in (25.15)?
The main set of parameters that needs to be trained is thef phirase translation
probabilitiesy( fi, &).

These parameters, as well as the distortion conetastuld be set if only we had a
large bilingual training set, in which each Spanish sergeras paired with an English
sentence, and if furthermore we knew exactly which phragaénSpanish sentence
was translated by which phrase in the English sentence. Wswzh a mapping a
phrase alignment

The table of phrases above showed an implicit alignmentoptivases for this sen-
tence, for examplgreen witchaligned withbruja verde If we had a large training set
with each pair of sentences labeled with such a phrase aighmwe could just count
the number of times each phrase-pair occurred, and norertaliget probabilities:

count f,é)
> reoun(f. &)

We could store each phrase péfr,€), together with its probabilityp(f,€), in a
largephrase translation table

Alas, we don’t have large hand-labeled phrase-aligneditrgisets. But it turns
that we can extract phrases from another kind of alignmdigdcaword alignment.
A word alignment is different than a phrase alignment, beseatshows exactly which

o8 =

2 Exactly which phrases we use depends on which phrases amvelisd in the training process, as de-
scribed in Sec. 25.7; thus for example if we don't see theggigeeen witchin our training data, we would
have to translatgreenandwitch independently.
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Spanish word aligns to which English word inside each phra§e can visualize a
word alignment in various ways. Fig. 25.17 and Fig. 25.18xshographical model
and an alignment matrix, respectively, for a word alignment

[Mary | [ did |[ not | [ slap |[ the ] [green | [ witch |

Figure 25.17 A graphical model representation of a word alignment betwibe En-
glish and Spanish sentences. We will see later how to exttaeses.

bofetada bruja
Maria no dié una a la verde
Mary
did
not
slap
the
green
witch

Figure 25.18 An alignment matrix representation of a word alignment lsetv the
English and Spanish sentences. We will see later how toatyiheases.

The next section introduces a few algorithms for derivingdvalignments. We
then show in Sec. 25.7 how we can extract a phrase table frawh alignments, and
finally in Sec. 25.8 how the phrase table can be used in degodin

25.5 ALIGNMENT IN MT

worn ALGNMENT Al statistical translation models are based on the ideawbal alignment. A word
alignment is a mapping between the source words and thet targges in a set of
parallel sentences.

Fig. 25.19 shows a visualization of an alignment betweerktiglish sentencAnd
the program has been implemenged] the French sententce programme &t mis en
application For now, we assume that we already know which sentences iarglish
text aligns with which sentences in the French text.

In principle, we can have arbitrary alignment relationshiigtween the English
and French word. But the word alignment models we will pregEBM Models 1
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SPURIOUS WORDS

1 2 3 4 5 6
| And |[ the |[program|[ has || been |[implemented |

* a;=2 a,=3 a;=6
| Le | [programme] [éte | [ mis | | application |

1 2 3 4 5 6 7

Figure 25.19 An alignment between an English and a French sentence, Bxitem

et al. (1993). Each French word aligns to a single Englistdwor

and 3 and the HMM model) make a more stringent requiremenighwis that each
French word comes from exactly one English word; this is stest with Fig. 25.19.
One advantage of this assumption is that we can represefigamant by giving the
index number of the English word that the French word comesfr We can thus
represent the alignment shown in Fig. 25.19%as 2,3,4,5,6,6,6. This is a very
likely alignment. A very unlikely alignment, by contrastight beA=3,3,3,3,3,3,3.

We will make one addition to this basic alignment idea, whicto allow words to
appear in the foreign sentence that don’t align to any wottérEnglish sentence. We
model these words by assuming the existence of a NULL Englcstll ey at position
0. Words in the foreign sentence that are not in the Englistesee, callegpurious
words, may be generated . Fig. 25.20 shows the alignment of spurious Spaaish
to English NULL3

Figure 25.20 The alignment of thepurious Spanish wora to the English NULL word
€.

While the simplified model of alignment above disallows maoyone or many-
to-many alignments, we will discuss more powerful transtatodels that allow such
alignments. Here are two such sample alignments; in Fi@12e see an alignment
which is many-to-one; each French word does not align to glesiEnglish word, al-
though each English word does align to a single French word.

Fig. 25.22 shows an even more complex example, in which piel&nglish words
don't have any monejpintly align to the French wordsont cemunis Suchphrasal
alignments will be necessary for phrasal MT, but it turns out they catdirectly
generated by the IBM Model 1, Model 3, or HMM word alignmerg@ithms.

3 While this particulara might instead be aligned to Englistap, there are many cases of spurious words
which have no other possible alignment site.
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balance aboriginal | [people

\ reste\ \appartenait\ \ aux \ \autochtones\

Figure 25.21  An alignment between an English and a French sentence, ichvegich
French word does not align to a single English word, but eawjligh word aligns to one
French word. Adapted from Brown et al. (1993).

\The\ \ poor\ \don't \have\ \any\ \ money\

\Les\ \pauvres\ \sont\ \démunis\

Figure 25.22  An alignment between an English and a French sentence, chwhére
is @ many-to-many alignment between English and French svotdlapted from Brown

etal. (1993).

25.5.1 IBM Model 1

We'll describe two alignment models in this section: IBM Mad. and the HMM
model (we'll also sketch the fertility-based IBM Model 3 ihet advanced section).
Both arestatistical alignmentalgorithms. For phrase-based statistical MT, we use the
alignment algorithms just to find the best alignment for aeece pai(F,E), in order

to help extract a set of phrases. But it is also possible tothesse word alignment
algorithms as a translation mode(F,E) as well. As we will see, the relationship
between alignment and translation can be expressed aw$ollo

P(FIE) = ZP(F,A|E)

We'll start with IBM Model 1, so-called because it is the fiestd simplest of five
models proposed by IBM researchers in a seminal paper (Bebwah, 1993).

Here’s the general IBM Model 1 generative story for how weagate a Spanish
sentence from an English senteiite- ey, e, ..., of lengthl:

1. Choose a lengtK for the Spanish sentence, hencefdtth: fq, fo, ..., fk.

2. Now choose an alignmert = a1, ap, ...,a; between the English and Spanish
sentences.

3. Now for each positiorj in the Spanish sentence, chose a Spanish vipid,
translating the English word that is aligned to it.

Fig. 25.23 shows a visualization of this generative pracess
Let's see how this generative story assigns a probalf{ijE) of generating the
Spanish sentende from the English sentende. We'll use this terminology:

® & is the English word that is aligned to the Spanish wijrd
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Step 1: Choose \ NULL \ \ Mary \ \ did \ \ not \ \ slap \ \ the \ \ green \ \ witch \
length of Spanish
sentence

) 0 0 T | ] [ [
Step 2: Choose \ NULL \ \ Mary \ \ did \ \ not \ \ slap \ \ the \ \ green \ \ witch \
alignment

]

Step 3: Choose [NULL | [ Mary | [ did | [ not |[ slap | [ the |[green ][ witch |
Spanish words from
each aligned
English word Maria | [ no | [ di6 | [ una | [bofetada] |"a |
Figure 25.23  The three steps of IBM Model 1 generating a Spanish senterttalan-
ment from an English sentence.

(25.18)

(25.19)

(25.20)

e t(fx, &) is the probability of translatingy by fx (i.e. P(fx|ey)

We’'ll work our way backwards from step 3. So suppose we ajr&adw the length
J and the alignmenm, as well as the English sourée The probability of the Spanish
sentence would be:

J
P(FIE,A) = []t(files)
et

Now let’s formalize steps 1 and 2 of the generative story.sThithe probability
P(AIE) of an alignmenfA (of lengthJ) given the English sentenée IBM Model 1
makes the (very) simplifying assumption that each alignneequally likely. How
many possible alignments are there between an Englishremnte lengthl and a
Spanish sentence of lengff? Again assuming that each Spanish word must come
from one of thel English words (or the 1 NULL word), there ate+ 1)’ possible
alignments. Model 1 also assumes that the probability obsimg lengthl is some
small constant. The combined probability of choosing a lengtland then choosing
any particular one of thé + 1)? possible alignments is:

P(AE) = ﬁ

We can combine these probabilities as follows:

P(F,AIE) = P(F|E,A) x P(AIE)
€ J

= e
(|+1)J,|1 i

This probability,P(F,A|E), is the probability of generating a Spanish senteffice
via a particular alignment. In order to compute the totabatality P(F |E) of gener-
atingF , we just sum over all possible alignments:
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(25.21)

(25.22)

(25.23)

P(FIE) = ; P(F,AE)

€ J

= ;mﬂt(f”eaj)

Equation (25.21) shows the generative probability modeModel 1, as it assigns
a probability to each possible Spanish sentence.

In order to find the best alignment between a pair of senter@slE, we need a
way todecodeusing this probabilistic model. It turns out there is a varge poly-
nomial algorithm for computing the best (Viterbi) alignnt@rith Model 1, because the
best alignment for each word is independent of the decidimutabest alignments of
the surrounding words:

A = argmaP(F,AE)
A

J
€

argmax——— []t(fi|ea

gA 1)J]I:|1(J|aj)

(+

argmat(fjles;) 1<j<d
a

Training for Model 1 is done by the EM algorithm, which we vativer in Sec. 25.6.

25.5.2 HMM Alignment

Now that we've seen Model 1, it should be clear that it makesesceally appalling
simplifying assumptions. One of the most egregious is tiseraption that all align-
ments are equally likely. One way in which this is a bad asdigngs that align-
ments tend to preservecality; neighboring words in English are often aligned with
neighboring words in Spanish. If we look back at the Spahisglish alignment in
Fig. 25.17, for example, we can see that this locality in thigboring alignments.
The HMM alignment model captures this kind of locality by ditioning each align-
ment decision on previous decisions. Let's see how this svork

The HMM alignment model is based on the familiar HMM model veehow seen
in many chapters. As with IBM Model 1, we are trying to compBt&,A|[E). The
HMM model is based on a restructuring of this probabilityngsthe chain rule as
follows:

J
-1 _j—1
P(f],ajle}) = P(Jle'1)><|_|1F’(fj,<’ij|f1J a €l
|=

J X . . .
= PJJé}) x |‘|1P(a,-|f1‘*1,af1,e'1> x P(fj|t] % al,é})
I
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(25.24)
(25.25)

(25.26)

(25.27)

JUMP WIDTH

(25.28)

(25.29)

Via this restructuring, we can think &f(F, A|E) as being computable from proba-
bilities of three types: a length probabili(J|€) ), an alignment probabilit(a;| flj’l,ajl’l,e'l),
and a lexicon probabilit?(f;|f! * al ).

We next make some standard Markov simplifying assumptidvesll assume that
the probability of a particular alignmemn§ for Spanish wordj is only dependent on
the previous aligned positicay_1. We'll also assume that the probability of a Spanish
word f; is dependent only on the aligned English wesght positiona;:

-1 _j-1
P(aj|f{ "a1 "e) = P(ajfaj-1.1)

P(fj|t "al.€)) = P(fjle)

Finally, we'll assume that the length probability can berappmated just a®(J|!).
Thus the probabilistic model for HMM alignment is:

J
P(f{.a1lé}) = PQII) x [ P(ajlaj-1,1)P(fjles,)
=1

To get the total probability of the Spanish senteﬁ(:éf|e'l) we need to sum over
all alignments:

J
P(flle) = P(Jll)XZ]‘[IP(aanJ—l,I)P(fjleaj)
=

As we suggested at the beginning of the section, we've ciomditi the alignment
probabilityP(aj|aj_1,1) on the previous aligned word, to capture the locality ofralig
ments. Let's rephrase this probability for a momenP&si’,1), wherei will stand for
the absolute positions in the English sentence of consexcaiigned states in the Span-
ish sentence. We'd like to make these probabilities deparmds on the absolute word
positionsi andi’, but rather on thgump width between words; the jump width is the
distance between their positioihs-i. This is because our goal is to capture the fact that
‘the English words that generate neighboring Spanish wardslikely to be nearby’
We thus don’t want to be keeping separate probabilitiesdoh@bsolute word position
like P(7|6,15) andP(8|7,15). Instead, we compute alignment probabilities by using a
non-negative function of the jump width:

A
p(ifi' 1) = =)
Ei”:lc(lﬁ _ |/)
Let's see how this HMM model gives the probability of a pautar alignment of
our English-Spanish sentences; we've simplified the sestslightly.
Thus the probability?(F, A|E) for this particular alignment of our simplified sen-
tenceMaria di6 una bofetada a la bruja verds the product of:

P(F,AIE) = P(J|I) x P(Maria|Mary) x P(2]|1,5) x
t(dio|slapped x P(2|2,5) x T(unaslapped x P(2]2,5) x ...
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Jjump=1 jump=0 Jump=0 jump=1 Jjump=0  jump=2 jump=-1
P(2]1,5) P(2]2,5) P(2|2,5) P(3]2,5) P(3]3,5)  P(5/3,5) P(5]4,5)

t(Maria|Mary)--»| t(di6|slapped) t(una|slapped)..
\
Maria dio una bofetada a la bruja verde

Figure 25.24 The HMM alignment model generating froMary slappped the green
witch, showing the alignment and lexicon components of the pritihal?(F, A|E) for this
particular alignment.

There are also more sophisticated augmentations to the bi\dM alignment
model. These include adding NULL words in the English sowhb&h can be used to
align with Spanish words that don't align with English wardsconditioning the align-
ment onC(ey; _, ), the word class of the preceding target woRdaj|a;_1,1,C(€s;_,))
(Och and Ney, 2003; Toutanova et al., 2002).

The main advantage of the HMM alignment model is that thezenasil-understood
algorithms both for decoding and for training. For decoglimg can use the Viterbi al-
gorithmintroduced in Ch. 5 and Ch. 6 to find the best (Viteaignment for a sentence
pair (F,E). For training, we can use the Baum-Welch algorithm, as sumzexin the
next section.

25.6 TRAINING ALIGNMENT MODELS

PARALLEL CORPUS
BITEXT

HANSARDS

HONG KONG
HANSARDS

SENTENCE
SEGMENTATION
SENTENCE
ALIGNMENT

All statistical translation models are trained using adgrgrallel corpus. A parallel
corpus, parallel text, orbitext is a text that is available in two languages. For example,
the proceedings of the Canadian parliament are kept in bretich and English. Each
sentence spoken in parliament is translated, producinduan@with running text in
both languages. These volumes are calletisards after the publisher of the British
parliamentary proceedings. Similarly, thiong Kong Hansardscorpus contains the
proceedings of the Hong Kong SAR Legislative Council in bietiglish and Chinese.
Both of these corpora contain tens to hundreds of millionwaifds. Other parallel
corpora have been made available by the United Nationsptigsible to make parallel
corpora out of literary translations, but this is less comnfar MT purposes, partly
because it is difficult to acquire the legal rights to fictibit mainly because, as we
saw at the beginning of the chapter, translating fiction iy @éficult and translations
are notvery literal. Thus statistical systems tend to bedhon very literal translations
such as Hansards.

The first step in training is to segment the corpus into se@®nThis task is called
sentence segmentatioar sentence alignmentThe simplest methods align sentences
based purely on their length in words or characters, withmaking at the contents of
the words in the sentences. The intuition is that if we seang kentence in roughly
the same position in each language of the parallel text, wghthsuspect these sen-
tences are translations. This intuition can be implemebyeal dynamic programming
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algorithm. More sophisticated algorithms also make usenfufrmation about word
alignments. Sentence alignment algorithms are run on dig@lazarpus before training
MT models. Sentences which don't align to anything are tlrowt, and the remaining
aligned sentences can be used as a training set. See thetbedchipter for pointers
to more details on sentence segmentation.

Once we have done sentence alignment, the input to ourrpadgorithm is a
corpus consisting o8 sentence pair$(Fs,Es) : s=1...S}. For each sentence pair
(Fs, Es) the goal is to learn an alignmeat= a{ and the component probabilitietsfér
Model 1, and the lexicon and alignment probabilities forithdM model).

25.6.1 EM for Training Alignment Models

If each sentence pa(Fs, Es) was already hand-labeled with a perfect alignment, learn-
ing the Model 1 or HMM parameters would be trivial. For exagpb get a maximum
likelihood estimates in Model 1 for the translation proli&ypi(verdegreen, we would
just count the number of timeggeenis aligned toverde and normalize by the total
count ofgreen

But of course we don’t know the alignments in advance; all weehare thgrob-
abilities of each alignment. Recall that Eq" 25.20 showed that if weaaly had
good estimates for the Modeltlparameter, we could use this to compute probabil-
ities P(F, A|E) for alignments. GiverP(F,A|E), we can generate the probability of an
alignment just by normalizing:

P(A,F|E)
PR = S PR

So, if we had a rough estimate of the Moddl darameters, we could compute the
probability for each alignment. Then instead of estimatht probabilities from the
(unknown) perfect alignment, we would estimate them frochgaossible alignment,
and combine these estimates weighted by the probabilitgdif alignment. For exam-
ple if there were two possible alignments, one of probabifitand one of probability
.1, we would estimate theparameters separately from the two alignments and mix
these two estimates with weights of .9 and .1.

Thus if we had model 1 parameters already, we coeddstimatethe parameters,
by using the parameters to compute the probability of eadsipte alignment, and
then using the weighted sum of alignments to re-estimatmthdel 1 parameters. This
idea of iteratively improving our estimates of probabdiis a special case of tidv
algorithm that we introduced in Ch. 6, and that we saw again for speaxigration
in Ch. 9. Recall that we use the EM algorithm when we have ab#githat we can'’t
optimize directly because it lidden. In this case the hidden variable is the alignment.
But we can use the EM algorithm to estimate the parametergpote alignments from
these estimates, use the alignments to re-estimate theetmas, and so on!

Let's walk through an example inspired by Knight (1999bjngsa simplified ver-
sion of Model 1, in which we ignore the NULL word, and we onlyns@er a subset of
the alignments (ignoring alignments for which an Englishradvaligns with no Spanish
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word). Hence we compute the simplified probabifA, F |E) as follows:

P(AFIE) = I_llt filea)

The goal of this example is just to give an intuition of EM dpglto this task; the
actual details of Model 1 training would be somewhat differe

The intuition of EM training is that in the E-step, we competgected counts
for thet parameter based on summing over the hidden variable (iipenadint), while
in the M-step, we compute the maximum likelihood estimatthet probability from
these counts.

Let's see a few stages of EM training of this parameter on arpusoof two sen-
tences:

green house t he house
casa verde la casa

The vocabularies for the two languagesBre {green,house,thh@andS= {casa,la,verde
We'll start with uniform probabilities:

t(casdgreen) = § t(verddgreen) = % t(lajgreen)
t(casahouse) = 1|t(verdehouse) = 3 [t(lajhouse)
t(casdthe) = 2| t(verddthe) = 3| t(lajthe)

Wl Wi WIH

Now let's walk through the steps of EM:
Compute the expected couritgcountt(f,e))] for all word pairs(fj,e,;)

We first need to compute(a, f|e), by multiplying all thet probabilities, following
Eg. 25.30

house green house the house the house
verde casa verde la casa la casa
P(a, f|e) =t(casa,green) P(a, fle) =t(verde,green) P(a, fle) =t(la,the) P(a, fle) =t(casa,the)
x t(verde,house) x t(casa,house) X t(casa house) x t(la,house)
14 1_1 1_1 14 1_1
=3%X3%% =3x3=35 =3%X3%g

NormalizeP(a, f|e) to getP(ale, f), using the following:

P(a, fle
P(ale f) = _P@fle
Za P(aa f|e)
The resulting values d®(a|f, e) for each alignment are as follows:
house green  house the house the house
Casa ) \g/erde la . gasa la ) 9casa
=} Pafe=33=% Pafe=33=% P@fe=33-%

Compute expected (fractional) counts, by weighting eacmtby P(ale, f)
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tcount(casgreen)

1
o

1

tcount(verdégreen) = 3 | tcount(ldgreen) total(green)

tcount(casgnouse)

total(house)

tcount(casghe) =

1

2
tcount(verd¢éhouse) =% tcount(lghouse)
tcount(verdghe) = 0| tcount(ldthe)

1
NI NI NI
NIH
NI NIy

total(the) = 1

M-step 1:

E-step 2a:

Compute the MLE probability parameters by normalizing tteunts to sum to one.

1| t(verddgreen) = %= = 1| t(lajgreen

= 5 ) =
t(casdhouse) =1 =1 |t(verdghouse) =52 = 1 t(lajhouse) =
1

t(casdthe) = %= =1| t(verddthe) = 9=0 t(lajthe) = % =

t(casagreen) = =~

Note that each of the correct translations have increasgalmability from the ini-
tial assignment; for example the translat@asafor househas increased in probability
from 3 to 3.

We re-computd(a, f|e), again by multiplying all the probabilities, following
Eq. 25.30

1.1

green house green house the house the house

casa verde casa verde la casa la casa
P(a, fle) =t(casa,green) P(a, fle) =t(verde,green) P(a, fle) =t(la,the) P(a, fle) =t(casa,the)
x t(verde,house) X t(casa,house) x t(casa,house) x t(la,house)
1

=32X4738 =2%X271 =32X3271 =32X4738

1 1.1 1 1 1 1.1 1

Note that the two correct alignments are now higher in prdipathan the two
incorrect alignments. Performing the second and furthendmf E-steps and M-steps
is left as Exercise 25.6 for the reader.

We have shown that EM can be used to learn the parametersifoplified version
of Model 1. Our intuitive algorithm, however, requires thnat enumerate all possible
alignments. For a long sentence, enumerating every pessighment would be very
inefficient. Luckily in practice there is a very efficient gern of EM for Model 1 that
efficiently and implicitly sums over all alignments.

We also use EM, in the form of the Baum-Welch algorithm, farféng the param-
eters of the HMM model.

25.7 SYMMETRIZING ALIGNMENTS FORPHRASE-BASED MT

The reason why we needed Model 1 or HMM alignments was to udld alignments
on the training set, so that we could extract aligned paiphoéses.

Unfortunately, HMM (or Model 1) alignments are insufficidot extracting pair-
ings of Spanish phrases with English phrases. This is bedauthe HMM model,
each Spanish word must be generated from a single Englist; war cannot gen-
erate a Spanish phrase from multiple English words. The HMdi@h thus cannot
align a multiword phrase in the source language with a moltiyphrase in the target
language.
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SYMMETRIZING

INTERSECTION

We can, however, extend the HMM model to produce phrasditage alignments
for a pair of sentenced,E), via a method that’s often callesymmetrizing. First,
we train two separate HMM aligners, an English-to-Spaniiginar and a Spanish-to-
English aligner. We then aligriF(E) using both aligners. We can then combine these
alignments in clever ways to get an alignment that maps pbriasphrases.

To combine the alignments, we start by taking thiersection of the two align-
ments, as shown in Fig. 25.25. The intersection will contaity places where the
two alignments agree, hence the high-precision alignedisvdiVe can also separately
compute theinion of these two alignments. The union will have lots of less aataly
aligned words. We can then build a classifier to select wawata the union, which we
incrementally add back in to this minimal intersective afigent.

Spanish to English English to Spanish

bofetada bruja bofetada bruja
Maria no di6 una ‘ a la ‘ verde Maria no di6 una ‘ a la ‘ verde

Mary Mary

did did

not not

slap slap

the the

green green

witch witch

Intersection

bofetada bruja
Maria no di6 una ‘ a |la verde

did

not

slap

the

green

witch

Figure 25.25 Intersection of English-to-Spanish and Spanish-to-Bhgilignments to
produce a high-precision alignment. Alignment can then>ygmeded with points from
both alignments to produce an alignment like that shown m Bb.26. After Koehn
(2003b).

Fig. 25.26 shows an example of the resulting word alignmédte that it does
allow many-to-one alignments in both directions. We can hawest all phrase pairs
that are consistent with this word alignment. A consistdwape pair is one in which
all the words are aligned only with each other, and not to atgraal words. Fig. 25.26
also shows some phrases consistent with the alignment.

Once we collect all the aligned phrases pairs from the etréiaing corpus, we
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bofetada bruja . .
Maria no di6 una a la verde (Marla, Mary), (no, dld nOt)n
Mary (slap, di6 una bofetada), (verde, green),
. (ala, the), (bruja, witch),
o (Maria no, Mary did not),
not (no did una bofetada, did not slap),
slap (di6 una bofetada a la, slap the),
the (bruja verde, green witch),
(a la bruja verde, the green witch),. ..

green

witch
Figure 25.26 A better phrasal alignment for thgreen witchsentence, computed by
starting with the intersection alignment in Fig. 25.25 awdiag points from the union
alignment, using the algorithm of Och and Ney (2003). On tpltr some of the phrases
consistent with this alignment, after Koehn (2003b).

can compute the maximum likelihood estimate for the phnasestation probability of
a particular pair as follows:
— count f,e
(25.31) of,8 = t.e

PHRASE
TRANSLATION TABLE

> fcountf, )

We can now store each phrade€), together with its probabilityp( f, &), in a large
phrase translation table The decoding algorithm discussed in the next section can
use this phrase translation table to compute the translptiobability.

25.8 DECODING FORPHRASE-BASED STATISTICAL MT

(25.32)

The remaining component of a statistical MT system is theodec Recall that the
job of the decoder is to take a foreign (Spanish) source seete and produce the
best (English) translatiok according to the product of the translation and language
models:

translation modelanguage model
R — A —
E = argmax P(F|E) P(E)
ecEnglish

Finding the sentence which maximizes the translation amgiuage model proba-
bilities is asearchproblem, and decoding is thus a kind of search. Decoders imMT
based orbest-first search a kind ofheuristic or informed search these are search
algorithms that are informed by knowledge from the problemméin. Best-first search
algorithms select a noden the search space to explore based on an evaluation fanctio
f(n). MT decoders are variants of a specific kind of best-firstcdeaalledA* search.

A* search was first implemented for machine translation by IBkbyn et al., 1995),
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STACK DECODING

based on IBM'’s earlier work on“Asearch for speech recognition (Jelinek, 1969). As
we discussed in Se@?, for historical reasons Asearch and its variants are commonly
calledstack decodingin speech recognition and sometimes also in machine transla
tion.

Let's begin in Fig. 25.27 with a generic version of stack akog for machine
translation. The basic intuition is to maintairpgority queue (traditionally referred
to as astack) with all the partial translation hypotheses, togethehliteir scores.

function STACK DECODINGSouUrce sentencegturns target sentence

initialize stack with a null hypothesis
loop do
pop best hypothestsoff of stack
if his a complete sentencesturn h
for each possible expansiolf of h
assign a score tof
pushh onto stack

Figure 25.27 Generic version of stack or*Adecoding for machine translation. A hyr
pothesis is expanded by choosing a single word or phrasanslate. We'll see a more
fleshed-out version of the algorithm in Fig. 25.30.

Let's now describe stack decoding in more detail. While thgioal IBM statistical
decoding algorithms were for word-based statistical MTwiledescribe the applica-
tion to phrase-based decoding in the publicly available M&atlePharaoh (Koehn,
2004).

In order to limit the search space in decoding, we don’t wanégarch through
the space of all English sentences; we only want to condieomes that are possible
translations foF. To help reduce the search space, we only want to considerssss
that include words or phrases which are possible transiatibwords or phrases in the
Spanish sentende. We do this by searching thghrase translation table described
in the previous section, for all possible English transiagifor all possible phrases in
F.

A sample lattice of possible translation options is showRimg 25.28 drawn from
Koehn (2003a, 2004). Each of these options consists of ai§parord or phrase,
the English translation, and the phrase translation piitityalp. We’'ll need to search
through combinations of these to find the best translationgst

Now let's walk informally through the stack decoding examjnl Fig. 25.29, pro-
ducing an English translation dfary di6 una bofetada a la bruja verdeft to right.
For the moment we’ll make the simplifying assumption thatréhis a single stack, and
that there is no pruning.

We start with the null hypothesis as the initedarch state in which we have
selected no Spanish words and produced no English traovslatirds. We novexpand
this hypothesis by choosing each possible source word aisptwhich could generate
an English sentence-initial phrase. Fig. 25.29a showditlisply of the search. For
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| Maria | no | dié | una | bofetada | a | la | bruja | verde |
Mary not give a slap to the witch green
did not a slap to green witch
no slap to the
did not give to
the
slap the witch
Figure 25.28 The lattice of possible English translations for words ahdapes in a
particular sentenck, taken from the entire aligned training set. After KoehnQ248)
E: Mary did not]
Sk Ay
COST: 730
4 4 4 E: Mary slap
E: Mary E: Mary E: Mary E: M**UB*=
Y e Y ] Y e COST: 770
COST: 800 COST: 800 COST: 800 \E: Moy gave
_ : Fr e Deein
b coeroreon E: Witch E: Witch = E: Witch COST: 760
F: sl o wxerexg F: s F. oorsringe [Fo SoooED | = B*
COST: 999 COST: 950 COST: 999 COST: 950 COST: 999 COST: 950
. E: No witch - E: No witch
: \ / F: *N****B* Fo AR
S A /| cost 805 ENO e /’ COST: 805
COST: 790 COST: 790 \ E: No slap COST: 790 \ E: No slap
F: *N*UB**** F: iN*UB****
EA COST: 830 EA COST: 830
[ [EEep— = Nol [ _
COST: 900 COsT: 900 | \NF: sNDUBaes cosT. 900 | ||\E:Noslap
& & COST: 803 & COST: 803
a) after expanding NULL b) after expanding “No” c) after expanding “Mary”
Figure 25.29 Three stages in stack decodingMéria no di6 una bofetada a la bruja verdsimplified by,
assuming a single stack and no pruning). The nodes in bluthedininge of the search space, are all on the stack,
and areopennodes still involved in the search. Nodes in gray elesednodes which have been popped off the
stack.

example the top state represents the hypothesis that theslEsgntence starts with
Mary, and the Spanish worldaria has been covered (the asterisk for the first word is
marked with an M). Each state is also associated with a cissyyssed below. Another
state at this ply represents the hypothesis that the Enghsislation starts with the
word No, and that Spanisho has been covered. This turns out to be the lowest-cost
node on the queue, so we pop it off the queue and push all iensigns back on the
queue. Now the stati®lary is the lowest cost, so we expand Mary did notis now

the lowest cost translation so far, so will be the next to bgaexled. We can then
continue to expand the search space until we have statestfieges) that cover the
entire Spanish sentence, and we can just read off an Engdisélation from this state.
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(25.33)

BEAM-SEARCH
PRUNING

We mentioned that each state is associated with a cost wéschve’ll see below,
is used to guide the search, The cost combinestient cost with an estimate of
thefuture cost. Thecurrent costis the total probability of the phrases that have been
translated so far in the hypothesis, i.e. the product of taestation, distortion, and
language model probabilities. For the set of partially $tated phraseS= (F,E), this
probability would be:

cos{E,F) = I_L(P(fi_,é)d(ai —bi_1)P(E)

The future cost is our estimate of the cost of translating tleenainingwords in the
Spanish sentence. By combining these two factors, the bategives an estimate of
the total probability of the search path for the eventual plete translation sentence
E passing through the current node. A search algorithm basigda the current cost
would tend to select translations that had a few high-priibalvords at the beginning,
at the expense of translations with a higher overall prdthabi* For the future cost,
it turns out to be far too expensive to compute the true miminprobability for all
possible translations. Instead, we approximate this goggrmring the distortion cost
and just finding the sequence of English phrases which hasithienum product of
the language model and translation model costs, which caasily computed by the
Viterbi algorithm.

This sketch of the decoding process suggests that we séarehntire state space of
possible English translations. But we can’t possibly afftar expand the entire search
space, because there are far too many states; unlike intrspegagnition, the need
for distortion in MT means there is (at least) a distinct hyyesis for every possible
ordering of the English word3!

For this reason MT decoders, like decoders for speech réomgrall require some
sort of pruning. Pharaoh and similar decoders use a versibeam-search pruning
just as we saw in decoding for speech recognition and prbstbiparsing. Recall
that in beam-search pruning, at every iteration we keep thielynost promising states,
and prune away unlikely (high-cost) states (those ‘outfidesearch beam’). We could
modify the search sequence depicted in Fig. 25.29, by pguairay all bad (high-cost)
states at every ply of the search, and expanding only theshast In fact, in Pharaoh,
instead of expanding only the best state, we expand allssteithin the beam; thus
Pharaoh is technicallgeam searchrather tharbest-first searchor A* search.

More formally, at each ply of the search we keep around a gfaadrity queue) of
states. The stack only fitsentries. At every ply of the search, we expand all the states
on the stack, push them onto the stack, order them by coi,tkeebesh entries and
delete the rest.

We'll need one final modification. While in speech we just used stack for stack
decoding, in MT we'll use multiple stacks, because we caadilg compare the cost
of hypotheses that translate different numbers of foreigrda. So we’ll usen stacks,
where stacls;, includes all hypotheses that covarforeign words. When we expand a

4 We saw this same kind of cost function for* Aearch in speech recognition, where we used the A
evaluation function:f*(p) = g(p) +h*(p).

5 Indeed, as Knight (1999a) shows, decoding even in IBM Modelith a bigram language model is
equivalent to the difficult class of problems knownN-complete
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hypothesis by choosing a phrase to translate, we’ll inberhew state into the correct
stack for the number of foreign words covered. Then we'lllsam-search inside each
of these stacks, keep ormyhypotheses for each of timestacks. The final multi-stack
version of beam search stack decoding is shown in Fig. 25.30.

function BEAM SEARCH STACK DECODERSoUrce sentencegturns target sentence
initialize hypothesisStack[0..nf]
push initial null hypothesis on hypothesisStack[0]
for i—0tonf-1
for each hypin hypothesisStack(i]
for each new hypthat can be derived frornyp
nflnew.hyp < number of foreign words covered Imgw hyp
addnew hypto hypothesisStack[nf[nevayp]]
prune hypothesisStack[nf[netwyp]]
find best hypothesibesthypin hypothesisStack[nf]
return best path that leadshesthypvia backtrace

Figure 25.30 Pharaoh beam search multi-stack decoding algorithm, edafpbm

(Koehn, 2003a, 2004). For efficiency, most decoders doatesthe entire foreign and

English sentence in each state, requiring that we backteafied the state path from the

initial to the final state so we can generate the entire Emggisyet sentence.

There are a number of additional issues in decoding that beigiealt with. All
decoders attempt to limit somewhat the exponential expiosi the search space by

RRouenie — recombining hypotheses . We saw hypothesis recombination in tBract N-Best
algorithm of Sec??. In MT, we can merge any two hypotheses that are sufficiently
similar (cover the same foreign words, have the same las&mglish words, and have
the same end of the last foreign phrase covered).

In addition, it turns out that decoders for phrasal MT optiena slightly different
function than the one we presented in Eq. 25.32. In pragtiterns out that we need
to add another factor, which serves to penalize sentenciebate too short. Thus the
decoder is actually choosing the sentence which maximizes:

translation modelanguage modéfiort sentence penalty
(25.34) E= argmax  P(F|E) SEE\) wengthe)
ecEnglish

This final equation is extremely similar to the use of the wioikrtion penalty in
speech recognition in EQ?.



38

Chapter 25. Machine Translation

25.9 MT BEVALUATION

CLOZE

ADEQUACY

INFORMATIVENESS

EDIT COST
POST-EDITING

Evaluating the quality of a translation is an extremely satiye task, and disagree-
ments about evaluation methodology are rampant. Nevedbeévaluation is essen-
tial, and research on evaluation methodology has playedngortant role from the
earliest days of MT (Miller and Beebe-Center, 1958) to thespnt. Broadly speaking,
we attempt to evaluate translations along two dimensimrsesponding to thédelity
andfluencydiscussed in Sec. 25.3.

25.9.1 Using Human Raters

The most accurate evaluations use human raters to evahctéranslation along each
dimension. For example, along the dimensiofiaéncy, we can ask how intelligible,
how clear, how readable, or how natural is the MT output (#rgdt translated text).
There are two broad ways to use human raters to answer thestaqns. One method
is to give the raters a scale, for example from 1 (totally tadiigible) to 5 (totally
intelligible), and ask them to rate each sentence or pagpagrathe MT output. We
can use distinct scales for any of the aspects of fluency, asiclarity , naturalness
or style. The second class of methods relies less on the conscioisaescof the
participants. For example, we can measure the time it taketé raters to read each
output sentence or paragraph. Clearer or more fluent sergesimould be faster or
easier to read. We can also measure fluency witlckbzetask (Taylor, 1953, 1957).
The cloze task is a metric used often in psychological studfereading. The rater
sees an output sentence with a word replaced by a space &iopdx, every 8th word
might be deleted). Raters have to guess the identity of tlssing word. Accuracy at
the cloze task, i.e. average success of raters at guessimgisking words, generally
correlates with how intelligible or natural the MT output is

A similar variety of metrics can be used to judge the secontkdsion fidelity .
Two common aspects of fidelity which are measuredaateguacyandinformative-
ness Theadequacyof a translation is whether it contains the information eisted
in the original. We measure adequacy by using raters torassigres on a scale. If we
have bilingual raters, we can give them the source sentamta paroposed target sen-
tence, and rate, perhaps on a 5-point scale, how much offiveriation in the source
was preserved in the target. If we only have monolinguaksatsut we have a good
human translation of the source text, we can give the mogoéhraters the human
reference translation and a target machine translatiahagain rate how much infor-
mation is preserved. Thieformativenessof a translation is a task-based evaluation
of whether there is sufficient information in the MT outpuferform some task. For
example we can give raters multiple-choice questions albheutontent of the material
in the source sentence or text. The raters answer theseéansasased only on the MT
output. The percentage of correct answers is an informasgscore.

Another set of metrics attempt to judge the overall qualitg branslation, combin-
ing fluency and fidelity. For example, the typical evaluatioetric for MT output to be
post-edited is thedit costof post-editing the MT output into a good translation. For
example, we can measure the number of words, the amountef éinthe number of
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keystrokes required for a human to correct the output to aemable level.

25.9.2 Automatic Evaluation: Bleu

While humans produce the best evaluations of machine &msloutput, running
a human evaluation can be very time-consuming, taking days/en weeks. It is
useful to have an automatic metric that can be run relatifrelguently to quickly
evaluate potential system improvements. In order to havle sonvenience, we would
be willing for the metric to be much worse than human evatugtas long as there was
some correlation with human judgments.

In fact there are a number of such heuristic methods, su@ieas NIST, TER,
Precision and Recall andMETEOR (see references at the end of the chapter). The
intuition of these automatic metrics derives from MilleddBeebe-Center (1958), who
pointed out that a good MT output is one which is very simiteathuman translation.
For each of these metrics, we assume that we already have onere human trans-
lations of the relevant sentences. Now given an MT outpuiesee, we compute the
translation closeness between the MT output and the hunméersses. An MT output
is ranked as better if on average it is closer to the humaslations. The metrics differ
on what counts as ‘translation closeness’.

In the field of automatic speech recognition, the metric fi@ariscription closeness’
is word error rate, which is the minimum edit distance to a hartranscript. But
in translation, we can't use the same word error rate mdtgcause there are many
possible translations of a source sentence; a very good Ngubmight look like one
human translation, but very unlike another one. For thisgeamost of the metrics
judge an MT output by comparing it to multiple human trariefas.

Each of these metrics thus require that we get human tréorsdain advance for a
number of test sentences. This may seem time-consuminthétibpe is that we can
reuse this translated test set over and over again to eealeat ideas.

For the rest of this section, let’'s walk through one of thesdrits, theBleu metric,
following closely the original presentation in Papinena&t(2002). In Bleu we rank
each MT output by a weighted average of the numbeN-afram overlaps with the
human translations.

Fig. 25.31 shows an intuition, from two candidate tranelatiof a Chinese source
sentence (Papineni et al., 2002), shown with three refereaman translations of the
source sentence. Note that Candidate 1 shares many more (8bmvn in blue) with
the reference translations than Candidate 2.

Let's look at how the Bleu score is computed, starting witst junigrams. Bleu is
based on precision. A basic unigram precision metric woelddbcount the number
of words in the candidate translation (MT output) that odawsome reference transla-
tion, and divide by the total number of words in the candidi@rslation. If a candidate
translation had 10 words, and 6 of them occurred in at leasbbthe reference trans-
lations, we would have a precision of )= 0.6. Alas, there is a flaw in using simple
precision: it rewards candidates that have extra repeatedsw Fig. 25.32 shows an
example of a pathological candidate sentence composed ltipfatinstances of the
single wordthe Since each of the 7 (identical) words in the candidate oitcane of
the reference translations, the unigram precision would/Be
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Cand 1: [ltis|[a guide to action|[which][ensures that the military|[always| obeys [the |commands][of the party|

Cand 2: to insure the troops forever hearing activity guidebook that party direct

Ref 1: \a guide to action\ \ensures that the military\ will forever heed Party

Ref 2: the guiding principleguarantees the military forces being under command |of the Party|
Ref 3: the practical guide for the armyto heed directions |of the party

Figure 25.31

Intuition for Bleu: one of two candidate translations of aifi@se source sentence shares more
words with the reference human translations.

MODIFIED N-GRAM
PRECISION

(25.35)

Candidate: the the the the the
Reference 1: cat is on the mat

Reference 2: there is a cat on the mat

Figure 25.32 A pathological example showing why Bleu uses a modified giegi
metric. Unigram precision would be unreasonably high (A#9dified unigram precision
is appropriately low (2/7).

In order to avoid this problem, Bleu usesadified N-gram precisionmetric. We
first count the maximum number of times a word is used in anyisireference trans-
lation. The count of eachandidateword is then clipped by this maximureference
count. Thus the modified unigram precision in the exampleign #5.32 would be
2/7, since Reference 1 has a maximum dh&. Going back to Chinese example in
Fig. 25.32, Candidate 1 has a modified unigram precision 4f8, While Candidate 2
has one of 8/14.

We compute the modified precision similarly for higher ordegrams as well. The
modified bigram precision for Candidate 1 is 10/17, and fondi@ate 2 is 1/13. The
reader should check these numbers for themselves on FR&{L.25.

To compute a score over the whole testset, Bleu first complueds-gram matches
for each sentence, and add together the clipped countslbter eandidates sentences,
and divide by the total number of candiddtegrams in the testset. The modified
precision score is thus:

Z; Countjip (n-gram
mec

ce{Candidate$Nn-9
Pn = Countn-gram’)

c'e{Candidatesn-gram’sc’

Bleu uses unigram, bigrams, trigrams, and often quadrigraintombines these
modifiedN-gram precisions together by taking their geometric mean.
In addition, Bleu adds a further penalty to penalize candid@anslations that are
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(25.36)

too short. Consider the candidate translatidrthe compared with References 1-3
in Fig. 25.31 above. Because this candidate is so short, lhiitd sords appear in
some translation, its modified unigram precision is inflate@/2. Normally we deal
with these problems by combining precision widtall. But as we discussed above,
we can't use recall over multiple human translations, simll would require (in-
correctly) that a good translation must contain contains ¢&d N-grams fromevery
translation. Instead, Bleu includes a brevity penalty dherwhole corpus. Let be
the total length of the candidate translation corpus. Wepmdmtheeffective refer-
ence lengthr for that corpus by summing, for each candidate sentencéemigy¢hs of
the best matches. The brevity penalty is then an exponémtiat. In summary:

1 if c>r
BP = { ed=r/9 if c<r

Bleu

1 N
BP x exp N z log pn
n=1

While automatic metrics like Bleu (or NIST, METEOR, etc) ledseen very useful
in quickly evaluating potential system improvements, aratain human judgments in
many cases, they have certain limitations that are impbitezonsider. First, many of
them focus on very local information. Consider slightly rmaya phrase in Fig. 25.31
slightly to produce a candidate liké&ensures that the military it is a guide to action
which always obeys the commands of the partyis sentence would have an identical
Bleu score to Candidate 1, although a human rater would gavéiver score.

Furthermore, the automatic metrics probably do poorly atgaring systems that
have radically different architectures. Thus Bleu, forrapée, is known to perform
poorly (i.e. not agree with human judgments of translatioaliy) when evaluating the
output of commercial systems like Systran agaigfram-based statistical systems, or
even when evaluating human-aided translation against ima¢fanslation (Callison-
Burch et al., 2006).

We can conclude that automatic metrics are most appropvia¢e evaluating in-
cremental changes to a single system, or comparing systémsevy similar archi-
tectures.

25.10 ADVANCED: SYNTACTIC MODELS FORMT

The earliest statistical MT systems (like IBM Models 1, 2 &)avere based on words
as the elementary units. The phrase-based systems thatargbdel in earlier sections
improved on these word-based systems by using larger uhits, capturing larger
contexts and providing a more natural unit for represeriinguage divergences.

Recent work in MT has focused on ways to move even further epvtuquois
hierarchy, from simple phrases to larger and hierarchigatiegtic structures.

It turns out that it doesn’t work just to constrain each phrasmatch the syntactic
boundaries assigned by traditional parsers (Yamada anghKr#001). Instead, mod-
ern approaches attempt to assign a parallel syntactictiiggtisre to a pair of sentences
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TRANSDUCTION
GRAMMAR

SYNCHRONOUS
GRAMMAR

INVERSION
TRANSDUCTION
GRAMMAR

(25.37)

in different languages, with the goal of translating theteeoes by applying reordering
operations on the trees. The mathematical model for thesdlglastructures is known
as atransduction grammar. These transduction grammars can be viewed as an ex-
plicitimplementation of theyntactic transfer systems that we introduced on page 14,
but based on a modern statistical foundation.

A transduction grammar (also calledwanchronous grammai) describes a struc-
turally correlated pair of languages. From a generativepestive, we can view a
transduction grammar as generating pairs of aligned seesdn two languages. For-
mally, a transduction grammar is a generalization of thédfigtate transducers we saw
in Ch. 3. There are a number of transduction grammars andaiemms used for MT,
most of which are generalizations of context-free gramrwathe two-language situ-
ation. Let’s consider one of the most widely used such mddel®T, the inversion
transduction grammar (ITG).

In an ITG grammar, each non-terminal generates two sepstratgs. There are
three types of these rules. A lexical rule like the following

N — witch/bruja

generates the womditchon one stream, artatuja on the second stream. A nonterminal
rule in square brackets like:
S— [NP VR

generates two separate streams, eadtRofVP. A non-terminal in angle brackets, like
Nominal— (Adj N)

generates two separate streams, wlifferent orderings Adj N in one stream, andl
Adjin the other stream.

Fig. 25.33 shows a sample grammar with some simple rules tdat each lexical
rule derives distinct English and Spanish word stringst tbkes in square brackets
(1) generate two identical non-terminal right-hand sidasd that the one rule in angle
brackets ()) generates different orderings in Spanish from English.

Thus an ITG parse tree is a single joint structure which spaesthe two observed
sentences:

(@) [s[np Mary] [vp didn't [vp slap pp[np the [nom green witch]]]]]]
(b) [s[np Maria] [yp no [yp did una bofetadadp a [np 12 [nom Bruja verde]l]ll]

Each non-terminal in the parse derives two strings, onedchdanguage. Thus
we could visualize the two sentences in a single parse, vitherangle brackets mean
that the order of thé\dj N constituentgreen witchandbruja verdeare generated in
opposite order in the two languages:

[s[np Mary/Maria] yyp didn’t/no [yp slap/did una bofetadape/a [y p the/la(yom Witch/bruja green/verdd]]]

There are a number of related kinds of synchronous gramnaisiding syn-
chronous context-free grammars (Chiang, 2005), multgexthmars (Melamed, 2003),
lexicalized ITGs (Melamed, 2003; Zhang and Gildea, 2006}l synchronous tree-
adjoining and tree-insertion grammars (Shieber and Schal®#92; Shieber, 1994;
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S —

NP —
Nominal —
VP —
Negation —

NP VA

[Det Noming] | Maria/Maria
(Adj Noun

[VPPR | [Negation VP
didn't/no

V — slap/di6 una bofetada
PP — [PNP

P — g/a | from/de
Det — the/la | the/le
Adj — green/verde

N — witch/bruja

Figure 25.33 A mini Inversion Transduction Grammar grammar for timeen witch
sentence.

Nesson et al., 2006). The synchronous CFG system of Chidd@pj2for example,
learns hierarchical pairs of rules that capture the fadt@dnese relative clauses ap-
pear to the left of their head, while English relative claiappear to the right of their
head:

<O ded, theO thatdO>

Other models for translation by aligning parallel parsegricluding (Wu, 2000;
Yamada and Knight, 2001; Eisner, 2003; Melamed, 2003; @a&iteal., 2004; Quirk
et al., 2005; Wu and Fung, 2005).

25.11 ADVANCED: IBM M ODEL 3 FOR FERTILITY-BASED ALIGN-

FERTILITY

SPURIOUS WORDS

MENT

The seminal IBM paper that began work on statistical MT psmubfive models for
MT. We saw IBM’'s Model 1 in Sec. 25.5.1. Models 3, 4 and 5 all threimportant
concept offertility . We’ll introduce Model 3 in this section; our descriptionrés
influenced by Kevin Knight's nice tutorial (Knight, 1999lodel 3 has a more com-
plex generative model than Model 1. The generative modeh fra English sentence
E=e1,e,...,g has5 steps:

1. For each English word, we choose #ertility .6 The fertility is the number
of (zero or more) Spanish words that will be generated fegrand is dependent
only ong,.

2. We also need to generate Spanish words from the NULL Englted. Recall
that we defined these earlier spsurious words. Instead of having a fertility for
NULL, we'll generate spurious words differently. Every gmve generate an

6 This@is not related to the that was used in phrase-based translation.
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P1

DISTORTION

English word, we consider (with some probability) genemgta spurious word
(from NULL).

3. We now know how many Spanish words to generate from eachsngord.
So now for each of these Spanish potential words, generhietiainslating its
aligned English word. As with Model 1, the translation wilt based only on
the English word. Spurious Spanish words will be generatetianslating the
NULL word into Spanish.

4. Move all the non-spurious words into their final positionghe Spanish sen-
tence.

5. Insert the spurious Spanish words in the remaining opsitipes in the Spanish
sentence.

Fig. 25.34 shows a visualization of the Model 3 generatioeess

Step 1: Choose [NULL | [Mary | [ did |[ not | [ slap | [ the |[green | [ witch |
fertility for each
English word

T =
Step 2: Choose \ NULL \ \ Mary \ \ did \ \ not \ \ slap \ \ the \ \ green \ \ witch \
fertility for NULL

T =
Step 3: Create i i
Spanith wordaby [NULL | [ Mary | | dld |[ not | [ slap | [ the ][ green | [ witch |
translating aligned L ¥
Englsh word 0] (6] [una] boietada) 1a] [verde] (brujal
Step 4: Move the | NULL | [ Mary | | d|d | [ not | [ slap | [ the | [green | [ witch ]

S_pamsh words into

i m m m una ofetada bru;a verde
Step 4: Move NULL | [ Mary | [ did ][ not ] \ slap \ [ the | \ green | [ witch |
spurious Spanish

words into

unclaimed slots m m m E

Figure 25.34 The five steps of IBM Model 3 generating a Spanish sentencelgnt
ment from an English sentence.

Model 3 has more parameters than Model 1. The most importarthan, t, d,
and pl probabilities. The fertility probabilityg of a worde is represented by the
parameten. So we will usen(1|greer) to represent the probability that Engligreen
will produce one Spanish wordy2|greer) is the probability that Englisigreenwill
produce two Spanish words(0|did) is the probability that Englisdid will produce
no Spanish words, and so on. Like IBM Model 1, Model 3 has astedion probability
t(fjle). Next, the probability that expresses the word position Bralish words end
up in in the Spanish sentence is tistortion probability, which is conditioned on the
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English and Spanish sentence lengths. The distortion piiitigad(1, 3,6, 7) expresses
the probability that the English worgy will align to Spanish wordfs, given that the
English sentence has length 6, and the Spanish sentencleigti 7.

As we suggested above, Model 3 does not use fertility prdiiabiike n(1jNULL),
or n(3|NULL) to decide how many spurious foreign words to generate frogiign
NULL. Instead, each time Model 3 generates a real word, iegges a spurious word
for the target sentence with probability. This way, longer source sentences will nat-
urally generate more spurious words. Fig. 25.35 shows htligmore detailed version
of the 5 steps of the Model 3 generative story using thesenpateas.

1. for eachEnglish worde, 1 < i < |, we choose a fertilityy with probabilityn(gi|e)
2. Using these fertilities ang;, determinep, the number of spurious Spanish words, and
hencem.
3.foreachi,0 < i < |
foreachk, 1 < k < @
Choose a Spanish wordy with probabilityt(Tik, &)
4. foreachi,1 < i < |
foreachk, 1 < k < @
Choose a target Spanish positimp with probabilityd (T, i, I, J)
5.foreachk, 1 < k < @
Choose a target Spanish positimgk from one of the available Spanish slots, for a
total probability ofﬁ

Figure 25.35 The Model 3 generative story for generating a Spanish seatiom an
English sentence. Remember that we are not translating Ewglish to Spanish; this is
just the generative component of the noisy channel modedpfed from Knight (1999b).

Switching for a moment to the task of French to English tratish, Fig. 25.36
shows some of thé and @ parameters learned for French-English translation from
Brown et al. (1993). Note thdhein general translates to a French article likgbut
sometimes it has a fertility of 0, indicating that Englislessn article where French
does not. Conversely, note thfairmersprefers a fertility of 2, and the most likely
translations aragriculteursandles indicating that here French tends to use an article
where English does not.

Now that we have seen the generative story for Model 3, letilkllihe equation
for the probability assigned by the model. The model needsssigns a probability
P(F|E) of generating the Spanish senteficom the English sentende. As we did
with Model 1, we'll start by showing how the model gives thelpability P(F,A|E),
the probability of generating senten€evia a particular alignmem. Then we’ll sum
over all alignments to get the totR(F |E).

In order to comput®(F,AJE), we’ll need to multiply the main three factorst,
andd, for generating words, translating them into Spanish, aonding them around.
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the farmers not
f tfle)| @ n(gle)| f t(fle)| @ n(gle) ) f  t(fle)] @ n(gle)
le 0.497| 1 0.746|| agriculteurs 0.442 2 0.731| ne 0.497| 2 0.735
la 0.207| O 0.254]| les 0.418| 1 0.228| pas 0.442 0 0.154
les 0.155 cultivateurs 0.046 0 0.039| non 0.029 1 0.107
I 0.086 producteurs 0.021 rien 0.011
ce 0.018
cette 0.017]
Figure 25.36 Examples of Model 3 parameters from the Brown et al. (1998né&h-
English translation system, for three English words. Nbg bothfarmersandnot are
likely to have fertilities of 2.

(25.38)

(25.39)

So a first pass ®(F,AJE) would be:

[ J J
n x [1t(filea;) x [1d(jlaj,!1,d
il:l (@le) - (fjlea)) I|:|1 (ilaj;1,9)

But (25.38) isn't sufficient as it stands; we need to add factor generating spu-
rious words, for inserting them into the available slotg] arfactor having to do with
the number of ways (permutations) a word can align with mpldtivords. Equation
(25.39) gives the true final equation for IBM Model 3, in Knighmodification of the
original formula. We won't give the details of these additibfactors, but encourage
the interested reader to see the original presentationrdwBet al. (1993) and the very
clear explanation of the equation in Knight (1999b).

generate spurious insert spurious multi- ahgn permutations

3 T
P(F,AE) — ( (‘po“’“) Bk er'
| J
< [Tn(@le) < [t(flea) x [T d(ilat.d)
il:! Jljl * ]alj:léo J

Once again, in order to get the total probability of the Splusientence we’'ll need
to sum over all possible alignments:

P(F|E) ;PFA|E

We can also make it more explicit exactly how we sum over afignts (and also
emphasize the incredibly large number of possible aligrig)dry expressing this for-
mula as follows, where we specify an alignment by specifyivegaligned Englisla;
for each of the) words in the foreign sentence:

[
P(F,AE)
0 zo ©

J J
PFIE) = > > -
aj=0ay=
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(25.40)

25.11.1 Training for Model 3

Given a parallel corpus, training the translation model&W Model 3 means setting
values for then, d, t, andp; parameters.

As we noted for Model 1 and HMM models, if the training-cormuas hand-labeled
with perfect alignments, getting maximum likelihood estbes would be simple. Con-
sider the probabilityr(0|did) that a word likedid would have a zero fertility. We could
estimate this from an aligned corpus just by counting thelemof timesdid aligned
to nothing, and normalize by the total countdifl. We can do similar things for the
t translation probabilities. To train the distortion probiayp d(1,3,6,7), we similarly
count the number of times in the corpus that English warthaps to Spanish worts
in English sentences of length 6 that are aligned to Spaeistesces of length 7. Let's
call this counting function dcount. We’'ll again need a nolinzion factor;

dcountl,3,6,7)
y!_,dcounti, 3,6,7)

d(1,3,6,7) =

Finally, we need to estimatg;. Again, we look at all the aligned sentences in
the corpus; let's assume that in the Spanish sentencesaher® total ofN words.
From the alignments for each sentence, we determine thatlaofdS Spanish words
are spurious, i.e. aligned to English NULL. ThiNs- S of the words in the Spanish
sentences were generated by real English words. SitétheseN — S Spanish words,
we generate a spurious word. The probabiityis thusS/(N — S).

Of course, we don’'t have hand-alignments for Model 3. Weded to use EM
to learn the alignments and the probability model simultarséy. With Model 1 and
the HMM model, there were efficient ways to do training witheuplicitly summing
over all alignments. Unfortunately, this is not true for Mb@; we actually would
need to compute all possible alignments. For a real pairmtesees, with 20 English
words and 20 Spanish words, and allowing NULL and allowingjlfées, there are a
very large number of possible alignments (determining ttecenumber of possible
alignments is left as Exercise 25.7). Instead, we approrbgt only considering
the best few alignments. In order to find the best alignmeiitisowt looking at all
alignments, we can use an iterative or bootstrapping approl the first step, we
train the simpler IBM Model 1 or 2 as discussed above. Then seethese Model 2
parameters to evaluaA|E, F), giving a way to find the best alignments to bootstrap
Model 3. See Brown et al. (1993) and Knight (1999b) for detail

25.12 ADVANCED: LOG-LINEAR MODELS FORMT

(25.41)

While statistical MT was first based on the noisy channel madech recent work
combines the language and translation models via a logdlim®del in which we di-
rectly search for the sentence with the highest posterimivadility:

E = argma®(E|F)
E



48

Chapter 25. Machine Translation

(25.42)

(25.43)

REVERSE
TRANSLATION
MODEL

WORD PENALTY

PHRASE PENALTY

UNKNOWN WORD
PENALTY

MINIMUM ERROR
RATE TRAINING

MERT

This is done by modelin@(E|F) via a set ofM feature functiondin(E,F), each of
which has a parametar,. The translation probability is then:

_expImg Amhm(E,F)]
PEIF) = Y XY M1 Amhm(E’, F)]

The best sentence is thus:

E = argma®(E|F)
E
M
= argma>exp[z Amhm(E, F)]
E m=1

In practice, the noisy channel model factors (the languageeiP(E) and trans-
lation modelP(F|E)), are still the most important feature functions in the logar
model, but the architecture has the advantage of allowingrtuitrary other features as
well; a common set of features would include:

e the language modé&i(E)

o the translation modé?(F |E)

e thereverse translation modelP(E|F),

o lexicalized versions of both translation models,

e aword penalty,

e aphrase penalty

e anunknown word penalty.

See Foster (2000), Och and Ney (2002, 2004) for more details.

Log-linear models for MT could be trained using the standaskimum mutual
information criterion.

In practice, however, log-linear models are instead tiitoalirectly optimize eval-

uation metrics like Bleu in a method known EBnimum Error Rate Training , or
MERT (Och, 2003; Chou et al., 1993).

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Work on models of the process and goals of translation goek aaleast to Saint
Jerome in the fourth century (Kelley, 1979). The developneénogical languages,
free of the imperfections of human languages, for reasooargectly and for com-
municating truths and thereby also for translation, has lpegsued at least since the
1600s (Hutchins, 1986).

By the late 1940s, scant years after the birth of the eleiroomputer, the idea
of MT was raised seriously (Weaver, 1955). In 1954 the firdtligitdemonstration of
a MT system prototype (Dostert, 1955) led to great excitérnmethe press (Hutchins,
1997). The next decade saw a great flowering of ideas, préfgyuarost subsequent
developments. But this work was ahead of its time — impleltgons were limited
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CANDIDE

EGYPT

GIZA++

by, for example, the fact that pending the development dfsdisere was no good way
to store dictionary information.

As high quality MT proved elusive (Bar-Hillel, 1960), a gring consensus on the
need for better evaluation and more basic research in théielels of formal and com-
putational linguistics, culminating in the famous ALPACUt@matic Language Pro-
cessing Advisory Committee) report of 1966 (Pierce et &866), led in the mid 1960s
to a dramatic cut in funding for MT. As MT research lost acaderaspectability, the
Association for Machine Translation and Computationabjistics dropped MT from
its name. Some MT developers, however, persevered, slavdysteadily improving
their systems, and slowly garnering more customers. Systrparticular, developed
initially by Peter Toma, has been continuously improvedroi@ years. Its earliest
uses were for information acquisition, for example by th&.UAir Force for Rus-
sian documents; and in 1976 an English-French edition waptad by the European
Community for creating rough and post-editable transtetiof various administrative
documents. Another early successful MT system was Mé&tbiwh translated weather
forecasts from English to French; incidentally, its orggiitmplementation (1976), used
“Q-systems”, an early unification model.

The late 1970s saw the birth of another wave of academiceistén MT. One
strand attempted to apply meaning-based techniques geckfor story understand-
ing and knowledge engineering (Carbonell et al., 1981).r& eere wide discussions
of interlingual ideas through the late 1980s and early 14%98sjii, 1986; Nirenburg
etal., 1992; Ward, 1994; Carbonell et al., 1992). Meanwtileusage was increasing,
fueled by globalization, government policies requiring thanslation of all documents
into multiple official languages, and the proliferation afnat processors and then per-
sonal computers.

Modern statistical methods began to be applied in the e@®04, enabled by the
development of large bilingual corpora and the growth ofwled. Early on, a num-
ber of researchers showed that it was possible to extract péialigned sentences
from bilingual corpora (Kay and Roscheisen, 1988, 1993Wié&k and Russell, 1990;
Brown et al., 1991; Gale and Church, 1991, 1993). The eadigsrithms made use
of the words of the sentence as part of the alignment modéle wthers relied solely
on other cues like sentence length in words or characters.

At the same time, the IBM group, drawing directly on algamithfor speech recog-
nition (many of which had themselves been developed ofiigiadé IBM!) proposed
the Candide system, based on the IBM statistical models we have dest(B®wn
et al., 1990, 1993). These papers described the probabilistdel and the param-
eter estimation procedure. The decoding algorithm wasrmewklished, but it was
described in a patent filing (Brown et al., 1995). The IBM wikd a huge impact
on the research community, and by the turn of this centunghmar most academic
research on machine translation was statistical. Progvassmade hugely easier by
the development of publicly-available toolkits, part@aty tools extended from the
EGYPT toolkit developed by the Statistical Machine Translatiearh in during the
summer 1999 research workshop at the Center for Languageme®th Processing at
the Johns Hopkins University. These include @GigA++ aligner, developed by Franz
Josef Och by extending the GIZA toolkit (Och and Ney, 2003)iclv implements IBM
models 1-5 as well as the HMM alignment model.
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MOSES

PHARAOH

Initially most research implementations focused on IBM M8l but very quickly
researchers moved to phrase-based models. While thestahi@se-based translation
model was IBM Model 4 (Brown et al., 1993), modern models\defrom Och’s
(1998) work onalignment templates Key phrase-based translation models include
Marcu and Wong (2002), Zens et al. (2002). Venugopal et 8032, Koehn et al.
(2003), Tillmann (2003) Och and Ney (2004), Deng and Byri®&), and Kumar and
Byrne (2005),

Other work on MT decoding includes t#¢ decoders of Wang and Waibel (1997)
and Germann et al. (2001), and the polynomial-time decodebinary-branching
stochastic transduction grammar of Wu (1996).

The most recent open-source MT toolkit is the phrase-bisl2EES system (Koehn
et al., 2006; Koehn and Hoang, 2007; Zens and Ney, 2007). M8fizeloped out of
the PHARAOH publicly available phrase-based stack decoder, develbpdthilipp
Koehn (Koehn, 2004, 2003b), which extended Aiedecoders of (Och et al., 2001)
and Brown et al. (1995) and extended the EGYPT tools disdusiseve.

Modern research continues on sentence and word alignmevelhsnore recent
algorithms include Moore (2002, 2005), Fraser and Marc0%2(Callison-Burch et al.
(2005), Liu et al. (2005).

Research on evaluation of machine translation began caiitg Miller and Beebe-
Center (1958) proposed a number of methods drawing on wopkyeholinguistics.
These included the use of cloze and Shannon tasks to measeitigibility, as well
as a metric of edit distance from a human translation, thétiat that underlies all
modern automatic evaluation metrics like Bleu. The ALPA@Ga® included an early
evaluation study conducted by John Carroll that was extiem#uential (Pierce et al.,
1966, Appendix 10). Carroll proposed distinct measuredidietity and intelligibility,
and had specially trained human raters score them sulgéctn 9-point scales. More
recent work on evaluation has focused on coming up with aatermetrics, include
the work on Bleu discussed in Sec. 25.9.2 (Papineni et 2R@s well as related mea-
sures likeNIST (Doddington, 2002)TER (Translation Error Rate) (Snover et al.,
2006)Precision and RecallTurian et al., 2003), anllIETEOR (Banerjee and Lavie,
2005).

Good surveys of the early history of MT are Hutchins (1986) §0997). The
textbook by Hutchins and Somers (1992) includes a wealthxafngles of language
phenomena that make translation difficult, and extensigerjaions of some histori-
cally significant MT systems. Nirenburg et al. (2002) is a poemensive collection of
classic readings in MT. (Knight, 1999b) is an excellent tizldntroduction to Statisti-
cal MT.

Academic papers on machine translation appear in standaPddirnals and con-
ferences, as well as in the jouridhchine Translatiorand in the proceedings of vari-
ous conferences, including MT Summit, organized by therhattional Association for
Machine Translation, the individual conferences of iteéregional divisions, (Asso-
ciation for MT in the Americas — AMTA, European Associatiar MT — EAMT, and
Asia-Pacific Association for MT — AAMT), and the Conferenae ©heoretical and
Methodological Issue in Machine Translation (TMI).



Section 25.12. Advanced: Log-linear Models for MT 51

EXERCISES

25.1 Select at random a paragraph of Ch. 12 which describes alfacit &nglish
syntax. a) Describe and illustrate how your favorite fonelgnguage differs in this
respect. b) Explain how a MT system could deal with this défee.

25.2 Choose aforeign language novel in a language you know. Copy the short-
est sentence on the first page. Now look up the rendition ¢&#ratence in an English
translation of the novel. a) For both original and translatidraw parse trees. b) For
both original and translation, draw dependency structu@Draw a case structure
representation of the meaning which the original and tegiwsi share. d) What does
this exercise suggest to you regarding intermediate reptagons for MT?

25.3 \Version 1 (for native English speakers): Consider the failhg sentence:

These lies are like their father that begets them; gross asuatain, open, pal-
pable.
Henry IV, Part 1, act 2, scene 2

Translate this sentence into some dialect of modern vetagEnglish. For exam-
ple, you might translate it into the style of a New York Timeliterial or an Economist
opinion piece, or into the style of your favorite televisi@itk-show host.

Version 2 (for native speakers of other languages): Tram#he following sentence
into your native language.

One night my friend Tom, who had just moved into a new apartmssw a
cockroach scurrying about in the kitchen.

For either version, now:

a) Describe how you did the translation: What steps did yofopm? In what order
did you do them? Which steps took the most time? b) Could yaéiearprogram that
would translate using the same methods that you did? Why grnvelt? c) What
aspects were hardest for you? Would they be hard for a MT sy What aspects
would be hardest for a MT system? are they hard for people ®o®&hich models
are best for describing various aspects of your processditransfer, interlingua
or statistical)? f) Now compare your translation with thggeduced by friends or
classmates. What is different? Why were the translatioffisrdint?

25.4 Type a sentence into a MT system (perhaps a free demo on theandlsee
what it outputs. a) List the problems with the translatior). Rank these problems
in order of severity. ¢) For the two most severe problemsgesgthe probable root
cause.

25.5 Build a very simple direct MT system for translating from sstanguage you
know at least somewhat into English (or into a language irctvlyiou are relatively
fluent), as follows. First, find some good test sentencesisthirce language. Reserve
half of these as a development test set, and half as an uresteset. Next, acquire a
bilingual dictionary for these two languages (for many laages, limited dictionaries
can be found on the web that will be sufficient for this exesi&our program should
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translate each word by looking up its translation in youtiditary. You may need
to implement some stemming or simple morphological anslylliext, examine your
output, and do a preliminary error analysis on the develoyprtest set. What are
the major sources of error? Write some general rules forecting the translation
mistakes. You will probably want to run a part-of-speechytgn the English output,
if you have one. Then see how well your system runs on thedést s

25.6 Continue the calculations for the EM example on page 30ppmihg the sec-
ond and third round of E-steps and M-steps.

25.7 (Derived from Knight (1999b)) How many possible Model 3 aligents are
there between a 20-word English sentence and a 20-word S$ps@ntence, allowing
for NULL and fertilities?
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