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DIALOGUE AND
2 CONVERSATIONAL
AGENTS

C: I'wantyou to tell me the names of the fellows on the St.
Louis team.

Who is on first.

Well what are you askirmefor?

I’'m not asking you — I'm telling you. Who is on first.
Who's on First— Bud Abbott and Lou Costello’s version
of an old burlesque standard.

A: I'm telling you. Who'’s on first, What's on second, |
Don’t Know is on third.

C: You know the fellows’ names?

A: Yes.

C: Well, then, who's playing first?

A: Yes.

C: I mean the fellow’s name on first.

A: Who.

C: The guy on first base.

A:

C:

A:

The literature of the fantastic abounds in inanimate objettgically endowed with
sentience and the gift of speech. From Ovid’s statue of Pyigm# Mary Shelley’s
Frankenstein, Cao Xue Qin’s Divine Luminescent Stone-aitWg to Snow White’s
mirror, there is something deeply touching about creatorgething and then having
a chat with it. Legend has it that after finishing his sculptaf Moses Michelangelo
thought it so lifelike that he tapped it on the knee and conhedrit to speak. Perhaps
this shouldn’t be surprising. Language itself has alwaysnbthe mark of humanity

conversaTion  and sentience, ancbnversationor dialogue is the most fundamental and specially
piaogle  privileged arena of language. It is certainly the first kifdanguage we learn as
children, and for most of us, it is the kind of language we nomshmonly indulge in,
whether we are ordering curry for lunch or buying spinachtigi@ating in business
meetings or talking with our families, booking airline flighor complaining about the
weather.

This chapter introduces the fundamental structures anatitdghs in conversa-

tional agents Conversational agents most often communicate via spedibrrthan
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text, and so they are also known soken dialogue systemsor spoken language
systems These programs communicate with users in spoken natimglizge in order
to make travel arrangements, answer questions about weatsgorts, route telephone
calls, act as a general telephone assistant, or performmeuemsophisticated tasks.

Many of these tasks involve telephony, and also involve heatiuations where a
large screen and keyboard may not be available (Cohen aradt(h894). Applications
relating to the domain of travel are thus very common. Indeade! planning and
management has been a key concern of dialogue systems smeary influential
GUS system for planning airline travel (Bobrow et al., 19Mbpre recently, a number
of spoken language systems for booking airline flights weiitt bnder the Air Traffic
Information System (ATIS) (Hemphill et al., 1990) and Cormminator (Walker, 2001)
programs. We will use this travel domain as an example througthe chapter (as
we used it to discuss grammar rules for parsing ATIS sengimc€h. 12). Fig. 24.1
shows a sample dialogue from a Communicator system, takemXu and Rudnicky
(2000).

S1: Hello. You've reached the [Communicator]. Tell me yaut iame

u2: hi i'd like to fly to seattle tuesday morning

S3: Traveling to Seattle on Tuesday, August eleventh in thiimg. Your full name?
u4: [John Doe]

S5: Hello, [John], I'm glad to hear from you again. You can rask me for help.

S6: OK. Let’s see | have a United flight departing Pittsburgtea forty five a.m. arriving
into Seattle at one fifty seven p.m. Is that OK?

u7: Yes
S8: Will you return to Pittsburgh from Seattle?
uo9: no i will go to Los Angeles

S10:  Traveling to Los Angeles. on what date

Ull: Sorry can we go back to talk about the previous leg again

S12:  For the first leg, you are on a United flight 1446 deparfiiitsburgh at ten forty fiv
A.M. tomorrow, arriving in Seattle at one fifty seven P.M. Dauywant to take that?

U13: actually i want to leave on wednesday

S14:  aflight on wednesday.

3%

S15: | have a flight departing Pittsburgh at ten forty five aanives Seattle at one fifty
seven p.m. Is that OK?
Ul6e: Yes

Figure 24.1 The travel domain: a fragment from a successful conversdieiween a
user (U) and the Communicator system (S) of Xu and RudnicRQ@R

Another promising domain is automatic call routing. A calliting system directs
incoming calls in a telephone call center, transferringcdléto the appropriate human.
Call routing dialogue systems generally begin by askingidex open-ended questions
like How may | help youXGorin et al., 1997), oHow may | direct your callAChu-
Carroll and Carpenter, 1999). Fig. 24.2 shows sample cseatiens from the AT&T
How May | Help You (HMIHY) system (Gorin et al., 1997).

A somewhat different domain, which is very far from the télepy area, is auto-
matic tutoring systems. Fig. 24.3 shows part of a dialogomafthe ITSPOKE dialogue
system (Litman and Silliman, 2004), which uses the Whyzaétext-based tutoring
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How may | help you?

can you tell me how much it is to tokyo?
You want to know the cost of a call?
yes that's right

Please hold on for rate information.
How may | help you?

what's the area code for chicago?

You want an area code.

(silence)

The area code for Chicago is 312.

ncwcuncncn

Figure 24.2  The call routing domain: two conversations between a usgr(id the
AT&T How May | Help You (HMIHY) system (S) (Gorin et al., 1997)

system as its tutoring backend (VanLehn et al., 2002).

S: | didn’t understand. What force acts on all objects wittiose proximity to earth?
u: uh the force of gravity
S: Fine. Besides the Earth’s gravitational force, are thegeother forces acting on the
person, keys, and elevator after the release?
u: no
S: Yep. Thus, keep in mind that after the release, the ontyefon the person, keys, and
elevator is the force of gravity. If gravity is the only foraeting on an object, will if
be moving or staying still?
u: it will be moving
S: Fine. Not only are the person, keys, and elevator moviray, have only gravitational
forces on them. When an object is falling and has only graeital force on it, it ig
said to be in what?
u: freefall
Figure 24.3  The tutoring domain: part of an conversation between a stuakger (U)
and the ITSPOKE system (S) of Litman and Silliman (2004).

Sec. 24.1 starts out with a summary of facts about human csaen, includ-
ing the idea of turns and utterances, speech acts, groundismggue structure, and
conversational implicature. The next few sections inte&lthe components of spo-
ken language systems and some evaluation metrics. We thermntsec. 24.5 and
Sec. 24.6 to the more sophisticated information-state aack®d decision processes
models of conversational agents, and we conclude with soiveenaed topics like the
BDI (belief-desire-intention) paradigm.

24.1 HROPERTIES OFHUMAN CONVERSATIONS

Conversation between humans is an intricate and compleigotivity. Because of the
limitations of our current technologies, conversationsMeen humans and machines
are vastly simpler and more constrained than these humarexsations. Nonethe-
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TURN-TAKING

CONVERSATION
ANALYSIS

(24.1)

less, before we attempt to design a conversational ageontiegecse with humans, it is
crucial to understand something about how humans convetiseach other.

In this section we discuss some properties of human-humarecsation that dis-
tinguish it from the kinds of (text-based) discourses weehseen so far. The main
difference is that conversation is a kind jofnt activity between two (or more) in-
terlocutors. This basic fact has a number of ramificationsyersations are built up
out of consecutivéurns, each turn consists ¢bint action of the speaker and hearer,
and the hearer make special inferences caltma/ersational implicaturesabout the
speaker’s intended meaning.

24.1.1 Turns and Turn-Taking

Dialogue is characterized liyrn-taking ; Speaker A says something, then speaker B,
then speaker A, and so on. If having a turn (or “taking the flpisra resource to be
allocated, what is the process by which turns are allocatdd® do speakers know
when it is the proper time to contribute their turn?

It turns out that conversation and language itself are &irad in such a way as
to deal efficiently with this resource allocation problemnelsource of evidence for
this is the timing of the utterances in normal human convenss. While speakers
can overlap each other while talking, it turns out that orrage the total amount of
overlap is remarkably small; perhaps less than 5% (Levink®83). If speakers aren’t
overlapping, do they figure out when to talk by waiting for aipa after the other
speaker finishes? This is also very rare. The amount of timedas turns is quite
small, generally less than a few hundred milliseconds emendilti-party discourse.
Since it may take more than this few hundred millisecondstfemext speaker to plan
the motor routines for producing their utterance, this nsdhat speakers begin motor
planning for their next utterance before the previous spehks finished. For this to
be possible, natural conversation must be set up in such ahaaymost of the time)
people can quickly figure owtho should talk next, and exactlyhenthey should talk.
This kind of turn-taking behavior is generally studied ire theld of Conversation
Analysis (CA). In a key conversation-analytic paper, Sacks et al. (1ardyed that
turn-taking behavior, at least in American English, is goeel by a set of turn-taking
rules. These rules apply atte@nsition-relevance place or TRP; places where the
structure of the language allows speaker shift to occurekten version of the turn-
taking rules simplified from Sacks et al. (1974):

Turn-taking Rule. At each TRP of each turn:

a. If during this turn the current speaker has selected Aaaéit speaker then A
must speak next.

b. If the current speaker does not select the next speakeother speaker may
take the next turn.

c. If no one else takes the next turn, the current speaker akaythhe next turn.

There are a number of important implications of rule (24dr)dialogue model-
ing. First, subrule (24.1a) implies that there are someautiges by which the speaker
specifically selects who the next speaker will be. The mosgioals of these are ques-
tions, in which the speaker selects another speaker to artbe/guestion. Two-part
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ADJACENCY PAIRS
DIALOGIC PAIR

SIGNIFICANT
SILENCE

(24.2)

DISPREFERRED

UTTERANCE

PERFORMATIVE

(24.3)
(24.4)
(24.5)

structures likeQUESTION-ANSWER are calledadjacency pairs (Schegloff, 1968) or
dialogic pair (Harris, 2005). Other adjacency pairs inclueREETING followed by
GREETING, COMPLIMENT followed byDOWNPLAYER, REQUESTfollowed byGRANT.
We will see that these pairs and the dialogue expectati@yssét up will play an im-
portant role in dialogue modeling.

Subrule (24.1a) also has an implication for the interpiatabf silence. While
silence can occur after any turn, silence in between the &wts pf an adjacency pair
is significant silence For example Levinson (1983) notes this example from Atikins
and Drew (1979); pause lengths are marked in parenthesssd@gmds):

A: Is there something bothering you or not?
(1.0)

A: Yes orno?
(1.5)

A: Eh?

B: No.

Since A has just asked B a question, the silence is integesta refusal to respond,
or perhaps dispreferred response (a response, like saying “no” to a request, which is
stigmatized). By contrast, silence in other places, fomgxa a lapse after a speaker
finishes a turn, is not generally interpretable in this wakiege facts are relevant for
user interface design in spoken dialogue systems; usedistbebed by the pauses in
dialogue systems caused by slow speech recognizers (taiddekt al., 1995).

Another implication of (24.1) is that transitions betwe@eakers don't occur just
anywhere; thd@ransition-relevance placeswhere they tend to occur are generally at
utterance boundaries. Recall from Ch. 12 that spoken utterancesr diffen written
sentences in a number of ways. They tend to be shorter, are likely to be single
clauses or even just single words, the subjects are usuadtyopns rather than full
lexical noun phrases, and they include filled pauses andrsepahearer must take all
this (and other cues like prosody) into account to know whekeegin talking.

24.1.2 Language as Action: Speech Acts

The previous section showed that conversation consistssefjaence of turns, each
of which consists of one or more utterance. A key insight icdoversation due to
Wittgenstein (1953) but worked out more fully by Austin (296s that an utterance in
a dialogue is a kind odction being performed by the speaker.

The idea that an utterance is a kind of action is particuleldar inperformative
sentences like the following:

I name this ship thé&itanic.

| second that motion.

| bet you five dollars it will snow tomorrow.

When uttered by the proper authority, for example, (24.3) the effect of changing
the state of the world (causing the ship to have the n@itaaic) just as any action can

change the state of the world. Verbs likameor secondwvhich perform this kind of
action are called performative verbs, and Austin callede¢hdnds of actionspeech
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SPEECH ACTS

ILLOCUTIONARRORCE

(24.6)

COMMON GROUND

GROUND

acts What makes Austin’s work so far-reaching is that speech a@ not confined
to this small class of performative verbs. Austin’s clainthat the utterance of any
sentence in a real speech situation constitutes three &fratgs:

e locutionary act: the utterance of a sentence with a particular meaning.

e illocutionary act: the act of asking, answering, promising, etc., in uttering a
sentence.

e perlocutionary act: the (often intentional) production of certain effects upon
the feelings, thoughts, or actions of the addressee inngtarsentence.

For example, Austin explains that the utterance of exan#t#les]) might have thélo-
cutionary force of protesting and the perlocutionary effect of stoppingdddressee
from doing something, or annoying the addressee.

You can't do that.

The termspeech actis generally used to describe illocutionary acts rathentha
either of the other two types of acts. Searle (1975b), in fyodj a taxonomy of
Austin’s, suggests that all speech acts can be classifieadird of five major classes:

e Assertives: committing the speaker to something’s being the casgdesting
putting forward swearing boasting concluding.

e Directives: attempts by the speaker to get the addressee to do somedhiagg
ordering, requestinginviting, advising begging.

¢ Commissives:committing the speaker to some future course of actwaniis-
ing, planning, vowing, betting, opposing

e Expressives:expressing the psychological state of the speaker aboatea cit
affairsthanking apologizing welcoming deploring

e Declarations: bringing about a different state of the world via the utte®n
(including many of the performative examples abdwesign, You're fired)

24.1.3 Language as Joint Action: Grounding

The previous section suggested that each turn or utterandée be viewed as an ac-
tion by a speaker. But dialogue is not a series of unrelatéegandent acts. Instead,
dialogue is a collective act performed by the speaker anti¢laeer. One implication
of joint action is that, unlike in monologue, the speaker &edrer must constantly
establishcommon ground (Stalnaker, 1978), the set of things that are mutually be-
lieved by both speakers. The need to achieve common grouadsribat the hearer
mustground the speaker’s utterances, making it clear that the heaseuhaerstood
the speaker’s meaning and intention.

As Clark (1996) points out, people need closure or grounftingon-linguistic ac-
tions as well. For example, why does a well-designed elevatibon light up when it's
pressed? Because this indicates to the would-be elevat@i¢r that she has success-
fully called the elevator. Clark phrases this need for adlesas follows (after (Norman,
1988)):

Principle of closure. Agents performing an action require evidence, sufficient
for current purposes, that they have succeeded in perfgrinin
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Grounding is also important when the hearer needs to irgltbat the speaker has
not succeeded in performing an action. If the hearer has prablemanderstanding,
she must indicate these problems to the speaker, again tsmttiaal understanding
can eventually be achieved.

How is closure achieved? Clark and Schaefer (1989) intrede idea that each

conTRBUTION joint linguistic act orcontribution has two phases, callgatesentation and accep-
tance In the first phase, a speaker presents the hearer with aantte performing
a sort of speech act. In the acceptance phase, the hearer fnasihd the utterance,
indicating to the speaker whether understanding was aethiev

What methods can the hearer (call her B) use to ground th&epaa utterance?
Clark and Schaefer (1989) discuss five main types of metlwrdsyed from weakest
to strongest:

1. Continued attention: B shows she is continuing to attend and therefore remains
satisfied with A's presentation.

2. Relevant next contribution: B starts in on the next relevant contribution.

3. Acknowledgement:B nods or says a continuer likéd-huh yeah or the like, or
anassessmeniike that's great

4. Demonstration: B demonstrates all or part of what she has understood A to
REFORMULATING mean, for example byeformulating (paraphrasing) A's utterance, or bgllab-
COLLABORATIVE orative completion of A's utterance.

5. Display: B displays verbatim all or part of A's presentation.

Let's look for examples of these in a human-human dialogaepte. We'll be re-
turning to this example throughout the chapter; in ordergsigh a more sophisticated
machine dialogue agent, it helps to look at how a human agafanmns similar tasks.
Fig. 24.4 shows part of a dialogue between a human travet ageinra human client.

Ci: ...l need to travel in May.

Aq: And, what day in May did you want to travel?

Co: OK uh I need to be there for a meeting that's from the 12th ¢olthth.

Ao: And you're flying into what city?

Ca: Seattle.

As: And what time would you like to leave Pittsburgh?

Cy: Uh hmm | don't think there’s many options for non-stop.

Ay Right. There’s three non-stops today.

Cs: What are they?

As: The first one departs PGH at 10:00am arrives Seattle at 12e3ime. The
second flight departs PGH at 5:55pm, arrives Seattle at 8pnal the las
flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

Cs: OK I'll take the 5ish flight on the night before on the 11th.

Ag: Onthe 11th? OK. Departing at 5:55pm arrives Seattle at &b, Air flight
115.

C7Z OK.

Figure 24.4  Part of a conversation between a travel agent (A) and cl@nt (
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CONTINUER
BACKCHANNEL

(24.7)

(24.8)

Utterance A, in which the agent repeatsMay, repeated below in boldface, shows
the strongest form of grounding, in which the hearer displ#neir understanding by
repeating verbatim part of the speakers words:

Ci: ...l need to travein May.
Ai1: And, what dayin May did you want to travel?

This particular fragment doesn’'t have an example ofaaknowledgemenbut
there’s an example in another fragment:

C: He wants to fly from Boston
A: Mm hmm
C: to Baltimore Washington International

The wordmm-hmmhere is acontinuer, also often called dackchannelor an
acknowledgement token A continuer is a (short) optional utterance which acknowl-
edges the content of the utterance of the other, and whicéndaequire an acknowl-
edgement by the other (Yngve, 1970; Jefferson, 1984; Scfiedl982; Ward and
Tsukahara, 2000).

In Clark and Schaefer’s third method, the speaker startsitheir relevant next
contribution. We see a number of examples of this in the samigllogue above, for
example where the speaker asks a question and the heararaiisww\We mentioned
theseadjacency pairsabove; other examples inclugeoprosALfollowed by ACCEP-
TANCE Or REJECTION APOLOGY followed by ACCEPTANCHREJECTION SUMMONS
followed by ANSWER, and so on.

In a more subtle but very important kind of grounding act,speaker can combine
this method with the previous one. For example notice thangkier the client answers
a question, the agent begins the next question ittt TheAndindicates to the client
that the agent has successfully understood the answer lasthguestion:

And, what day in May did you want to travel?
And you're flying into what city?

And what time would you like to leave Pittsburgh?

As we will see in Sec. 24.5, the notions of grounding and doutions can be
combined with speech acts to give a more sophisticated nuddeint action in con-
versation; these more sophisticated models are cdiddgue acts

Grounding is just as crucial in human-machine conversaoit is in human con-
versation. The examples below, from Cohen et al. (2004)gsstghow unnatural it
sounds when a machine doesn't ground properly. The usekafy makes (24.7) a
much more natural response than (24.8) to ground a usegstia):

System: Did you want to review some more of your personal lefdfi
Caller: No.
System:Okay,what’s next?

System: Did you want to review some more of your personal lefdfi
Caller: No.
System: What'’s next?
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Indeed, this kind of lack of grounding can cause errors.eftiin et al. (1993)
and Yankelovich et al. (1995) found that humans get confugeeh a conversational
system system doesn’t give explicit acknowledgements.

24.1.4 Conversational Structure

We have already seen how conversation is structured byeujsgairs and contribu-
tions. Here we’'ll briefly discuss one aspect of therall organization of a conversa-
tion: conversational openings. The openings of telephongearsations, for example,
tend to have a 4-part structure (Clark, 1994; Schegloff319679):

Stage 1:Enter a conversation, with summons-response adjacency pai

Stage 2:ldentification

Stage 3:Establish joint willingness to converse

Stage 4:The first topic is raised, usually by the caller.

These four stages appear in the opening of this short taskied conversation
from Clark (1994).

Stage Speaker & Utterance

1 Aj1:  (rings B’s telephone)

1,2 B1: Benjamin Holloway

2 Aj: thisis Professor Dwight's secretary, from Polymania €gd
2,3 B1: oohyes—

4 A1 uh:m. about the: lexicology *seminar*

4 Bi: *yes*

It is common for the person who answers the phone to speakdinse the caller's
ring functions as the first part of the adjacency pair) buttfier caller to bring up the
first topic, as the caller did above concerning the “lexiggiseminar”. This fact that
the caller usually brings up the first topic causes confusiban the answerer brings
up the first topic instead; here’s an example of this from thigdB directory enquiry
service from Clark (1994):

Customer: (rings)

Operator: Directory Enquiries, for which town please?

Customer: Could you give me the phone number of um: Mrs. unittSon?
Operator: Yes, which town is this at please?

Customer: Huddleston.

Operator: Yes. And the name again?

Customer: Mrs. Smithson.

In the conversation above, the operator brings up the témievhich town please?
in her first sentence, confusing the caller, who ignorestig and brings up her own.
This fact that callers expect to bring up the topic explaity wonversational agents
for call routing or directory information often use very opprompts likeHow may
| help you? or How may | direct your call?rather than a directive prompt likeor
which town please?Open prompts allow the caller to state their own topic, céaly
recognition errors caused by customer confusion.
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IMPLICATURE

MAXIMS

QUANTITY

Conversation has many other kinds of structure, includimggibtricate nature of
conversational closings and the wide use of presequenceswil\discuss structure
based ortoherencen Sec. 24.7.

24.1.5 Conversational Implicature

We have seen that conversation is a kind of joint activityvhich speakers produce
turns according to a systematic framework, and that theritonions made by these
turns include a presentation phase of performing a kind tbacand an acceptance
phase of grounding the previous actions of the interloci8orfar we have only talked
about what might be called the ‘infrastructure’ of convéirsa But we have so far said
nothing about the actual information that gets commungtatam speaker to hearer in
dialogue.

While Ch. 17 showed how we can compute meanings from serdeit¢erns out
that in conversation, the meaning of a contribution is ofteite a bit extended from the
compositional meaning that might be assigned from the walalse. This is because
inference plays a crucial role in conversation. The intetgtion of an utterance relies
on more than just the literal meaning of the sentences. @ente client’s response
C, from the sample conversation in Fig. 24.4, repeated here:

Ai1: And, what day in May did you want to travel?
C,: OK uh | need to be there for a meeting that’s from the 12th éolthth.

Notice that the client does not in fact answer the questitie. dlient merely states
that he has a meeting at a certain time. The semantics fos¢nignce produced by
a semantic interpreter will simply mention this meeting. at/Is it that licenses the
agent to infer that the client is mentioning this meeting stoainform the agent of the
travel dates?

Now consider another utterance from the sample conversatiis one by the
agent:

Ay: ...There’s three non-stops today.

Now this statement would still be true if there were seven-simps today, since
if there are seven of something, there are by definition dseet But what the agent
means here is that there are thez®l not more than three non-stops today. How is
the client to infer that the agent meamdy three non-stops?

These two cases have something in common; in both casesgakespeems to ex-
pect the hearer to draw certain inferences; in other wongsspeaker is communicating
more information than seems to be present in the utteredswdrdese kind of exam-
ples were pointed out by Grice (1975, 1978) as part of hisrthebconversational
implicature. Implicature means a particular class of licensed inferences. Grice pro-
posed that what enables hearers to draw these inferentes onhversation is guided
by a set ofmaxims, general heuristics which play a guiding role in the intetation
of conversational utterances. He proposed the following foaxims:

e Maxim of Quantity: Be exactly as informative as is required:

1. Make your contribution as informative as is required (for current pur-
poses of the exchange).
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QUALITY

RELEVANCE

MANNER

2. Do not make your contribution more informative than isuieed.
e Maxim of Quality: Try to make your contribution one that is true:

1. Do not say what you believe to be false.
2. Do not say that for which you lack adequate evidence.

e Maxim of Relevance:Be relevant.
e Maxim of Manner: Be perspicuous:

1. Avoid obscurity of expression.

2. Avoid ambiguity.

3. Be brief (avoid unnecessary prolixity).
4. Be orderly.

Itis the Maxim of Quantity (specifically Quantity 1) that@lis the hearer to know
thatthree non-stopdid not mearseven non-stopdhis is because the hearer assumes
the speaker is following the maxims, and thus if the spealesinhseven non-stops
she would have said seven non-stops (“as informative agyisire®”). The Maxim
of Relevance is what allows the agent to know that the cliesnte/ to travel by the
12th. The agent assumes the client is following the maximd, teence would only
have mentioned the meeting if it was relevant at this poirihendialogue. The most
natural inference that would make the meeting relevantasriference that the client
meant the agent to understand that his departure time wagetibe meeting time.

24.2 Basic DIALOGUE SYSTEMS

We've now seen a bit about how human dialogue works, althasghe’ll see, not ev-
ery aspect of human-human conversation is modeled in hurrasiiine conversation.
Let’s therefore turn now to the spoken dialogue systems ursedmmercial applica-
tions today.

Fig. 24.5 shows a typical architecture for a dialogue systéhas six components.
The speech recognition and understanding componentgextesning from the input,
while the generation and TTS components map from meaningetech. The dialogue
manager controls the whole process, along with a task mamdageh has knowledge
about the task domain (such as air travel). We'll go througtheof these compo-
nents in the next sections. Then we’ll explore more soptattd research systems in
following sections.

24.2.1 ASR component

The ASR (automatic speech recognition) component takeis &yulit, generally from
a telephone, or from a PDA or desktop microphone, and retutremscribed string of
words, as discussed in chapter Ch. 9.

Various aspects of the ASR system may be optimized spetyfical use in con-
versational agents. For example, the large vocabularchgeeognizers we discussed
in Ch. 9 for dictation or transcription focused on transicrgany sentence on any topic
using any English word. But for domain-dependent dialogistesns it is of little use
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RESTRICTIVE
GRAMMAR

Speech Natural Language
™ Recogniton [ *| Understanding
Dialogue |_, Task
Manager | | Manager
- Text-to-Spgech L Natural Language
Synthesis Generation
Figure 24.5  Simplified architecture of the components of a conversatiagent.

to be able to transcribe such a wide variety of sentencess@iiences that the speech
recognizer needs to be able to transcribe need are just tiaisean be understood by
the natural language understanding component. For thi®neecommercial dialogue
systems generally use non-probabilistic language modedsdon finite-state gram-
mars. These grammars are generally hand-written, andfgdicpossible responses
that the system understands. We'll see an example of suchdvatten grammar
for a VoiceXML system in Sec. 24.3. Such grammars-basediagg models can also
be compiled automatically from, e.g., unification grammassed for natural language
understanding (Rayner et al., 2006).

Because what the user says to the system is related to wistdteen has just said,
language models in conversational agent are usdalpgue-state dependerfor ex-
ample, if the system has just asked the user “What city aredgparting from?”, the
ASR language model can be constrained to only consist oheitiyes, or perhaps sen-
tences of the form ‘I want to (leajdepart) from [CITYNAME]'. These dialogue-state-
specific language models often consist of hand-writtenefigiaite (or even context-
free) grammars as discussed above, one for each dialodee sta

In some systems, the understanding component is more pdwanid the set of
sentences the system can understand is larger. In such cesgtead of a finite-state
grammar, we can use ad-gram language model whose probabilities are similarly
conditioned on the dialogue state.

Whether we use a finite-state, context-free, oNagram language model, we call
such a dialogue-state dependent language modestactive grammar. When the
system wants to constrain the user to respond to the syskesh'stterance, it can use
a restrictive grammar. When the system wants to allow themsee options, it might
mix this state-specific language model with a more genergjuage model. As we
will see, the choice between these strategies can be tused ba how muchitiative
the user is allowed.

Speech recognition in dialogue, as well as in many otheliegins like dictation,
has the advantage that the identity of the speaker remairsdartt across many utter-
ances. This means that speaker adaptation techniques Lik&Mnd VTLN (Ch. 9)
can be applied to improve recognition as the system hears amat more speech from
the user.

Embedding an ASR engine in a dialogue system also requiegsath ASR en-
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gine to have realtime response, since users are unwilliagtept long pauses before
responses. Dialogue systems also generally require thaBRrsystem return eonfi-
dencevalue for a sentence, which can then be used for example &ididg whether
to ask the user to confirm a response.

24.2.2 NLU component

The NLU (natural language understanding) component obdia systems must pro-
duce a semantic representation which is appropriate falifiegue task. Many speech-
based dialogue systems, since as far back as the GUS sysbémoyBet al., 1977), are
based on the frame-and-slot semantics discussed in CHeptek travel system, for
example, which has the goal of helping a user find an appitedtight, would have a
frame with slots for information about the flight; thus a ss1de likeShow me morn-
ing flights from Boston to San Francisco on Tuesdaght correspond to the following
filled-out frame (from Miller et al. (1994)):

SHOW:
FLIGHTS:
ORIGIN:
CITY: Boston
DATE:
DAY-OF-WEEK: Tuesday
TIME:
PART-OF-DAY: morning
DEST:

CITY: San Francisco

How does the NLU component generate this semantic repiggam® Some dia-
logue systems use general-purpose unification grammalnsseihantic attachments,
such as the Core Language Engine introduced in Ch. 18. Aparsguces a sentence
meaning, from which the slot-fillers are extracted (Lewialet1999).

Other dialogue systems rely on simpler domain-specific séimanalyzers, such
assemantic grammars A semantic grammar is a CFG in which the actual node names
in the parse tree correspond to the semantic entities whebeing expressed, as in
the following grammar fragments:

SHOW show me| i want| cani seé..

-
DEPART.TIME _RANGE — (aftejaroundbefore) HOUR|
morning| afternoon| evening

HOUR — ondtwolthregfour.. /twelve (AMPM)
FLIGHTS — (a) flight| flights

AMPM — am|pm

ORIGIN — from CITY

DESTINATION — to CITY

CITY — Boston| San Francisc¢ Denver| Washington

These grammars take the form of context-free grammars arsie transition
networks (Issar and Ward, 1993; Ward and Issar, 1994), andehean be parsed by
any standard CFG parsing algorithm, such as the CKY or Eattgyrithms introduced
in Ch. 13. The result of the CFG or RTN parse is a hierarchaagling of the input
string with semantic node labels:
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SHOW FLIGHTS ORIGIN DESTINATION DEPART_DATE DEPART_TIME
to CITY
Show me flights from boston to san francisco on tuesday  morni ng

NORMALIZED

(24.9)

Since semantic grammar nodes like ORIGIN correspond toltis i the frame,
the slot-fillers can be read almost directly off the resgl{iarse above. It remains only
to put the fillers into some sort of canonical form (for exaenghtes can beormalized
into a DD:MM:YY form, times can be put into 24-hour time, etc)

The semantic grammar approach is very widely used, but islata deal with am-
biguity, and requires hand-written grammars that can bersige and slow to create.

S
Q-SUBJECT BE-QUESTION
N
WHAT STREET
| |
What  street
LINK SUBJECT PRED-ADJUNCT
IS ARTICLE A-PLACE ~ ON-STREET

| | NS
the A-HOTEL ON A-STREET

| | |
HOTEL-NAME on Q-SUBJECT

|
Hyatt

Figure 24.6 A parse of a sentence in the TINA semantic grammar, afterfSgrgo5).

Ambiguity can be addressed by adding probabilities to themgnar; one such
probabilistic semantic grammar system is the TINA systeeméH, 1995) shown in
Fig. 24.6; note the mix of syntactic and semantic node narfiks.grammar rules in
TINA are written by hand, but parse tree node probabilitiesteained by a modified
version of the SCFG method described in Ch. 14.

An alternative to semantic grammars that is probabilistid also avoids hand-
coding of grammars is the semantic HMM model of Pieraccinalet(1991). The
hidden states of this HMM are semantic slot labels, whileahserved words are the
fillers of the slots. Fig. 24.7 shows how a sequence of hidties corresponding to
slot names, could be decoded from (or could generate) a segué observed words.
Note that the model includes a hidden state called DUMMY Wwligcused to generate
words which do not fill any slots in the frame.

The goal of the HMM model is to compute the labeling of sentantiesC =
C1,C2,...,Gi (C for ‘cases’ or ‘concepts’) that has the highest probgbiiC|W) given
some word$V = wy,Wo, ..., W,. As usual, we use Bayes Rule as follows:

P(WIC)P(C)
argmaXP(C|W) = argmax——————
or (Clw) or W

argmaxP(W|C)P(C)
C
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Show me flights that go  from Boston to San Francisco

Figure 24.7 The Pieraccini et al. (1991) HMM model of semantics for fijjislots
in frame-based dialogue systems. Each hidden state canagermesequence of words;
such a model, in which a single hidden state can correspontlttiple observations, is
technically called aemi-HMM.

N M
24.10 = P(wi|wi_1...w1,C)P C P(cilci—1...
(24.10) i|1 (Wi|wi—1...wg,C)P(wy| )iEL (cilci-1...C1)

The Pieraccini et al. (1991) model makes a simplificatiort tha concepts (the
hidden states) are generated by a Markov process (a cokegpm model), and that
the observation probabilities for each state are genebgtadgtate-dependent (concept-
dependent) woréll-gram word model:

(24.11) P(WilWi—1,...,w1,C) = P(Wi|Wi—1,...,;Wi—N+1,Ci)
(24.12) P(cilGi—1,...,c1) = P(Gi|Ci_1,...,Ci—Mm+1)

Based on this simplifying assumption, the final equatioresius the HMM model
are as follows:

N M
(24.13) argmaP(C|W) = I_LP(Wi |Wi_1...Wi—N+1,Ci) rLP(Ci |Ci—1...Ci—m+1)
c i= i=

These probabilities can be trained on a labeled trainingu=rin which each
sentence is hand-labeled with the concepts/slot-namesiatesd with each string of
words. The best sequence of concepts for a sentence, andgtimaent of concepts to
word sequences, can be computed by the standard Viterbdohecalgorithm.

In summary, the resulting HMM model is a generative moddhwito components.
The P(C) component represents the choice of what meaning to exptesssigns a
prior over sequences of semantic slots, computed by a cohegpam. P(W|C) rep-
resents the choice of what words to use to express that nggahim likelihood of a
particular string of words being generated from a given $tas computed by a word
N-gram conditioned on the semantic slot. This model is vemyilar to the HMM
model fornamed entity detection we saw in Ch. 22. Technically, HMM models like
this, in which each hidden state correspond to multiple eipservations, are called

semimms  semi-HMMSs. In a classic HMM, by contrast, each hidden state corresptind single
output observation.

Many other kinds of statistical models have been proposethf® semantic un-
derstanding component of dialogue systems. These indhgdditiden Understanding
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PROMPTS

Model (HUM), which adds hierarchical structure to the HMMdombine the advan-
tages of the semantic grammar and semantic HMM approachiier(et al., 1994,
1996, 2000), or the decision-list method of Rayner and Hp¢R803).

24.2.3 Generation and TTS components

The generation component of a conversational agent chttosesncepts to express to
the user, plans out how to express these concepts in wordsisaigns any necessary
prosody to the words. The TTS component then takes thesesvamiditheir prosodic
annotations and synthesizes a waveform, as described 8. Ch.

The generation task can be separated into two tagkat to sayandhow to say it
Thecontent plannermodule addresses the first task, decides what content tessdar
the user, whether to ask a question, present an answer, and $be content planning
component of dialogue systems is generally merged with ihlegue manager, and
we will return to it below.

Thelanguage generatiormodule addresses the second task, choosing the syntac-
tic structures and words needed to express the meaningubgegeneration modules
are implemented in one of two ways. In the simplest and masincon method, all
or most of the words in the sentence to be uttered to the usgraspecified by the
dialogue designer. This method is known as template-basedrgtion, and the sen-
tences created by these templates are often cpiteupts. While most of the words
in the template are fixed, templates can include some vasakhich are filled in by
the generator, as in the following:

What time do you want to leave CITY-ORIG?
Will you return to CITY-ORIG from CITY-DEST?

A second method for language generation relies on techsifjam the fieldnat-
ural language generation Here the dialogue manager builds a representation of the
meaning of the utterance to be expressed, and passes thisngne@presentation to
a full generator. Such generators generally have three coemis, a sentence plan-
ner, surface realizer, and prosody assigner. A sketch sfatuhitecture is shown in
Fig. 24.8. See Reiter and Dale (2000) for further informatia natural language gen-
eration systems and their use in dialogue.

to Speech
Content Sentence Surface Prosody Synthesizer
Planner »| | Planner Realizer Assigner >
What to say How to Say it

Figure 24.8  Architecture of a natural language generation system falague system,
after Walker and Rambow (2002).

In the hand-designed prompts that are common in currergrsgsthere are a num-
ber of important conversational and discourse constréiatsmust be implemented.
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(24.14)

(24.15)

TAPERED PROMPTS

(24.16)

Like any discourse, a conversation needs to be coherenth.For example,
as Cohen et al. (2004) show, the use of discourse markersrandyms in the hand-
built system prompts makes the dialogue in (24.15) morerabtioan the dialogue in
(24.14):

Please say the data.

Please say the start time.

Please say the duration.

Please say the subject.

First, tell me the date.

.l\'l.ext, I'll need the time it starts.

.1.'.hanks.<pause Now, how long is it supposed to last?

Last of all, | just need a brief description...

Another important case of discourse coherence occurs whgityar prompts
may need to be said to the user repeatedly. In these casestandard in dialogue sys-
tems to useapered prompts, prompts which get incrementally shorter. The following
example from Cohen et al. (2004) shows a series of (handnoed) tapered prompts:

System: Now, what's the first company to add to your watcl? list
Caller: Cisco

System: What'’s the next company name? (Or, you can say,stiai.”)
Caller: IBM

System: Tell me the next company name, or say, “Finished.”
Caller: Intel

System: Next one?

Caller: America Online.

System: Next?

Caller: ...

Other constraints on generation are more specific to spoleogde, and refer
to facts about human memory and attentional processes.xaorge, when humans
are prompted to give a particular response, it taxes theinong less if the suggested
response is the last thing they hear. Thus as Cohen et altYpoint out, the prompt
“To hear the list again, say ‘Repeat list” is easier for ssttran “Say ‘Repeat list’ to
hear the list again.”

Similarly, presentation of long lists of query results (gpptential flights, or movies)
can tax users. Thus most dialogue systems have contentmdamites to deal with this.
In the Mercury system for travel planning described in Se(®€02), for example, a
content planning rule specifies that if there are more thagetflights to describe to
the user, the system will just list the available airlined describe explicitly only the
earliest flight.
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24.2.4 Dialogue Manager

The final component of a dialogue system is the dialogue n&aneadpich controls the
architecture and structure of the dialogue. The dialogueager takes input from the
ASR/NLU components, maintains some sort of state, intedadth the task manager,
and passes output to the NLG/TTS modules.

We saw a very simple dialogue manager in Chapter 2's ELIZAqsetarchitecture
was a simple read-substitute-print loop. The system readentence, applied a series
of text transformations to the sentence, and then printedtitNo state was kept; the
transformation rules were only aware of the current inpatesgce. In addition to its
ability to interact with a task manager, a modern dialogu@agar is very different
than ELIZA's manager in both the amount of state that the mankeeps about the
conversation, and the ability of the manager to model atrestof dialogue above the
level of a single response.

Four kinds of dialogue management architectures are mastnom. The simplest
and most commercially developed architectures, finittesiad frame-based, are dis-
cussed in this section. Later sections discuss the morerpdwdormation-state dia-
logue managers, including a probabilistic version of infation-state managers based
on Markov Decision Processes, and finally the more clasait-phsed architectures.

What city are you leaving from?

| Where are you going? I

| What date do you want to leave? |

Is it a one-way trip?

Yes No
Do you want to go from | What date do you want to return?
<FROM> to <TO> on <DATE>? +
v Do you want to go from <FROM> to <TO>
es on <DATE> returning on <RETURN>?

Yes

Book the flight

Figure 24.9 A simple finite-state automaton architecture for a dialognamager.

The simplest dialogue manager architecture is a finitestetnager. For example,
imagine a trivial airline travel system whose job was to &&kuser for a departure city,
a destination city, a time, and whether the trip was rouigler not. Fig. 24.9 shows
a sample dialogue manager for such a system. The states BStheorrespond to
questions that the dialogue manager asks the user, anctthecgrespond to actions to
take depending on what the user responds. This system catyplentrols the conver-
sation with the user. It asks the user a series of questigmgsring (or misinterpreting)
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SYSTEM INITIATIVE
SINGLE INITIATIVE
INITIATIVE

UNIVERSAL

(24.17)
(24.18)

MIXED INITIATIVE

anything the user says that is not a direct answer to theraisstauestion, and then
going on to the next question.

Systems that control the conversation in this way are caljetem initiative or
single initiative systems. We say that the speaker that is in control of theazsation
has theinitiative ; in normal human-human dialogue, initiative shifts backl &orth
between the participants (Walker and Whittaker, 199The limited single-initiative
finite-state dialogue manager architecture has the adyartet the system always
knows what question the user is answering. This means thersysan prepare the
speech recognition engine with a specific language modeldtto answers for this
question. Knowing what the user is going to be talking abdad enakes the task of
the natural language understanding engine easier. Mot-ftdate systems also al-
low allow universal commands. Universals are commands that can be said anywhere
in the dialogue; every dialogue state recognizes the usa¢@ommands in addition
to the answer to the question that the system just asked. ©@ommversals include
help, which gives the user a (possibly state-specific) help ngesstart over (or main
menu), which returns the user to some specified main start statkes@me sort of com-
mand to correct the system’s understanding of the userstasment (San-Segundo
et al., 2001). System-initiative finite-state dialogue agers with universals may be
sufficient for very simple tasks such as entering a credd caimber, or a name and
password, on the phone.

Pure system-initiative finite-state dialogue manageritactures are probably too
restricted, however, even for the relatively uncomplidatesk of a spoken dialogue
travel agent system. The problem is that pure system-ingiaystems require that the
user answer exactly the question that the system askedhButan make a dialogue
awkward and annoying. Users often need to be able to say Borgéhat is not exactly
the answer to a single question from the system. For exarimpke travel planning
situation, users often want to express their travel goalk wdmplex sentences that
may answer more than one question at a time, as in Communiemple (24.17)
repeated from Fig. 24.1, or ATIS example (24.18).

Hi I'd like to fly to Seattle Tuesday morning

I want a flight from Milwaukee to Orlando one way leaving affige p.m. on
Wednesday.

Afinite state dialogue system, as typically implementedtdeandle these kinds of
utterances since it requires that the user answer eachauastit is asked. Of course
it is theoretically possible to create a finite state ardiitee which has a separate state
for each possible subset of questions that the user’s statectould be answering, but
this would require a vast explosion in the number of statesking this a difficult
architecture to conceptualize.

Therefore, most systems avoid the pure system-initiathitefistate approach and
use an architecture that allowsixed initiative , in which conversational initiative can
shift between the system and user at various points in theglia.

1 Single initiative systems can also be controlled by the,usexhich case they are calledser initiative
systems. Pure user initiative systems are generally usestdteless database querying systems, where the
user asks single questions of the system, which the systaueits into SQL database queries, and returns
the results from some database.
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FRAME-BASED
FORM-BASED

One common mixed initiative dialogue architecture reliastlee structure of the
frame itself to guide the dialogue. Thesame-basedor form-baseddialogue man-
agers asks the user questions to fill slots in the frame, law dhe user to guide the
dialogue by giving information that fills other slots in thare. Each slot may be
associated with a question to ask the user, of the followipg:t

Slot Question

ORIGIN CITY “From what city are you leaving?”
DESTINATION CITY “Where are you going?”
DEPARTURE TIME “When would you like to leave?”
ARRIVAL TIME “When do you want to arrive?”

A frame-based dialogue manager thus needs to ask quesfiding oser, filling
any slot that the user specifies, until it has enough infoionab perform a data base
query, and then return the result to the user. If the useréapf answer two or
three questions at a time, the system has to fill in these atatshen remember not
to ask the user the associated questions for the slots. Moy slot need have an
associated question, since the dialogue designer may mitthe user deluged with
questions. Nonetheless, the system must be able to fill 8leteif the user happens
to specify them. This kind of form-filling dialogue managkus$ does away with the
strict constraints that the finite-state manager imposetherrder that the user can
specify information.

While some domains may be representable with a single fratheys, like the
travel domain, seem to require the ability to deal with nplétiframes. In order to han-
dle possible user questions, we might need frames with gerarte information (for
questions likewhich airlines fly from Boston to San Francisgpmformation about
airfare practices (for questions lik#o | have to stay a specific number of days to get a
decent airfare or about car or hotel reservations. Since users may switch frame
to frame, the system must be able to disambiguate which slehizh frame a given
input is supposed to fill, and then switch dialogue contrahtt frame.

Because of this need to dynamically switch control, frarasddl systems are often
implemented aproduction rule systems. Different types of inputs cause different
productions to fire, each of which can flexibly fill in differtiefinames. The production
rules can then switch control based on factors such as ths irggut and some simple
dialogue history like the last question that the systemdaskbe Mercury flight reser-
vation system (Seneff and Polifroni, 2000; Seneff, 20025uslarge ‘dialogue control
table’ to store 200-350 rules, covering request for hellgsrto determine if the user is
referring to a flight in a list ("I'll take that nine a.m. flight and rules to decide which
flights to describe to the user first.

Now that we've seen the frame-based architecture, letsmeb our discussion of
conversational initiative. It's possible in the same ageatlow systeme-initiative, user-
initiative, and mixed-initiative interactions. We saidlga that initiative refers to who
has control of the conversation at any point. The phrased initiative is generally
used in two ways. It can mean that the system or the user cauildaaily take or give
up the initiative in various ways (Walker and Whittaker, 09€hu-Carroll and Brown,
1997). This kind of mixed initiative is difficult to achieve turrent dialogue systems.
In form-based dialogue system, the term mixed initiativesisd for a more limited kind
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OPEN PROMPT

DIRECTIVE PROMPT

EXPLICIT
CONFIRMATION

of shift, operationalized based on a combination of proyyp {open versus directive)
and the type of grammar used in the ASR. @pen promptis one in which the system
gives the user very few constraints, allowing the user tpaed however they please,
asin:

How may | help you?
A directive prompt is one which explicitly instructs the user how to respond:
Sayyesif you accept the call; otherwise, sag.

In Sec. 24.2.1 we definedestrictive grammar as a language model which strongly
constrains the ASR system, only recognizing proper regmttsa given prompt.

Prompt Type
Grammar Open Directive
Restrictive Doesn’t make sense System Initiative
Non-Restrictive User Initiative Mixed Initiative
Figure 24.10 Operational definition of initiative, following Singh et.g2002).

In Fig. 24.10 we then give the definition of initiative usedanm-based dialogue
systems, following Singh et al. (2002) and others. Here tegyitiative interaction
uses a directive prompt and a restrictive grammar; the sgdetd how to respond, and
the ASR system is constrained to only recognize the resgdhsg are prompted for.
In user initiative, the user is given an open prompt, and tlaengnar must recognize
any kind of response, since the user could say anything llfiiraa mixed initiative
interaction, the system gives the user a directive promibt particular suggestions for
response, but the non-restrictive grammar allows the wserspond outside the scope
of the prompt.

Defining initiative as a property of the prompt and grammaetin this way allows
systems to dynamically change their initiative type fofetiént users and interactions.
Novice users, or users with high speech recognition erraghbe better served by
more system initiative. Expert users, or those who happspédak more recognizably,
might do well with mixed or user initiative interactions. Well see in Sec. 24.6 how
machine learning techniques can be used to choose indtiativ

24.2.5 Dialogue Manager Error Handling: Confirmation/Rejection

In a dialogue system, mishearings are a particularly ingmbrtlass of problems, be-
cause speech recognition has such a high error rate. Itrsftlie important for di-
alogue systems to make sure that they have achieved thetmterpretation of the
user’s input. This is generally done by two methocsnfirming understandings with
the user, andejecting utterances that the system is likely to have misunderstood.
Various strategies can be employed for confirmation withuber. A system us-
ing theexplicit confirmation strategy asks the user a direct question to confirm their
understanding. Here are two examples of explicit confiromatifrom travel planning
systems. The (boldface) confirmation questions are botmgegiestions, one using a
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IMPLICIT
CONFIRMATION

REJECTION

PROGRESSIVE
PROMPTING

single sentence, the other presenting a declarative senteltowed by a tag question
(a short question phrase like “right?” or “isn't it?"):

Which city do you want to leave from?

Baltimore.

Do you want to leave from Baltimore?

Yes.

I'd like to fly from Denver Colorado to New York City on Septder

twenty first in the morning on United Airlines

S: Let's see then. | have you going from Denver Colorado to New Y&
on September twenty first. Is that correct?

U: Yes

cecrcw

A system using themplicit confirmation strategy, rather than asking a direct ques-
tion, uses thelemonstratioror displaygrounding strategies described above, confirm-
ing to the user by repeating back what the system undersh@oaser to have said:

U: | wantto travel to Berlin

S:  When do you want to travel to Berlin?

U2: Hil'd like to fly to Seattle Tuesday Morning

A3: Traveling to Seattle on Tuesday, August eleventh in the moiing.
Your full name?

Explicit and implicit confirmation have complementary sigéhs. Explicit confir-
mation makes it easier for users to correct the system’ssgugmnitions since the user
can just answer ‘no’ to the confirmation question. But expdionfirmation is awkward
and increases the length of the conversation (Danieli ambiG® 1995; Walker et al.,
1998). The explicit confirmation dialogue fragments abawesl non-natural and def-
initely non-human; implicit confirmation is much more corsegtionally natural.

Confirmation is just one kind of conversational action thaystem has to express
lack of understanding. Another optionrgjection. An ASR system rejects an utter-
ance by giving the user a prompt liken sorry, | didn’t understand that

Sometimes utterances are rejected multiple times. Thisithmigean that the user
is using language that the system is unable to follow. Thusnadm utterance is re-
jected, systems often follow a strategypbgressive promptingor escalating detail
(Yankelovich et al., 1995; Weinschenk and Barker, 2000phahkis example from Co-
hen et al. (2004):

System: When would you like to leave?

Caller: Well, um, | need to be in New York in time for the first Wb Series
game.

System: <reject>. Sorry, | didn’t get that. Please say the month and day
you'd like to leave.

Caller: I wanna go on October fifteenth.

In this example, instead of just repeating ‘When would y&ae lio leave?’, the re-
jection prompt gives the caller more guidance about howtmédate an utterance the
system will understand. Thegeu-can-sayelp messages are important in helping im-
prove systems understanding performance (Bohus and Ryg@@05). If the caller’'s
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utterance gets rejected yet again, the prompt can reflec{‘ttstill didn't get that),
and give the caller even more guidance.

REPROMBERR An alternative strategy for error handlingrepid reprompting , in which the sys-

tem rejects an utterance just by saying “I'm sorry?” or “Whais that?”. Only if the
caller’s utterance is rejected a second time does the systmtrapplying progressive
prompting. Cohen et al. (2004) summarizes experiments isigotliat users greatly
prefer rapid reprompting as a first-level error prompt.

24.3 VOICEXML

VOICEXML

VXML

VoiceXML is the Voice Extensible Markup Language, an XML-based diaéodesign
language released by the W3C, and the most commonly usec ofatious speech
markup languages (such as SALT). The goal of VoiceXMLvfanl) is to create simple
audio dialogues of the type we have been describing, malsegofi ASR and TTS,
and dealing with very simple mixed-initiative in a frameskd architecture. While
VoiceXML is more common in the commercial rather than acadesatting, it is a
good way for the student to get a hands-on grasp of dialoggtersydesign issues.

<form>
<field name="transporttype">
<prompt>
Please choose airline, hotel, or rental car.
</prompt>
<grammar type="application/x=nuance-gsl">
[airline hotel "rental car"]
</grammar>
</field>
<block>
<prompt>
You have chosen <value expr="transporttype">.
</prompt>
</block>
</form>

Figure 24.11 A minimal VoiceXML script for a form with a single field. Usesi
prompted, and the response is then repeated back.

A VoiceXML document contains a set of dialogues, each of Wwisign be dorm or
amenu We will limit ourselves to introducing forms; sé&p://www.voicexml.
org/ for more information on VoiceXML in general. The VoiceXML daement in
Fig. 24.11 defines a form with a single field named ‘transppgt The field has an
attached promptPlease choose airline, hotel, or rental garhich can be passed to
the TTS system. It also has a grammar (language model) whighssed to the speech
recognition engine to specify which words the recognizeliswed to recognize. In
the example in Fig. 24.11, the grammar consists of a disjpmaif the three words
airline, hotel andrental car.

A <form> generally consists of a sequence<dield> s, together with a few
other commands. Each field has a name (the name of the field.ig4il1 igransporttype
which is also the name of the variable where the user’s respuiill be stored. The
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(24.19)

prompt associated with the field is specified via¢peompt> command. The gram-
mar associated with the field is specified via #fggammar> command. VoiceXML
supports various ways of specifying a grammar, includinglX8peech Grammar,
ABNF, and commercial standards, like Nuance GSL. We will Beng the Nuance
GSL format in the following examples.

The VoiceXML interpreter walks through a form in documender, repeatedly
selecting each item in the form. If there are multiple fieldh® interpreter will visit
each one in order. The interpretation order can be changetious ways, as we will
see later. The example in Fig. 24.12 shows a form with thrédsfiéor specifying the
origin, destination, and flight date of an airline flight.

The prologue of the example shows two global defaults foorenandling. If
the user doesn’t answer after a prompt (i.e., silence excaeuneout threshold), the
VoiceXML interpreter will play the<noinput>  prompt. If the user says something,
but it doesn’t match the grammar for that field, the VoiceXMiterpreter will play
the<nomatch> prompt. After any failure of this type, it is normal to re-asle user
the question that failed to get a response. Since theseesutan be called from any
field, and hence the exact prompt will be different every tivMaceXML provides a
<reprompt\> command, which will repeat the prompt for whatever field ealthe
error.

The three fields of this form show another feature of VoiceX e <filled>
tag. The<filled> tag for a field is executed by the interpreter as soon as th fiel
has been filled by the user. Here, this feature is used to evager a confirmation of
their input.

The last fielddepartdate , shows another feature of VoiceXML, titgpe at-
tribute. VoiceXML 2.0 specifies seven built-in grammar tggmolean , currency
date , digits , number, phone, andtime . Since the type of this field idate ,

a data-specific language model (grammar) will be autonibtipassed to the speech
recognizer, so we don't need to specify the grammar herecitkpl

Fig. 24.13 gives a final example which shows mixed initiativea mixed initiative
dialogue, users can choose not to answer the question tisaaskad by the system.
For example, they might answer a different question, or use@ sentence to fill in
multiple slots at once. This means that the VoiceXML intetpr can no longer just
evaluate each field of the form in order; it needs to skip fielitiese values are set.
This is done by agyuard condition a test that keeps a field from being visited. The
default guard condition for a field tests to see if the fieldisnf item variable has a
value, and if so the field is not interpreted.

Fig. 24.13 also shows a much more complex use of a grammag.gfammar is a
CFG grammar with two rewrite rules, nametight andCity . The Nuance GSL
grammar formalism uses parentheses () to mean concateaibsquare brackets []
to mean disjunction. Thus a rule like (24.19) means Wantsentence can be ex-
panded as want to fly ori want to go ,andAirports can be expanded
assan francisco ordenver .

Wantsentence (i want to [fly go])
Airports [(san francisco) denver]

Grammar rules can refer to other grammar rules recursiaatyso in the grammar
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<noinput>
I'm sorry, | didn’t hear you. <reprompt/>
</noinput>

<nomatch>
I'm sorry, | didn’t understand that. <reprompt/>
</nomatch>

<form>
<block> Welcome to the air travel consultant. </block>
<field name="origin">
<prompt> Which city do you want to leave from? </prompt>
<grammar type="application/x=nuance-gsl">
[(san francisco) denver (new york) barcelona]
</grammar>
<filled>
<prompt> OK, from <value expr="origin"> </prompt>
</filled>
</field>
<field name="destination">
<prompt> And which city do you want to go to? </prompt>
<grammar type="application/x=nuance-gsl">
[(san francisco) denver (new york) barcelona]
</grammar>
<filled>
<prompt>  OK, to <value expr="destination">  </prompt>
</filled>
</field>
<field name="departdate" type="date">
<prompt> And what date do you want to leave? </prompt>

<filled>
<prompt>  OK, on <value expr="departdate">  </prompt>
</filled>
</field>
<block>
<prompt> OK, | have you are departing from <value expr="orig in">
to <value expr="destination"> on <value expr="departdate ">
</prompt>
send the info to book a flight...
</block>

</form>

Figure 24.12 A VoiceXML script for a form with 3 fields, which confirms eaclelfi
and handles theoinput andnomatch situations.

in Fig. 24.13 we see the grammar faight  referring to the rule foCity
VoiceXML grammars take the form of CFG grammars with optios@mantic
attachments. The semantic attachments are generallyr eithext string (such as
"denver, colorado” ) or a slot and a filler. We can see an example of the for-
mer in the semantic attachments for iy rule (thereturn statements at the end
of each line), which pass up the city and state name. The genaditachments for the
Flight rule shows the latter case, where the skair(gin>  or <destination>
or both) is filled with the value passed up in the variabfeom theCity rule.
Because Fig. 24.13 is a mixed initiative grammar, the grantraato be applicable
to any of the fields. This is done by making the expansiorHaht  a disjunction;
note that it allows the user to specify only the origin citg)yothe destination city, or
both.
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<noinput> I'm sorry, | didn't hear you. <reprompt/> </noinp ut>
<nomatch> I'm sorry, | didn’t understand that. <reprompt/> </nomatch>
<form>

<grammar type="application/x=nuance-gs|">

<I[ CDATA[

Flight ( ?[

(i [wanna (want to)] [fly go])
("d like to [fly go])
([(i wanna)(i'd like a)] flight)

( [from leaving departing] City:x) {<origin $x>}
( [(?going to)(arriving in)] City:x) {<destination $x>}
( [from leaving departing] City:x

[(?going to)(arriving in)] City:y) {<origin $x> <destinat ion $y>}
?please
)
City [ [(san francisco) (s f 0)] {return( "san francisco, cal ifornia")}

[(denver) (d e n)] {return( "denver, colorado")}
[(seattle) (s t x)] {return( "seattle, washington")}

1]> </grammar>

<initial name="init">
<prompt> Welcome to the air travel consultant. What are your travel plans? </prgmpt>
<finitial>

<field name="origin">
<prompt> Which city do you want to leave from? </prompt>
<filled>
<prompt> OK, from <value expr="origin"> </prompt>
</ffilled>
</field>
<field name="destination">
<prompt> And which city do you want to go to? </prompt>

<filled>
<prompt> OK, to <value expr="destination"> </prompt>
</ffilled>
</field>
<block>
<prompt> OK, | have you are departing from <value expr="orig in">

to <value expr="destination">. </prompt>
send the info to book a flight...
</block>
</form>

Figure 24.13 A mixed initiative VoiceXML dialogue. The grammar allowsrgences
which specify the origin or destination cities or both. Usan respond to the initial promp
by specifying origin city, destination city, or both.

24.4 DALOGUE SYSTEM DESIGN AND EVALUATION

24.4.1 Designing Dialogue Systems

How does a dialogue system developer choose dialoguegistarchitectures, prompts,
v error messages, and so on? This process is often dalkkdVoice User Interface
design. Thauser-centered desigrprinciples of Gould and Lewis (1985) are:
1. Study the user and task:Understand the potential users and the nature of the
task, via interviews with users and investigation of simskastems, and study of related
human-human dialogues.
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WIZARD-OF-0Z

BARGE-IN

DIRECTIVE PROMPTS

2. Build simulations and prototypes:In Wizard-of-Oz systemg(WOZ) or PNAM-
BIC (Pay No Attention to the Man BehInd the Curtain) systetins,users interact with
what they think is a software system, but is in fact a humanaipe (“wizard”) be-
hind some disguising interface software (e.g. Gould et1883; Good et al., 1984;
Fraser and Gilbert, 1991). The name comes from the chilgitiemokThe Wizard of
Oz (Baum, 1900), in which the Wizard turned out to be just a satiah controlled
by a man behind a curtain. A WOZ system can be used to test oatchitecture
before implementation; only the interface software andlases need to be in place.
The wizard’s linguistic output can be be disguised by a textpeech system, or via
text-only interactions. It is difficult for the wizard to estly simulate the errors, limi-
tations, or time constraints of a real system; results of Vé@idies are thus somewhat
idealized, but still can provide a useful first idea of the @dmissues.

3. lteratively test the design on users:An iterative design cycle with embed-
ded user testing is essential in system design (Nielser2;X98le et al., 1994, 1997,
Yankelovich et al., 1995; Landauer, 1995). For exampleeBtiéin et al. (1993) built
a system that originally required the user to press a keytewrumpt the system. They
found in user testing that users instead tried to interraptslystem lfarge-in), sug-
gesting a redesign of the system to recognize overlappetkp&he iterative method
is also very important for designing prompts which causeuses to respond in under-
standable or normative ways: Kamm (1994) and Cole et al.3fe@ind thadirective
prompts (“Say yesif you accept the call, otherwise, sag’) or the use of constrained
forms (Oviatt et al., 1993) produced better results thamgmempts like “Will you
accept the call?”. Simulations can also be used at this ;stesge simulations that in-
teract with a dialogue system can help test the interfaderftiteness or errors (Chung,
2004).

See Cohen et al. (2004), Harris (2005) for more details onersational interface
design.

24.4.2 Dialogue System Evaluation

As the previous section suggested, user testing and eialuatcrucial in dialogue
system design. Computing wser satisfaction ratinggan be done by having users
interact with a dialogue system to perform a task, and theingahem complete
a questionnaire (Shriberg et al., 1992; Polifroni et al92;9Stifelman et al., 1993;
Yankelovich et al., 1995; Moller, 2002). For example Fig.24 shows multiple-choice
questions adapted from Walker et al. (2001); responses apped into the range of 1
to 5, and then averaged over all questions to get a total aisfastion rating.

It is often economically infeasible to run complete useiséattion studies after
every change in a system. For this reason it is often usehdve performance evalua-
tion heuristics which correlate well with human satisfanti A number of such factors
and heuristics have been studied. One method that has begtoudassify these fac-
tors is based on the idea that an optimal dialogue systeneisvbich allows a user to
accomplish their goals (maximizing task success) with ¢astl problems (minimizing
costs). Then we can study metrics which correlate with thesecriteria.
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TTS Performance Was the system easy to understand ?
ASR Performance Did the system understand what you said?
Task Ease Was it easy to find the message/flight/train you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
User Expertise Did you know what you could say at each point?
System Response How often was the system sluggish and slow to reply to you?
Expected Behavior| Did the system work the way you expected it to?
Future Use Do you think you'd use the system in the future?

Figure 24.14  User satisfaction survey, adapted from Walker et al. (2001)

Task Completion Success: Task success can be measured by evaluating the correct-
ness of the total solution. For a frame-based architecthiemight be the percentage

of slots that were filled with the correct values, or the petage of subtasks that were
completed (Polifroni et al., 1992). Since different dialegsystems may be applied

to different tasks, it is hard to compare them on this mesac\Walker et al. (1997)
suggested using the Kappa coefficiantto compute a completion score which is nor-
malized for chance agreement and better enables crogsysgsimparison.

Efficiency Cost: Efficiency costs are measures of the system’s efficiencylpirfte
users. This can be measured via the total elapsed time fatigh@gue in seconds,
the number of total turns or of system turns, or the total neinath queries (Polifroni
et al., 1992). Other metrics include the number of systemnesponses, and the “turn
correction ratio”: the number of system or user turns thatewesed solely to correct
errors, divided by the total number of turns (Danieli and ltd&w, 1995; Hirschman
and Pao, 1993).

Quality Cost:  Quality cost measures other aspects of the interactiomaffeat users’
perception of the system. One such measure is the numbenes the ASR system
failed to return any sentence, or the number of ASR rejeqiimmpts. Similar met-
BARGE-IN rics include the number of times the user had#&rge-in (interrupt the system), or
the number of time-out prompts played when the user didsfiead quickly enough.
Other quality metrics focus on how well the system undedtand responded to the
user. This can include the inappropriateness (verbose bigaious) of the system’s
questions, answers, and error messages (Zue et al., 1988 oorrectness of each
question, answer, or error message (Zue et al., 1989; &wiliét al., 1992). A very
ASONCERY - important quality cost isoncept accuracyor concept error rate, which measures the
percentage of semantic concepts that the NLU componemhsetorrectly. For frame-
based architectures this can be measured by counting therpiage of slots that are
filled with the correct meaning. For example if the sentemeent to arrive in Austin
at 5:00’ is misrecognized to have the semantics "DEST-CBo&ton, Time: 5:00” the
concept accuracy would be 50% (one of two slots are wrong).

How should these success and cost metrics be combined agtite#? One ap-
proach is the PARADISE algorithm (PARAdigm for Dlalogue &ym Evaluation),
which applies multiple regression to this problem. The athm first assigns each
dialogue a user satisfaction rating using questionnaikestte one in Fig. 24.14. A
set of cost and success factors like those above is therdraata set of independent
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| MAXIMIZE USER SATISFACTION ‘

/

MAXIMIZE TASK SUCCESS | MINIMIZE COSTS

/\

| EFFICIENCY MEASURES QUALITY MEASURES

Figure 24.15 PARADISE'’s structure of objectives for spoken dialoguefgenance.
After Walker et al. (2001).

factors; multiple regression is used to train a weight fahefactor, measuring its im-
portance in accounting for user satisfaction. Fig. 24.Idshthe particular model of
performance that the PARADISE experiments have assumech @ is related to
a set of factors that we summarized on the previous page. dhdting metric can
be used to compare quite different dialogue strategiesyatians using methods like
PARADISE have suggested that task completion and conceptacy are may be the
most important predictors of user satisfaction; see Wadkat. (1997) and Walker et al.
(2001, 2002).

A wide variety of other evaluation metrics and taxonomiesshaeen proposed for
describing the quality of spoken dialogue systems (Frd$92; Moller, 2002, 2004,
inter alia).

24.5 INFORMATION-STATE & DIALOGUE ACTS

INFORMATION-STATE

The basic frame-based dialogue systems we have introduckd are only capable

of limited domain-specific conversations. This is becahgesemantic interpretation

and generation processes in frame-based dialogue systerbased only on what is

needed to fill slots. In order to be be usable for more tharfqust-filling applications,

a conversational agent needs to be able to do things likeleleehen the user has
asked a question, made a proposal, or rejected a suggemtidmeeds to be able to
ground a users utterance, ask clarification questions, @ygest plans. This suggests
that a conversational agent needs sophisticated modeitegpretation and generation
in terms of speech acts and grounding, and a more soph&ticapresentation of the

dialogue context than just a list of slots.

In this section we sketch a more advanced architecture &doglie management
which allows for these more sophisticated components. fioidel is generally called
theinformation-state architecture (Traum and Larsson, 2003, 2000), although e w
use the term loosely to include architectures such as All@h €2001). A probabilis-
tic architecture which can be seen as an extension of theniafiton-state approach,
the Markov decision processmodel, will be described in the next section. The term
information-state architecture is really a cover term for a number of quite different
efforts toward more sophisticated agents; we’ll assume aetructure consisting of 5
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components:

the information state (the ‘discourse context’ or ‘mentaldal’)
a dialogue act interpreter (or “interpretation engine”)
a dialogue act generator (or “generation engine”)

a set of update rules, which update the information stateidegilie acts are
interpreted, and which include rules to generate dialogte a

e a control structure to select which update rules to apply

The terminformation state is intended to be very abstract, and might include
things like the discourse context and the common groundefitlo speakers, the be-
liefs or intentions of the speakers, user models, and so nreidly, information state
is intended to be a more complex notion than the static stateginite-state dialogue
manager; the current state includes the values of manyblesighe discourse context,
and other elements that are not easily modeled by a statbéenima finite network.

Dialogue acts are an extension of speech acts which inteigleds from grounding
theory, and will be defined more fully fully in the next subses. The interpretation
engine takes speech as input and figures out sentential Sesnand an appropriate
dialogue act. The dialogue act generator takes dialogseaamct sentential semantics
as input and produces text/speech as output.

Finally, the update rules modify the information state vifite information from the
dialogue acts. These update rules are a generalizatior gfrtiduction rules used in
frame-based dialogue systems described above (Senefidifrdi, 2000, inter alia).

A subset of update rules, callegtlection rules are used to generate dialogue acts.
For example, an update rule might say that when the intexfioetengine recognizes
an assertion, that the information state should be updaitbdtine information in the
assertion, and an obligation to perform a grounding actsieetle added to the infor-
mation state. When a question is recognized, an update tiglg specify the need to
answer the question. We can refer to the combination of tldateprules and control
structure as thBehavioral AgenfAllen et al., 2001), as suggested in Fig. 24.16.

Speech Speech
| Natural Language Understanding Natural Language Generation |
Information State
-dispourse context
| Dialogue Act Interpreter |‘/' :gzgfsfs k’l Dialogue Act Generator I

-user model
-task context

'

Behavioral Agent
-update rules
-control

Figure 24.16 A version of the information-state approach to dialogudidecture.

While the intuition of the information-state model is quéienple, the details can
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DIALOGUE ACT
MOVES

be quite complex. The information state might involve rigkcdurse models such as
Discourse Representation Theory or sophisticated modélseaiser’s belief, desire,
and intention (which we will return to in Sec. 24.7). Insteddlescribing a particular
implementation here, we will focus in the next few sectiongtte dialogue act inter-
pretation and generation engines, and a probabilisticimtion-state architecture via
Markov decision processes.

24.5.1 Dialogue Acts

As we implied above, the speech acts as originally definedustiA don’t model key
features of conversation such as grounding, contributiadgcency pairs and so on.
In order to capture these conversational phenomena, werusgtansion of speech
acts calleddialogue acts(Bunt, 1994) (ordialogue movesor conversational moves
(Power, 1979; Carletta et al., 1997b). A dialogue act exdepeech acts with internal
structure related specifically to these other conversatifumctions (Allen and Core,
1997; Bunt, 2000).

A wide variety of dialogue act tagsets have been proposed. Z4.17 shows a
very domain-specific tagset for the Verbmobil two-partyestiling domain, in which
speakers were asked to plan a meeting at some future daiee @it it has many very
domain-specific tags, such as &GEST, used for when someone proposes a particular
date to meet, and @cepTand REJECT, used to accept or reject a proposal for a date.
Thus it has elements both from the presentation and acaapfamases of the Clark
contributions discussed on page 7.

|  Tag Example |

THANK Thanks
GREET Hello Dan
INTRODUCE It's me again
BYE Allright bye
REQUESFCOMMENT How does that look?
SUGGEST from thirteenth through seventeenth June
REJECT No Friday I'm booked all day
ACCEPT Saturday sounds fine,
REQUESFSUGGEST What is a good day of the week for you?
INIT | wanted to make an appointment with you
GIVE_REASON Because | have meetings all afternoon
FEEDBACK Okay
DELIBERATE Let me check my calendar here
CONFIRM Okay, that would be wonderful
CLARIFY Okay, do you mean Tuesday the 23rd?
DIGRESS [we could meet for lunch] and eat lots of ice cream
MOTIVATE We should go to visit our subsidiary in Munich
GARBAGE Oops, I-

Figure 24.17  The 18 high-level dialogue acts used in Verbmobil-1, alssdchover a

total of 43 more specific dialogue acts. Examples are froratletal. (1995).

There are a number of more general and domain-indepenadogde act tagsets.
In the DAMSL (Dialogue Act Markup in Several Layers) arcloiiére inspired by the
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Act type Sample Acts
turn-taking take-turn, keep-turn, release-turn, assign-turn
grounding acknowledge, repair, continue
core speech acts inform, wh-question, accept, request, offer
argumentation elaborate, summarize, question-answer, clarify
Figure 24.18 Conversation act types, from Traum and Hinkelman (1992).

CONVERSATION
ACTS

(24.20)

(24.21)

work of Clark and Schaefer (1989) and Allwood et al. (1992)wAod (1995) each
utterance is tagged for two functiorisyward looking functions like speech act func-
tions, and théackward looking function, like grounding and answering, which ‘look
back’ to the interlocutor’s previous utterance (Allen andr€& 1997; Walker et al.,
1996; Carletta et al., 1997a; Core et al., 1999).

Traum and Hinkelman (1992) proposed that the core speeshaact grounding
acts that constitute dialogue acts could fit into an evereribierarchy otonversation
acts Fig. 24.18 shows the four levels of act types they propodé, the two middle
levels corresponding to DAMSL dialogue acts (grounding emeé speech acts). The
two new levels include turn-taking acts aatyumentatiorrelation, a conversational
version of the coherence relations of Ch. 21.

The acts form a hierarchy, in that performance of an act ajlagnilevel (for exam-
ple a core speech act) entails performance of a lower levétadng a turn). We will
see the use of conversational acts in generation later drsiséction, and will return
to the question of coherence and dialogue structure in Set. 2

24.5.2 Interpreting Dialogue Acts

How can we do dialogue act interpretation, deciding wheshgiven input is QUES
TION, a STATEMENT, a SUGGEST(directive), or anACKNOWLEDGEMENT? Perhaps
we can just rely on surface syntax? We saw in Ch. 12 that yegdiestions in English
haveaux-inversion (the auxiliary verb precedes the subject) statements heslaic-
tive syntax (no aux-inversion), and commands have no stiotsubject:

YES-NO-QUESTION Will breakfast be served on USAir 15577
STATEMENT | don’t care about lunch
COMMAND Show me flights from Milwaukee to Orlando.

Alas, as is clear from Abbott and Costello’s famaMio’s on Firstroutine at the be-
ginning of the chapter, the mapping from surface form tacilitonary act is complex.
For example, the following ATIS utterance looks likeras-NO-QUESTION meaning
something likeAre you capable of giving me a list of. ... ?

Can you give me a list of the flights from Atlanta to Boston?

In fact, however, this person was not interested in whethesystem wasapable
of giving a list; this utterance was a polite form oR&QUEST, meaning something
more likePlease give me a list of... Thus what looks on the surface likeQ@ESTION
can really be ®EQUEST.
Similarly, what looks on the surface likessATEMENT can really be @QUESTION
The very commortHECK question (Carletta et al., 1997b; Labov and Fanshel, 1977),
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is used to ask an interlocutor to confirm something that slsephgileged knowledge
about.cHECKshave declarative surface form:

A OPENOPTION | was wanting to make some arrangements for a trip that I'mgoi
to be taking uh to LA uh beginning of the week after next.

B HoOLD OK uh let me pull up your profile and I'll be right with you here.
[pause]

B CHECK And you said you wanted to travel next week?

A ACCEPT Uh yes.

Utterances that use a surface statement to ask a questiarsuoface question to
INDIRECTSPEECH  issue a request, are calledllirect speech acts
In order to resolve these dialogue act ambiguities we carehtidlogue act inter-
pretation as a supervised classification task, with disdaagt labels as hidden classes
to be detected. We train classifiers on a corpus in which etietance is hand-labeled
for dialogue acts. The features used for dialogue act inté&afion derive from the
MICROGRAMMAR  conversational context and from the acticcrogrammar (Goodwin, 1996) (its char-
acteristic lexical, grammatical, and prosodic propejties

1. Words and Collocations: Pleaseor would youis a good cue for REQUEST, are
youfor YES-NO-QUESTIONS detected viaialogue-specifidN-gram grammars.
2. Prosody: Rising pitch is a good cue forees-NO-QUESTION, while declarative
FINAL LOWERING utterances (likesTATEMENTS) havefinal lowering: a drop in FO at the end of
the utterance. Loudness or stress can help distinguisfetitghat is anAGREE-
MENT from theyeahthat is aBACKCHANNEL. We can extract acoustic correlates
of prosodic features like FO, duration, and energy.

3. Conversational Structure: A yeahfollowing a proposal is probably axGREE-
MENT; ayeahafter aniNFORM is likely aBACKCHANNEL. Drawing on the idea
of adjacency pairs (Schegloff, 1968; Sacks et al., 1974amemodel conversa-
tional structure as a bigram of dialogue acts

Formally our goal is to find the dialogue att that has the highest posterior prob-
ability P(d|o) given the observation of a sentence,
d* = argmax¥(d|o)
d
P(d)P(o|d)
= argmax—=-————
d P(o)

(24.22) = argma¥(d)P(o|d)
d

Making some simplifying assumptions (that the prosody efgshntencé and the
word sequenc®/ are independent, and that the prior of a dialogue act can loeied
by the conditional given the previous dialogue act) we caimede the observation
likelihood for a dialogue aal as in (24.23):

(24.23) P(old) = P(f|d)P(W|d)
(24.24) d* = argmaw(d|di_1)P(f|d)P(W|d)
d
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(24.25)

(24.26)

CORRECTION

HYPERARTICULA-
TION

where
N
P(W|d) = rLP(Wi [Wi_1..Wi_N+1,d)
=

Training the prosodic predictor to compuRef |d) has often been done with a deci-
sion tree. Shriberg et al. (1998), for example, built a CARE1to distinguish the four
dialogue actSTATEMENT (S), YES-NO QUESTION(QY), DECLARATIVE-QUESTION
like CHECK (QD) andwH-QUESTION(QW) based on acoustic features as the slope of
FO at the end of the utterance, the average energy at diffel&ces in the utterance,
and various normalized duration measures. Fig. 24.19 shkimsvdecision tree which
gives the posterior probability(d|f) of a dialogue actl type given a set of acoustic
featuresf. Note that the difference between S and QY toward the righhefree is
based on the featureorm _f0 _diff (normalized difference between mean FO of end
and penultimate regions), while the difference between @Q@@D at the bottom left
is based onmitt _grad , which measures FO slope across the whole utterance.

Since decision trees produce a posterior probalf{ f), and equation (24.24)
requires a likelihoodP(f|d), we need to massage the output of the decision tree by
Bayesian inversion (dividing by the pri®(d;) to turn it into a likelihood); we saw this
same process with the use of SVMs and MLPs instead of Gaudsissifiers in speech
recognition in Sec??. After all our simplifying assumptions the resulting eqaatfor
choosing a dialogue act tag would be:

d*

argmaxP(d)P(f|d)P(W|d)
d

argdma>P(d|d[,1) P(Wi|Wi_1...wi_n1,d)

24.5.3 Detecting Correction Acts

In addition to general-purpose dialogue act interpretatiee may want to build special-
purpose detectors for particular acts. Let’s consider aioh sletector, for the recog-
nition of usercorrection of system errors. If a dialogue system misrecognizes an
utterance (usually as a result of ASR errors) the user wilkgally correct the error by
repeating themselves, or rephrasing the utterance. Dialsgstems need to recognize
that users are doing a correction, and then figure out whatgéeis trying to correct,
perhaps by interacting with the user further.

Unfortunately, corrections are actuahprderto recognize than normal sentences.
Swerts et al. (2000) found that corrections in the TOOT djabsystem were misrec-
ognized about twice as often (in terms of WER) as non-cdoest One reason for this
is that speakers use a very different prosodic style calperarticulation for correc-
tions. In hyperarticulated speech, some part of the utteréias exaggerated energy,
duration, or FO contours, such bsaid BAL-TI-MORE, not BostofWwade et al., 1992;
Oviatt et al., 1998; Levow, 1998; Hirschberg et al., 2001).
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end_grad < 32.345 | end_grad >= 32.345 cont_speech_frames_n < 98.334

QW QY S S
0.2327 0.2018 0.1919 0.37: 0.2978 0.09721 0.4181 0.1869 0.2581 0.2984 0.2796 0.164 0.2191 0.5637 0.1335 0.0836

f0_mean_zcv < 0.76806 \ fO_mean_zcv >= 0.76806 norm_f0_diff < 0.064562 norm_f0_diff >= 0.064562

S QW S QY
0.276 0.2811 0.1747 0.2683 0.1859 0.116 0.2106 0.4876 0.3089 0.3387 0.1419 0.210/ 0.1857 0.241 0.4756 0.097,

cont_speech_frames_n < 98.388\ cont_speech_frames_n >= 98.388 f0_mean_zcv < 0.76197

ow S S QW
0.29350.1768 0.2017 0.328 0.2438 0.4729 0.125 0.1583 0.3253 0.4315 0.1062 0.1. 0.2759 0.1517 0.2138 0.3586
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Figure 24.19 Decision tree for classifyingECLARATIVE QUESTIONS(QD), STATEMENT(S), YES-NO QUES
TIONS (QY), andwH-QUESTIONS(QW), after Shriberg et al. (1998). Each node in the tree shiowr probabil-
ities, one for each of the four dialogue acts in the order QOR'® QW; the most likely of the four is shown as
the label for the node. Note that questions are shorter tiz@@nsents (conspeechframes), that QY'’s rise at th
end (endgrad), and that QD’s rise throughout the utterance ).

cont_speech_frames_n >= 98.334

f0_mean_zcv >=0.76197

D

Speakers use various strategies to make corrections; Seteat. (2000) categorize
these as repetition (REP), paraphrase (PAR), adding co®BiD), and omitting con-
tent (OMIT), as shown in Fig. 24.20. They found that mostections were repetitions
and omissions rather than paraphrases.

Various machine learning classifiers have been appliedetpithblem of detecting
correction acts. Useful features include lexical inforimaiwords like “no”, “correc-
tion”, “I don't”, swear words), prosodic and hyperartictitan features (increases in
FO range, pause duration, and word duration, generally alired by the values for
previous sentences), features indicating utterance HegBR features (confidence,
language model probability), and various dialogue feat(irevow, 1998; Hirschberg
et al., 2001; Bulyko et al., 2005).

In addition to correction detection, a conversational 4@¢so needs appropriate
control or update rules in the dialogue manager (Bulyko.e2al05).

24.5.4 Generating Dialogue Acts: Confirmation and Rejectin

Deciding which dialogue acts to generate has received nagshdttention than dia-
logue act interpretation. Stent (2002) is one recent moiddiadogue act generation in
the TRIPS system (Allen et al., 2001), based on Conversatits (page 32) and the
BDI model to be described in Sec. 24.7. Stent uses a set oteipdlas for content
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Turn Corr
Type

S Onwhich day of the week do you want to leave?

S Sorry, | didn't hear anything from you. Please tell me yoepatture date

U Um tomorrow NA

S You can say the departure date. For example, you can say’tod'tomorrow’.

Or you can say 'Monday’, 'Tuesday’, 'Wednesday'...
U Tomorrow REP
S You can say the departure date. For example, you can say’tod'tomorrow’.

Or you can say 'Monday’, 'Tuesday’, 'Wednesday'...

U Saturday PAR

S Do you want to leave on Saturday?

U Yes

S What time do you want to leave?

U Eighto'clock AM

S Do you want to leave around ten oclock p-m

U Eight o’clock OoMIT

S Do you want to leave around ten oclock p-m

U No OMIT

S  What time do you want to leave?

U Eighto'clock AM ADD
Figure 24.20 Dialogue fragment from the TOOT system labeled for coroectype,
from Swerts et al. (2000).

Cue Turn-taking acts signaled

um KEEP-TURN, TAKE-TURN, RELEASE-TURN

<lipsmack>, <click>, so, uh| KEEP-TURN, TAKE-TURN

you know, isn’t that so ASSIGN-TURN
Figure 24.21 Language used to perform turn-taking acts, from Stent (R002

planning. One such rule says that if a user has just releagetlitn, the system can
perform a TAKE-TURN act. Another rule says that if the systeas a problem-solving
need to summarize some information for the user, then itlshee the ASSERT con-
versation act with that information as the semantic confEiné content is then mapped
into words using the standard techniques of natural langgegeration systems (see
e.g., Reiter and Dale (2000)) After an utterance is genérdtee information state
(discourse context) is updated with its words, syntactiecstire, semantic form, and
semantic and conversation act structure. We will sketctein 34.7 some of the issues
in modeling and planning that make generation a tough ong@isearch effort.

Stent showed that a crucial issue in dialogue generatidrmltesn’t occur in mono-
logue text generation is turn-taking acts. Fig. 24.21 shewwee example of the turn-
taking function of various linguistic forms, from her labe& of conversation acts in
the Monroe corpus.

A focus of much work on dialogue act generation is the taskfafemerating the
confirmation andrejection acts discussed in Sec. 24.2.5. Because this task is often
solved by probabilistic methods, we’ll begin this discosshere, but continue it in the
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following section.

For example, while early dialogue systems tended to fix tloécehofexplicit ver-
susimplicit confirmation, recent systems treat the question of how téiromore like
a dialogue act generation task, in which the confirmaticatetyy is adaptive, changing
from sentence to sentence.

Various factors can be included in the information-state #ren used as features
to a classifier in making this decision:

ASR confidence: Theconfidencethat the ASR system assigns to an utterance can be
used by explicitly confirming low-confidence sentences (Bman et al., 1999;
San-Segundo et al., 2001; Litman et al., 1999; Litman and Pa®2). Recall
that we briefly defined confidence on pa&f&as a metric that the speech recog-
nizer can give to a higher-level process (like dialogueptiidgate how confident
the recognizer is that the word string that it returns is adgoee. Confidence is
often computed from the acoustic log-likelihood of the ratee (greater prob-
ability means higher confidence), but prosodic featuresatembe used in con-
fidence prediction. For example utterances preceded byelgrauses, or with
large FO excursions, or longer durations are likely to be@aisgnized (Litman
etal., 2000).

Error cost: Confirmation is more important if an error would be costlyugtexplicit
confirmation is common before actually booking a flight or ingumoney in an
account (Kamm, 1994; Cohen et al., 2004).

A system can also choose tteject an utterance when the ASR confidence is so
low, or the best interpretation is so semantically ill-fa that the system can be
relatively sure that the user’s input was not recognized abgstems thus might have
a three-tiered level of confidence; below a certain confidehoeshold, an utterance
is rejected. Above the threshold, it is explicitly confirmdéithe confidence is even
higher, the utterance is implicitly confirmed.

Instead of rejecting or confirming entire utterances, it lddae nice to be able to
clarify only the parts of the utterance that the system didndlerstand. If a system can
assign confidence at a more fine-grained level than the otterat can clarify such

JEsiEicanon - individual elements vialarification subdialogues

Much of the recent work on generating dialogue acts has béhimwhe Markov

Decision Process framework, which we therefore turn to.next

24.6 MARKOV DECISIONPROCESSARCHITECTURE

One of the fundamental insights of the information-staggragach to dialogue architec-
ture is that the choice of conversational actions is dynaltyidependent on the current
information state. The previous section discussed hovegisd systems could change
confirmation and rejection strategies based on contexteXxample if the ASR or NLU
confidence is low, we might choose to do explicit confirmatidrtonfidence is high,
we might chose implicit confirmation, or even decide not tafgm at all. Using a
dynamic strategy lets us choose the action which maximimdeglie success, while
minimizing costs. This idea of changing the actions of aatjak system based on
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MARKOV DECISION
PROCESS

MDP

(24.27)

optimizing some kinds of rewards or costs is the fundamentaition behind model-
ing dialogue as Markov decision process This model extends the information-state
model by adding a probabilistic way of deciding on the praasions given the current
state.

A Markov decision process &WIDP is characterized by a set sfatesS an agent
can be in, a set ofictions A the agent can take, andraward r(a,s) that the agent
receives for taking an action in a state. Given these factarsan compute policy Tt
which specifies which actioa the agent should take when in a given s&tso as to
receive the best reward. To understand each of these comigome’ll need to look
at a tutorial example in which the state space is extremelyaed. Thus we'll return
to the simple frame-and-slot world, looking at a pedagdditBP implementation
taken from Levin et al. (2000). Their tutorial example is aa{Pand-Month” dialogue
system, whose goal is to get correct values of day and month tiwo-slot frame via
the shortest possible interaction with the user.

In principle, a state of an MDP could include any possibl@infation about the
dialogue, such as the complete dialogue history so far. dJsirch a rich model of
state would make the number of possible states extraoiljifenge. So a model of
state is usually chosen which encodes a much more limiteaf §gfiormation, such as
the values of the slots in the current frame, the most recgestipn asked to the user,
the users most recent answer, the ASR confidence, and so iotheHday-and-Month
example let’s represent the state of the system as the vafube two slotsday and
month If we assume a special initial stateand final states;, there are a total of 411
states (366 states with a day and month (counting leap yieastates with a month but
no day (d=0, m=1,2,...12), and 31 states with a day but no Im@nt0, d=1,2,...31)).

Actions of a MDP dialogue system might include generatingipalar speech acts,
or performing a database query to find out information. Fei@ay-and-Month exam-
ple, Levin et al. (2000) propose the following actions:

ag: a question asking for the day

am: a question asking for the month

agm: a question asking for both the day and the month

as: a final action submitting the form and terminating the digle

Since the goal of the system is to get the correct answer hatkhortest interaction,
one possible reward function for the system would integitatee terms:

R= —(Win; + WeNe +W¢ny)

The termn; is the number of interactions with the useg,is the number of errors,
n¢ is the number of slots which are filled (0, 1, or 2), andwseare weights.

Finally, a dialogue policyt specifies which actions to apply in which state. Con-
sider two possible policies: (1) asking for day and monttasafely, and (2) asking for
them together. These might generate the two dialogues simolig. 24.22.

In policy 1, the action specified for the no-date/no-monéhests to ask for a day,
while the action specified for any of the 31 states where we halay but not a month
is to ask for a month. In policy 2, the action specified for tloedate/no-month state
is to ask an open-ended questidvh(ich datg to get both a day and a month. The two
policies have different advantages; an open prompt cars leashorter dialogues but
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Policy 1 (directive)

i ? i ?
Which day.‘ d=D Which month? m Goodbye.

»{ d=D .
g sy »

d=0

m=0 "\ m=0 /

Cq =-3w; + 2pywg

Q
%n
[
LN

Policy 2 (open)

. What date? . Goodbye.

Cp = -2w; + 2powe

Figure 24.22  Two policies for getting a month and a day. After Levin et 2DQ0).

is likely to cause more errors, while a directive prompt @asdr but less error-prone.
Thus the optimal policy depends on the values of the weighend also on the error
rates of the ASR component. Let’s caly the probability of the recognizer making
an error interpreting a month or a day value after a diregiireenpt. The (presumably
higher) probability of error interpreting a month or day welafter an open prompt
we'll call po. The reward for the first dialogue in Fig. 24.22 is tht@ x wi + 2 x pg x
We. The reward for the second dialogue in Fig. 24.22Bx w; + 2 X po X We. The
directive prompt policy, policy 1, is thus better than pglizwhen the improved error
rate justifies the longer interaction, i.e., whg— po > 2%9

In the example we've seen so far, there were only two posaittiens, and hence
only a tiny number of possible policies. In general, the namtf possible actions,
states, and policies is quite large, and so the problem oiffinithe optimal policyrt*
is much harder.

Markov decision theory together with classical reinforesmtlearning gives us a
way to think about this problem. First, generalizing frong.R24.22, we can think of
any particular dialogue as a trajectory in state space:

(24.28) S1 —alrl  —a2r2S3 —a3r3 -

The best policyt is the one with the greatest expected reward over all tr@jiest
What is the expected reward for a given state sequence? Tétecoromon way to as-
DISCOUNTER  sign utilities or rewards to sequences is to diseounted rewards Here we compute
the expected cumulative rewa@lof a sequence as a discounted sum of the utilities of
the individual states:

(24.29) Q([s0,@0,51,a1,%2,82--]) = R(S0,80) + YR(S1,a1) + Y’R(S2, @) + - -,

The discount factoy is a number between 0 and 1. This makes the agent care
more about current rewards than future rewards; the moted reward, the more
discounted its value.

Given this model, it is possible to show that the expectedutative reward)(s, a)
for taking a particular action from a particular state isfibllowing recursive equation

eLLmanequation called theBellman equatiorn
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(24.30)

VALUE ITERATION

Q(s,a) =R(s,a) + VZ P(d]s,a) mang(s’, a)

What the Bellman equation says is that the expected cumeleward for a given
state/action pair is the immediate reward for the curreatiesplus the expected dis-
counted utility of all possible next statds weighted by the probability of moving to
that states’, and assuming once there we take the optimal action

Equation (24.30) makes use of two parameters. We need a mbB&|s a), i.e.
how likely a given state/action pa(s, a) is to lead to a new stat. And we also need
a good estimate dR(s,a). If we had lots of labeled training data, we could simply
compute both of these from labeled counts. For example, lafibled dialogues, we
could simply count how many times we were in a given sgtend out of that how
many times we took actioa to get to states, to estimateP(s/|s,a). Similarly, if we
had a hand-labeled reward for each dialogue, we could buriddel ofR(s, a).

Given these parameters, it turns out that there is an weratgorithm for solving
the Bellman equation and determining proper Q valuesydhge iteration algorithm
(Sutton and Barto, 1998; Bellman, 1957). We won't preseisthikere, but see Chapter
17 of Russell and Norvig (2002) for the details of the aldoritas well as further
information on Markov Decision Processes.

How do we get enough labeled training data to set these p&eesfieThis is espe-
cially worrisome in any real problem, where the number ofestais extremely large.
Two methods have been applied in the past. The first is tow#réfand-tune the states
and policies so that there are a very small number of statépalicies that need to
be set automatically. In this case we can build a dialogugesysvhich explore the
state space by generating random conversations. Prdleshiian then be set from this
corpus of conversations. The second is to build a simulased urhe user interacts
with the system millions of times, and the system learns thie $ransition and reward
probabilities from this corpus.

The first approach, using real users to set parameters in h Sate space, was
taken by Singh et al. (2002). They used reinforcement legrtd make a small set of
optimal policy decisions. Their NJFun system learned tooskactions which varied
the initiative (system, user, or mixed) and the confirmasivategy (explicit or none).
The state of the system was specified by values of 7 featucksding which slot in
the frame is being worked on (1-4), the ASR confidence valdg) (Glow many times
a current slot question had been asked, whether a restriotinon-restrictive gram-
mar was used, and so on. The result of using only 7 featurdésangtmall number of
attributes resulted in a small state space (62 states). &atd had only 2 possible
actions (system versus user initiative when asking quastiexplicit versus no con-
firmation when receiving answers). They ran the system veitth users, creating 311
conversations. Each conversation had a very simple birevgnd function; 1 if the
user completed the task (finding specified museums, thesitestasting in the New
Jersey area), 0 if the user did not. The system successfobléa good dialogue pol-
icy (roughly, start with user initiative, then back of totet mixed or system initiative
when reasking for an attribute; confirm only at lower confickewalues; both initiative
and confirmation policies, however, are different for diffiet attributes). They showed
that their policy actually was more successful based omuarbjective measures than
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many hand-designed policies reported in the literature.

The simulated user strategy was taken by Levin et al. (200@heir MDP model
with reinforcement learning in the ATIS task. Their simeldtuser was a generative
stochastic model that given the system'’s current state @iwha, produces a frame-slot
representation of a user response. The parameters of thiagdthuser were estimated
from a corpus of ATIS dialogues. The simulated user was tised to interact with the
system for tens of thousands of conversations, leading tppimal dialogue policy.

While the MDP architecture offers a powerful new way of maugdialogue be-
havior, it relies on the problematic assumption that theéesysactually knows what
state it is in. This is of course not true in a number of ways; giistem never knows
the true internal state of the user, and even the state inidh@yde may be obscured
by speech recognition errors. Recent attempts to relaxaggamption have relied on
Partially Observable Markov Decision Processes, or POMB&®setimes pronounced
‘pom-deepeez’). In a POMDP, we model the user output as aerebd signal gen-
erated from yet another hidden variable. There are alsolgmzbwith MDPs and
POMDPs related to computational complexity and simulatiwhich aren't reflective
of true user behavior; See the end notes for references.

24.7 ADVANCED: PLAN-BASED DIALOGUE AGENTS

BDI

One of the earliest models of conversational agent behaat also one of the most
sophisticated, is based on the use of Al planning technidt@example, the Rochester
TRIPS agent (Allen et al., 2001) simulates helping with egeacy management, plan-
ning where and how to supply ambulances or personnel in alaietbemergency sit-
uation. The same planning algorithms that reason how torgat@ulance from point
A to point B can be applied to conversation as well. Since comination and conver-
sation are just special cases of rational action in the wtribse actions can be planned
like any other. So an agent seeking to find out some informatim come up with the
plan of asking the interlocutor for the information. An aglbearing an utterance can
interpret a speech act by running the planner ‘in reversanginference rules to infer
what plan the interlocutor might have had to cause them tovbeag they said.

Using plans to generate and interpret sentences in thisegayre that the planner
have good models of itseliefs desires andintentions (BDI), as well as those of the
interlocutor. Plan-based models of dialogue are thus aéterred to a8DIl models.
BDI models of dialogue were first introduced by Allen, Cohearrault, and their col-
leagues and students in a number of influential papers skydvaw speech acts could
be generated (Cohen and Perrault, 1979), and interpregxda(it and Allen, 1980;
Allen and Perrault, 1980). At the same time, Wilensky (198&pduced plan-based
models of understanding as part of the task of interpretioges. In another related
line of research, Grosz and her colleagues and studenteshwow using similar no-
tions of intention and plans allowed ideas of discoursecsting and coherence to be
applied to dialogue.
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ACTION SCHEMA

24.7.1 Plan-Inferential Interpretation and Production

Let’s first sketch out the ideas of plan-based compreheraimhproduction. How
might a plan-based agent act as the human travel agent tostiauglé sentence,Gn
the dialogue repeated below?

Ci1: I need to travel in May.
Ai1: And, what day in May did you want to travel?
C,: OK uh | need to be there for a meeting that’s from the 12th ¢olthth.

The Gricean principle of Relevance can be used to infer tieatlient’s meeting is
relevant to the flight booking. The system may know that oe@ndition for having
a meeting (at least before web conferencing) is being atlwepvhere the meeting is
in. One way of being at a place is flying there, and booking affiga precondition for
flying there. The system can follow this chain of inferendsdwcing that user wants
to fly on a date before the 12th.

Next, consider how our plan-based agent could act as the ihtraael agent to
produce sentencesAn the dialogue above. The planning agent would reason that i
order to help a client book a flight it must know enough infotimraabout the flight to
book it. It reasons that knowing the month (May) is insuffitieformation to specify
a departure or return date. The simplest way to find out thdetedate information is
to ask the client.

In the rest of this section, we'll flesh out the sketchy owttirof planning for un-
derstanding and generation using Perrault and Allen’s édefinitions of belief and
desire in the predicate calculus. Reasoning about beligfie with a number of axiom
schemas inspired by Hintikka (1969). We'll represe@titlieves the propositioR”
as the two-place predicaB{S P), with axiom schemas such 8A,P) AB(A, Q) =
B(A,PAQ). Knowledge is defined as “true beliefd knows that Rvill be represented
askKNOW(S,P), defined as KNOWS,P) = PAB(S P).

The theory of desire relies on the predicate WANT. If an agamantsP to be true,
we sayWANT(S,P), or W(S P) for short. P can be a state or the execution of some
action. Thus if ACT is the name of an actiol{S,ACT(H)) means thaSwantsH to
do ACT. The logic of WANT relies on its own set of axiom schemust like the logic
of belief.

The BDI models also require an axiomatization of actions @ladning; the sim-
plest of these is based on a setagtion schema& based on the simple Al planning
model STRIPS (Fikes and Nilsson, 1971). Each action schema et of parameters
with constraintsabout the type of each variable, and three parts:

e Preconditions:Conditions that must already be true to perform the action.

e Effects:Conditions that become true as a result of performing thieract

e Body: A set of partially ordered goal states that must be achiavgeiforming
the action.

In the travel domain, for example, the action of agatitooking flightF 1 for clientC
might have the following simplified definition:
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BOOK-FLIGHT(A,C,F) :

Constraints:  Agent(A) Flight(F) A Client(C)

Precondition: Know(A,depart-date(F)) A Know(A,depart-time(F))
A Know(A,origin(F)) A Know(A, flight-type(F))
A Know(A,destination(F)) A Has-Seats(F) A
W(C,(BOOK(A,C,F)A ...

Effect: Flight-Booked(A,C,F)

Body: Make-Reservation(A,F,C)

This same kind of STRIPS action specification can be usedpfeech acts. IN-
FORM is the speech act of informing the hearer of some préipasbased on Grice’s
(1957) idea that a speaker informs the hearer of somethimglytey causing the hearer
to believe that the speaker wants them to know something:

INFORM(S,H,P):
Constraints:  Speaker(8)Hearer(H)A Proposition(P)
Precondition: Know(S,P) W(S, INFORM(S, H, P))
Effect: Know(H,P)
Body: B(H,W(S,Know(H,P)))

REQUEST is the directive speech act for requesting the héaneerform some
action:

REQUEST(S,H,ACT):
Constraints:  Speaker(8)Hearer(H)A ACT(A) A H is agent of ACT
Precondition: W(S,ACT(H))
Effect: W(H,ACT(H))
Body: B(H,W(S,ACT(H)))

Let's now see how a plan-based dialogue system might irgetipe sentence:
C>: I need to be there for a meeting that's from the 12th to thé.15t

We'll assume the system has the BOOK-FLIGHT plan mentiortsale. In ad-
dition, we’ll need knowledge about meetings and gettinchent, in the form of the
MEETING, FLY-TO, and TAKE-FLIGHT plans, sketched broadlglbw:

MEETING(P,L,T1,T2):
Constraints:  Person(P) Location (L)A Time (T1)A Time (T2)A Time (TA)
Precondition: At (P, L, TA)
Before (TA, T1)
Body:

FLY-TO(P, L, T):
Constraints: Person(R)Location (L)A Time (T)
Effect: At(P, L, T)
Body: TAKE-FLIGHT(P, L, T)
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TAKE-FLIGHT(P, L, T):
Constraints:  Person(R) Location (L)A Time (T) A Flight (F) A Agent (A)
Precondition: BOOK-FLIGHT (A, P, F)
Destination-Time(F) =T
Destination-Location(F) = L
Body:

Now let's assume that an NLU module returns a semantics éocltbnt’s utterance
which (among other things) includes the following semaatintent:

MEETING (P, ?L, T1, T2)
Constraints: P = Client T1 = May 12A T2 = May 15

Our plan-based system now has two plans established, onelMEEplan from
this utterance, and one BOOK-FLIGHT plan from the previotisrance. The system
implicitly uses the Gricean Relevance intuition to try taoect them. Since BOOK-
FLIGHT is a precondition for TAKE-FLIGHT, the system may lotpesize (infer) that
the user is planning a TAKE-FLIGHT. Since TAKE-FLIGHT is ihd body of FLY-
TO, the system further infers a FLY-TO plan. Finally, sinbe effect of FLY-TO is
a precondition of the MEETING, the system can unify each effiteople, locations,
and times of all of these plans. The result will be that theesysknows that the client
wants to arrive at the destination before May 12th.

Let’s turn to the details of our second example:

Ci: I need to travel in May.
Ai1: And, what day in May did you want to travel?

How does a plan-based agent know to ask questigh Ahis knowledge comes
from the BOOK-FLIGHT plan, whose preconditions were that #iyent know a vari-
ety of flight parameters including the departure date ané,tionigin and destination
cities, and so forth. Utterance €ontains the origin city and partial information about
the departure date; the agent has to request the rest. Apkad agent would use an
action schema like REQUEST-INFO to represent a plan fomaskiformation ques-
tions (simplified from Cohen and Perrault (1979)):

REQUEST-INFO(A,C,1):
Constraints:  Agent(A) Client(C)
Precondition: Know(C,I)
Effect: Know(A,I)
Body: B(C,W(A,Know(A,l)))

Because the effects of REQUEST-INFO match each precondifiBOOK-FLIGHT,
the agent can use REQUEST-INFO to achieve the missing irgftom.

24.7.2 The Intentional Structure of Dialogue

In Sec.??we introduced the idea that the segments of a discourselatedéycoher-
ence relationdike Explanation or Elaboration which describe thaformational re-
lation between discourse segments. The BDI approach tauatte interpretation gives



Section 24.7.

Advanced: Plan-based Dialogue Agents 45

INTENTIONAL
STRUCTURE

DISCOURSE
PURPOSE

DISCOURSE
SEGMENT PURPOSE

rise to another view of coherence which is particularlyvete for dialogue, thinten-
tional approach (Grosz and Sidner, 1986). According to this ambroshat makes a
dialogue coherent is ifstentional structure, the plan-based intentions of the speaker
underlying each utterance.

These intentions are instantiated in the model by assurhaigeich discourse has
an underlying purpose held by the person who initiates ltedahe discourse pur-
pose(DP). Each discourse segment within the discourse has aspmnding purpose,
a discourse segment purposéDSP), which has a role in achieving the overall DP.
Possible DPs/DSPs include intending that some agent indgmelform some physical
task, or that some agent believe some fact.

As opposed to the larger sets of coherence relations usatbimiational accounts
of coherence, Grosz and Sidner propose only two such refatidominance and
satisfaction-precedenceDSPR dominates DSPif satisfying DSR is intended to pro-
vide part of the satisfaction of DgPDSR satisfaction-precedes DR DSP; must
be satisfied before DSP

Ci: I needto travel in May.

A1 And, what day in May did you want to travel?

Cy: OKuh I need to be there for a meeting that's from the 12th ¢olthth.

A2:  And you're flying into what city?

Cs:  Seattle.

As:  And what time would you like to leave Pittsburgh?

C4: Uh hmm | don't think there’s many options for non-stop.

Az Right. There’s three non-stops today.

Cs:  What are they?

As:  The first one departs PGH at 10:00am arrives Seattle at 1RedStime. The
second flight departs PGH at 5:55pm, arrives Seattle at 8pnd the las
flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

Cs:  OK I'll take the 5ish flight on the night before on the 11th.

Ag:  On the 11th? OK. Departing at 5:55pm arrives Seattle at 8@, Air flight
115.

C7Z OK.

Figure 24.23 A fragment from a telephone conversation between a cliehtaf@ a
travel agent (A) (repeated from Fig. 24.4).

Consider the dialogue between a client (C) and a travel agdnthat we saw
earlier, repeated here in Fig. 24.23. Collaboratively,dhker and agent successfully
identify a flight that suits the caller’s needs. Achievingstfoint goal requires that
a top-level discourse intention be satisfied, listed as lbviaein addition to several
intermediate intentions that contributed to the satigaodf 11, listed as 12-15:

I11: (Intend C (Intend A (A find a flight for C)))

12: (Intend A (Intend C (Tell C A departure date)))
I13: (Intend A (Intend C (Tell C A destination city)))
14: (Intend A (Intend C (Tell C A departure time)))



46 Chapter 24. Dialogue and Conversational Agents

I5: (Intend C (Intend A (A find a nonstop flight for C)))

Intentions 12—15 are all subordinate to intention |1, ag/tivere all adopted to meet pre-
conditions for achieving intention 11. This is reflected lire tdominance relationships
below:

|11 dominates 12\ 11 dominates I3\ 11 dominates 147 |1 dominates 15

Furthermore, intentions 12 and I3 needed to be satisfiedrééfibention 15, since the
agent needed to know the departure date and destinatiodentorstart listing nonstop
flights. This is reflected in the satisfaction-precedentzionships below:

12 satisfaction-precedes I513 satisfaction-precedes 15

The dominance relations give rise to the discourse strectepicted in Figure 24.24.
Each discourse segment is numbered in correspondencéwithtention number that
serves as its DP/DSP.

DS1

C, DS, DS3 DSs DSs

A1—C A—-C3 Az Cy4—C

Figure 24.24  Discourse Structure of the Flight Reservation Dialogue

Intentions and their relationships give rise to a coheréstalirse based on their
role in the overalplan that the caller is inferred to have. We assume that the caller
and agent have the plan BOOK-FLIGHT described on page 43.dlan requires that
the agent know the departure time and date and so on. As wesdit above, the
agent can use the REQUEST-INFO action scheme from page 44 toauser for this
information.

SUBDIALOGUES Subsidiary discourse segments are also calldatlialogues DS2 and DS3 in par-
ticular areinformation-sharing (Chu-Carroll and Carberry, 199B)owledge precon-
dition subdialogues (Lochbaum et al., 1990; Lochbaum, 1998)eshey are initiated
by the agent to help satisfy preconditions of a higher-lgeall.

Algorithms for inferring intentional structure in dialogwork similarly to algo-
rithms for inferring dialogue acts, either employing thelBibdel (e.g., Litman, 1985;
Grosz and Sidner, 1986; Litman and Allen, 1987; Carberr90] ®assonneau and Lit-
man, 1993; Chu-Carroll and Carberry, 1998), or machinenlagrarchitectures based
on cue phrases (Reichman, 1985; Grosz and Sidner, 198&hHe&sy and Litman,
1993), prosody (Hirschberg and Pierrehumbert, 1986; GaoszHirschberg, 1992;
Pierrehumbert and Hirschberg, 1990; Hirschberg and Nakdt@96), and other cues.

24.8 SUMMARY

Conversational agentsare a crucial speech and language processing applicatbn th
are already widely used commercially. Research on thesgsgdies crucially on an
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understanding of human dialogue or conversational pregtic

e Dialogue systems generally have 5 components: speechni@ioognatural lan-
guage understanding, dialogue management, natural lgaggeneration, and
speech synthesis. They may also have a task manager spetdtliie task do-
main.

e Dialogue architectures for conversational agents inclinite-state systemgame-
basedproduction systems, and advanced systems such as infon¥sttite, Markov
Decision Processes, aBd| (belief-desire-intention) models.

e Turn-taking, grounding, conversational structure, ircglure, and initiative are
crucial human dialogue phenomena that must also be dehlimébnversational
agents.

e Speaking in dialogue is a kind of action; these acts arenexddp as speech acts
or dialogue acts Models exist for generating and interpreting these acts.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Early work on speech and language processing had verydittighasis on the study
of dialogue. The dialogue manager for the simulation of tampoid agent PARRY
(Colby et al., 1971), was a little more complex. Like ELIZAwas based on a pro-
duction system, but where ELIZAs rules were based only @wtlords in the user’s
previous sentence, PARRY'’s rules also rely on global végmimdicating its emotional
state. Furthermore, PARRY'’s output sometimes makes useriptdike sequences of
statements when the conversation turns to its delusions.example, if PARRY’s
angervariable is high, he will choose from a set of “hostile” outuf the input men-
tions his delusion topic, he will increase the value offe@r variable and then begin
to express the sequence of statements related to his delusio

The appearance of more sophisticated dialogue manageitedwlae better un-
derstanding of human-human dialogue. Studies of the ptiegenf human-human
dialogue began to accumulate in the 1970’s and 1980’s. Thwélsation Analy-
sis community (Sacks et al., 1974; Jefferson, 1984; Sclfed®82) began to study
the interactional properties of conversation. Grosz's7f)issertation significantly
influenced the computational study of dialogue with itsadtrction of the study of
dialogue structure, with its finding that “task-orientedldgues have a structure that
closely parallels the structure of the task being perforhfpd 27), which led to her
work on intentional and attentional structure with Sidrierchbaum et al. (2000) is a
good recent summary of the role of intentional structureiatodjue. The BDI model
integrating earlier Al planning work (Fikes and Nilsson 719 with speech act theory
(Austin, 1962; Gordon and Lakoff, 1971; Searle, 1975a) was fiorked out by Co-
hen and Perrault (1979), showing how speech acts could rated, and Perrault and
Allen (1980) and Allen and Perrault (1980), applying theraagh to speech-act inter-
pretation. Simultaneous work on a plan-based model of wtaleding was developed
by Wilensky (1983) in the Schankian tradition.
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CLARISSA

Probabilistic models of dialogue act interpretation wartoimed by linguistic
work which focused on the discourse meaning of prosody (8dd.éberman, 1975;
Pierrehumbert, 1980), by Conversation Analysis work onragcammar (e.g. Good-
win, 1996), by work such as Hinkelman and Allen (1989), whoveed how lexical and
phrasal cues could be integrated into the BDI model, andwweked out at a number
of speech and dialogue labs in the 1990’s (Waibel, 1988; BatiZue, 1992; Kompe
et al., 1993; Nagata and Morimoto, 1994; Woszczyna and Wall®®4; Reithinger
et al., 1996; Kita et al., 1996; Warnke et al., 1997; Chu-Gl§ri998; Stolcke et al.,
1998; Taylor et al., 1998; Stolcke et al., 2000).

Modern dialogue systems drew on research at many diffeadastih the 1980's
and 1990’s. Models of dialogue as collaborative behaviaeviretroduced in the late
1980’s and 1990’s, including the ideas of common groundriCiad Marshall, 1981),
reference as a collaborative process (Clark and Wilke®$ith986), and models of
joint intentions (Levesque et al., 1990), asthared plans(Grosz and Sidner, 1980).
Related to this area is the study iaftiative in dialogue, studying how the dialogue
control shifts between participants (Walker and Whittalk&90; Smith and Gordon,
1997; Chu-Carroll and Brown, 1997).

A wide body of dialogue research came out of AT&T and Bell Ligtories around
the turn of the century, including much of the early work on MDbialogue systems
as well as fundamental work on cue-phrases, prosody, aedticj and confirmation.
Work on dialogue acts and dialogue moves drew from a numbsowfces, including
HCRC'’s Map Task (Carletta et al., 1997b), and the work of JaAien and his col-
leagues and students, for example Hinkelman and Allen (1 $8@®wing how lexical
and phrasal cues could be integrated into the BDI model cfédpacts, and Traum
(2000), Traum and Hinkelman (1992), and from Sadek (1991).

Much recent academic work in dialogue focuses on multimapplications (John-
ston et al., 2007; Niekrasz and Purver, 2006, inter aliajhennformation-state model
(Traum and Larsson, 2003, 2000) or on reinforcement legraiinhitectures including
POMDPs (Roy et al., 2000; Young, 2002; Lemon et al., 2006{iavils and Young,
2005, 2000). Work in progress on MDPs and POMDPs focusesmipgtational com-
plexity (they currently can only be run on quite small donsainth limited numbers of
slots), and on improving simulations to make them more réfleof true user behav-
ior. Alternative algorithms include SMDPs (Cuayahuitbét 2007). See Russell and
Norvig (2002) and Sutton and Barto (1998) for a general ohition to reinforcement
learning.

Recent years have seen the widespread commercial use afagatystems, often
based on VoiceXML. Some more sophisticated systems haveats deployment. For
exampleClarissa, the first spoken dialogue system used in space, is a speatied
procedure navigator that was used by astronauts on thentitenal Space Station
(Rayner and Hockey, 2004; Aist et al., 2002). Much researchdes on more mundane
in-vehicle applications in cars Weng et al. (20@&ger alia). Among the important
technical challenges in embedding these dialogue systeresliapplications are good
techniques for endpointing (deciding if the speaker is dalkéng) (Ferrer et al., 2003)
and for noise robustness.

Good surveys on dialogue systems include Harris (2005)e@at al. (2004),
McTear (2002, 2004), Sadek and De Mori (1998), and the diedathapter in Allen
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(1995).

EXERCISES

24.1 List the dialogue act misinterpretations in tkiého’s On Firstroutine at the
beginning of the chapter.

24.2 Write a finite-state automaton for a dialogue manager focking your bank
balance and withdrawing money at an automated teller machin

24.3 Dispreferred responses (for example turning down a rejjaestusually sig-
naled by surface cues, such as significant silence. Try tizentite next time you
or someone else utters a dispreferred response, and write ithe@ utterance. What
are some other cues in the response that a system might us¢etd d dispreferred
response? Consider non-verbal cues like eye-gaze and lestiyres.

24.4 When asked a question to which they aren’t sure they knowribeer, people
display their lack of confidence via cues that resemble atispreferred responses.
Try to notice some unsure answers to questions. What are ebthe cues? If you
have trouble doing this, read Smith and Clark (1993) anerispecifically for the cues
they mention.

24.5 Build a VoiceXML dialogue system for giving the current timeund the world.
The system should ask the user for a city and a time format ¢24, letc) and should
return the current time, properly dealing with time zones.

24.6 Implement a small air-travel help system based on text inpldur system

should get constraints from the user about a particulartflight they want to take,
expressed in natural language, and display possible flayhes screen. Make simpli-
fying assumptions. You may build in a simple flight databasgon may use a flight
information system on the web as your backend.

24.7 Augment your previous system to work with speech input viec®&ML. (or
alternatively, describe the user interface changes youditave to make for it to work
via speech over the phone). What were the major differences?

24.8 Design a simple dialogue system for checking your email d¢ivertelephone.
Implement in VoiceXML.

24.9 Test your email-reading system on some potential usersosghsome of the
metrics described in Sec. 24.4.2 and evaluate your system.
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