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| am the very model of a modern Major-General,

I've information vegetable, animal, and mineral,

| know the kings of England, and | quote the fights historical
From Marathon to Waterloo, in order categorical...

Gilbert and SullivanPirates of Penzance

Imagine that you are an analyst with an investment firm that tracks airlinksstoc
You're given the task of determining the relationship (if any) between aidme
nouncements of fare hikes and the behavior of their stocks on the follayeng
Historical data about stock prices is easy to come by, but what aboutftrenax
tion about airline announcements? To do a reasonable job on this taskpybadi w
need to know at least the name of the airline, the nature of the proposciikar
the dates of the announcement and possibly the response of other aifaras
nately, this information resides in archives of news articles reporting ¢inegsr
actions, as in the following recent example.

Citing high fuel prices, United Airlines said Friday it haxreased fares by
$6 per round trip on flights to some cities also served by levest carriers.
American Airlines, a unit of AMR Corp., immediately matchdte move,
spokesman Tim Wagner said. United, a unit of UAL Corp., sh&lincrease
took effect Thursday and applies to most routes where it eegpagainst
discount carriers, such as Chicago to Dallas and Denvernd-&mcisco.

Of course, distilling information like names, dates and amounts from natu-
rally occurring text is a non-trivial task. This chapter presents a sefteshniques
that can be used to extract limited kinds of semantic content from text. This pro
cess ofinformation extraction (IE) turns the unstructured information embedded
in texts into structured data. More concretely, information extraction is antefé
way to to populate the contents of a relational database. Once the information is
encoded formally, we can apply all the capabilities provided by databatensy,
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statistical analysis packages and other forms of decision support systaddress
the problems we're trying to solve.

As we proceed through this chapter, we’ll see that robust solutionsgmli
lems are actually clever combinations of techniques we've seen earlier indke b
In particular, the finite-state methods described in Chs. 2 and 3, the jlistiab
models introduced in Chs. 4 through 6 and the syntactic chunking methaods fro
Ch. 13 form the core of most current approaches to information extradiefore
diving into the details of how these techniques are applied, let’s quickly inted
the major problems in IE and how they can be approached.

The first step in most IE tasks is to detect and classify all the proper names
mentioned in a text — a task generally referred tonamed entity recognition
(NER). Not surprisingly, what constitutes a proper name and the partgchame
used to classify them is application-specific. Generic NER systems tend to fo-
cus on finding the names of people, places and organizations that are maentio
in ordinary news texts; practical applications have also been built to datent-
thing from the names of genes and proteins (Settles, 2005) to the namdiegé co
courses (McCallum, 2005).

Our introductory example contains 13 instances of proper names, whith we
refer to amamed entity mentions which can be classified as either organizations,
people, places, times or amounts.

Having located all of the mentions of named entities in a text, it is useful
to link, or cluster, these mentions into sets that correspond to the entities behind
the mentions. This is the task ofference resolution which we introduced in
Ch. 21, and is also an important component in IE. In our sample text, we would
like to know that theJnited Airlinesmention in the first sentence and tbaited
mention in the third sentence refer to the same real world entity. This general
reference resolution problem also includes anaphora resolution ds@Eaiem.

In this case, determining that the two use# oéfer toUnited AirlinesandUnited
respectively.

The task ofrelation detection and classificationis to find and classify se-
mantic relations among the entities discovered in a given text. In most practical
settings, the focus of relation detection is on small fixed sets of binary redation
Generic relations that appear in standard system evaluations include family,
ployment, part-whole, membership, and geospatial relations. The relatiec- de
tion and classification task is the one that most closely corresponds to the pro
lem of populating a relational database. Relation detection among entities is also
closely related to the problem of discovering semantic relations among werds in
troduced in Ch. 20.

Our sample text contains 3 explicit mentions of generic relatibimtedis a
part of UAL, American Airlinedss a part ofAMR andTim Wagnelis an employee
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of American Airlines Domain-specific relations from the airline industry would
include the fact thatynited servesChicago, Dallas, DenveandSan Francisco

In addition to knowing about the entities in a text and their relation to one
another, we might like to find and classify the events in which the entities are
participating; this is the problem advent detection and classification In our
sample text, the key events are the fare increadgredand the ensuing increase
by American In addition, there are several events reporting these main events as
indicated by the two uses sfidand the use ofite. As with entity recognition,
event detection brings with it the problem of reference resolution; we tosfiegure
out which of the many event mentions in a text refer to the same event. In our
running example, the events referred tdtees moveandthe increasen the second
and third sentences are the same asrtbeeasein the first sentence.

The problem of figuring out when the events in a text happened and how
they relate to each other in time raises the twin problentemporal expression
detectionandtemporal analysis Temporal expression detection tells us that our
sample text contains the temporal expressibriday and Thursday Temporal
expressions include date expressions such as days of the week, nihamrtidhesy's,
etc., as well as relative expressions including phrasestkedays from nover
next year They also include expressions for clock times suchasor 3:30PM

The overall problem ofemporal analysisis to map temporal expressions
onto specific calendar dates or times of day and then to use those times to situate
events in time. Itincludes the following subtasks.

e Fixing the temporal expressions with respect to an anchoring date or time,
typically the dateline of the story in the case of news stories;

e Associating temporal expressions with the events in the text;
e Arranging the events into a complete and coherent timeline.

In our sample text, the temporal expressiénsay and Thursdayshould be
anchored with respect to the dateline associated with the article itself. We also
know thatFriday refers to the time of United’s announcement, ahdrsdayrefers
to the time that the fare increase went into effect (i.e. the Thursday immediately
preceding the Friday). Finally, we can use this information to produce a timeline
where United’s announcement follows the fare increase and Amerigan®ince-
ment follows both of those events. Temporal analysis of this kind is usefigany
any NLP application that deals with meaning, including question answering, su
marization and dialogue systems.

Finally, many texts describe stereotypical situations that recur with some fre-
quency in the domain of interest. The taskamplate-filling is to find documents
that evoke such situations and then fill the slots in templates with appropriate ma-
terial. These slot-fillers may consist of text segments extracted directlytiiem
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text, or they may consist of concepts that have been inferred fromlesxreats via
some additional processing (times, amounts, entities from an ontology, etc.).

Our airline text is an example of this kind of stereotypical situation since
airlines are often attempting to raise fares and then waiting to see if competitors
follow along. In this situation, we can identifynitedas a lead airline that initially
raised its fares, $6 as the amount by which fares are being rdikadsdayas the
effective date for the fare increase, ahhericanas an airline that followed along.

A filled template from our original airline story might look like the following.

FARE-RAISEATTEMPT. |LEAD AIRLINE: UNITED AIRLINES
AMOUNT: $6
EFFECTIVEDATE: 2006-10-26
FOLLOWER: AMERICAN AIRLINES

The following sections will review current approaches to each of these p
lems in the context of generic news text. Sec. 22.5 then describes how rhany o
these problems arise in the context of procecessing biology texts.

22.1 NAMED ENTITY RECOGNITION

NAMED ENTITY

The starting point for most information extraction applications is the detectidn an
classification of the named entities in a text. Bymed entity, we simply mean
anything that can be referred to with a proper name. This procesmoéd entity
recognition refers to the combined task of finding spans of text that constitute
proper names and then classifying the entities being referred to accoodingjr
type.

Generic news-oriented NER systems focus on the detection of things like
people, places, and organizations. Figures 22.1 and 22.2 provide listsicdl
named entity types with examples of each. Specialized applications may be con-
cerned with many other types of entities, including commercial products,omeap
works of art, or as we’'ll see in Sec. 22.5, proteins, genes and otHeglual enti-
ties. What these applications all share is a concern with proper namegaitae-c
teristic ways that such names are signaled in a given language or gethiefized
set of categories of entities from a domain of interest.

By the way that names are signaled, we simply mean that names are denoted
in a way that sets them apart from ordinary text. For example, if we'rérdea
with standard English text, then two adjacent capitalized words in the middle of a
text are likely to constitute a name. Further, if they are are precedediya
followed by anMD, then it is likely that we're dealing with a person. In contrast,
if they are preceded barrived in or followed byNY then we’re probably dealing
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Type Tag | Sample Categories

People PER | Individuals, fictional characters, small groups

Organization ORG| Companies, agencies, political parties, religious groups, sports teams
Location Loc | Physical extents, mountains, lakes, seas

Geo-Political Entity GPE| Countries, states, provinces, counties

Facility FAC | Bridges, buildings, airports

Vehicles VEH | Planes, trains and automobiles

Figure 22.1  Alist of generic named entity types with the kinds of enstthey refer to.

Type

Example

People
Organization

Location
Geo-Paolitical Entity

Facility

Vehicles

Turingis often considered to be the father of modern computer science.
ThelPCC said it is likely that future tropical cyclones will become more
intense.

TheMt. Sanitadoop hike begins at the base $tinshine Canyon
Palo Altois looking at raising the fees for parking in the University Avenue
district

Drivers were advised to consider either ffegpan Zee Bridger theLin-
coln Tunnel.

The updatedMini Cooperretains its charm and agility.

Figure 22.2  Named entity types with examples.

with a location. Note that these signals include facts about the proper names a
well as their surrounding contexts.

The notion of a named entity is commonly extended to include things that

aren't entities per se, but nevertheless have practical importanceodrald char-

acteristic signatures that signal their presence; examples include dates nammed
i events and other kinds tdmporal expressionsas well as measurements, counts,
eoGMERCAL - prices and other kinds afumerical expressions We'll consider some of these

later

(with

in Sec. 22.3.
Let’s revisit the sample text introduced earlier with the named entities marked
TIME andMONEY used to to mark the temporal and monetary expressions).

Citing high fuel prices, prg United Airlines] said {;yg Friday] it has in-
creased fares byjoney $6] per round trip on flights to some cities also
served by lower-cost carriersgggAmerican Airlines], a unit of prg AMR
Corp.], immediately matched the move, spokesmtsTim Wagner] said.
[org United], a unit of prg UAL Corp.], said the increase took effegf e
Thursday] and applies to most routes where it competes stgdistount car-
riers, such asjJpc Chicago] to [ o Dallas] and [ oc Denver] to [ oc San
Francisco].
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Name Possible Categories

Washington Person, Location, Political Entity, Organization, Facility
Downing St. Location, Organization

IRA Person, Organization, Monetary Instrument

Louis Vuitton Person, Organization, Commercial Product

Figure 22.3 Common categorical ambiguities associated with variowsper
names.

[PERSWashington] was born into slavery on the farm of James Burroughs.
[org Washington] went up 2 games to 1 in the four-game series.
Blair arrived in | oc Washington] for what may well be his last state visit.
In June, Epe Washington] passed a primary seatbelt law.
The [Fac Washington] had proved to be a leaky ship, every passage | made...

Figure 22.4 Examples of type ambiguities in the use of the naNashington

As shown, this text contains 13 mentions of named entities including 5 organiza-
tions, 4 locations, 2 times, 1 person, and 1 mention of money. The 5 organ&ation
mentions correspond to 4 unique organizations, siticited and United Airlines

are distinct mentions that refer to the same entity.

22.1.1 Ambiguity in Named Entity Recognition

Named entity recognition systems face two types of ambiguity. The first arises
from the fact the same name can refer to different entities of the same tgpe. F
example,JFK can refer to the former president or his son. This is basically a
reference resolution problem and approaches to resolving this kinchlofaity

are discussed in Ch. 21.

The second source of ambiguity arises from the fact that identical named
entity mentions can refer to entities of completely different types. For example,
addition to peopleJFK might refer to the airport in New York, or to any nhumber of
schools, bridges and streets around the United States. Some exampleioithis
of cross-type confusion are given in Figures 22.3 and 22.4.

Notice that some of the ambiguities shown in Fig. 22.3 are completely coinci-
dental. There is no relationship between the financial and organizateembiithe
namelRA — they simply arose coincidentally as acronyms from different sources
(Individual Retirement Accourand International Reading Associatipn On the
other hand, the organizational usesv@shingtorand Downing Stare examples
of aLOCATION-FOR-ORGANIZATION metonymy, as discussed in Ch. 19.
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(22.1)

SHAPE

22.1.2 NER as Sequence Labeling

The standard way to approach the problem of named entity recognition is as a
word-by-word sequence labeling task, where the assigned tags edqatilr the
boundary and the type of any detected named entities. Viewed in this light, named
entity recognition looks very much like the problem of syntactic base-plectass-

ing. In fact, the dominant approach to NER is based on the same statistical se-
quence labeling techniques introduced in Ch. 5 for part of speech taggid

Ch. 13 for syntactic chunking.

In the sequence labeling approach to NER, classifiers are trained tdHabel
tokens in a text with tags that indicate the presence of particular kinds ofchame
entities. This approach makes use of the same styler€&ncoding employed for
syntactic chunking. Recall that in this schema @&nused to label tokengasideof
a chunk,B is used to mark the beginning of a chunk, amthbels tokens outside
any chunk of interest. Consider the following sentence from our rurexagple.

[orgAmerican Airlines], a unit of prg AMR Corp.], immediately matched the
move, spokesmarpErsTim Wagner] said.

This bracketing notation provides us with the extent and the type of the named
entities in this text. Fig. 22.5 shows a standard word-by-word 10B-styleriggg
that captures the same information. As with syntactic chunking, the tagsetdir
an encoding consists of 2 tags for each entity type being recognized, fodushe
O tag outside any entity, ¢2 x N) + 1 tags.

Having encoded our training data withB tags, the next step is to select a
set of features to associate with each input example (i.e. each of the tokeas
labeled in Fig. 22.5). These features should be plausible predictors cfabe
label and should be easily and reliably extractable from the source texdll et
such features can be based not only on characteristics of the tokeclasbified,
but also on the text in a surrounding window as well.

Fig. 22.6 gives a list of standard features employed in state-of-thexart
entity recognition systems. We've seen many of these features beforeciorttext
of part-of-speech tagging and syntactic base-phrase chunkingrabelvowever,
are particularly important in the context of NER. Thleapefeature includes the
usual upper case, lower case and capitalized forms, as well as mooeatéapat-
terns designed to capture expressions that make use of nunASerpnctuation
(Yahoo) and atypical case alternatioreB@ay. It turns out that this feature by itself
accounts for a considerable part of the success of NER systemsdbshEnews
text. And as we'll see in Sec. 22.5, shape features are also particularytanp
in recognizing names of proteins and genes in biological texts. Fig. 22cTilnes
some commonly employed shape feature values.

Thepresence in a named entity lisfeature can be very predictive. Extensive
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GAZETTEERS

Words Label
American |Borc
Airlines IORG
, O
a O
unit @]
of O
AMR Bora
Corp. lorG
, O
immediately O
matched |O
the O
move O
, O
spokesman|O
Tim Brers
Wagner lpERS
said @)

O

Figure 22.5 10B encoding for a sample sentence.

lists of names for all manner of things are available from both publicly available
and commercial sources. Lists of place hames, cglemtteers contain millions

of entries for all manner of locations along with detailed geographical, gexdad
political information? The United States Census Bureau provides extensive lists
of first names and surnames derived from its decadal census in thfeSih8lar

lists of corporations, commercial products, and all manner of things biabgil
mineral are also available from a variety of sources.

This feature is typically implemented as a binary vector with a bit for each
available kind of name list. Unfortunately, such lists can be difficult to creade a
maintain, and their usefulness varies considerably based on the namedlessty
It appears that gazetteers can be quite effective, while extensiveflEssons and
organizations are not nearly as beneficial (Mikheev et al., 1999).

Finally, features based on the presencpreflictive words and N-gramsin
the context window can also be very informative. When they are prgeecgding

1 www.geonames.org
2 www.census.gov
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Feature Explanation

Lexical items The token to be labeled

Stemmed lexical items Stemmed version of the target token

Shape The orthographic pattern of the target word

Character affixes Character level affixes of the target and surrounding words
Part of speech Part of speech of the word

Syntactic chunk labels Base phrase chunk label

Gazetteer or name list Presence of the word in one or more named entity lists
Predictive token(s) Presence of predictive words in surrounding text

Bag of words/Bag of N-granjs ~ Words and/or N-grams occurring in the surrounding context.

Figure 22.6

Features commonly used in training named entity recogngistems.

Shape Example
Lower cummings
Capitalized Washington
All caps IRA
Mixed case eBay
Capitalized initial with period H.
Ends in digit A9
Contains hyphen H-P

Figure 22.7  Selected shape features.

and following titles, honorifics, and other markers suctiRas, MD andInc. can
accurately indicate the class of an entity. Unlike name lists and gazetteess, thes
lists are relatively short and stable over time and are therefore easyalmdeand
maintain.

The relative usefulness of any of these features, or combination tofrésa
depends to a great extent on the application, genre, media, languatgxtad-
coding. For example, shape features, which are critical for Englisswigestexts,
are of little use with materials transcribed from spoken text via automatic speech
recognition, materials gleaned from informally edited sources such as aiabs
discussion forums, and for character-based languages like Chitnese vase in-
formation isn’t available. The set of features given in Fig. 22.6 shouletbre be
thought of as only a starting point for any given application.

Once an adequate set of features has been developed, they actedXn@m
a representative training set and encoded in a form appropriate to tnatlzine
learning-based sequence classifier. A standard way of encodirggffzares is to
simply augment our earlieoB scheme with more columns. Fig. 22.8 illustrates the
result of adding part-of-speech tags, syntactic base-phrase thgsmkand shape
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Features Label
American NNP Rp cap Borc
Airlines NNPS \p cap lora
, PUNC O punc @)
a DT Byp lower O
unit NN Inp lower O
of IN Bpp lower O
AMR NNP  Bnp upper Borc
Corp. NNP  k\p cappunc|lora
, PUNC O punc @]
immediately RB Bpvp lower o
matched VBD RBp lower O
the DT Bup lower O
move NN Np lower O
, PUNC O punc @)
spokesman NN Br lower O
Tim NNP Inp cap Bper
Wagner NNP  {p cap lpER
said VBD B,p lower O
PUNC O punc @)
Figure 22.8  Simple word-by-word feature encoding for NER.

information to our earlier example.

Given such a training set, a sequential classifier can be trained to lafel ne
sentences. As with part-of-speech tagging and syntactic chunking,rtdbtem
can be cast either as Markov-style optimization using HMMs or MEMMs as de-
scribed in Ch. 6, or as a multi-way classification task deployed as a slidingpwin
labeler as described in Ch. 13. Figure Fig. 22.9 illustrates the operatiatiofas
sequence labeler at the point where the tokemp. is next to be labeled. If we
assume a context window that includes the 2 preceding and following wbets
the features available to the classifier are those shown in the boxed &ye22.EO
summarizes the overall sequence labeling approach to creating a NER syste

22.1.3 Evaluating Named Entity Recognition

The familiar metrics ofrecall, precision and F; measureintroduced in Ch. 13

are used to evaluate NER systems. Recall that recall is the ratio of the number
of correctly labeled responses to the total that should have been lapedetsion

is the ratio of the number of correctly labeled responses to the total labelted. T
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3] . o | BORG ? | | §
IN NNP / pu% RB VBD
B_PP I_NP o B_ADVP B_VP
lower upper cap_punc punc lower lower
2. ] a[unit of | AMR | cComp. | ) | immediately | matched |[.-§
Figure 22.9 Named entity recognition as sequence labeling. The featavail-
able to the classifier during training and classificationthose in the boxed area.
Representative
Document Human Annotated
Collection Annotation Documents
A4
Feature
Extraction and
10B Encoding
A4
Train Classifiers to Perform
Multiway Sequence Training
MERGESE Labeling (MEMMs, CRFs, Data
SVMs, HMMs, etc.)
Figure 22.10 Basic steps in the statistical sequence labeling appraacteating
a nhamed entity recognition system.
F-measure (van Rijsbergen, 1975) provides a way to combine these tveomrega
into a single metric. The F-measure is defined as:
2
+1)PR
(22.2) 5 = (Bzi)
BP+R

The 3 parameter is used to differentially weight the importance of recall and pre-
cision, based perhaps on the needs of an application. Valygs-df favor recall,
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(22.3)

while values of3 < 1 favor precision. Whef = 1, precision and recall are equally
balanced; this is sometimes callggl; or justF;:

~ 2PR
TPR

As with syntactic chunking, it is important to distinguish the metrics used
to measure performance at the application level from those used duriniggra
At the application level, recall and precision are measured with respec tacth
tual named entities detected. On the other hand, wititbarencoding scheme the
learning algorithms are attempting to optimize performance at the tag level. Per-
formance at these two levels can be quite different; since the vast majotag®f
in any given text are outside any entity, simply emittingatag for every token
gives fairly high tag-level performance.

High-performing systems at recent standardized evaluations have ewity le
F-measures around .92 fBERSONSaNdLOCATIONS, and around .84 foORGA-
NIZATIONS (Sang and De Meulder, 2003).

F1

22.1.4 Practical NER Architectures

Commercial approaches to NER are often based on pragmatic combinations of
lists, rules and supervised machine learning(Jackson and Moulinie2).2@he
common approach is to make repeated passes over a text allowing the résults o
one pass to influence the next. The stages typically first involve the usdesf r
that have extremely high precision but low recall. Subsequent stages empitey
error-prone statistical methods that take the output of the first pass taarstc

1. First use high-precision rules to tag unambiguous entity mentions;

2. Then search for sub-string matches of the previously detected nasings u
probabilistic string matching metrics (as described in Ch. 19).

3. Consult application-specific name lists to identify likely name entity men-
tions from the given domain.

4. Finally, apply probabilistic sequence labeling techniques that make tise of
tags from previous stages as additional features.

The intuition behind this staged approach is two-fold. First, some of the
entity mentions in a text will be more clearly indicative of a given entity’s class
than others. Second, once an unambiguous entity mention is introduced irtp a te
itis likely that subsequent shortened versions will refer to the same entittifas
the same type of entity).
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Relations Examples Types
Affiliations
Personal married tg mother of PER— PER
Organizational spokesman foipresident of PER— ORG
Artifactual owns, invented, produces (PER| ORG) — ART
Geospatial
Proximity near, on outskirts LOC — LOC
Directional southeast of LOC — LOC
Part-Of
Organizational a unit of parent of ORG — ORG
Political annexegdacquired GPE— GPE
Figure 22.11  Typical semantic relations with examples and the nametiegfies
they involve.

22.2 FRELATION DETECTION AND CLASSIFICATION

Next on our list of tasks is the ability to discern the relationships that exist gmon
the entities detected in a text. To see what this means, let’s return to our sample
airline text with all the entities marked.

Citing high fuel prices, prg United Airlines] said {jyg Friday] it has in-
creased fares byjoney $6] per round trip on flights to some cities also
served by lower-cost carriersgggAmerican Airlines], a unit of prg AMR
Corp.], immediately matched the move, spokesmatlsTim Wagner] said.
[org United], a unit of prg UAL Corp.], said the increase took effegf e
Thursday] and applies to most routes where it competes stgdistount car-
riers, such asjJpc Chicago] to [ o Dallas] and [ oc Denver] to [ oc San
Francisco].

This text stipulates a set of relations among the named entities mentioned
within it. We know, for example, thatim Wagneris a spokesman fofAmeri-
can Airlines thatUnitedis a unit of UAL Corp, and thatAmericanis a unit of
AMR These are all binary relations that can be seen as instances of meregen
relations such agart-of or employsthat occur with fairly high frequency in news-
style texts. Fig. 22.11 shows a list of generic relations of the kind used emtrec
standardized evaluatioRsMore domain-specific relations that might be extracted
include the notion of an airline route. For example, from this text we canlgdac
that United has routes to Chicago, Dallas, Denver and San Francisco.

These relations correspond nicely to the model-theoretic notions we intro-
duced in Ch. 17 to ground the meanings of the logical forms. That is, a melatio

3 http://www.nist.gov/speech/tests/ace/
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Domain 2 ={a,b,c,d,e f,g,h,i}

United, UAL, American Airlines, AMR a,b,c.d

Tim Wagner e

Chicago, Dallas, Denver, and San Francisco f,g,hi

Classes

United, UAL, American and AMR are organizations Org={a,b,c,d}
Tim Wagner is a person Pers= {e}
Chicago, Dallas, Denver and San Francisco are places Loc= {f,g,h,i}

Relations

United is a unit of UAL PartOf = {(a,b), (c,d)}
American is a unit of AMR

Tim Wagner works for American Airlines OrgAff = {{(c,e)}

United serves Chicago, Dallas, Denver and San Francis€erves= {(a, f),(a,g),(a,h), (a,i)}

Figure 22.12 A model-based view of the relations and entities in our sarptt.

consists of set of ordered tuples over elements of a domain. In most gtdnea
formation extraction applications, the domain elements correspond either to the
named entities that occur in the text, to the underlying entities that result from co
reference resolution, or to entities selected from a domain ontology. Fij2 22
shows a model-based view of the set of entities and relations that can hetedtr
from our running example. Notice how this model-theoretic view subsumes the
NER task as well; named entity recognition corresponds to the identification of a
class of unary relations.

22.2.1 Supervised Learning Approaches to Relation Analysis

Supervised machine learning approaches to relation detection and ciaissific
follow a scheme that should be familiar by now. Texts are annotated with redation
chosen from a small fixed set by human analysts. These annotated texteiar
used to train systems to reproduce similar annotations on unseen texts. isuch a
notations indicate the text spans of the two arguments, the roles played by eac
argument and the type of the relation involved.

The most straightforward approach breaks the problem down into two sub
tasks: detecting when a relation is present between two entities and thefyitigss
any detected relations. In the first stage, a classifier is trained to makerg bina
decision as to whether or not a given pair of named entities participate irtiamela
Positive examples are extracted directly from the annotated corpus, \elgidive
examples are generated from within-sentence entity pairs that are nutatath
with a relation.
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function FINDRELATIONS(wordg returns relations

relations— nil
entities— FINDENTITIES(word9
forall entity pairs (el,e2) in entitiesdo
if RELATED?(€1,e2
relations— relationst CLASSIFYRELATION(el, €2

Figure 22.13  Finding and classifying the relations among entities irxa te

In the second phase, a classifier is trained to label the relations that exist
between candidate entity pairs. As discussed in Ch. 6, techniques sdelcias
sion trees, naive Bayes or MaxEnt handle multiclass labeling directly. Bayar
proaches based on discovering separating hyperplanes such ass®We multi-
class problems by employing a one-versus-all training paradigm. In thisagp
a sets of classifiers are trained where each classifier is trained on ehadathe
positive class and all the other labels as the negative class. Final clssifis
performed by passing each instance to be labeled to all of the classiftetbean
choosing the label from the classifier with the most confidence, or retuaniagk
ordering over the positively responding classifiers. Fig. 22.13 illustthtebasic
approach for finding and classifying relations among the named entities within a
discourse unit.

As with named entity recognition, the most important step in this process
is to identify surface features that will be useful for relation classificatigimou
etal., 2005). The first source of information to considerfaatures of the named
entitiesthemselves.

e Named entity types of the two candidate arguments

e Concatenation of the two entity types

e Head words of the arguments

e Bag of words from each of the arguments

The next set of features are derived frtime words in the textbeing exam-

ined. Itis useful to think of these features as being extracted from bcatons:
the text between the two candidate arguments, a fixed window before tharfirs
gument, and a fixed window after the second argument. Given these |agdtien
following word-based features have proven to be useful.

e The bag of words and bag of bigrams between the entities

e Stemmed versions of the same

e Words and stems immediately preceding and following the entities
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NP
NP PUNC NP
‘ /\
NNP NNPS ) NP PP
American Airlines DT NN |IN NP

I T =
a unit of NNP NNP

| |
AMR Inc.

Figure 22.14  An appositive construction expressingaipart-of relation.

e Distance in words between the arguments
e Number of entities between the arguments
Finally, the syntactic structure of a sentence can signal many of the rela-

tionships among any entities contained within it. The following features can be
derived from various levels of syntactic analysis including base-phehanking,
dependency parsing and full constituent parsing.
Presence of particular constructions in a constituent structure
Chunk base-phrase paths
Bags of chunk heads
Dependency-tree paths
Constituent-tree paths
Tree distance between the arguments

One method of exploiting parse trees is to create detectors that signalshe pre
ence of particular syntactic constructions and then associate binaryefeatith
those detectors. As an example of this, consider the sub-tree shown 22Fid.
that dominates the named entitidémericanand AMR Inc. The NP construction
that dominates these two entities is called an appositive construction and is often
associated with botpart-of anda-kind-of relations in English. A binary feature
indicating the presence of this construction can be useful in detecting rislase
tions.

This method of feature extraction relies on a certain amount of a priori lin-
guistic analysis to identify those syntactic constructions that may be usefiicpr
tors of certain classes. An alternative method is to automatically encode certain
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Entity-based features

Entity; type ORG
Entity; head airlines
Entity, type PERS
Entity, head Wagner
Concatenated types ORGPERS

Word-based features
Between-entity bag of words  { a, unit, of, AMR, Inc., immediately, matched, the,

move, spokesmagn

Word(s) before Entity NONE
Word(s) after Entity said
Syntactic features
Constituent path NPTNPTSTS|NP
Base syntactic chunk path NP— NP—PP—NP—VP—NP— NP
Typed-dependency path Airlines «—gyp; matched—compsaid —sup; Wagner

Figure 22.15 Sample of features extracted while classifying th&merican Airlines, Tim Wagner

tuple.

aspects of tree structures as feature values and allow the machine leglging
rithms to determine which values are informative for which classes. One simple
and effective way to do this this involves the usesghftactic pathsthrough trees.
Consider again the tree discussed earlier that dominatesrican Airlinesand
AMR Inc. The syntactic relationship between these arguments can be character-
ized by the path traversed through the tree in getting from one to the other:
NPTNP|NP|PP| NP
Similar path features defined over syntactic dependency trees as well bage-
phrase chunk structures have been shown to be useful for relatiectida and
classification (Culotta and Sorensen, 2004; Bunescu and Mooney).2B@call
that syntactic path features featured prominently in Ch. 20 in the contestrdrs
tic role labeling.
Fig. 22.15 illustrates some of the features that would be extracted while trying
to classify the relationship betweé&merican Airlinesand Tim Wagnerfrom our
example text.

22.2.2 Lightly Supervised Approaches to Relation Analysis

The supervised machine learning approach just described assumesthate
ready access to a large collection of previously annotated material with which
to train classifiers. Unfortunately, this assumption is impractical in many real-
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(22.4)
(22.5)
(22.6)
(22.7)

(22.8)
(22.9)
(22.10)

(22.11)
(22.12)

world settings. A simple approach to extracting relational information without
large amounts of annotated material is to use regular expression patterngliio ma
text segments that are likely to contain expressions of the relations in whiahewe
interested.

Consider the problem of building a table containing all the hub cities that var-
ious airlines utilize. Assuming we have access a search engine that permés so
form of phrasal search with wildcards, we might try something like the follgwin
as a query:

/ * has a hub at * /

Given access to a reasonable amount of material of the right kind, sseareh
will yield a fair number of correct answers. A recent Google seardhguihis
pattern yields the following relevant sentences among the return set.

Milwaukee-based Midwest has a hub at KCI.

Delta has a hub at LaGuardia.

Bulgaria Air has a hub at Sofia Airport, as does Hemus Air.
American Airlines has a hub at the San Juan airport.

Of course, patterns such as this can fail in the two ways we discussed all th
way back in Ch. 2: by finding some things they shouldn’t, and by failing to find
things they should. As an example of the first kind of error, consider tlmving
sentences that were also included the earlier return set.

airline j has a hub at airport k
The catheter has a hub at the proximal end
A star topology often has a hub at its center.

We can address these errors by making our proposed pattern moifecspec
In this case, replacing the unrestricted wildcard operator with a named dasty/ ¢
restriction would rule these examples out:

/[0RG] has a hub at [LOC]/

The second problem is that we can’t know if we've found all the hubslio
airlines, since we've limited ourselves to this one rather specific patterrsion
the following close calls missed by our first pattern.

No frills rival easyJet, which has established a hub at Liverpool...
Ryanair also has a continental hub at Charleroi airport (Belgium).

These examples are missed because they contain minor variations thatheause
original pattern to fail. There are two ways to address this problem. Thésfiis
generalize our pattern to capture expressions like these that containatmatibn

we are seeking. This can be accomplished by relaxing the pattern to allowasatch
that skip parts of the candidate text. Of course, this approach is likely inteod
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BOOTSTRAPPING
SEED PATTERNS

(22.13)

(22.14)

(22.15)

more of the false positives that we tried to eliminate by making our pattern more
specific in the first place.

The second, more promising solution, is to expand our set of specific high-
precision patterns. Given a large and diverse document collectiorspameed
set of patterns should be able to capture more of the information we're pokin
for. One way to acquire these additional patterns is to simply have human ana-
lysts familiar with the domain come up with more patterns and hope to get better
coverage. A more interesting automatic alternative is to induce new patterns by
bootstrapping from the initial search results from a small sessekd patterns

To see how this works, let's assume that we've discovered that Ryaemir h
a hub at Charleroi. We can use this fact to discover new patterns bydiottier
mentions of this relation in our corpus. The simplest way to do this is to search fo
the termRyanair, Charleroiandhubin some proximity. The following are among
the results from a recent search in Google News.

Budget airline Ryanair, which uses Charleroi as a hub, scrappeceakend
flights out of the airport.

All flights in and out of Ryanair’s Belgian hub at Charleroi airport wgreunded
on Friday...

A spokesman at Charleroi, a main hub for Ryanair, estimated that 8000
passengers had already been affected.

From these results, patterns such as the following can be extracted tkat loo
for relevant named entities of various types in the right places.

/ [ORG], which uses [LOC] as a hub /

/ [ORG]’s hub at [LOC] /

/ [LOC] a main hub for [ORG] /

These new patterns can then be used to search for additional tuples.

Fig. 22.16 illustrates the overall bootstrapping approach. This figunessho
that the dual nature of patterns and seeds permits the process to staitlveittae
small set ofseed tuplesor a set ofseed patterns This style of bootstrapping and
pattern-based relation extraction is closely related to the techniques diddnss
Ch. 20 for extracting hyponym and meronym-based lexical relations.

There are, of course, a fair number of technical details to be worketbou
actually implement such an approach. The following are among some of the key
problems.

e Representing the search patterns
e Assessing the accuracy and coverage of discovered patterns
e And assessing the reliability of the discovered tuples
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Seed
Patterns

Tuple . Pattern
Search Extraction
E Pattern-Based Relation Extraction PaStLetm
Tuple Pattern

Extraction — Search

Seed Relational
Tuples Table

Figure 22.16 Pattern and bootstrapping-based relation extraction.

Patterns are typically represented in a way that captures the following four
factors.

Context prior to the first entity mention
Context between the entity mentions

e Context following the second mention

e The order of the arguments in the pattern

Contexts are either captured as regular expression patterns or as wédeatures
similar to those described earlier for machine learning-based approdcledher
case, they can be defined over character strings, word-level takesystactic and
semantic structures. In general, regular expression approachds temdery spe-
cific, yielding high precision results; feature-based approaches eoutlier hand,
are more capable of ignoring potentially inconsequential elements of cantexts
Our next problem is how to assess the reliability of newly discovered pattern
and tuples. Recall that we don't, in general, have access to annotatedatsate
giving us the right answers. We therefore have to rely on the accuriatye
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SEMANTIC DRIFT

(22.16)

(22.17)

NOISY-OR

(22.18)

initial seed sets of patterns and/or tuples for gold-standard evaluatibmehave
to ensure that we don’t permit any significasgmantic drift to occur as we’re
learning new patterns and tuples. Semantic drift occurs when an eu®patern
leads to the introduction of erroneous tuples, which can then, turn, leac to th
creation of problematic patterns.

To see this consider the following example.

Sydney has a ferry hub at Circular Quay.

If accepted as a positive example, this expression could lead to the inimduc
of the tuple(SydneyCircularQuay). Patterns based on this tuple could propagate
further errors into the database.

There are two factors that need to be balanced in assessing a prowused
pattern: the pattern’s performance with respect to the current set lefstugnd
the pattern’s productivity in terms of the number of matches it produces in the
document collection. More formally, given a document collectiora current set
of tuplesT, and a proposed pattem there are three factors that we need to track.

¢ hits: the set of tuples iff that p matches while looking i¥;
e missesThe set of tuples iT that p misses while looking a¥;
e finds The total set of tuples thatfinds in 2.

The following equation balances these considerations (Riloff and Jb9@3).
Confriogr(P) = hitsphfz)iss% x log(finds,)
It is useful to be able to treat this metric as a probability, so we’'ll need to riaena
it. A simple way to do this is to track the range of confidences in a development
set and divide by some previously observed maximum confidence (Agicrd
Gravano, 2000).

We can assess the confidence in a proposed new tuple by combining the ev-
idence supporting it from all the patterRSthat match that tuple i¥ (Agichtein
and Gravano, 2000). One way to combine such evidence islilsg-or technique.
Assume that a given tuple is supported by a subset of the pattdPneach with its
own confidence assessed as above. In the noisy-or model, we makadivab-
sumptions. First, that for a proposed tuple to be fafleyf its supporting patterns
must have been in error, and second that the sources of their indifadluees are
all independent. If we loosely treat our confidence measures ashjlibes, then
the probability of any individual pattemfailing is 1— Conf(p); the probability of
all of the supporting patterns for a tuple being wrong is the product of ittneiirid-
ual failure probabilities, leaving us with the following equation for our caatiice
in a new tuple.

Conf(t) =1— l_l 1—Conf(p)
per’
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The independence assumptions underlying the noisy-or model are \@ry str
indeed. If the failure mode of the patterns are not independent, then thedneth
will overestimate the confidence for the tuple. This overestimate is typically com-
pensated for by setting a very high threshold for the acceptance of ng.tup

Given these measures, we can dynamically assess our confidence in both
new tuples and patterns as the bootstrapping process iterates. Settiayativis
thresholds for the acceptance of new patterns and tuples should hedmiptiee
system from drifting from the targeted relation.

Although there have been no standardized evaluations for this style of nelatio
extraction on publicly available sources, the technique has gained widptance
as a practical way to quickly populate relational tables from open sourteiaia
(most commonly from the Web) (Etzioni et al., 2005).

22.2.3 Evaluating Relation Analysis Systems

There are two separate methods for evaluating relation detection systethg In
first approach, the focus is on how well systems can find and classifeatlation
mentions in a given text. In this approach, labeled and unlabeled recdalisipre

and F-measures are used to evaluate systems against a test collectionméth hu
annotated gold-standard relations. Labeled precision and recall @sdqhi sys-

tem to classify the relation correctly, while unlabeled methods simply measure a
system’s ability to detect entities that are related.

The second approach focuses on the tuples to be extracted from abody
text, rather than on the relation mentions. In this method, systems need ndt detec
every mention of a relation to be scored correctly. Instead, the final ai@duis
based on the set of tuples occupying the database when the system éfifibhat
is, we want to know if the system can discover that RyanAir has a hubatethi;
we don't really care how many times it discovers it.

This method has typically used to evaluate unsupervised methods of the kind
discussed in the last section. In these evaluations human analysts simply @xamin
the set of tuples produced by the system. Precision is simply the fractionrettor
tuples out of all the tuples produced as judged by the human experts.

Recall remains a problem in this approach. It is obviously too costly tolsearc
by hand for all the relations that could have been extracted from a pdketdige
collection such as the Web. One solution is to compute recall at various levels
of precision as described in Ch. 25 (Etzioni et al., 2005). Of courgeidi't true
recall, since we're measuring against the number of correct tuples/distbrather
than the number of tuples that are theoretically extractable from the text.

Another possibility is to evaluate recall on problems where large resources
containing comprehensive lists of correct answers are available. Hssuwipin-
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clude gazetteers for facts about locations, the Internet Movie DatdbdBa)
for facts about movies or Amazon for facts about books. The problémthis
approach is that it measures recall against a database that may bedaramgre-
hensive than the text collections used by relation extraction system.

22.3 TEMPORAL AND EVENT PROCESSING

ABSOLUTE
TEMPORAL
EXPRESSIONS

RELATIVE TEMPORAL
EXPRESSIONS

DURATIONS

LEXICAL TRIGGERS

Our focus thus far has been on extracting information about entities aindettze

tions to one another. However, in most texts, entities are introduced in thesaofu
describing the events in which they take part. Finding and analyzing théseuaen

text, and how they relate to each other in time, is crucial to extracting a more com-
plete picture of the contents of a text. Such temporal information is particularly
important in applications such as question answering and summarization.

In question answering, whether or not a system detects a correctiamay
depend on temporal relations extracted from both the question and thdigloten
answer text. As an example of this, consider the following sample question and
potential answer text.

When did airlines as a group last raise fares?

Last week, Delta boosted thousands of fares by $10 per round tdp, an
most big network rivals immediately matched the increase. (Dateline
7/2/2007).

This snippet does provide an answer to the question, but extractingiitesegem-
poral reasoning to anchor the phrdast week to link that time to theboosting
event, and finally to link the time of thmatchingevent to that.

The following sections introduce approaches to recognizing temporasxpr
sions, figuring out the times that those expressions refer to, detectings eved
associating times with those events.

22.3.1 Temporal Expression Recognition

Temporal expressions are those that refer to absolute points in time, réil@ibse
durations and sets of thesébsolute temporal expressionsare those that can
be mapped directly to calendar dates, times of day, or bB#lative temporal
expressionsmap to particular times via some other reference point (asvireek
from last Tuesday Finally, durations denote spans of time at varying levels of
granularity (seconds, minutes, days, weeks, centuries etc.) Fig. 2etidgs
some sample temporal expressions in each of these categories.

Syntactically, temporal expressions are syntactic constructions thatdmave
porallexical triggers as their heads. In the annotation scheme in widest use, lex-
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Absolute Relative Durations

April 24, 1916 yesterday four hours

The summer of '77 next semester three weeks

10:15 AM two weeks from yesterday six days

The 3rd quarter of 2006 last quarter the last three quarters

Figure 22.17 Examples of absolute, relation and durational temporalesgions.

Category Examples

Noun morning noon night, winter, dusk dawn

Proper Noun January, Monday, Ides, Easter, Rosh Hashana, Ramadan, Tet
Adjective recent, past, annual, former

Adverb hourly, daily, monthly, yearly

Figure 22.18 Examples of temporal lexical triggers.

ical triggers can be nouns, proper nouns, adjectives, and a¢i\fatbtemporal
expression consist of their phrasal projections: noun phrasestigdjphrases and
adverbial phrases. Figure 22.18 provides examples of lexical trigigersthese
categories.

The annotation scheme in widest use is derived from the TIDES staf@ard(
et al., 2005). The approach presented here is based on the TimeMtL(Piliste-
jovsky et al., 2005). TimeML provides an XML tag, TIMEX3, along with vargo
attributes to that tag, for annotating temporal expressions. The followimee
illustrates the basic use of this scheme (ignoring the additional attributes, which
we’ll discuss as needed later in Sec. 22.3.2).

A fare increase initiateek TIMEX3 >last week</TIMEX3> by UAL
Corp’s United Airlines was matched by competitors cx@1MEX3 >the
weekend</TIMEX3>, marking the second successful fare increase in
<TIMEX3>two weeks</TIMEX2>.

RN The temporal expression recognitiontask consists of finding the start and
end of all of the text spans that correspond to such temporal expmesgitthough
there are myriad ways to compose time expressions in English, the set of #mpor
trigger terms is, for all practical purposes, static and the set of cotisinsaised
to generate temporal phrases is quite conventionalized. These factsttivaf
any of the major approaches to finding and classifying text spans theaé s’
ready studied should be successful. The following three approaekesali been
successfully employed in recent evaluations.

¢ Rule-based systems based on partial parsing or chunking
e Statistical sequence classifiers based on standard token-by+tkemcod-
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ing
e Constituent-based classification as used in semantic role labeling

Rule-based approacheso temporal expression recognition use cascades of
automata to recognize patterns at increasing levels of complexity. Since smpor
expressions are limited to a fixed set of standard syntactic categoriespfitiueste
systems make use of pattern-based methods for recognizing syntactischibat
is, tokens are first part-of-speech tagged and then larger and tdmgieks are rec-
ognized using the results from previous stages. The only differennetfre usual
partial parsing approaches is the fact that temporal expressions amiatrctem-
poral lexical triggers. Patterns must, therefore, contain either spewfietrwords
(e.g. February), or patterns representing classes (&PNTH). Fig. 22.19 illus-
trates this approach with a small representative fragment from a rudellsgistem
written in Perl.

Sequence labeling approachefllow exactly the same scheme introduced
in Ch. 13 for syntactic chunking. The three tagso andB are used to mark
tokens that are either inside, outside or begin a temporal expressioeljraget
by TIMEX3 tags. Example 22.3.1 would be labeled as follows in this scheme.

A fareincreaseinitiated lastweekby UAL Corp’s...
00 O o) B | OO0 O

As expected, features are extracted from the context surroundirigga to
be tagged and a statistical sequence labeler is trained using those featsres
with syntactic chunking and named entity recognition, any of the usual stdltistica
sequence methods can be applied. Fig. 22.20 lists the standard featd s e
machine learning-based approach to temporal tagging.

Constituent-based methodsombine aspects of both chunking and token-
by-token labeling. In this approach, a complete constituent parse isqeddy
automatic means. The nodes in the resulting tree are then classified, one,by on
as to whether they contain a temporal expression or not. This task is acdoealplis
by training a binary classifier with annotated training data, using many of the sa
features employed iroB-style training. This approach separates the classification
problem from the segmentation problem by assigning the segmentation problem
to the syntactic parser. The motivation for this choice was mentioned earlier; in
currently available training materials, temporal expressions are limited to signtac
constituents from one of a fixed set of syntactic categories. Therdatarekes
sense to allow a syntactic parser to solve the segmentation part of the problem.

In standard evaluations, temporal expression recognizers are tehilsng
the usual recall, precision and F-measures. In recent evaluatichs;ube-based
and statistical systems achieve about the same level of performance, withsthe
systems reaching an F-measure of around .87 on a strict exact matda.cera
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# yesterday/today/tomorrow

$string =" s/(($0T+(early|earlier|later?)$CT+\s+) 7 (($0T+the$CT+\s+) 7$0T+day$CT+\s+
$0T+(before|after)$CT+\s+) 7$0T+$TERe1DayExpr$CT+(\s+$0T+ (morning|afternoon|evening|night)
$CT+)7) /<TIMEX2 TYPE=\"DATE\">$1<\/TIMEX2>/gio;

$string =" s/($0T+\w+$CT+\s+)
<TIMEX2 TYPE=\"DATE\"[">]#*>($0T+(Today|Tonight)$CT+)<\/TIMEX2>/$1$2/gso0;

# this/that (morning/afternoon/evening/night)

$string =~ s/(($0T+(earlylearlier|later?)$CT+\s+)?$0T+(this|that|every|the$CT+\s+
$0T+ (next |previous|following) ) $CT+\s*$0T+(morning|afternoon|evening|night)
$CT+(\s+$0T+thereafter$CT+)?) /<TIMEX2 TYPE=\"DATE\">$1<\/TIMEX2>/gosi;

Figure 22.19 Fragment of Perl code from MITRE’s TempEx temporal taggiystam.

Feature Explanation
Token The target token to be labeled
Tokens in window Bag of tokens in the window around a target
Shape Character shape features
POS Parts of speech of target and window words
Chunk tags Base-phrase chunk tag for target and words in a window
Lexical triggers Presence in a list of temporal terms
Figure 22.20 Typical features used to trainB style temporal expression taggers.

looser criterion based on overlap with gold standard temporal exprestiensest
systems reach an F-measure of494.

The major difficulties for all of these approaches are achieving rebtona
coverage, correctly identifying the extent of temporal expressionglealihg with
expressions that trigger false positives. The problem of false pasaiises from
the use of temporal trigger words as parts of proper names. For exaaipdé,
the following examples are likely to cause false positives for either ruleebas
statistical taggers.

(22.19) 1984tells the story of Winston Smith and his degradation by the totalitarian state
in which he lives.
(22.20) Edge is set to join Bono onstage to perform U2’s claSsiodayBloody Sunday

(22.21) Black Septembetried to detonate three car bombs in New York City in March
1973.

4 http://www.nist.gov/speech/tests/ace/
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<TIMEX3 id=t1 type="DATE" value="2007-07-02" functionInDocument="CREATION_TIME">

July 2, 2007 </TIMEX3> A fare increase initiated <TIMEX3 id="t2" type="DATE"
value="2007-W26" anchorTimeID="t1">last week</TIMEX3> by UAL Corp’s United Airlines was
matched by competitors over <TIMEX3 id="t3" type="DURATION" value="P1WE"
anchorTimeID="t1"> the weekend </TIMEX3>, marking the second successful fare increase in
<TIMEX3 id="t4" type="DURATION" value="P2W" anchorTimeID="t1"> two weeks </TIMEX3>.

Figure 22.21  TimeML markup including normalized values for temporal egsions.

22.3.2 Temporal Normalization

The task of recognizing temporal expressions is typically followed by thedas
norRuAMESRA normalization. Temporal normalization refers to the process of mapping a tem-

poral expression to either a specific point in time, or to a duration. Points in time

correspond either to calendar dates or to times of day (or both). Durgtionar-

ily consist of lengths of time, but may also include information concerning the sta

and end points of a duration when that information is available.

Normalized representations of temporal expressions are capturedtising
VALUE attribute from the ISO 8601 standard for encoding temporal values@808
2004). To illustrate some aspects of this scheme, let’s return to our eadisipés,
reproduced in Fig. 22.21 with the value attributes added in.

The dateline, or document date, for this text wiaty 2, 2007 The ISO

FULLrQUALEER - representation for this kind déilly qualified date expression is YYYY-MM-DD,
or in this case, 2007-07-02. The encodings for the temporal expnssgicour
sample text all follow from this date, and are shown here as values forthes
attribute. Let's consider each of these temporal expressions in turn.

The first temporal expression in the text proper refers to a particulek ok
the year. In the ISO standard, weeks are numbered from 01 to 53, wifirghe
week of the year being the one that has the first Thursday of the Vieeseweeks
are represented using the template YYYY-Wnn. The ISO week for ourrdent
date is week 27, thus the value fast weekis represented as “2007-W26".

The next temporal expressiontlee weekendlSO weeks begin on Monday,
thus, weekends occur at the end of a week and are fully contained witliigle
week. Weekends are treated as durations, so the value wfitliE attribute has to
be a length. Durations are represented using the pattegmiieren is an integer
denoting the length anrepresents the unit, as in P3Y filwree yearsor P2D for
two days In this example, one weekend is captured as P1WE. In this case, there is
also sufficient information to anchor this particular weekend as part aftacplar
week. Such information is encoded in thecHORTIMEID attribute. Finally, the
phrasawo weekslso denotes a duration captured as P2W.
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Unit Pattern Sample Value
Fully Specified Dates YYYY-MM-DD 1991-09-28
Weeks YYYY-nnW 2007-27W
Weekends PnWE P1WE
24 hour clock times| HH:MM:SS 11:13:45
Dates and Times YYYY-MM-DDTHH:MM:SS | 1991-09-28T11:00:00
Financial quarters Qn 1999-3Q
Figure 22.22 Sample ISO patterns for representing various times andidnsa

There is a lot more to both the ISO 8601 standard and the various temporal
annotation standards — far too much to cover here. Fig. 22.22 descoiness
the basic ways that other times and durations are represented. Co8€8601,
2004; Ferro et al., 2005; Pustejovsky et al., 2005) for more details.

Most current approaches to temporal normalization employ rule-based meth
ods that associate semantic analysis procedures with patterns matchinglgrartic
temporal expressions. This is a domain-specific instantiation of the compasition
rule-to-rule approach introduced in Ch. 18. In this approach, the mgaiia
constituent is computed from the meaning of its parts, and the method used to per
form this computation is specific to the constituent being created. The ondy-diff
ence here is that the semantic composition rules involve simple temporal arithmetic
rather tham -calculus attachments.

To normalize temporal expressions, we’ll need rules for four kindsofes-
sions.

Fully qualified temporal expressions
Absolute temporal expressions
Relative temporal expressions
Durations

Fully qualified temporal expressions contain a year, month and day in some
conventional form. The units in the expression must be detected and tteed pla
in the correct place in the corresponding ISO pattern. The following patier
malizes the fully-qualified temporal expression used in expressiongpikié 24,
1916

FQTE — Month Date, Year  {Yearval — Monthval — Dateval}

In this rule, the non-terminal®lonth, Date, and Yearrepresent constituents that
have already been recognized and assigned semantic values, datasbe*.val
notation. The value of thiB QE constituent can, in turn, be accessed@ E.val
during further processing.
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TEMPORAL ANCHOR

(22.22)

Fully qualified temporal expressions are fairly rare in real texts. Most tem-
poral expressions in news articles are incomplete and are only implicitly eettho
often with respect to the dateline of the article, which we’ll refer to as the doc
ument'stemporal anchor. The values of relatively simple temporal expressions
such agoday, yesterdayortomorrowcan all be computed with respect to this tem-
poral anchor. The semantic procedure timalay simply assigns the anchor, while
the attachments fadomorrowandyesterdayadd a day and subtract a day from the
anchor, respectively. Of course, given the circular nature ofepnesentations for
months, weeks, days and times of day, our temporal arithmetic procedusts mu
use modulo arithmetic appropriate to the time unit being used.

Unfortunately, even simple expressions suchiresweekenar Wednesday
introduce a fair amount of complexity. In our current examfiie,weekendlearly
refers to the weekend of the week that immediately precedes the docuntent da
But this won't always be the case, as is illustrated in the following example.

Random security checks that began yesterday at Sky Harbor will cendinleast
through the weekend.

In this case, the expressitimee weekendefers to the weekend of the week that the
anchoring date is part of (i.e. the coming weekend). The information thadlsig
this comes from the tense obntinue the verb governinghe weekend
Relative temporal expressions are handled with temporal arithmetic similar
to that used fotodayandyesterday To illustrate this, consider the expresslast
weekfrom our example. From the document date, we can determine that the ISO
week for the article is week 27, sast weeks simply 1 minus the current week.
Again, even simple constructions such as this can be ambiguous in English.
The resolution of expressions involvimgxtand last must take into account the
distance from the anchoring date to the nearest unit in question. For Examnp
phrase such agext Fridaycan refer to either the immediately next Friday, or to the
Friday following that. The determining factor has to do with the proximity to the
reference time. The closer the document date is to a Friday, the more likelyat is th
the phrasenext Fridaywill skip the nearest one. Such ambiguities are handled by
encoding language and domain specific heuristics into the temporal attachments
The need to associate highly idiosyncratic temporal procedures with particu
lar temporal constructions accounts for the widespread use of of askedometh-
ods in temporal expression recognition. Even when high performantstistd
methods are used for temporal recognition, rule-based patterns aredtiifed
for normalization. Although the construction of these patterns can be tedimls
filled with exceptions, it appears that sets of patterns that provide gaedage in
newswire domains can be created fairly quickly (Ahn et al., 2005).
Finally, many temporal expressions are anchored to events mentioned in a
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(22.23)

EVENT DETECTION
AND CLASSIFICATION

text and not directly to other temporal expressions. Consider the folloadam-
ple.

One week after the storm, JetBlue issued its customer bill of rights.

To determine when JetBlue issued its customer bill of rights we need to determine
the time ofthe stormevent, and then that time needs to be modified by the tem-
poral expressiomne week afterWe’ll return to this issue when we take up event
detection in the next section.

22.3.3 Event Detection and Analysis

The task ofevent detection and classifications to identify mentions of events

in texts and then assign those events to a variety of classes. For thegaigios
this task, an event mention is any expression denoting an event or statarhat
be assigned to a particular point, or interval, in time. The following markup of
Example 22.3.1 shows all the events in this text.

[evenT Citing] high fuel prices, United AirlinesdygnT Said] Friday it has
[evenTincreased] fares by $6 per round trip on flights to some ciise
served by lower-cost carriers. American Airlines, a unibR Corp., imme-
diately [eyenTMatched] EyvenTthe move], spokesman Tim WagnesfeEnT
said]. United, a unit of UAL Corp.,dyenTSaid] [evenTthe increase] took
effect Thursday andgy/enT applies] to most routes where iggnT COM-
petes] against discount carriers, such as Chicago to Dalid®enver to San
Francisco.

In English, most event mentions correspond to verbs, and most verbs intr
duce events. However, as we can see from our example this is notsainagase.
Events can be introduced by noun phrases, ahémmoveandthe increaseand
some verbs fail to introduce events, as in the phrasal tark effectwhich refers
to when the event began rather than to the event itself. Similarly, light vedbs s
asmake take andhaveoften fail to denote events. In these cases, the verb is sim-
ply providing a syntactic structure for the arguments to an event exjgréysthe
direct object as ook a flight

Both rule-based and statistical machine learning approaches havefbeen a
plied to the problem of event detection. Both approaches make use atsunf
formation such as parts of speech information, presence of particuicalléems,
and verb tense information. Fig. 22.23 illustrates the key features usedréntu
event detection and classification systems.

Having detected both the events and the temporal expressions in a text, the
next logical task is to use this information to fit the events into a complete time-
line. Such a timeline would be useful for applications such as question éngwe
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Feature Explanation

Character affixes Character-level prefixes and suffixes of target word
Nominalization suffix Character level suffixes for nominalizations (etipn)

Part of speech

Part of speech of the target word

Light verb Binary feature indicating that the target is governed by a light verb
Subject syntactic category Syntactic category of the subject of the sentence
Morphological stem Stemmed version of the target word
Verb root Root form of the verb basis for a nominalization
Wordnet hypernyms Hypernym set for the target
Figure 22.23  Features commonly used in both rule-based and statisppabaches to event detection.

TIMEBANK

and summarization. This ambitious task is is the subject of considerable tcurren
research but is beyond the capabilities of current systems.

A somewhat simpler, but still useful, task is to impose a partial ordering on
the events and temporal expressions mentioned in a text. Such an ordaming c
provide many of the same benefits as a true timeline. An example of such a partial
ordering would be to determine that the fare increas@imerican Airlinescame
afterthe fare increase bynitedin our sample text. Determining such an ordering
can be viewed as a binary relation detection and classification task similar & thos
described earlier in Sec. 22.2.

Current approaches to this problem attempt to identify a subset of Allen’s
13 temporal relations discussed earlier in Ch. 17, and shown here inZERy.2
Recent evaluation efforts have focused on detectingottfere after and during
relations among the temporal expressions, document date and event mé@nton
text (Verhagen et al., 2007). Most of the top-performing systems emtatigtical
classifiers, of the kind discussed earlier in Sec. 22.2, trained on the TitkeBa
corpus (Pustejovsky et al., 2003b).

22.3.4 TimeBank

As we've seen with other tasks, it's tremendously useful to have accesstto
annotated with the types and relations in which we're interested. Suchrcesou
facilitate both corpus-based linguistic research as well as the trainingiaisy to
perform automatic tagging. THEmeBank corpus consists of text annotated with
much of the information we've been discussing throughout this sectiortgPus
jovsky et al., 2003b). The current release (TimeBank 1.2) of the sarpnsists of
183 news articles selected from a variety of sources, including the ReeBank
and PropBank collections.

Each article in the TimeBank corpus has had the temporal expressions and
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A A
B
A before B B
B after A Aoverlaps B
B overlaps' A
A A
Aequals B
A meets B B (B equals A)
B meets' A
B
A A
A starts B Afinishes B
B starts' A B finishes' A
B B
Aduring B A
B during' A
B
Time
Figure 22.24  Allen’s 13 possible temporal relations.

event mentions in them explicitly annotated in the TimeML annotation (Puste-
jovsky et al., 2003a). In addition to temporal expressions and event§intedviL
annotation provides temporal links between events and temporal exme fsat
specify the nature of the relation between them. Consider the following sample
sentence and its corresponding markup shown in Fig. 22.25 selecteaf®f

the TimeBank documents.
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<TIMEX3 tid=’’t57’’ type="DATE’’ value="1989-10-26"
functionInDocument="CREATION_TIME"> 10/26/89 </TIMEX3>

Delta Air Lines earnings <EVENT eid="el" class="OCCURRENCE"> soared </EVENT>

33\% to a record in <TIMEX3 tid="t58" type="DATE" value="1989-Q1" anchorTimeID="t57">
the fiscal first quarter </TIMEX3>, <EVENT eid="e3" class="0CCURRENCE">bucking</EVENT>
the industry trend toward <EVENT eid="e4" class="OCCURRENCE">declining</EVENT> profits.

Figure 22.25 Example from the TimeBank corpus.

(22.24) Delta Air Lines soared 33% to a record in the fiscal first quarter, budkiag
industry trend toward declining profits.

As annotated, this text includes three events and two temporal expressions
The events are all in the occurrence class and are given unique idsrftifieise
in further annotations. The temporal expressions include the creation tithe of
article, which serves as the document time, and a single temporal expneghion
the text.

In addition to these annotations, TimeBank provides 4 links that capture the
temporal relations between the events and times in the text. The following are the
within sentence temporal relations annotated for this example.

e Soaring is included in the fiscal first quarteys
Soaring; is before 1989-10-26;7
e Soaring; is simultaneouswith the buckings
Decliningy includes soaring;

The set of 13 temporal relations used in TimeBank are based on Allen'sn(Alle
1984) relations introduced earlier in Fig. 22.24.

22.4 TEMPLATE-FILLING

Many texts contain reports of events, and possibly sequences of gifettsften
correspond to fairly common, stereotypical situations in the world. Thesteaab
scarts  Situations can be characterizedsazsipts, in that they consist of prototypical se-

guences of sub-events, participants, roles and props (SchankleatsbA, 1977).
The use of explicit representations of such scripts in language piogess assist

in many of the IE tasks we've been discussing. In particular, the stropece-
tions provided by these scripts can facilitate the proper classification of entite
assignment of entities into roles and relations, and most critically, the drawing o
inferences that fill in things that have been left unsaid.
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TEMPLATES

In their simplest form, such scripts can be representddraplatesconsist-
ing of fixed sets oklots which take as valueslot-fillers belonging to particular
classes. The task aémplate-filling is to find documents that invoke particular
scripts and then fill the slots in the associated templates with fillers extracted from
the text. These slot-fillers may consist of text segments extracted direathtifie
text, or they may consist of concepts that have been inferred fromlesreats via
some additional processing (times, amounts, entities from an ontology, etc.)

A filled template from our original airline story might look like the following.

FARE-RAISE ATTEMPT. |LEAD AIRLINE: UNITED AIRLINES
AMOUNT: $6
EFFECTIVEDATE: 2006-10-26
FOLLOWER: AMERICAN AIRLINES

Note that as is often the case, the slot-fillers in this example all correspored to d
tectable named entities of various kinds (organizations, amounts and timés). Th
suggests that template-filling applications should rely on tags provided bydhame
entity recognition, temporal expression and co-reference algorithms mtifide
candidate slot-fillers.

The next section describes a straightforward approach to filling slotg usin
sequence labeling techniques. Sec. 22.4.2 then describes a systenedésig
address a considerably more complex template-filling task, based on thé use o
cascades of finite-state transducers.

22.4.1 Statistical Approaches to Template-Filling

A surprisingly effective approach to template-filling simply casts it as a statistical
sequence labeling problem. In this approach, systems are trained todgbehses

of tokens as potential fillers for particular slots. There are two basic tays
stantiate this approach: the first is to train separate sequence classifieesch

slot to be filled and then send the entire text through each labeler, the otoer is
train one large classifier (usually an HMM) that assigns labels for eattteclots

to be recognized. We'll focus on the former approach here; we’ll tgkiie single
large classifier approach in Ch. 23.

Under the one classifier per slot approach, slots are filled with the text seg
ments identified by each slot’s corresponding classifier. As with the othiaisks
described earlier in this chapter, all manner of statistical sequence eeshifive
been applied to this problem, all using the usual set of features: tokeases of
tokens, part-of-speech tags, syntactic chunk tags, and named entity tags

There is the possibility in this approach that multiple non-identical text seg-
ments will be labeled with the same slot label. This situation can arise in two ways:
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from competing segments that refer to the same entity using differentinefest-
pressions, or from competing segments that represent truly distinctheges. In

our sample text, we might expect the segmesnsied United Airlinesto be la-
beled as the EAD AIRLINE. These are not incompatible choices and the reference
resolution techniques introduced in Ch. 21 can provide a path to a solution.

Truly competing hypotheses arise when a text contains multiple entities of
the expected type for a given slot. In our examplajted Airlinesand American
Airlines are both airlines and it is possible for both to be tagged BsO_AIR-

LINE based on their similarity to exemplars in the training data. In general, most
systems simply choose the hypothesis with the highest confidence. Oécthas
implementation of this confidence heuristic is dependent on the style of saguen
classifier being employed. Markov-based approaches simply seleceédheent

with the highest probability labeling (Freitag and McCallum, 1999).

A variety of annotated collections have been used to evaluate this style of ap-
proach to template-filling, including sets of job announcements, conferstise
for papers, restaurant guides and biological texts. A frequently engblogiec-
tion is the CMU Seminar Announcement Corpua collection of 485 seminar
announcements retrieved from the Web with slots annotated f@rhekER LO-
CATION, START TIME andEND TIME. State-of-the-art F-measures on this dataset
range from around .98 for the start and end time slots, to as high as .77for th
speaker slot (Roth and tau Yih, 2001; Peshkin and Pfefer, 2003).

As impressive as these results are, they are due as much to the constrained
nature of the task as to the techniques they have been employed. Threg stro
task constraints have contributed to this success. First, in most evaluallions a
the documents in the collection are all relevant and homogeneous, that ig¢hey a
known to contain the slots of interest. Second, the documents are all riglative
small, providing little room for distractor segments that might incorrectly fill slots.
And finally, the target output consists solely of a small set of slots whickodve
filled with snippets from the text itself.

22.4.2 Finite-State Template-Filling Systems

The tasks introduced in thidessage Understanding Conferen¢btJC) (Sund-
heim, 1993), a series of U.S. Government-organized information extrastalo-
ations, represent a considerably more complex template-filling problemidgons
the following sentences selected from the MUC-5 materials from Grishman and
Sundheim (1995).

5 http://www.isi.edu/info-agents/RISE/
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TIE-UP-1:
RELATIONSHIP: TIE-UP
ENTITIES: “Bridgestone Sports Co.”

“a local concern”
“a Japanese trading house”
JOINTVENTURECOMPANY “Bridgestone Sports Taiwan Co.”

ACTIVITY ACTIVITY-1

AMOUNT NT$20000000

ACTIVITY-1:

COMPANY “Bridgestone Sports Taiwan Co.”
ProDuCT “iron and “metal wood” clubs”
STARTDATE DURING: January 1990

Figure 22.26 The templates produced by thesTus (Hobbs et al., 1997) infor-
mation extraction engine given the input text on page 35.

Bridgestone Sports Co. said Friday it has set up a joint venitu Taiwan
with a local concern and a Japanese trading house to prodifogups to be
shipped to Japan.

The joint venture, Bridgestone Sports Taiwan Co., cagialiat 20 million
new Taiwan dollars, will start production in January 199@hwiroduction of
20,000 iron and “metal wood” clubs a month.

The MUC-5 evaluation task required systems to produce hierarchicallylinke
templates describing the participants in the joint venture, the resulting company,
and its intended activity, ownership and capitalization. Fig. 22.26 showssé
ing structure produced by tlrasTus system (Hobbs et al., 1997). Note how the
filler of the ACTIVITY slot of theTIE-UP template is itself a template with slots to
be filled.

TheFAasTUssystem produces the template given above, based on a cascade of
transducers in which each level of linguistic processing extracts sonrenafion
from the text, which is passed on to the next higher level, as shown in R2gL2&

Most systems base most of these levels on finite-automata, although in prac-
tice most complete systems are not technically finite-state, either becauseithe ind
vidual automata are augmented with feature registers (aasmus), or because
they are used only as preprocessing steps for full parsers (e.ggusk#s et al.,
1995; Weischedel, 1995) , or are combined with other components bastatis-
tical methods (Fisher et al., 1995).

Let's sketch therasTus implementation of each of these levels, following
Hobbs et al. (1997) and Appelt et al. (1995). After tokenization, tleerse level
recognizes multiwords likeet up andjoint venture and names lik&ridgestone
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No. Step Description

1 Tokens: Transfer an input stream of characters
into a token sequence.

2 Complex Words: Recognize multi-word phrases, numbers,
and proper names.

3 Basic phrases: Segment sentences into noun groups,
verb groups, and patrticles.

4 Complex phrases: Identify complex noun groups and ¢com-
plex verb groups.

5 Semantic Patterns: Identify semantic entities and events and
insert into templates.

6 Merging: Merge references to the same entity or
event from different parts of the text.

Figure 22.27 Levels of processing ifFASTUS (Hobbs et al., 1997). Each level

extracts a specific type of information which is then passedoothe next higher

level.

Sports Ca. The named entity recognizer is a transducer, composed of a large set
of specific mappings designed to handle the usual set of named entities.

The following are typical rules for modeling names of performing organi-
zations likeSan Francisco Symphony Orchestiad Canadian Opera Company
While the rules are written using a context-free syntax, there is no reouasio
therefore they can be automatically compiled into finite-state transducers.

Performer-Org — (pre-location) Performer-Noun+ Perf-Org-Suffix
pre-location — locname| nationality

lochame — City | region

Perf-Org-Suffix — orchestra, company

Performer-Noun— symphony, opera

nationality — Canadian, American, Mexican

city — San Francisco, London

The second stage also might transduce sequence®itiyetwo into the ap-
propriate numeric value (recall the discussion of this problem in Ch. 8).

The third FASTUS stage implements chunking and produces a sequence of
basic syntactic chunks, such as noun groups, verb groups, amj geing finite-
state rules of the sort discussed in Ch. 13.

The output of therasTUS basic phrase identifier is shown in Figure 22.28;
note the use of some domain-specific basic phrase€likepanyandLocation

Recall that Ch. 13 described how these basic phrases can be comhimed in
more complex noun groups and verb groups. This is accomplished in Stafge 4
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Company
Verb Group
Noun Group
Noun Group
Verb Group
Noun Group
Preposition
Location
Preposition
Noun Group
Conjunction
Noun Group
Verb Group
Noun Group
Verb Group
Preposition
Location

Bridgestone Sports Co.
said

Friday

it

had set up

a joint venture

in

Taiwan

with

alocal concern

and

a Japanese trading house
to produce

golf clubs

to be shipped

to

Japan

Figure 22.28 The output of Stage 2 of the FASTUS basic-phrase extractachw
uses finite-state rules of the sort described by Appelt arel$1997) and shown on

page??.

(1) RELATIONSHIP: TIE-UP

ENTITIES: “Bridgestone Sports Co.”
“a local concern”
“a Japanese trading house”

(2) AcTIvVITY: PRODUCTION
PrRODUCT “golf clubs”

(3) RELATIONSHIP; TIE-UP
JOINTVENTURECOMPANY:  “Bridgestone Sports Taiwan Co.”
AMOUNT: NT$20000000

(4) ACTIVITY: PRODUCTION
COMPANY: “Bridgestone Sports Taiwan Co.”
STARTDATE DURING: January 1990

(5) AcTiviTy PRODUCTION
PrRODUCT “iron and “metal wood” clubs”

Figure 22.29 The five partial templates produced by Stage 5 offR8TUS Sys-
tem. These templates will be merged by the Stage 6 mergirgitdm to produce
the final template shown in Fig. 22.26 on page 36.

FASTUS, by dealing with conjunction and with the attachment of measure phrases

as in the following.

20,000 iron and “metal wood” clubs a month,

Information Extraction
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and prepositional phrases:
production of 20,000 iron and “metal wood” clubs a month,

The output of Stage 4 is a list of complex noun groups and verb grotpge S
5 takes this list, ignoring all input that has not been chunked into a compbexpgr
recognizes entities and events in the complex groups, and inserts thaizecbg
objects into the appropriate slots in templates. The recognition of entities and
events is done by hand-coded finite-state automata whose transitionsadeona
particular complex-phrase types annotated by particular head wordstautar
features likecompanycurrency or date

As an example, the first sentence of the news story above realizes the-sema
tic patterns based on the following two regular expressions (where NGatedic
Noun-Group and VG Verb-Group).

e NG(Company/ies) VG(Set-up) NG(Joint-Venture) with NG(Quany/ies)
e VG(Produce) NG(Product)

The second sentence realizes the second pattern above as well digtiaddwo
patterns:

e NG(Company) VG-Passive(Capitalized) at NG(Currency)
e NG(Company) VG(Start) NG(Activity) in/on NG(Date)

The result of processing these two sentences is the set of five drafatesp
shown in Fig. 22.29. These five templates must then be merged into the single
hierarchical structure shown in Fig. 22.26. The merging algorithm dewilether
two activity or relationship structures are sufficiently consistent that thejtrbig
describing the same events, and merges them if so. The merging algorithm must
also perform reference resolution as described in Ch. 21.

22.5 ADVANCED: BIOMEDICAL INFORMATION EXTRACTION *

Information extraction from biomedical journal articles has become an importa
application area in recent years. The motivation for this work comes prinfieoity
biologists, who find themselves faced with an enormous increase in the nomber
publications in their field since the advent of modern genomics — so many that
keeping up with the relevant literature is nearly impossible for many scientists.
Fig. 22.30 amply demonstrates the severity of the problem faced by thestsisie
Clearly, applications that can automate the extraction and aggregationfaf use
information from such sources would be a boon to researchers.

*This section was written by K. Bretonnel Cohen
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Figure 22.30 Exponential growth in number of articles available in théoMed
database from 1986 to 2004 (after (Cohen and Hunter, 2004)).

A growing application area for information extraction in the biomedical do-
main is as an aid to the construction of large databases of genomic and related
information. Without the availability of information extraction-based curater as
sistance tools, many manual database construction efforts will not be derfgrie
decades — a time-span much too long to be useful (Jr. et al., 2007).

A good example of this kind of application is the MuteXt system. This sys-
tem targets two named entity types — mutations in proteins and two very specific
types of proteins calle®-coupled protein receptors and nuclear hormone recep-
tors. MuteXt was used to build a database that drew information from 2,008 doc-
uments; building it by hand would have taken an enormously time-consuming and
expensive undertaking. Mutations in G-protein coupled receptorssaaziated
with a range of diseases that includes diabetes, ocular albinism, and reiigitis p
mentosa, so even this simple text mining system has a clear application to the relief
of human suffering.

Biologists and bioinformaticians have recently come up with even more in-
novative uses for text mining systems, in which the output is never intended fo
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Semantic class Examples

Cell lines T98G, Hela cell, Chinese hamster ovary cells, CHO cells
Cell types primary T lymphocytes, natural killer cells, NK cells
Chemicals citric acid, 1,2-diiodopentane, C

Drugs cyclosporin A, CDDP

Genes/proteins white, HSP60, protein kinase C, L23A

Malignancies carcinoma, breast neoplasms

Medical/clinical concepts amyotrophic lateral sclerosis

Mouse strains LAFT, AKR

Mutations C10T, Ala64— Gly

Populations judo group

Figure 22.31 A sample of the semantic classes of named entities that lemrerdecognized in biomef-
ical NLP. Note the surface similarities between many of tkemeples.

viewing by humans, but rather is used as part of the analysis of highghpuit
assays—experimental methods which produce masses of data points thet wo
have been unimaginable just twenty years ago—and as part of techfoquesg
data in genomic data repositories. Ng (2006) provides a review and ahtinsig
analysis of work in this vein.

22.5.1 Biological Named Entity Recognition

Information extraction tasks in the biological realm are characterized bych mu
wider range of relevant types of entities than HERSON ORGANIZATION, and
LOCATION semantic classes that characterize work that is focused on news-style
texts. Fig. 22.31 and the following example illustrate just a small subset of the
variety of semantic classes of hamed entities that have been the target of NER
systems in the biomedical domain.

[TissuePlasma] gp BNP] concentrations were higher in both thepyaTION

judo] and popyLaTION Marathon groups] than iHpyLaTIONCONtrOIS],
and positively correlated withayaT LV] mass as well as with deceleration
time.

Nearly all of the techniques described in Sec. 22.1 have been applied to the
biomedical NER problem, with a particular focus on the problem of recognizin
gene/protein names. This task is particularly difficult due to the wide range of
forms that gene names can takehite, insulin, BRCAL, ether a go-gandbreast
cancer associated are all the names of genes. The choice of algorithm for gene
name recognition seems to be less important than the choice of features| typica
feature sets include word-shape and contextual features, as did@emdier; ad-
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GENE
NORMALIZATION

ditionally, knowledge-based features, such as using the count ofl&bitg for a
sequence likBRCAL gen¢o decide whether or not a token of the strBBCAlis
a reference to a gene or not, are sometimes incorporated into statisticalsyste
Surprisingly, the use of huge publicly available lists of gene names has not
generally contributed to the performance of a gene/protein NER systeme(ét.,
2005), and in fact may actually degrade it (Jr. et al., 2006). It is nodbrnmon for
gene names to be many tokens long (brgast cancer associated.1Gene name
length has a demonstrable effect on NER system performance (Kinoskita e
2005; Yeh et al., 2005), and any technique for correctly finding thentbaxies
of multi-token names seems to increase performance. Use of the abbreviation
definition-detection algorithm (Schwartz and Hearst, 2003) is common fquuinis
pose, since many such names appear as abbreviation or symbol defaitiomse
point in a publication. Base noun group chunkers can also be usefu$iretiard,
as can a surprisingly small number of heuristic rules (Kinoshita et al., 2005)

22.5.2 Gene Normalization

Having identified all the mentions of biological entities in a text, the next step is
to map them to unique identifiers in databases or ontologies. This task has been
most heavily studied for genes, where it is knowrgase normalization Some

of the complexities of the problem come from high degrees of variability in the
realization of the names of specific entities in naturally-occurring text; theeatu

of the problem was first delineated by Cohen et al. (2002). In that stndard
discovery procedure from descriptive linguistics was used to deterntfiaé sorts

of variability in gene names can be ignored, and what sorts must not bee@jno
More recently, Morgan et al. (2007) have shown how linguistic charatiter of
community-specific gene-naming conventions affect the complexity of this task
when the normalization of genes from varying species is attempted. Gene nor
malization can be considered a type of word sense disambiguation task, midway
between a targetted WSD task and an all-words WSD task.

An important thread of work on this problem involves mapping named en-
tities to biomedical ontologies, especially the Gene Ontology (Ashburner et al.,
2000). This has proven considerably more challenging; terms in the Gene O
tology tend to be long, to have many possible lexical and syntactic forms, and to
sometimes require significant amounts of inference. ? (?) introduce thiegyto
from the perspective of computational lexical semantics and review mutieof
named entity recognition work that has involved it.
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(22.25)

(22.26)

(22.27)

22.5.3 Biological Roles and Relations

Finding and normalizing all the mentions of biological entities in a text is a pre-
liminary step to determining the roles played by entities in the text. Two ways to
do this that have been the focus of recent research are to discaletassify the
expressed binary relations between the entities in a text, and to identify aad cla
sify the roles played by entities with respect to the central events in the teaseTh
two tasks correspond roughly to the tasks of classifying the relationshigebe
pairs of entities as described in Sec. 22.2, and to the semantic role labeling task
introduced in Ch. 20.

Consider the following example texts that express binary relations between
entities.

These results suggest that con A-indugg@faseghepatitis] was ameliorated by
pretreatment withfreaTmenTTJ-135].

[DiIseaseMalignant mesodermal mixed tumor of the uterus] following
[TrREATMENTIITAdiatiON]

Each of these examples asserts a relationship betwdaeaseand atreatment

In the first example, the relationship can be classified as thatifig. In the
second example, the disease igault of the mentioned treatment. Rosario and
Hearst (2004) present a system for the classification of 7 kinds ei<esstment
relations. In this work, a series of HMM-based generative models asasedl
discriminative neural network model were successfully applied.

More generally, a wide-range of rule-based and statistical appredzhe
been applied to binary relation recognition problems such as this. Examples of
other widely studied biomedical relation recognition problems include gertes an
their biological functions (Blaschke et al., 2005), genes and drugsifiesch et al.,
2000), genes and mutations (Rebholz-Schuhmann et al., 2004), dathgrmtein
interactions (Rosario and Hearst, 2005).

Now consider the following example that corresponds to a semantic role la-
beling style of problem.

[THEME Full-length cPLA2] was{argeTPhOsphorylated] stoichiometrically by
[AGENTP42 mitogen-activated protein (MAP) kinase] in vitro... and the major site
of phosphorylation was identified by amino acid sequencinggg 5er505]

Thephosphorylatiorevent that lies at the core of this text has three semantic roles
associated with it; the causatENT of the event, th@HEME or entity being phos-
phorylated and finally the location, erTe of the event. The problem is to identify
the constituents in the input that play these roles and assign them the coleect
labels. Note that this example, contains a further complication in that the sec-
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(22.28)

(22.29)

(22.30)

ond event mentiophosphorylatiormust be identified as coreferring with the first
phosphorylatedn order to capture thelTE role correctly.

Much of the difficulty with semantic role labeling in the biomedical domain
stems from the preponderance of nominalizations in these texts. Nominalizations
like phosphorylatiortypically offer fewer syntactic cues to signal their arguments
than their verbal equivalents, making the identification task more difficult.rA fu
ther complication is that different semantic roles arguments often occurtasopar
the same, or dominating nominal constituents. To see this consider the following
examples.

Serum stimulation of fibroblasts in floating matrices does not resufisRdeT
[arc1ERK] translocation] to thegrgznucleus] and there was decreased serum
activation of upstream members of the ERK signaling pathway, MEK and Raf,

The translocation of RelA/p65 was investigated using Western blotting and
immunocytochemistry. the COX-2 inhibitor SC236 worked directly through
suppressingfarceTlaARg3NUClear] translocation] oflrg1 RelA/p65].

Following UV treatment, Mcl-1 protein synthesis is blocked, the existing pool of
Mcl-1 protein is rapidly degraded by the proteasome, apgh[arg2CYytosolic]
Bcl-xL] [ tarcgeTiranslocates] to thenggzmitochondria]

Each these examples contains arguments that are bundled into constituents with
other arguments or with the target predicate itself. For example, in the second
example the constituemtuclear translocatiorsignals both theTARGET and the
ARG3 role.

Both rule-based and statistical approaches have been applied to these se
tic role-like problems. As with relation-finding and NER, the choice of algorithm
is less important than the choice of features, many of which are derigeddc-
curate syntactic analyses. However, since there are no large traehaailable
for biological texts, we are left with the option using off-the-shelf pardesined
on generic newswire texts. Of course, the errors introduced in this ggonay
negate whatever power we can derive from syntactic features. foheran im-
portant area of research revolves around the adaptation of geyetarsc tools
to this domain (Blitzer et al., 2006).

Relational and event extraction applications in this domain often have an ex-
tremely limited foci. The motivation for this is that even systems with narrow
scope can make a contribution to the productivity of working bioscientistexAn
treme example of this is the RLIMS-P system discussed earlier. It tacklestanly
verb phosphorylateand the associated nominalizatiphosphorylization.Never-
theless, this system was successfully used to produce a large onlinasiathbt
is in widespread use by the research community.
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As the targets of biomedical information extraction applications have become
more ambitious, the range of BioNLP application types has become corgespon
ingly more broad. Computational lexical semantics and semantic role labelling

(Verspoor et al., 2003; Wattarujeekrit et al., 2004; Ogren et al., 200dan et al.,
2005; Cohen and Hunter, 2006), summarization (Lu et al., 2006), aestiqo-
answering are all active research topics in the biomedical domain. Stastedike
BioCreative continue to be a source of large data sets for named entigniton,

guestion-answering, relation extraction, and document classificatioactiiran
and Blaschke, 2006), as well as a venue for head-to-head assesdrie bene-
fits of various approaches to information extraction tasks.

22.6 SUMMARY

This chapter has explored a series of techniques for extracting limited f@irms
semantic content from texts. Most techniques can be characterizedidsms in
detection followed by classification.

e Named entitiescan be recognized and classifieddigtistical sequence la-
beling techniques.

e Relations among entitiescan be detected and classified using supervised
learning methods when annotated training data is available; lightly super-

visedbootstrapping methods can be used when small numbersegfd tu-
plesor seed patternsare available.

e Reasoning about time can be facilitated by detecting and normatizingo-

ral expressionsthrough a combination of statistical learning and rule-based
methods.

Rule-based and statistical methods can be used to detect, classify and orde
eventsin time. TheTimeBank corpus can facilitate the training and evalu-
ation of temporal analysis systems.

Template-filling applications can recognize stereotypical situations in texts
and assign elements from the text to roles representéxesksets of slots

Information extraction techniques have proven to be particularly efieativ
processing texts from thaological domain.

Scripts, plans and goals...
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

The earliest work on information extraction addressed the template-fillingtask
was performed in the context of the Frump system (DeJong, 1982). \natkmwas
stimulated by the U.S. government sponsored MUC conferences (Sumdle91,
1992, 1993, 1995). Chinchor et al. (1993) describes the evaluatbnitpies used
in the MUC-3 and MUC-4 conferences. Hobbs (1997) partially creditantbmra-
tion for FASTUStO the success of the University of Massachusettcus system
(Lehnert et al., 1991) in MUC-3. Thecisorsystem is another system based
loosely on cascades and semantic expectations that did well in MUC-3&Jacd
Rau, 1990).

Due to the difficulty of reusing or porting systems from one domain to an-
other, attention shifted to the problem of automatic knowledge acquisition fee the
systems. The earliest supervised learning approaches to IE ardddsorCardie
(1993), Cardie (1994), Riloff (1993), Soderland et al. (1995)fidan (1996), and
Freitag (1998).

These early learning efforts focused on automating the knowledge &acquis
tion process for mostly finite-state rule-based systems. Their succeshearar-
lier success of HMM-based methods for automatic speech recognition, thd to
development of statistical systems based on sequence labeling. Eartg affe
plying HMMs to IE problems include the work of Bikel et al. (1997, 1999 an
Freitag and McCallum (1999). Subsequent efforts demonstrated thotivedfeess
of a range of statistical methods including MEMMs (McCallum et al., 2000F€R
(Lafferty et al., 2001) and SVMs (Sassano and Utsuro, 2000; McHand May-
field, 2002).

Progress in this area continues to be stimulated by formal evaluations with
shared benchmark datasets. The MUC evaluations of the mid-1990s were s
ceeded by the Automatic Content Extraction (ACE) program evaluationgleeld
riodically from 2000 to 200?. These evaluations focused on the named entity
recognition, relation detection, and temporal expression detection anthlima-
tion tasks. Other IE evaluations include the 2002 and 2003 CoNLL shaskesida
language-independent named entity recognition (Sang, 2002; Sarigeakeul-
der, 2003), and the 2007 SemEval tasks on temporal analysis (Verleage.,
2007) and people search (Artiles et al., 2007).

The scope of information extraction continues to expand to meet the ever-
increasing needs of applications for novel kinds of information. Some @f th
emerging IE tasks that we haven't discussed include the classificatioanoieg

6 www.nist.gov/speech/tests/ace/
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USER GENERATED
CONTENT

SOCIAL MEDIA

(Koppel et al., 2002), moods (Mishne and de Rijke, 2006), sentimemettadhd
opinions (Qu et al., 2004). Much of this work involvaser generated content

in the context ofocial mediasuch as blogs, discussion forums, newsgroups and
the like. Research results in this domain have been the focus of a numleeeaof r
workshops and conferences (Nicolov et al., 2006; Nicolov and G|&0&).

EXERCISES

22.1 Develop a set of regular expressions to recognize the character &ap
tures described in Fig. 22.7.

22.2 Using a statistical sequence modeling toolkit of your choosing, develop and
evaluate an NER system.

22.3 Thelos labeling scheme given in this chapter isn’t the only possible one.
For example, are tag might be added to mark the end of entities, orghiag

can be reserved only for those situations where an ambiguity exists beaseen
jacent entities. Propose a new setioB tags for use with your NER system.
Perform experiments and compare its performance against the scheseatpce

in this chapter.

22.4 Names of works of art (books, movies, video games, etc.) are quiteatiffer
from the kinds of named entities we've discussed in this chapter. Collectd list
names of works of art from a particular category from a web-basatceqeg.
gutenberg.org, amazon.com, imdb.com, etc.). Analyze your list and giveptas
of ways that the names in it are likely to be problematic for the techniquesioedcr
in this chapter.

22.5 Develop an NER system specific to the category of names that you collected
in the last exercise. Evaluate your system on a collection of text likely to iconta
instances of these named entities.

22.6 Acronym expansion, the process of associating a phrase with a particula
acronym, can be accomplished by a simple form of relational analysis.|dpeve

a system based on the relation analysis approaches described in thisr ¢bap
populate a database of acronym expansions. If you focus on Efdjirsle Letter
Acronyms (TLAS) you can evaluate your system’s performance by comparing it to
Wikipedia’'s TLA page én.wikipedia.org/wiki/Category:Lists_of _TLAs).

22.7 Collecta corpus of biographical Wikipedia entries of prominent peoplha fr
some coherent area of interest (sports, business, computer stirgaistics, etc.).
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Develop a system that can extract an occupational timeline for the subjé¢icese
articles. For example, the Wikipedia entry for Peter Norvig might result in the
ordering: Sun, Harlequin, Junglee, NASA, Google; the entry for DBddkham
would be: Manchester United, Real Madrid, Los Angeles Galaxy.

22.8 A useful functionality in newer email and calendar applications is the abil-
ity to associate temporal expressions associated with events in emails (sloctor’
appointments, meeting planning, party invitations, etc.) with specific calendar en
tries. Collect a corpus of emails containing temporal expressions relateérnb e
planning. How do these expressions compare to the kind of expressiomsanly
found in news text that we've been discussing in this chapter?

22.9 Develop and evaluate a recognition system capable of recognizing tdmpora
expressions of the kind appearing in your email corpus.

22.10 Design a system capable of normalizing these expressions to the degree
required to insert them into a standard calendaring application.

22.11 Acquire the CMU seminar announcement corpus and develop a template-
filling system using any of the techniques mentioned in Sec. 22.4. Analyze how
well your system performs as compared to state-of-the-art results omdhis
pus.

22.12 Develop a new template that covers a situation commonly reported on by
standard news sources. Carefully characterize your slots in terms kintthe of
entities that appear as slot-fillers. Your first step in this exercise shottcdoguire

a reasonably sized corpus of stories that instantiate your template.

22.13 Given your corpus, develop an approach to annotating the relevasiirsio
your corpus so that it can serve as a training corpus. Your appsebexhd involve
some hand-annotation, but should not be based solely on it.

22.14 Retrain your system and analyze how well it functions on your new do-
main.

22.15 Species identification is a critical issue for biomedical information extrac-
tion applications such as document routing and classification. But it isiefipec
crucial for realistic versions of the gene normalization problem.

Build a species identification system that works on the document level, using
the machine learning or rule-based method of your choice. As gold sthddt,
use the BioCreative gene normalization datiocreative . sourceforge.net).

22.16 Build, or borrow, a named entity recognition system that targets mentions
of genes and gene products in texts. As development data, use the &ivo€re
gene mention corpud{ocreative.sourceforge.net).
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22.17 Build a gene normalization system that maps the output of your gene men-
tion recognition system to the appropriate database entry. Use the Bio€getie
normalization data as your development and test detaure you don't give your
system access to the species identification in the metadata.
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