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22
INFORMATION
EXTRACTION

I am the very model of a modern Major-General,
I’ve information vegetable, animal, and mineral,
I know the kings of England, and I quote the fights historical
From Marathon to Waterloo, in order categorical...

Gilbert and Sullivan,Pirates of Penzance

Imagine that you are an analyst with an investment firm that tracks airline stocks.
You’re given the task of determining the relationship (if any) between airlinean-
nouncements of fare hikes and the behavior of their stocks on the followingday.
Historical data about stock prices is easy to come by, but what about the informa-
tion about airline announcements? To do a reasonable job on this task, you would
need to know at least the name of the airline, the nature of the proposed fare hike,
the dates of the announcement and possibly the response of other airlines. Fortu-
nately, this information resides in archives of news articles reporting on airline’s
actions, as in the following recent example.

Citing high fuel prices, United Airlines said Friday it has increased fares by
$6 per round trip on flights to some cities also served by lower-cost carriers.
American Airlines, a unit of AMR Corp., immediately matchedthe move,
spokesman Tim Wagner said. United, a unit of UAL Corp., said the increase
took effect Thursday and applies to most routes where it competes against
discount carriers, such as Chicago to Dallas and Denver to San Francisco.

Of course, distilling information like names, dates and amounts from natu-
rally occurring text is a non-trivial task. This chapter presents a seriesof techniques
that can be used to extract limited kinds of semantic content from text. This pro-
cess ofinformation extraction (IE) turns the unstructured information embeddedINFORMATION

EXTRACTION

in texts into structured data. More concretely, information extraction is an effective
way to to populate the contents of a relational database. Once the information is
encoded formally, we can apply all the capabilities provided by database systems,
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statistical analysis packages and other forms of decision support systemsto address
the problems we’re trying to solve.

As we proceed through this chapter, we’ll see that robust solutions to IEprob-
lems are actually clever combinations of techniques we’ve seen earlier in the book.
In particular, the finite-state methods described in Chs. 2 and 3, the probabilistic
models introduced in Chs. 4 through 6 and the syntactic chunking methods from
Ch. 13 form the core of most current approaches to information extraction. Before
diving into the details of how these techniques are applied, let’s quickly introduce
the major problems in IE and how they can be approached.

The first step in most IE tasks is to detect and classify all the proper names
mentioned in a text — a task generally referred to asnamed entity recognitionNAMED ENTITY

RECOGNITION

(NER). Not surprisingly, what constitutes a proper name and the particular scheme
used to classify them is application-specific. Generic NER systems tend to fo-
cus on finding the names of people, places and organizations that are mentioned
in ordinary news texts; practical applications have also been built to detectevery-
thing from the names of genes and proteins (Settles, 2005) to the names of college
courses (McCallum, 2005).

Our introductory example contains 13 instances of proper names, which we’ll
refer to asnamed entity mentions, which can be classified as either organizations,NAMED ENTITY

MENTIONS

people, places, times or amounts.
Having located all of the mentions of named entities in a text, it is useful

to link, or cluster, these mentions into sets that correspond to the entities behind
the mentions. This is the task ofreference resolution, which we introduced in
Ch. 21, and is also an important component in IE. In our sample text, we would
like to know that theUnited Airlinesmention in the first sentence and theUnited
mention in the third sentence refer to the same real world entity. This general
reference resolution problem also includes anaphora resolution as a sub-problem.
In this case, determining that the two uses ofit refer toUnited AirlinesandUnited
respectively.

The task ofrelation detection and classificationis to find and classify se-RELATION
DETECTION AND
CLASSIFICATION

mantic relations among the entities discovered in a given text. In most practical
settings, the focus of relation detection is on small fixed sets of binary relations.
Generic relations that appear in standard system evaluations include family,em-
ployment, part-whole, membership, and geospatial relations. The relation detec-
tion and classification task is the one that most closely corresponds to the prob-
lem of populating a relational database. Relation detection among entities is also
closely related to the problem of discovering semantic relations among words in-
troduced in Ch. 20.

Our sample text contains 3 explicit mentions of generic relations:United is a
part ofUAL, American Airlinesis a part ofAMRandTim Wagneris an employee
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of American Airlines. Domain-specific relations from the airline industry would
include the fact thatUnitedservesChicago, Dallas, DenverandSan Francisco.

In addition to knowing about the entities in a text and their relation to one
another, we might like to find and classify the events in which the entities are
participating; this is the problem ofevent detection and classification. In ourEVENT DETECTION

AND CLASSIFICATION

sample text, the key events are the fare increase byUnitedand the ensuing increase
by American. In addition, there are several events reporting these main events as
indicated by the two uses ofsaidand the use ofcite. As with entity recognition,
event detection brings with it the problem of reference resolution; we need to figure
out which of the many event mentions in a text refer to the same event. In our
running example, the events referred to asthe moveandthe increasein the second
and third sentences are the same as theincreasein the first sentence.

The problem of figuring out when the events in a text happened and how
they relate to each other in time raises the twin problems oftemporal expression
detectionandtemporal analysis. Temporal expression detection tells us that ourTEMPORAL

EXPRESSION
DETECTION

TEMPORAL ANALYSIS sample text contains the temporal expressionsFriday and Thursday. Temporal
expressions include date expressions such as days of the week, months, holidays,
etc., as well as relative expressions including phrases liketwo days from nowor
next year. They also include expressions for clock times such asnoonor 3:30PM.

The overall problem oftemporal analysis is to map temporal expressions
onto specific calendar dates or times of day and then to use those times to situate
events in time. It includes the following subtasks.

• Fixing the temporal expressions with respect to an anchoring date or time,
typically the dateline of the story in the case of news stories;

• Associating temporal expressions with the events in the text;

• Arranging the events into a complete and coherent timeline.

In our sample text, the temporal expressionsFriday andThursdayshould be
anchored with respect to the dateline associated with the article itself. We also
know thatFriday refers to the time of United’s announcement, andThursdayrefers
to the time that the fare increase went into effect (i.e. the Thursday immediately
preceding the Friday). Finally, we can use this information to produce a timeline
where United’s announcement follows the fare increase and American’sannounce-
ment follows both of those events. Temporal analysis of this kind is useful innearly
any NLP application that deals with meaning, including question answering, sum-
marization and dialogue systems.

Finally, many texts describe stereotypical situations that recur with some fre-
quency in the domain of interest. The task oftemplate-filling is to find documentsTEMPLATE­FILLING

that evoke such situations and then fill the slots in templates with appropriate ma-
terial. These slot-fillers may consist of text segments extracted directly fromthe
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text, or they may consist of concepts that have been inferred from text elements via
some additional processing (times, amounts, entities from an ontology, etc.).

Our airline text is an example of this kind of stereotypical situation since
airlines are often attempting to raise fares and then waiting to see if competitors
follow along. In this situation, we can identifyUnitedas a lead airline that initially
raised its fares, $6 as the amount by which fares are being raised,Thursdayas the
effective date for the fare increase, andAmericanas an airline that followed along.
A filled template from our original airline story might look like the following.

FARE-RAISE ATTEMPT:










LEAD A IRLINE : UNITED A IRLINES

AMOUNT: $6

EFFECTIVE DATE: 2006-10-26

FOLLOWER: AMERICAN A IRLINES











The following sections will review current approaches to each of these prob-
lems in the context of generic news text. Sec. 22.5 then describes how many of
these problems arise in the context of procecessing biology texts.

22.1 NAMED ENTITY RECOGNITION

The starting point for most information extraction applications is the detection and
classification of the named entities in a text. Bynamed entity, we simply meanNAMED ENTITY

anything that can be referred to with a proper name. This process ofnamed entity
recognition refers to the combined task of finding spans of text that constitute
proper names and then classifying the entities being referred to accordingto their
type.

Generic news-oriented NER systems focus on the detection of things like
people, places, and organizations. Figures 22.1 and 22.2 provide lists oftypical
named entity types with examples of each. Specialized applications may be con-
cerned with many other types of entities, including commercial products, weapons,
works of art, or as we’ll see in Sec. 22.5, proteins, genes and other biological enti-
ties. What these applications all share is a concern with proper names, the charac-
teristic ways that such names are signaled in a given language or genre, and a fixed
set of categories of entities from a domain of interest.

By the way that names are signaled, we simply mean that names are denoted
in a way that sets them apart from ordinary text. For example, if we’re dealing
with standard English text, then two adjacent capitalized words in the middle of a
text are likely to constitute a name. Further, if they are are preceded by aDr. or
followed by anMD, then it is likely that we’re dealing with a person. In contrast,
if they are preceded byarrived in or followed byNY then we’re probably dealing
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Type Tag Sample Categories
People PER Individuals, fictional characters, small groups
Organization ORG Companies, agencies, political parties, religious groups, sports teams
Location LOC Physical extents, mountains, lakes, seas
Geo-Political Entity GPE Countries, states, provinces, counties
Facility FAC Bridges, buildings, airports
Vehicles VEH Planes, trains and automobiles

Figure 22.1 A list of generic named entity types with the kinds of entities they refer to.

Type Example
People Turing is often considered to be the father of modern computer science.
Organization The IPCC said it is likely that future tropical cyclones will become more

intense.
Location TheMt. Sanitasloop hike begins at the base ofSunshine Canyon.
Geo-Political Entity Palo Altois looking at raising the fees for parking in the University Avenue

district
Facility Drivers were advised to consider either theTappan Zee Bridgeor theLin-

coln Tunnel.
Vehicles The updatedMini Cooperretains its charm and agility.

Figure 22.2 Named entity types with examples.

with a location. Note that these signals include facts about the proper names as
well as their surrounding contexts.

The notion of a named entity is commonly extended to include things that
aren’t entities per se, but nevertheless have practical importance and do have char-
acteristic signatures that signal their presence; examples include dates, times, named
events and other kinds oftemporal expressions, as well as measurements, counts,TEMPORAL

EXPRESSIONS

prices and other kinds ofnumerical expressions. We’ll consider some of theseNUMERICAL
EXPRESSIONS

later in Sec. 22.3.
Let’s revisit the sample text introduced earlier with the named entities marked

(with TIME andMONEY used to to mark the temporal and monetary expressions).

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has in-
creased fares by [MONEY $6] per round trip on flights to some cities also
served by lower-cost carriers. [ORGAmerican Airlines], a unit of [ORGAMR
Corp.], immediately matched the move, spokesman [PERSTim Wagner] said.
[ORGUnited], a unit of [ORGUAL Corp.], said the increase took effect [TIME
Thursday] and applies to most routes where it competes against discount car-
riers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San
Francisco].
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Name Possible Categories
Washington Person, Location, Political Entity, Organization, Facility
Downing St. Location, Organization
IRA Person, Organization, Monetary Instrument
Louis Vuitton Person, Organization, Commercial Product

Figure 22.3 Common categorical ambiguities associated with various proper
names.

[PERSWashington] was born into slavery on the farm of James Burroughs.
[ORGWashington] went up 2 games to 1 in the four-game series.
Blair arrived in [LOC Washington] for what may well be his last state visit.
In June, [GPE Washington] passed a primary seatbelt law.
The [FAC Washington] had proved to be a leaky ship, every passage I made...

Figure 22.4 Examples of type ambiguities in the use of the nameWashington.

As shown, this text contains 13 mentions of named entities including 5 organiza-
tions, 4 locations, 2 times, 1 person, and 1 mention of money. The 5 organizational
mentions correspond to 4 unique organizations, sinceUnitedandUnited Airlines
are distinct mentions that refer to the same entity.

22.1.1 Ambiguity in Named Entity Recognition

Named entity recognition systems face two types of ambiguity. The first arises
from the fact the same name can refer to different entities of the same type. For
example,JFK can refer to the former president or his son. This is basically a
reference resolution problem and approaches to resolving this kind of ambiguity
are discussed in Ch. 21.

The second source of ambiguity arises from the fact that identical named
entity mentions can refer to entities of completely different types. For example,in
addition to people,JFK might refer to the airport in New York, or to any number of
schools, bridges and streets around the United States. Some examples of thiskind
of cross-type confusion are given in Figures 22.3 and 22.4.

Notice that some of the ambiguities shown in Fig. 22.3 are completely coinci-
dental. There is no relationship between the financial and organizational uses of the
nameIRA — they simply arose coincidentally as acronyms from different sources
(Individual Retirement Accountand International Reading Association). On the
other hand, the organizational uses ofWashingtonandDowning St.are examples
of a LOCATION-FOR-ORGANIZATION metonymy, as discussed in Ch. 19.
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22.1.2 NER as Sequence Labeling

The standard way to approach the problem of named entity recognition is as a
word-by-word sequence labeling task, where the assigned tags capture both the
boundary and the type of any detected named entities. Viewed in this light, named
entity recognition looks very much like the problem of syntactic base-phrasechunk-
ing. In fact, the dominant approach to NER is based on the same statistical se-
quence labeling techniques introduced in Ch. 5 for part of speech tagging and
Ch. 13 for syntactic chunking.

In the sequence labeling approach to NER, classifiers are trained to labelthe
tokens in a text with tags that indicate the presence of particular kinds of named
entities. This approach makes use of the same style ofIOB encoding employed for
syntactic chunking. Recall that in this scheme anI is used to label tokensinsideof
a chunk,B is used to mark the beginning of a chunk, andO labels tokens outside
any chunk of interest. Consider the following sentence from our runningexample.

(22.1) [ORGAmerican Airlines], a unit of [ORGAMR Corp.], immediately matched the
move, spokesman [PERSTim Wagner] said.

This bracketing notation provides us with the extent and the type of the named
entities in this text. Fig. 22.5 shows a standard word-by-word IOB-style tagging
that captures the same information. As with syntactic chunking, the tagset forsuch
an encoding consists of 2 tags for each entity type being recognized, plus1 for the
O tag outside any entity, or(2×N)+1 tags.

Having encoded our training data withIOB tags, the next step is to select a
set of features to associate with each input example (i.e. each of the tokensto be
labeled in Fig. 22.5). These features should be plausible predictors of theclass
label and should be easily and reliably extractable from the source text. Recall that
such features can be based not only on characteristics of the token to beclassified,
but also on the text in a surrounding window as well.

Fig. 22.6 gives a list of standard features employed in state-of-the-art named
entity recognition systems. We’ve seen many of these features before in thecontext
of part-of-speech tagging and syntactic base-phrase chunking. Several, however,
are particularly important in the context of NER. Theshapefeature includes theSHAPE

usual upper case, lower case and capitalized forms, as well as more elaborate pat-
terns designed to capture expressions that make use of numbers (A9), punctuation
(Yahoo!) and atypical case alternations (eBay). It turns out that this feature by itself
accounts for a considerable part of the success of NER systems for English news
text. And as we’ll see in Sec. 22.5, shape features are also particularly important
in recognizing names of proteins and genes in biological texts. Fig. 22.7 describes
some commonly employed shape feature values.

Thepresence in a named entity listfeature can be very predictive. Extensive
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Words Label
American BORG

Airlines IORG

, O
a O
unit O
of O
AMR BORG

Corp. IORG

, O
immediately O
matched O
the O
move O
, O
spokesman O
Tim BPERS

Wagner IPERS

said O
. O

Figure 22.5 IOB encoding for a sample sentence.

lists of names for all manner of things are available from both publicly available
and commercial sources. Lists of place names, calledgazetteers, contain millionsGAZETTEERS

of entries for all manner of locations along with detailed geographical, geologic and
political information.1 The United States Census Bureau provides extensive lists
of first names and surnames derived from its decadal census in the U.S.2 Similar
lists of corporations, commercial products, and all manner of things biological and
mineral are also available from a variety of sources.

This feature is typically implemented as a binary vector with a bit for each
available kind of name list. Unfortunately, such lists can be difficult to create and
maintain, and their usefulness varies considerably based on the named entityclass.
It appears that gazetteers can be quite effective, while extensive lists of persons and
organizations are not nearly as beneficial (Mikheev et al., 1999).

Finally, features based on the presence ofpredictive words and N-gramsin
the context window can also be very informative. When they are present,preceding

1 www.geonames.org
2 www.census.gov
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Feature Explanation
Lexical items The token to be labeled
Stemmed lexical items Stemmed version of the target token
Shape The orthographic pattern of the target word
Character affixes Character level affixes of the target and surrounding words
Part of speech Part of speech of the word
Syntactic chunk labels Base phrase chunk label
Gazetteer or name list Presence of the word in one or more named entity lists
Predictive token(s) Presence of predictive words in surrounding text
Bag of words/Bag of N-grams Words and/or N-grams occurring in the surrounding context.

Figure 22.6 Features commonly used in training named entity recognition systems.

Shape Example
Lower cummings
Capitalized Washington
All caps IRA
Mixed case eBay
Capitalized initial with period H.
Ends in digit A9
Contains hyphen H-P

Figure 22.7 Selected shape features.

and following titles, honorifics, and other markers such asRev., MD andInc. can
accurately indicate the class of an entity. Unlike name lists and gazetteers, these
lists are relatively short and stable over time and are therefore easy to develop and
maintain.

The relative usefulness of any of these features, or combination of features,
depends to a great extent on the application, genre, media, language andtext en-
coding. For example, shape features, which are critical for English newswire texts,
are of little use with materials transcribed from spoken text via automatic speech
recognition, materials gleaned from informally edited sources such as blogsand
discussion forums, and for character-based languages like Chinese where case in-
formation isn’t available. The set of features given in Fig. 22.6 should therefore be
thought of as only a starting point for any given application.

Once an adequate set of features has been developed, they are extracted from
a representative training set and encoded in a form appropriate to train amachine
learning-based sequence classifier. A standard way of encoding these features is to
simply augment our earlierIOB scheme with more columns. Fig. 22.8 illustrates the
result of adding part-of-speech tags, syntactic base-phrase chunktags, and shape
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Features Label
American NNP BNP cap BORG

Airlines NNPS INP cap IORG

, PUNC O punc O
a DT BNP lower O
unit NN INP lower O
of IN BPP lower O
AMR NNP BNP upper BORG

Corp. NNP INP cappunc IORG

, PUNC O punc O
immediately RB BADVP lower O
matched VBD BVP lower O
the DT BNP lower O
move NN INP lower O
, PUNC O punc O
spokesman NN BNP lower O
Tim NNP INP cap BPER

Wagner NNP INP cap IPER

said VBD BVP lower O
. PUNC O punc O

Figure 22.8 Simple word-by-word feature encoding for NER.

information to our earlier example.
Given such a training set, a sequential classifier can be trained to label new

sentences. As with part-of-speech tagging and syntactic chunking, this problem
can be cast either as Markov-style optimization using HMMs or MEMMs as de-
scribed in Ch. 6, or as a multi-way classification task deployed as a sliding-window
labeler as described in Ch. 13. Figure Fig. 22.9 illustrates the operation of such a
sequence labeler at the point where the tokenCorp. is next to be labeled. If we
assume a context window that includes the 2 preceding and following words, then
the features available to the classifier are those shown in the boxed area. Fig. 22.10
summarizes the overall sequence labeling approach to creating a NER system.

22.1.3 Evaluating Named Entity Recognition

The familiar metrics ofrecall, precision and F1 measure introduced in Ch. 13
are used to evaluate NER systems. Recall that recall is the ratio of the number
of correctly labeled responses to the total that should have been labeled;precision
is the ratio of the number of correctly labeled responses to the total labeled. The
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Classifier

IN NNP NNP RB VBD

unit ofa...

lower

B_PP

...AMR Corp. immediately matched

B_NP

upper

I_NP

cap_punc

B_ADVP

lower

B_VP

lower

O B_ORG ? ......

,

PUNC

O
punc

Figure 22.9 Named entity recognition as sequence labeling. The features avail-
able to the classifier during training and classification arethose in the boxed area.

Document
Document
DocumentRepresentative 
Document 
Collection

Human 
Annotation

Feature 
Extraction and 
IOB Encoding

Train Classifiers to Perform 
Multiway Sequence 

Labeling (MEMMs, CRFs, 
SVMs, HMMs, etc.)

Annotated 
Documents

Training 
Data

NER System

Figure 22.10 Basic steps in the statistical sequence labeling approach to creating
a named entity recognition system.

F-measure (van Rijsbergen, 1975) provides a way to combine these two measures
into a single metric. The F-measure is defined as:

Fβ =
(β 2 +1)PR

β 2P+R
(22.2)

Theβ parameter is used to differentially weight the importance of recall and pre-
cision, based perhaps on the needs of an application. Values ofβ > 1 favor recall,
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while values ofβ < 1 favor precision. Whenβ = 1, precision and recall are equally
balanced; this is sometimes calledFβ=1 or justF1:

F1 =
2PR
P+R

(22.3)

As with syntactic chunking, it is important to distinguish the metrics used
to measure performance at the application level from those used during training.
At the application level, recall and precision are measured with respect to the ac-
tual named entities detected. On the other hand, with anIOB encoding scheme the
learning algorithms are attempting to optimize performance at the tag level. Per-
formance at these two levels can be quite different; since the vast majority oftags
in any given text are outside any entity, simply emitting anO tag for every token
gives fairly high tag-level performance.

High-performing systems at recent standardized evaluations have entity level
F-measures around .92 forPERSONSandLOCATIONS, and around .84 forORGA-
NIZATIONS (Sang and De Meulder, 2003).

22.1.4 Practical NER Architectures

Commercial approaches to NER are often based on pragmatic combinations of
lists, rules and supervised machine learning(Jackson and Moulinier, 2002). One
common approach is to make repeated passes over a text allowing the results of
one pass to influence the next. The stages typically first involve the use of rules
that have extremely high precision but low recall. Subsequent stages employmore
error-prone statistical methods that take the output of the first pass into account.

1. First use high-precision rules to tag unambiguous entity mentions;

2. Then search for sub-string matches of the previously detected names using
probabilistic string matching metrics (as described in Ch. 19).

3. Consult application-specific name lists to identify likely name entity men-
tions from the given domain.

4. Finally, apply probabilistic sequence labeling techniques that make use ofthe
tags from previous stages as additional features.

The intuition behind this staged approach is two-fold. First, some of the
entity mentions in a text will be more clearly indicative of a given entity’s class
than others. Second, once an unambiguous entity mention is introduced into a text,
it is likely that subsequent shortened versions will refer to the same entity (and thus
the same type of entity).
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Relations Examples Types
Affiliations

Personal married to, mother of PER→ PER

Organizational spokesman for, president of PER→ ORG

Artifactual owns, invented, produces (PER | ORG) → ART

Geospatial
Proximity near, on outskirts LOC → LOC

Directional southeast of LOC → LOC

Part-Of
Organizational a unit of, parent of ORG→ ORG

Political annexed, acquired GPE→ GPE

Figure 22.11 Typical semantic relations with examples and the named entity types
they involve.

22.2 RELATION DETECTION AND CLASSIFICATION

Next on our list of tasks is the ability to discern the relationships that exist among
the entities detected in a text. To see what this means, let’s return to our sample
airline text with all the entities marked.

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has in-
creased fares by [MONEY $6] per round trip on flights to some cities also
served by lower-cost carriers. [ORGAmerican Airlines], a unit of [ORGAMR
Corp.], immediately matched the move, spokesman [PERSTim Wagner] said.
[ORGUnited], a unit of [ORGUAL Corp.], said the increase took effect [TIME
Thursday] and applies to most routes where it competes against discount car-
riers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San
Francisco].

This text stipulates a set of relations among the named entities mentioned
within it. We know, for example, thatTim Wagneris a spokesman forAmeri-
can Airlines, that United is a unit ofUAL Corp., and thatAmericanis a unit of
AMR. These are all binary relations that can be seen as instances of more generic
relations such aspart-of or employsthat occur with fairly high frequency in news-
style texts. Fig. 22.11 shows a list of generic relations of the kind used in recent
standardized evaluations.3 More domain-specific relations that might be extracted
include the notion of an airline route. For example, from this text we can conclude
that United has routes to Chicago, Dallas, Denver and San Francisco.

These relations correspond nicely to the model-theoretic notions we intro-
duced in Ch. 17 to ground the meanings of the logical forms. That is, a relation

3 http://www.nist.gov/speech/tests/ace/
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Domain D = {a,b,c,d,e, f ,g,h, i}
United, UAL, American Airlines, AMR a,b,c,d
Tim Wagner e
Chicago, Dallas, Denver, and San Francisco f ,g,h, i
Classes
United, UAL, American and AMR are organizations Org = {a,b,c,d}
Tim Wagner is a person Pers= {e}
Chicago, Dallas, Denver and San Francisco are places Loc= { f ,g,h, i}
Relations
United is a unit of UAL PartOf = {〈a,b〉,〈c,d〉}
American is a unit of AMR
Tim Wagner works for American Airlines OrgAff = {〈c,e〉}
United serves Chicago, Dallas, Denver and San FranciscoServes= {〈a, f 〉,〈a,g〉,〈a,h〉,〈a, i〉}

Figure 22.12 A model-based view of the relations and entities in our sample text.

consists of set of ordered tuples over elements of a domain. In most standard in-
formation extraction applications, the domain elements correspond either to the
named entities that occur in the text, to the underlying entities that result from co-
reference resolution, or to entities selected from a domain ontology. Fig. 22.12
shows a model-based view of the set of entities and relations that can be extracted
from our running example. Notice how this model-theoretic view subsumes the
NER task as well; named entity recognition corresponds to the identification of a
class of unary relations.

22.2.1 Supervised Learning Approaches to Relation Analysis

Supervised machine learning approaches to relation detection and classification
follow a scheme that should be familiar by now. Texts are annotated with relations
chosen from a small fixed set by human analysts. These annotated texts are then
used to train systems to reproduce similar annotations on unseen texts. Such an-
notations indicate the text spans of the two arguments, the roles played by each
argument and the type of the relation involved.

The most straightforward approach breaks the problem down into two sub-
tasks: detecting when a relation is present between two entities and then classifying
any detected relations. In the first stage, a classifier is trained to make a binary
decision as to whether or not a given pair of named entities participate in a relation.
Positive examples are extracted directly from the annotated corpus, while negative
examples are generated from within-sentence entity pairs that are not annotated
with a relation.
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function FINDRELATIONS(words) returns relations

relations←nil
entities←FINDENTITIES(words)
forall entity pairs 〈e1,e2〉 in entitiesdo

if RELATED?(e1,e2)
relations← relations+CLASSIFYRELATION(e1,e2)

Figure 22.13 Finding and classifying the relations among entities in a text.

In the second phase, a classifier is trained to label the relations that exist
between candidate entity pairs. As discussed in Ch. 6, techniques such asdeci-
sion trees, naive Bayes or MaxEnt handle multiclass labeling directly. Binary ap-
proaches based on discovering separating hyperplanes such as SVMs solve multi-
class problems by employing a one-versus-all training paradigm. In this approach,
a sets of classifiers are trained where each classifier is trained on one label as the
positive class and all the other labels as the negative class. Final classification is
performed by passing each instance to be labeled to all of the classifiers and then
choosing the label from the classifier with the most confidence, or returninga rank
ordering over the positively responding classifiers. Fig. 22.13 illustratesthe basic
approach for finding and classifying relations among the named entities within a
discourse unit.

As with named entity recognition, the most important step in this process
is to identify surface features that will be useful for relation classification(Zhou
et al., 2005). The first source of information to consider arefeatures of the named
entities themselves.

• Named entity types of the two candidate arguments

• Concatenation of the two entity types

• Head words of the arguments

• Bag of words from each of the arguments

The next set of features are derived fromthe words in the text being exam-
ined. It is useful to think of these features as being extracted from threelocations:
the text between the two candidate arguments, a fixed window before the first ar-
gument, and a fixed window after the second argument. Given these locations, the
following word-based features have proven to be useful.

• The bag of words and bag of bigrams between the entities

• Stemmed versions of the same

• Words and stems immediately preceding and following the entities
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Figure 22.14 An appositive construction expressing ana-part-of relation.

• Distance in words between the arguments

• Number of entities between the arguments

Finally, the syntactic structure of a sentence can signal many of the rela-
tionships among any entities contained within it. The following features can be
derived from various levels of syntactic analysis including base-phrase chunking,
dependency parsing and full constituent parsing.

• Presence of particular constructions in a constituent structure

• Chunk base-phrase paths

• Bags of chunk heads

• Dependency-tree paths

• Constituent-tree paths

• Tree distance between the arguments

One method of exploiting parse trees is to create detectors that signal the pres-
ence of particular syntactic constructions and then associate binary features with
those detectors. As an example of this, consider the sub-tree shown in Fig.22.14
that dominates the named entitiesAmericanandAMR Inc. The NP construction
that dominates these two entities is called an appositive construction and is often
associated with bothpart-of anda-kind-of relations in English. A binary feature
indicating the presence of this construction can be useful in detecting theserela-
tions.

This method of feature extraction relies on a certain amount of a priori lin-
guistic analysis to identify those syntactic constructions that may be useful predic-
tors of certain classes. An alternative method is to automatically encode certain
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Entity-based features
Entity1 type ORG

Entity1 head airlines
Entity2 type PERS

Entity2 head Wagner
Concatenated types ORGPERS

Word-based features
Between-entity bag of words { a, unit, of, AMR, Inc., immediately, matched, the,

move, spokesman}
Word(s) before Entity1 NONE

Word(s) after Entity2 said
Syntactic features

Constituent path NP↑ NP↑ S↑ S↓ NP
Base syntactic chunk path NP→ NP→ PP→ NP→VP→ NP→ NP
Typed-dependency path Airlines←sub j matched←compsaid→sub j Wagner

Figure 22.15 Sample of features extracted while classifying the<American Airlines, Tim Wagner>
tuple.

aspects of tree structures as feature values and allow the machine learningalgo-
rithms to determine which values are informative for which classes. One simple
and effective way to do this this involves the use ofsyntactic pathsthrough trees.
Consider again the tree discussed earlier that dominatesAmerican Airlinesand
AMR Inc. The syntactic relationship between these arguments can be character-
ized by the path traversed through the tree in getting from one to the other:

NP↑ NP↓ NP↓ PP↓ NP
Similar path features defined over syntactic dependency trees as well as flat base-
phrase chunk structures have been shown to be useful for relation detection and
classification (Culotta and Sorensen, 2004; Bunescu and Mooney, 2005). Recall
that syntactic path features featured prominently in Ch. 20 in the context of seman-
tic role labeling.

Fig. 22.15 illustrates some of the features that would be extracted while trying
to classify the relationship betweenAmerican AirlinesandTim Wagnerfrom our
example text.

22.2.2 Lightly Supervised Approaches to Relation Analysis

The supervised machine learning approach just described assumes thatwe have
ready access to a large collection of previously annotated material with which
to train classifiers. Unfortunately, this assumption is impractical in many real-
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world settings. A simple approach to extracting relational information without
large amounts of annotated material is to use regular expression patterns to match
text segments that are likely to contain expressions of the relations in which weare
interested.

Consider the problem of building a table containing all the hub cities that var-
ious airlines utilize. Assuming we have access a search engine that permits some
form of phrasal search with wildcards, we might try something like the following
as a query:

/ * has a hub at * /

Given access to a reasonable amount of material of the right kind, such asearch
will yield a fair number of correct answers. A recent Google search using this
pattern yields the following relevant sentences among the return set.

(22.4) Milwaukee-based Midwest has a hub at KCI.

(22.5) Delta has a hub at LaGuardia.

(22.6) Bulgaria Air has a hub at Sofia Airport, as does Hemus Air.

(22.7) American Airlines has a hub at the San Juan airport.

Of course, patterns such as this can fail in the two ways we discussed all the
way back in Ch. 2: by finding some things they shouldn’t, and by failing to find
things they should. As an example of the first kind of error, consider the following
sentences that were also included the earlier return set.

(22.8) airline j has a hub at airport k

(22.9) The catheter has a hub at the proximal end

(22.10) A star topology often has a hub at its center.

We can address these errors by making our proposed pattern more specific.
In this case, replacing the unrestricted wildcard operator with a named entity class
restriction would rule these examples out:

/[ORG] has a hub at [LOC]/

The second problem is that we can’t know if we’ve found all the hubs for all
airlines, since we’ve limited ourselves to this one rather specific pattern. Consider
the following close calls missed by our first pattern.

(22.11) No frills rival easyJet, which has established a hub at Liverpool...

(22.12) Ryanair also has a continental hub at Charleroi airport (Belgium).

These examples are missed because they contain minor variations that causethe
original pattern to fail. There are two ways to address this problem. The first is to
generalize our pattern to capture expressions like these that contain the information
we are seeking. This can be accomplished by relaxing the pattern to allow matches
that skip parts of the candidate text. Of course, this approach is likely introduce
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more of the false positives that we tried to eliminate by making our pattern more
specific in the first place.

The second, more promising solution, is to expand our set of specific high-
precision patterns. Given a large and diverse document collection, an expanded
set of patterns should be able to capture more of the information we’re looking
for. One way to acquire these additional patterns is to simply have human ana-
lysts familiar with the domain come up with more patterns and hope to get better
coverage. A more interesting automatic alternative is to induce new patterns by
bootstrapping from the initial search results from a small set ofseed patterns.BOOTSTRAPPING

SEED PATTERNS To see how this works, let’s assume that we’ve discovered that Ryanair has
a hub at Charleroi. We can use this fact to discover new patterns by finding other
mentions of this relation in our corpus. The simplest way to do this is to search for
the termsRyanair, Charleroiandhubin some proximity. The following are among
the results from a recent search in Google News.

(22.13) Budget airline Ryanair, which uses Charleroi as a hub, scrapped all weekend
flights out of the airport.

(22.14) All flights in and out of Ryanair’s Belgian hub at Charleroi airport weregrounded
on Friday...

(22.15) A spokesman at Charleroi, a main hub for Ryanair, estimated that 8000
passengers had already been affected.

From these results, patterns such as the following can be extracted that look
for relevant named entities of various types in the right places.

/ [ORG], which uses [LOC] as a hub /

/ [ORG]’s hub at [LOC] /

/ [LOC] a main hub for [ORG] /

These new patterns can then be used to search for additional tuples.
Fig. 22.16 illustrates the overall bootstrapping approach. This figure shows

that the dual nature of patterns and seeds permits the process to start with either a
small set ofseed tuplesor a set ofseed patterns. This style of bootstrapping and
pattern-based relation extraction is closely related to the techniques discussed in
Ch. 20 for extracting hyponym and meronym-based lexical relations.

There are, of course, a fair number of technical details to be worked out to
actually implement such an approach. The following are among some of the key
problems.

• Representing the search patterns

• Assessing the accuracy and coverage of discovered patterns

• And assessing the reliability of the discovered tuples
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Figure 22.16 Pattern and bootstrapping-based relation extraction.

Patterns are typically represented in a way that captures the following four
factors.

• Context prior to the first entity mention

• Context between the entity mentions

• Context following the second mention

• The order of the arguments in the pattern

Contexts are either captured as regular expression patterns or as vectors of features
similar to those described earlier for machine learning-based approaches. In either
case, they can be defined over character strings, word-level tokens, or syntactic and
semantic structures. In general, regular expression approaches tendto be very spe-
cific, yielding high precision results; feature-based approaches, on the other hand,
are more capable of ignoring potentially inconsequential elements of contexts.

Our next problem is how to assess the reliability of newly discovered patterns
and tuples. Recall that we don’t, in general, have access to annotated materials
giving us the right answers. We therefore have to rely on the accuracyof the
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initial seed sets of patterns and/or tuples for gold-standard evaluation, and we have
to ensure that we don’t permit any significantsemantic drift to occur as we’reSEMANTIC DRIFT

learning new patterns and tuples. Semantic drift occurs when an erroneous pattern
leads to the introduction of erroneous tuples, which can then, turn, lead to the
creation of problematic patterns.

To see this consider the following example.

(22.16) Sydney has a ferry hub at Circular Quay.

If accepted as a positive example, this expression could lead to the introduction
of the tuple〈Sydney,CircularQuay〉. Patterns based on this tuple could propagate
further errors into the database.

There are two factors that need to be balanced in assessing a proposednew
pattern: the pattern’s performance with respect to the current set of tuples, and
the pattern’s productivity in terms of the number of matches it produces in the
document collection. More formally, given a document collectionD , a current set
of tuplesT, and a proposed patternp, there are three factors that we need to track.

• hits: the set of tuples inT that p matches while looking inD ;
• misses: The set of tuples inT that p misses while looking atD ;
• f inds: The total set of tuples thatp finds inD .

The following equation balances these considerations (Riloff and Jones,1999).

ConfRlogF(p) =
hitsp

hitsp +missesp
× log(findsp)(22.17)

It is useful to be able to treat this metric as a probability, so we’ll need to normalize
it. A simple way to do this is to track the range of confidences in a development
set and divide by some previously observed maximum confidence (Agichtein and
Gravano, 2000).

We can assess the confidence in a proposed new tuple by combining the ev-
idence supporting it from all the patternsP′ that match that tuple inD (Agichtein
and Gravano, 2000). One way to combine such evidence is thenoisy-or technique.NOISY­OR

Assume that a given tuple is supported by a subset of the patterns inP, each with its
own confidence assessed as above. In the noisy-or model, we make two basic as-
sumptions. First, that for a proposed tuple to be false,all of its supporting patterns
must have been in error, and second that the sources of their individual failures are
all independent. If we loosely treat our confidence measures as probabilities, then
the probability of any individual patternp failing is 1−Conf(p); the probability of
all of the supporting patterns for a tuple being wrong is the product of theirindivid-
ual failure probabilities, leaving us with the following equation for our confidence
in a new tuple.

Conf(t) = 1− ∏
p∈P′

1−Conf(p)(22.18)
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The independence assumptions underlying the noisy-or model are very strong
indeed. If the failure mode of the patterns are not independent, then the method
will overestimate the confidence for the tuple. This overestimate is typically com-
pensated for by setting a very high threshold for the acceptance of new tuples.

Given these measures, we can dynamically assess our confidence in both
new tuples and patterns as the bootstrapping process iterates. Setting conservative
thresholds for the acceptance of new patterns and tuples should help prevent the
system from drifting from the targeted relation.

Although there have been no standardized evaluations for this style of relation
extraction on publicly available sources, the technique has gained wide acceptance
as a practical way to quickly populate relational tables from open source materials
(most commonly from the Web) (Etzioni et al., 2005).

22.2.3 Evaluating Relation Analysis Systems

There are two separate methods for evaluating relation detection systems. Inthe
first approach, the focus is on how well systems can find and classify allthe relation
mentions in a given text. In this approach, labeled and unlabeled recall, precision
and F-measures are used to evaluate systems against a test collection with human
annotated gold-standard relations. Labeled precision and recall requires the sys-
tem to classify the relation correctly, while unlabeled methods simply measure a
system’s ability to detect entities that are related.

The second approach focuses on the tuples to be extracted from a bodyof
text, rather than on the relation mentions. In this method, systems need not detect
every mention of a relation to be scored correctly. Instead, the final evaluation is
based on the set of tuples occupying the database when the system is finished. That
is, we want to know if the system can discover that RyanAir has a hub at Charleroi;
we don’t really care how many times it discovers it.

This method has typically used to evaluate unsupervised methods of the kind
discussed in the last section. In these evaluations human analysts simply examine
the set of tuples produced by the system. Precision is simply the fraction of correct
tuples out of all the tuples produced as judged by the human experts.

Recall remains a problem in this approach. It is obviously too costly to search
by hand for all the relations that could have been extracted from a potentially large
collection such as the Web. One solution is to compute recall at various levels
of precision as described in Ch. 25 (Etzioni et al., 2005). Of course, this isn’t true
recall, since we’re measuring against the number of correct tuples discovered rather
than the number of tuples that are theoretically extractable from the text.

Another possibility is to evaluate recall on problems where large resources
containing comprehensive lists of correct answers are available. Examples of in-
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clude gazetteers for facts about locations, the Internet Movie Database(IMDB)
for facts about movies or Amazon for facts about books. The problem with this
approach is that it measures recall against a database that may be far more compre-
hensive than the text collections used by relation extraction system.

22.3 TEMPORAL AND EVENT PROCESSING

Our focus thus far has been on extracting information about entities and their rela-
tions to one another. However, in most texts, entities are introduced in the course of
describing the events in which they take part. Finding and analyzing the events in a
text, and how they relate to each other in time, is crucial to extracting a more com-
plete picture of the contents of a text. Such temporal information is particularly
important in applications such as question answering and summarization.

In question answering, whether or not a system detects a correct answer may
depend on temporal relations extracted from both the question and the potential
answer text. As an example of this, consider the following sample question and
potential answer text.

When did airlines as a group last raise fares?

Last week, Delta boosted thousands of fares by $10 per round trip, and
most big network rivals immediately matched the increase. (Dateline
7/2/2007).

This snippet does provide an answer to the question, but extracting it requires tem-
poral reasoning to anchor the phraselast week, to link that time to theboosting
event, and finally to link the time of thematchingevent to that.

The following sections introduce approaches to recognizing temporal expres-
sions, figuring out the times that those expressions refer to, detecting events and
associating times with those events.

22.3.1 Temporal Expression Recognition

Temporal expressions are those that refer to absolute points in time, relativetimes,
durations and sets of these.Absolute temporal expressionsare those that canABSOLUTE

TEMPORAL
EXPRESSIONS

be mapped directly to calendar dates, times of day, or both.Relative temporal
expressionsmap to particular times via some other reference point (as ina weekRELATIVE TEMPORAL

EXPRESSIONS

from last Tuesday.) Finally, durations denote spans of time at varying levels ofDURATIONS

granularity (seconds, minutes, days, weeks, centuries etc.) Fig. 22.17 provides
some sample temporal expressions in each of these categories.

Syntactically, temporal expressions are syntactic constructions that havetem-
poral lexical triggers as their heads. In the annotation scheme in widest use, lex-LEXICAL TRIGGERS
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Absolute Relative Durations
April 24, 1916 yesterday four hours
The summer of ’77 next semester three weeks
10:15 AM two weeks from yesterday six days
The 3rd quarter of 2006 last quarter the last three quarters

Figure 22.17 Examples of absolute, relation and durational temporal expressions.

Category Examples
Noun morning, noon, night, winter, dusk, dawn
Proper Noun January, Monday, Ides, Easter, Rosh Hashana, Ramadan, Tet
Adjective recent, past, annual, former
Adverb hourly, daily, monthly, yearly

Figure 22.18 Examples of temporal lexical triggers.

ical triggers can be nouns, proper nouns, adjectives, and adverbs; full temporal
expression consist of their phrasal projections: noun phrases, adjective phrases and
adverbial phrases. Figure 22.18 provides examples of lexical triggersfrom these
categories.

The annotation scheme in widest use is derived from the TIDES standard(Ferro
et al., 2005). The approach presented here is based on the TimeML effort (Puste-
jovsky et al., 2005). TimeML provides an XML tag, TIMEX3, along with various
attributes to that tag, for annotating temporal expressions. The following example
illustrates the basic use of this scheme (ignoring the additional attributes, which
we’ll discuss as needed later in Sec. 22.3.2).

A fare increase initiated<TIMEX3>last week</TIMEX3> by UAL
Corp’s United Airlines was matched by competitors over<TIMEX3>the
weekend</TIMEX3>, marking the second successful fare increase in
<TIMEX3>two weeks</TIMEX2>.

The temporal expression recognitiontask consists of finding the start andTEMPORAL
EXPRESSION

RECOGNITION

end of all of the text spans that correspond to such temporal expressions. Although
there are myriad ways to compose time expressions in English, the set of temporal
trigger terms is, for all practical purposes, static and the set of constructions used
to generate temporal phrases is quite conventionalized. These facts suggest that
any of the major approaches to finding and classifying text spans that we’ve al-
ready studied should be successful. The following three approaches have all been
successfully employed in recent evaluations.

• Rule-based systems based on partial parsing or chunking

• Statistical sequence classifiers based on standard token-by-tokenIOB encod-
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ing

• Constituent-based classification as used in semantic role labeling

Rule-based approachesto temporal expression recognition use cascades of
automata to recognize patterns at increasing levels of complexity. Since temporal
expressions are limited to a fixed set of standard syntactic categories, mostof these
systems make use of pattern-based methods for recognizing syntactic chunks. That
is, tokens are first part-of-speech tagged and then larger and largerchunks are rec-
ognized using the results from previous stages. The only difference from the usual
partial parsing approaches is the fact that temporal expressions must contain tem-
poral lexical triggers. Patterns must, therefore, contain either specific trigger words
(e.g. February), or patterns representing classes (e.g.MONTH). Fig. 22.19 illus-
trates this approach with a small representative fragment from a rule-based system
written in Perl.

Sequence labeling approachesfollow exactly the same scheme introduced
in Ch. 13 for syntactic chunking. The three tagsI, O and B are used to mark
tokens that are either inside, outside or begin a temporal expression, as delimited
by TIMEX3 tags. Example 22.3.1 would be labeled as follows in this scheme.

A
O

fare
O

increase
O

initiated
O

last
B

week
I

by
O

UAL
O

Corp’s...
O

As expected, features are extracted from the context surrounding a token to
be tagged and a statistical sequence labeler is trained using those features. As
with syntactic chunking and named entity recognition, any of the usual statistical
sequence methods can be applied. Fig. 22.20 lists the standard features used in the
machine learning-based approach to temporal tagging.

Constituent-based methodscombine aspects of both chunking and token-
by-token labeling. In this approach, a complete constituent parse is produced by
automatic means. The nodes in the resulting tree are then classified, one by one,
as to whether they contain a temporal expression or not. This task is accomplished
by training a binary classifier with annotated training data, using many of the same
features employed inIOB-style training. This approach separates the classification
problem from the segmentation problem by assigning the segmentation problem
to the syntactic parser. The motivation for this choice was mentioned earlier; in
currently available training materials, temporal expressions are limited to syntactic
constituents from one of a fixed set of syntactic categories. Therefore, it makes
sense to allow a syntactic parser to solve the segmentation part of the problem.

In standard evaluations, temporal expression recognizers are evaluated using
the usual recall, precision and F-measures. In recent evaluations, both rule-based
and statistical systems achieve about the same level of performance, with thebest
systems reaching an F-measure of around .87 on a strict exact match criteria. On a
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# yesterday/today/tomorrow

$string =~ s/(($OT+(early|earlier|later?)$CT+\s+)?(($OT+the$CT+\s+)?$OT+day$CT+\s+

$OT+(before|after)$CT+\s+)?$OT+$TERelDayExpr$CT+(\s+$OT+(morning|afternoon|evening|night)

$CT+)?)/<TIMEX2 TYPE=\"DATE\">$1<\/TIMEX2>/gio;

$string =~ s/($OT+\w+$CT+\s+)

<TIMEX2 TYPE=\"DATE\"[^>]*>($OT+(Today|Tonight)$CT+)<\/TIMEX2>/$1$2/gso;

# this/that (morning/afternoon/evening/night)

$string =~ s/(($OT+(early|earlier|later?)$CT+\s+)?$OT+(this|that|every|the$CT+\s+

$OT+(next|previous|following))$CT+\s*$OT+(morning|afternoon|evening|night)

$CT+(\s+$OT+thereafter$CT+)?)/<TIMEX2 TYPE=\"DATE\">$1<\/TIMEX2>/gosi;

Figure 22.19 Fragment of Perl code from MITRE’s TempEx temporal tagging system.

Feature Explanation
Token The target token to be labeled
Tokens in window Bag of tokens in the window around a target
Shape Character shape features
POS Parts of speech of target and window words
Chunk tags Base-phrase chunk tag for target and words in a window
Lexical triggers Presence in a list of temporal terms

Figure 22.20 Typical features used to trainIOB style temporal expression taggers.

looser criterion based on overlap with gold standard temporal expressions, the best
systems reach an F-measure of .94.4

The major difficulties for all of these approaches are achieving reasonable
coverage, correctly identifying the extent of temporal expressions anddealing with
expressions that trigger false positives. The problem of false positives arises from
the use of temporal trigger words as parts of proper names. For example,all of
the following examples are likely to cause false positives for either rule-based or
statistical taggers.

(22.19) 1984tells the story of Winston Smith and his degradation by the totalitarian state
in which he lives.

(22.20) Edge is set to join Bono onstage to perform U2’s classicSundayBloodySunday.

(22.21) BlackSeptembertried to detonate three car bombs in New York City in March
1973.

4 http://www.nist.gov/speech/tests/ace/
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<TIMEX3 id=t1 type="DATE" value="2007-07-02" functionInDocument="CREATION_TIME">

July 2, 2007 </TIMEX3> A fare increase initiated <TIMEX3 id="t2" type="DATE"

value="2007-W26" anchorTimeID="t1">last week</TIMEX3> by UAL Corp’s United Airlines was

matched by competitors over <TIMEX3 id="t3" type="DURATION" value="P1WE"

anchorTimeID="t1"> the weekend </TIMEX3>, marking the second successful fare increase in

<TIMEX3 id="t4" type="DURATION" value="P2W" anchorTimeID="t1"> two weeks </TIMEX3>.

Figure 22.21 TimeML markup including normalized values for temporal expressions.

22.3.2 Temporal Normalization

The task of recognizing temporal expressions is typically followed by the task of
normalization.Temporal normalization refers to the process of mapping a tem-TEMPORAL

NORMALIZATION

poral expression to either a specific point in time, or to a duration. Points in time
correspond either to calendar dates or to times of day (or both). Durationsprimar-
ily consist of lengths of time, but may also include information concerning the start
and end points of a duration when that information is available.

Normalized representations of temporal expressions are captured usingthe
VALUE attribute from the ISO 8601 standard for encoding temporal values(ISO8601,
2004). To illustrate some aspects of this scheme, let’s return to our earlier example,
reproduced in Fig. 22.21 with the value attributes added in.

The dateline, or document date, for this text wasJuly 2, 2007. The ISO
representation for this kind offully qualified date expression is YYYY-MM-DD,FULLY QUALIFIED

DATE

or in this case, 2007-07-02. The encodings for the temporal expressions in our
sample text all follow from this date, and are shown here as values for theVALUE

attribute. Let’s consider each of these temporal expressions in turn.
The first temporal expression in the text proper refers to a particular week of

the year. In the ISO standard, weeks are numbered from 01 to 53, with thefirst
week of the year being the one that has the first Thursday of the year. These weeks
are represented using the template YYYY-Wnn. The ISO week for our document
date is week 27, thus the value forlast weekis represented as “2007-W26”.

The next temporal expression isthe weekend. ISO weeks begin on Monday,
thus, weekends occur at the end of a week and are fully contained within asingle
week. Weekends are treated as durations, so the value of theVALUE attribute has to
be a length. Durations are represented using the pattern Pnx, wheren is an integer
denoting the length andx represents the unit, as in P3Y forthree yearsor P2D for
two days. In this example, one weekend is captured as P1WE. In this case, there is
also sufficient information to anchor this particular weekend as part of a particular
week. Such information is encoded in theANCHORTIME ID attribute. Finally, the
phrasetwo weeksalso denotes a duration captured as P2W.
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Unit Pattern Sample Value
Fully Specified Dates YYYY-MM-DD 1991-09-28
Weeks YYYY-nnW 2007-27W
Weekends PnWE P1WE
24 hour clock times HH:MM:SS 11:13:45
Dates and Times YYYY-MM-DDTHH:MM:SS 1991-09-28T11:00:00
Financial quarters Qn 1999-3Q

Figure 22.22 Sample ISO patterns for representing various times and durations.

There is a lot more to both the ISO 8601 standard and the various temporal
annotation standards — far too much to cover here. Fig. 22.22 describes some of
the basic ways that other times and durations are represented. Consult (ISO8601,
2004; Ferro et al., 2005; Pustejovsky et al., 2005) for more details.

Most current approaches to temporal normalization employ rule-based meth-
ods that associate semantic analysis procedures with patterns matching particular
temporal expressions. This is a domain-specific instantiation of the compositional
rule-to-rule approach introduced in Ch. 18. In this approach, the meaning of a
constituent is computed from the meaning of its parts, and the method used to per-
form this computation is specific to the constituent being created. The only differ-
ence here is that the semantic composition rules involve simple temporal arithmetic
rather thanλ -calculus attachments.

To normalize temporal expressions, we’ll need rules for four kinds of expres-
sions.

• Fully qualified temporal expressions

• Absolute temporal expressions

• Relative temporal expressions

• Durations

Fully qualified temporal expressions contain a year, month and day in some
conventional form. The units in the expression must be detected and then placed
in the correct place in the corresponding ISO pattern. The following pattern nor-
malizes the fully-qualified temporal expression used in expressions likeApril 24,
1916.

FQTE → Month Date, Year {Year.val − Month.val − Date.val}

In this rule, the non-terminalsMonth, Date, andYear represent constituents that
have already been recognized and assigned semantic values, accessed via the*.val
notation. The value of thisFQE constituent can, in turn, be accessed asFQTE.val
during further processing.
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Fully qualified temporal expressions are fairly rare in real texts. Most tem-
poral expressions in news articles are incomplete and are only implicitly anchored,
often with respect to the dateline of the article, which we’ll refer to as the doc-
ument’stemporal anchor. The values of relatively simple temporal expressionsTEMPORAL ANCHOR

such astoday, yesterday, or tomorrowcan all be computed with respect to this tem-
poral anchor. The semantic procedure fortodaysimply assigns the anchor, while
the attachments fortomorrowandyesterdayadd a day and subtract a day from the
anchor, respectively. Of course, given the circular nature of our representations for
months, weeks, days and times of day, our temporal arithmetic procedures must
use modulo arithmetic appropriate to the time unit being used.

Unfortunately, even simple expressions such asthe weekendor Wednesday
introduce a fair amount of complexity. In our current example,the weekendclearly
refers to the weekend of the week that immediately precedes the document date.
But this won’t always be the case, as is illustrated in the following example.

(22.22) Random security checks that began yesterday at Sky Harbor will continue at least
through the weekend.

In this case, the expressionthe weekendrefers to the weekend of the week that the
anchoring date is part of (i.e. the coming weekend). The information that signals
this comes from the tense ofcontinue, the verb governingthe weekend.

Relative temporal expressions are handled with temporal arithmetic similar
to that used fortodayandyesterday. To illustrate this, consider the expressionlast
weekfrom our example. From the document date, we can determine that the ISO
week for the article is week 27, solast weekis simply 1 minus the current week.

Again, even simple constructions such as this can be ambiguous in English.
The resolution of expressions involvingnextand last must take into account the
distance from the anchoring date to the nearest unit in question. For example, a
phrase such asnext Fridaycan refer to either the immediately next Friday, or to the
Friday following that. The determining factor has to do with the proximity to the
reference time. The closer the document date is to a Friday, the more likely it is that
the phrasenext Fridaywill skip the nearest one. Such ambiguities are handled by
encoding language and domain specific heuristics into the temporal attachments.

The need to associate highly idiosyncratic temporal procedures with particu-
lar temporal constructions accounts for the widespread use of of rule-based meth-
ods in temporal expression recognition. Even when high performance statistical
methods are used for temporal recognition, rule-based patterns are still required
for normalization. Although the construction of these patterns can be tediousand
filled with exceptions, it appears that sets of patterns that provide good coverage in
newswire domains can be created fairly quickly (Ahn et al., 2005).

Finally, many temporal expressions are anchored to events mentioned in a
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text and not directly to other temporal expressions. Consider the followingexam-
ple.

(22.23) One week after the storm, JetBlue issued its customer bill of rights.

To determine when JetBlue issued its customer bill of rights we need to determine
the time ofthe stormevent, and then that time needs to be modified by the tem-
poral expressionone week after. We’ll return to this issue when we take up event
detection in the next section.

22.3.3 Event Detection and Analysis

The task ofevent detection and classificationis to identify mentions of eventsEVENT DETECTION
AND CLASSIFICATION

in texts and then assign those events to a variety of classes. For the purposes of
this task, an event mention is any expression denoting an event or state thatcan
be assigned to a particular point, or interval, in time. The following markup of
Example 22.3.1 shows all the events in this text.

[EVENTCiting] high fuel prices, United Airlines [EVENTsaid] Friday it has
[EVENT increased] fares by $6 per round trip on flights to some citiesalso
served by lower-cost carriers. American Airlines, a unit ofAMR Corp., imme-
diately [EVENTmatched] [EVENTthe move], spokesman Tim Wagner [EVENT
said]. United, a unit of UAL Corp., [EVENTsaid] [EVENT the increase] took
effect Thursday and [EVENT applies] to most routes where it [EVENT com-
petes] against discount carriers, such as Chicago to Dallasand Denver to San
Francisco.

In English, most event mentions correspond to verbs, and most verbs intro-
duce events. However, as we can see from our example this is not always the case.
Events can be introduced by noun phrases, as inthe moveand the increase, and
some verbs fail to introduce events, as in the phrasal verbtook effect, which refers
to when the event began rather than to the event itself. Similarly, light verbs such
asmake, take, andhaveoften fail to denote events. In these cases, the verb is sim-
ply providing a syntactic structure for the arguments to an event expressed by the
direct object as intook a flight.

Both rule-based and statistical machine learning approaches have been ap-
plied to the problem of event detection. Both approaches make use of surface in-
formation such as parts of speech information, presence of particular lexical items,
and verb tense information. Fig. 22.23 illustrates the key features used in current
event detection and classification systems.

Having detected both the events and the temporal expressions in a text, the
next logical task is to use this information to fit the events into a complete time-
line. Such a timeline would be useful for applications such as question answering
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Feature Explanation
Character affixes Character-level prefixes and suffixes of target word
Nominalization suffix Character level suffixes for nominalizations (eg.-tion)
Part of speech Part of speech of the target word
Light verb Binary feature indicating that the target is governed by a light verb
Subject syntactic category Syntactic category of the subject of the sentence
Morphological stem Stemmed version of the target word
Verb root Root form of the verb basis for a nominalization
Wordnet hypernyms Hypernym set for the target

Figure 22.23 Features commonly used in both rule-based and statistical approaches to event detection.

and summarization. This ambitious task is is the subject of considerable current
research but is beyond the capabilities of current systems.

A somewhat simpler, but still useful, task is to impose a partial ordering on
the events and temporal expressions mentioned in a text. Such an ordering can
provide many of the same benefits as a true timeline. An example of such a partial
ordering would be to determine that the fare increase byAmerican Airlinescame
after the fare increase byUnited in our sample text. Determining such an ordering
can be viewed as a binary relation detection and classification task similar to those
described earlier in Sec. 22.2.

Current approaches to this problem attempt to identify a subset of Allen’s
13 temporal relations discussed earlier in Ch. 17, and shown here in Fig. 22.24.
Recent evaluation efforts have focused on detecting thebefore, after andduring
relations among the temporal expressions, document date and event mentions in a
text (Verhagen et al., 2007). Most of the top-performing systems employ statistical
classifiers, of the kind discussed earlier in Sec. 22.2, trained on the TimeBank
corpus (Pustejovsky et al., 2003b).

22.3.4 TimeBank

As we’ve seen with other tasks, it’s tremendously useful to have access totext
annotated with the types and relations in which we’re interested. Such resources
facilitate both corpus-based linguistic research as well as the training of systems to
perform automatic tagging. TheTimeBank corpus consists of text annotated withTIMEBANK

much of the information we’ve been discussing throughout this section (Puste-
jovsky et al., 2003b). The current release (TimeBank 1.2) of the corpus consists of
183 news articles selected from a variety of sources, including the Penn TreeBank
and PropBank collections.

Each article in the TimeBank corpus has had the temporal expressions and
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Figure 22.24 Allen’s 13 possible temporal relations.

event mentions in them explicitly annotated in the TimeML annotation (Puste-
jovsky et al., 2003a). In addition to temporal expressions and events, theTimeML
annotation provides temporal links between events and temporal expressions that
specify the nature of the relation between them. Consider the following sample
sentence and its corresponding markup shown in Fig. 22.25 selected fromone of
the TimeBank documents.
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<TIMEX3 tid=’’t57’’ type="DATE’’ value="1989-10-26"

functionInDocument="CREATION_TIME"> 10/26/89 </TIMEX3>

Delta Air Lines earnings <EVENT eid="e1" class="OCCURRENCE"> soared </EVENT>

33\% to a record in <TIMEX3 tid="t58" type="DATE" value="1989-Q1" anchorTimeID="t57">

the fiscal first quarter </TIMEX3>, <EVENT eid="e3" class="OCCURRENCE">bucking</EVENT>

the industry trend toward <EVENT eid="e4" class="OCCURRENCE">declining</EVENT> profits.

Figure 22.25 Example from the TimeBank corpus.

(22.24) Delta Air Lines soared 33% to a record in the fiscal first quarter, buckingthe
industry trend toward declining profits.

As annotated, this text includes three events and two temporal expressions.
The events are all in the occurrence class and are given unique identifiers for use
in further annotations. The temporal expressions include the creation time ofthe
article, which serves as the document time, and a single temporal expressionwithin
the text.

In addition to these annotations, TimeBank provides 4 links that capture the
temporal relations between the events and times in the text. The following are the
within sentence temporal relations annotated for this example.

• Soaringe1 is included in the fiscal first quartert58

• Soaringe1 is before1989-10-26t57

• Soaringe1 is simultaneouswith the buckinge3

• Declininge4 includessoaringe1

The set of 13 temporal relations used in TimeBank are based on Allen’s (Allen,
1984) relations introduced earlier in Fig. 22.24.

22.4 TEMPLATE-FILLING

Many texts contain reports of events, and possibly sequences of events, that often
correspond to fairly common, stereotypical situations in the world. These abstract
situations can be characterized asscripts, in that they consist of prototypical se-SCRIPTS

quences of sub-events, participants, roles and props (Schank and Abelson, 1977).
The use of explicit representations of such scripts in language processing can assist
in many of the IE tasks we’ve been discussing. In particular, the strong expecta-
tions provided by these scripts can facilitate the proper classification of entities, the
assignment of entities into roles and relations, and most critically, the drawing of
inferences that fill in things that have been left unsaid.
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In their simplest form, such scripts can be represented astemplatesconsist-TEMPLATES

ing of fixed sets ofslots which take as valuesslot-fillers belonging to particular
classes. The task oftemplate-filling is to find documents that invoke particular
scripts and then fill the slots in the associated templates with fillers extracted from
the text. These slot-fillers may consist of text segments extracted directly from the
text, or they may consist of concepts that have been inferred from text elements via
some additional processing (times, amounts, entities from an ontology, etc.)

A filled template from our original airline story might look like the following.

FARE-RAISE ATTEMPT:










LEAD A IRLINE : UNITED A IRLINES

AMOUNT: $6

EFFECTIVE DATE: 2006-10-26

FOLLOWER: AMERICAN A IRLINES











Note that as is often the case, the slot-fillers in this example all correspond to de-
tectable named entities of various kinds (organizations, amounts and times). This
suggests that template-filling applications should rely on tags provided by named
entity recognition, temporal expression and co-reference algorithms to identify
candidate slot-fillers.

The next section describes a straightforward approach to filling slots using
sequence labeling techniques. Sec. 22.4.2 then describes a system designed to
address a considerably more complex template-filling task, based on the use of
cascades of finite-state transducers.

22.4.1 Statistical Approaches to Template-Filling

A surprisingly effective approach to template-filling simply casts it as a statistical
sequence labeling problem. In this approach, systems are trained to label sequences
of tokens as potential fillers for particular slots. There are two basic waysto in-
stantiate this approach: the first is to train separate sequence classifiers for each
slot to be filled and then send the entire text through each labeler, the other isto
train one large classifier (usually an HMM) that assigns labels for each ofthe slots
to be recognized. We’ll focus on the former approach here; we’ll takeup the single
large classifier approach in Ch. 23.

Under the one classifier per slot approach, slots are filled with the text seg-
ments identified by each slot’s corresponding classifier. As with the other IEtasks
described earlier in this chapter, all manner of statistical sequence classifiers have
been applied to this problem, all using the usual set of features: tokens, shapes of
tokens, part-of-speech tags, syntactic chunk tags, and named entity tags.

There is the possibility in this approach that multiple non-identical text seg-
ments will be labeled with the same slot label. This situation can arise in two ways:
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from competing segments that refer to the same entity using different referring ex-
pressions, or from competing segments that represent truly distinct hypotheses. In
our sample text, we might expect the segmentsUnited, United Airlinesto be la-
beled as the LEAD A IRLINE. These are not incompatible choices and the reference
resolution techniques introduced in Ch. 21 can provide a path to a solution.

Truly competing hypotheses arise when a text contains multiple entities of
the expected type for a given slot. In our example,United AirlinesandAmerican
Airlines are both airlines and it is possible for both to be tagged as LEAD A IR-
LINE based on their similarity to exemplars in the training data. In general, most
systems simply choose the hypothesis with the highest confidence. Of course, the
implementation of this confidence heuristic is dependent on the style of sequence
classifier being employed. Markov-based approaches simply select the segment
with the highest probability labeling (Freitag and McCallum, 1999).

A variety of annotated collections have been used to evaluate this style of ap-
proach to template-filling, including sets of job announcements, conferencecalls
for papers, restaurant guides and biological texts. A frequently employed collec-
tion is the CMU Seminar Announcement Corpus5, a collection of 485 seminar
announcements retrieved from the Web with slots annotated for theSPEAKER, LO-
CATION, START TIME andEND TIME. State-of-the-art F-measures on this dataset
range from around .98 for the start and end time slots, to as high as .77 for the
speaker slot (Roth and tau Yih, 2001; Peshkin and Pfefer, 2003).

As impressive as these results are, they are due as much to the constrained
nature of the task as to the techniques they have been employed. Three strong
task constraints have contributed to this success. First, in most evaluations all
the documents in the collection are all relevant and homogeneous, that is they are
known to contain the slots of interest. Second, the documents are all relatively
small, providing little room for distractor segments that might incorrectly fill slots.
And finally, the target output consists solely of a small set of slots which areto be
filled with snippets from the text itself.

22.4.2 Finite-State Template-Filling Systems

The tasks introduced in theMessage Understanding Conferences(MUC) (Sund-
heim, 1993), a series of U.S. Government-organized information extractionevalu-
ations, represent a considerably more complex template-filling problem. Consider
the following sentences selected from the MUC-5 materials from Grishman and
Sundheim (1995).

5 http://www.isi.edu/info-agents/RISE/
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TIE-UP-1:
RELATIONSHIP: TIE-UP

ENTITIES: “Bridgestone Sports Co.”
“a local concern”
“a Japanese trading house”

JOINTVENTURECOMPANY “Bridgestone Sports Taiwan Co.”
ACTIVITY ACTIVITY-1
AMOUNT NT$20000000

ACTIVITY-1:
COMPANY “Bridgestone Sports Taiwan Co.”
PRODUCT “iron and “metal wood” clubs”
STARTDATE DURING: January 1990

Figure 22.26 The templates produced by theFASTUS (Hobbs et al., 1997) infor-
mation extraction engine given the input text on page 35.

Bridgestone Sports Co. said Friday it has set up a joint venture in Taiwan
with a local concern and a Japanese trading house to produce golf clubs to be
shipped to Japan.

The joint venture, Bridgestone Sports Taiwan Co., capitalized at 20 million
new Taiwan dollars, will start production in January 1990 with production of
20,000 iron and “metal wood” clubs a month.

The MUC-5 evaluation task required systems to produce hierarchically linked
templates describing the participants in the joint venture, the resulting company,
and its intended activity, ownership and capitalization. Fig. 22.26 shows the result-
ing structure produced by theFASTUS system (Hobbs et al., 1997). Note how the
filler of the ACTIVITY slot of theTIE-UP template is itself a template with slots to
be filled.

TheFASTUSsystem produces the template given above, based on a cascade of
transducers in which each level of linguistic processing extracts some information
from the text, which is passed on to the next higher level, as shown in Figure22.27

Most systems base most of these levels on finite-automata, although in prac-
tice most complete systems are not technically finite-state, either because the indi-
vidual automata are augmented with feature registers (as inFASTUS), or because
they are used only as preprocessing steps for full parsers (e.g., Gaizauskas et al.,
1995; Weischedel, 1995) , or are combined with other components based on statis-
tical methods (Fisher et al., 1995).

Let’s sketch theFASTUS implementation of each of these levels, following
Hobbs et al. (1997) and Appelt et al. (1995). After tokenization, the second level
recognizes multiwords likeset up, andjoint venture, and names likeBridgestone
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No. Step Description
1 Tokens: Transfer an input stream of characters

into a token sequence.
2 Complex Words: Recognize multi-word phrases, numbers,

and proper names.
3 Basic phrases: Segment sentences into noun groups,

verb groups, and particles.
4 Complex phrases: Identify complex noun groups and com-

plex verb groups.
5 Semantic Patterns: Identify semantic entities and events and

insert into templates.
6 Merging: Merge references to the same entity or

event from different parts of the text.

Figure 22.27 Levels of processing inFASTUS (Hobbs et al., 1997). Each level
extracts a specific type of information which is then passed on to the next higher
level.

Sports Co.. The named entity recognizer is a transducer, composed of a large set
of specific mappings designed to handle the usual set of named entities.

The following are typical rules for modeling names of performing organi-
zations likeSan Francisco Symphony OrchestraandCanadian Opera Company.
While the rules are written using a context-free syntax, there is no recursion and
therefore they can be automatically compiled into finite-state transducers.

Performer-Org → (pre-location) Performer-Noun+ Perf-Org-Suffix
pre-location → locname| nationality
locname → city | region
Perf-Org-Suffix → orchestra, company
Performer-Noun→ symphony, opera
nationality → Canadian, American, Mexican
city → San Francisco, London

The second stage also might transduce sequences likeforty two into the ap-
propriate numeric value (recall the discussion of this problem in Ch. 8).

The third FASTUS stage implements chunking and produces a sequence of
basic syntactic chunks, such as noun groups, verb groups, and so on, using finite-
state rules of the sort discussed in Ch. 13.

The output of theFASTUS basic phrase identifier is shown in Figure 22.28;
note the use of some domain-specific basic phrases likeCompanyandLocation.

Recall that Ch. 13 described how these basic phrases can be combined into
more complex noun groups and verb groups. This is accomplished in Stage 4of



DRAFT

38 Chapter 22. Information Extraction

Company Bridgestone Sports Co.
Verb Group said
Noun Group Friday
Noun Group it
Verb Group had set up
Noun Group a joint venture
Preposition in
Location Taiwan
Preposition with
Noun Group a local concern
Conjunction and
Noun Group a Japanese trading house
Verb Group to produce
Noun Group golf clubs
Verb Group to be shipped
Preposition to
Location Japan

Figure 22.28 The output of Stage 2 of the FASTUS basic-phrase extractor, which
uses finite-state rules of the sort described by Appelt and Israel (1997) and shown on
page??.

(1) RELATIONSHIP: TIE-UP

ENTITIES: “Bridgestone Sports Co.”
“a local concern”
“a Japanese trading house”

(2) ACTIVITY : PRODUCTION

PRODUCT “golf clubs”
(3) RELATIONSHIP: TIE-UP

JOINTVENTURECOMPANY: “Bridgestone Sports Taiwan Co.”
AMOUNT: NT$20000000

(4) ACTIVITY : PRODUCTION

COMPANY: “Bridgestone Sports Taiwan Co.”
STARTDATE DURING: January 1990

(5) ACTIVITY PRODUCTION

PRODUCT “iron and “metal wood” clubs”

Figure 22.29 The five partial templates produced by Stage 5 of theFASTUS sys-
tem. These templates will be merged by the Stage 6 merging algorithm to produce
the final template shown in Fig. 22.26 on page 36.

FASTUS, by dealing with conjunction and with the attachment of measure phrases
as in the following.

20,000 iron and “metal wood” clubs a month,
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and prepositional phrases:

production of 20,000 iron and “metal wood” clubs a month,

The output of Stage 4 is a list of complex noun groups and verb groups. Stage
5 takes this list, ignoring all input that has not been chunked into a complex group,
recognizes entities and events in the complex groups, and inserts the recognized
objects into the appropriate slots in templates. The recognition of entities and
events is done by hand-coded finite-state automata whose transitions are based on
particular complex-phrase types annotated by particular head words or particular
features likecompany, currency, or date.

As an example, the first sentence of the news story above realizes the seman-
tic patterns based on the following two regular expressions (where NG indicates
Noun-Group and VG Verb-Group).

• NG(Company/ies) VG(Set-up) NG(Joint-Venture) with NG(Company/ies)

• VG(Produce) NG(Product)

The second sentence realizes the second pattern above as well as the following two
patterns:

• NG(Company) VG-Passive(Capitalized) at NG(Currency)

• NG(Company) VG(Start) NG(Activity) in/on NG(Date)

The result of processing these two sentences is the set of five draft templates
shown in Fig. 22.29. These five templates must then be merged into the single
hierarchical structure shown in Fig. 22.26. The merging algorithm decideswhether
two activity or relationship structures are sufficiently consistent that they might be
describing the same events, and merges them if so. The merging algorithm must
also perform reference resolution as described in Ch. 21.

22.5 ADVANCED: BIOMEDICAL INFORMATION EXTRACTION ∗

Information extraction from biomedical journal articles has become an important
application area in recent years. The motivation for this work comes primarilyfrom
biologists, who find themselves faced with an enormous increase in the numberof
publications in their field since the advent of modern genomics — so many that
keeping up with the relevant literature is nearly impossible for many scientists.
Fig. 22.30 amply demonstrates the severity of the problem faced by these scientists.
Clearly, applications that can automate the extraction and aggregation of useful
information from such sources would be a boon to researchers.

∗This section was written by K. Bretonnel Cohen
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Figure 22.30 Exponential growth in number of articles available in the PubMed
database from 1986 to 2004 (after (Cohen and Hunter, 2004)).

A growing application area for information extraction in the biomedical do-
main is as an aid to the construction of large databases of genomic and related
information. Without the availability of information extraction-based curator as-
sistance tools, many manual database construction efforts will not be complete for
decades — a time-span much too long to be useful (Jr. et al., 2007).

A good example of this kind of application is the MuteXt system. This sys-
tem targets two named entity types — mutations in proteins and two very specific
types of proteins calledG-coupled protein receptors and nuclear hormone recep-
tors. MuteXt was used to build a database that drew information from 2,008 doc-
uments; building it by hand would have taken an enormously time-consuming and
expensive undertaking. Mutations in G-protein coupled receptors are associated
with a range of diseases that includes diabetes, ocular albinism, and retinitis pig-
mentosa, so even this simple text mining system has a clear application to the relief
of human suffering.

Biologists and bioinformaticians have recently come up with even more in-
novative uses for text mining systems, in which the output is never intended for
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Semantic class Examples
Cell lines T98G, HeLa cell, Chinese hamster ovary cells, CHO cells
Cell types primary T lymphocytes, natural killer cells, NK cells
Chemicals citric acid, 1,2-diiodopentane, C
Drugs cyclosporin A, CDDP
Genes/proteins white, HSP60, protein kinase C, L23A
Malignancies carcinoma, breast neoplasms
Medical/clinical concepts amyotrophic lateral sclerosis
Mouse strains LAFT, AKR
Mutations C10T, Ala64→ Gly
Populations judo group

Figure 22.31 A sample of the semantic classes of named entities that have been recognized in biomed-
ical NLP. Note the surface similarities between many of the examples.

viewing by humans, but rather is used as part of the analysis of high-throughput
assays—experimental methods which produce masses of data points that would
have been unimaginable just twenty years ago—and as part of techniquesfor using
data in genomic data repositories. Ng (2006) provides a review and an insightful
analysis of work in this vein.

22.5.1 Biological Named Entity Recognition

Information extraction tasks in the biological realm are characterized by a much
wider range of relevant types of entities than thePERSON, ORGANIZATION, and
LOCATION semantic classes that characterize work that is focused on news-style
texts. Fig. 22.31 and the following example illustrate just a small subset of the
variety of semantic classes of named entities that have been the target of NER
systems in the biomedical domain.

[TISSUEPlasma] [GP BNP] concentrations were higher in both the [POPULATION
judo] and [POPULATION marathon groups] than in [POPULATIONcontrols],
and positively correlated with [ANAT LV] mass as well as with deceleration
time.

Nearly all of the techniques described in Sec. 22.1 have been applied to the
biomedical NER problem, with a particular focus on the problem of recognizing
gene/protein names. This task is particularly difficult due to the wide range of
forms that gene names can take:white, insulin, BRCA1, ether a go-go,andbreast
cancer associated 1are all the names of genes. The choice of algorithm for gene
name recognition seems to be less important than the choice of features; typical
feature sets include word-shape and contextual features, as discussed earlier; ad-
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ditionally, knowledge-based features, such as using the count of Google hits for a
sequence likeBRCA1 geneto decide whether or not a token of the stringBRCA1is
a reference to a gene or not, are sometimes incorporated into statistical systems.

Surprisingly, the use of huge publicly available lists of gene names has not
generally contributed to the performance of a gene/protein NER system (Yeh et al.,
2005), and in fact may actually degrade it (Jr. et al., 2006). It is not uncommon for
gene names to be many tokens long (e.g.breast cancer associated 1). Gene name
length has a demonstrable effect on NER system performance (Kinoshita et al.,
2005; Yeh et al., 2005), and any technique for correctly finding the boundaries
of multi-token names seems to increase performance. Use of the abbreviation-
definition-detection algorithm (Schwartz and Hearst, 2003) is common for thispur-
pose, since many such names appear as abbreviation or symbol definitionsat some
point in a publication. Base noun group chunkers can also be useful in this regard,
as can a surprisingly small number of heuristic rules (Kinoshita et al., 2005).

22.5.2 Gene Normalization

Having identified all the mentions of biological entities in a text, the next step is
to map them to unique identifiers in databases or ontologies. This task has been
most heavily studied for genes, where it is known asgene normalization. SomeGENE

NORMALIZATION

of the complexities of the problem come from high degrees of variability in the
realization of the names of specific entities in naturally-occurring text; the nature
of the problem was first delineated by Cohen et al. (2002). In that worka standard
discovery procedure from descriptive linguistics was used to determine what sorts
of variability in gene names can be ignored, and what sorts must not be ignored.
More recently, Morgan et al. (2007) have shown how linguistic characteristics of
community-specific gene-naming conventions affect the complexity of this task
when the normalization of genes from varying species is attempted. Gene nor-
malization can be considered a type of word sense disambiguation task, midway
between a targetted WSD task and an all-words WSD task.

An important thread of work on this problem involves mapping named en-
tities to biomedical ontologies, especially the Gene Ontology (Ashburner et al.,
2000). This has proven considerably more challenging; terms in the Gene On-
tology tend to be long, to have many possible lexical and syntactic forms, and to
sometimes require significant amounts of inference. ? (?) introduce this ontology
from the perspective of computational lexical semantics and review much ofthe
named entity recognition work that has involved it.
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22.5.3 Biological Roles and Relations

Finding and normalizing all the mentions of biological entities in a text is a pre-
liminary step to determining the roles played by entities in the text. Two ways to
do this that have been the focus of recent research are to discover and classify the
expressed binary relations between the entities in a text, and to identify and clas-
sify the roles played by entities with respect to the central events in the text. These
two tasks correspond roughly to the tasks of classifying the relationship between
pairs of entities as described in Sec. 22.2, and to the semantic role labeling task
introduced in Ch. 20.

Consider the following example texts that express binary relations between
entities.

(22.25) These results suggest that con A-induced [DISEASEhepatitis] was ameliorated by
pretreatment with [TREATMENTTJ-135].

(22.26) [DISEASEMalignant mesodermal mixed tumor of the uterus] following
[TREATMENTirradiation]

Each of these examples asserts a relationship between adiseaseand atreatment.
In the first example, the relationship can be classified as that ofcuring. In the
second example, the disease is aresult of the mentioned treatment. Rosario and
Hearst (2004) present a system for the classification of 7 kinds disease-treatment
relations. In this work, a series of HMM-based generative models as wellas a
discriminative neural network model were successfully applied.

More generally, a wide-range of rule-based and statistical approaches have
been applied to binary relation recognition problems such as this. Examples of
other widely studied biomedical relation recognition problems include genes and
their biological functions (Blaschke et al., 2005), genes and drugs (Rindflesch et al.,
2000), genes and mutations (Rebholz-Schuhmann et al., 2004), and protein-protein
interactions (Rosario and Hearst, 2005).

Now consider the following example that corresponds to a semantic role la-
beling style of problem.

(22.27) [THEME Full-length cPLA2] was [TARGETphosphorylated] stoichiometrically by
[AGENTp42 mitogen-activated protein (MAP) kinase] in vitro... and the major site
of phosphorylation was identified by amino acid sequencing as [SITESer505]

Thephosphorylationevent that lies at the core of this text has three semantic roles
associated with it: the causalAGENT of the event, theTHEME or entity being phos-
phorylated and finally the location, orSITE of the event. The problem is to identify
the constituents in the input that play these roles and assign them the correctrole
labels. Note that this example, contains a further complication in that the sec-
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ond event mentionphosphorylationmust be identified as coreferring with the first
phosphorylatedin order to capture theSITE role correctly.

Much of the difficulty with semantic role labeling in the biomedical domain
stems from the preponderance of nominalizations in these texts. Nominalizations
like phosphorylationtypically offer fewer syntactic cues to signal their arguments
than their verbal equivalents, making the identification task more difficult. A fur-
ther complication is that different semantic roles arguments often occur as parts of
the same, or dominating nominal constituents. To see this consider the following
examples.

(22.28) Serum stimulation of fibroblasts in floating matrices does not result in [TARGET
[ARG1ERK] translocation] to the [ARG3nucleus] and there was decreased serum
activation of upstream members of the ERK signaling pathway, MEK and Raf,

(22.29) The translocation of RelA/p65 was investigated using Western blotting and
immunocytochemistry. the COX-2 inhibitor SC236 worked directly through
suppressing [TARGET[ARG3nuclear] translocation] of [ARG1RelA/p65].

(22.30) Following UV treatment, Mcl-1 protein synthesis is blocked, the existing pool of
Mcl-1 protein is rapidly degraded by the proteasome, and [ARG1[ARG2cytosolic]
Bcl-xL] [ TARGETtranslocates] to the [ARG3mitochondria]

Each these examples contains arguments that are bundled into constituents with
other arguments or with the target predicate itself. For example, in the second
example the constituentnuclear translocationsignals both theTARGET and the
ARG3 role.

Both rule-based and statistical approaches have been applied to these seman-
tic role-like problems. As with relation-finding and NER, the choice of algorithm
is less important than the choice of features, many of which are derived from ac-
curate syntactic analyses. However, since there are no large treebanks available
for biological texts, we are left with the option using off-the-shelf parsers trained
on generic newswire texts. Of course, the errors introduced in this process may
negate whatever power we can derive from syntactic features. Therefore, an im-
portant area of research revolves around the adaptation of generic syntactic tools
to this domain (Blitzer et al., 2006).

Relational and event extraction applications in this domain often have an ex-
tremely limited foci. The motivation for this is that even systems with narrow
scope can make a contribution to the productivity of working bioscientists. Anex-
treme example of this is the RLIMS-P system discussed earlier. It tackles onlythe
verb phosphorylateand the associated nominalizationphosphorylization.Never-
theless, this system was successfully used to produce a large online database that
is in widespread use by the research community.
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As the targets of biomedical information extraction applications have become
more ambitious, the range of BioNLP application types has become correspond-
ingly more broad. Computational lexical semantics and semantic role labelling
(Verspoor et al., 2003; Wattarujeekrit et al., 2004; Ogren et al., 2004;Kogan et al.,
2005; Cohen and Hunter, 2006), summarization (Lu et al., 2006), and question-
answering are all active research topics in the biomedical domain. Sharedtasks like
BioCreative continue to be a source of large data sets for named entity recognition,
question-answering, relation extraction, and document classification (Hirschman
and Blaschke, 2006), as well as a venue for head-to-head assessment of the bene-
fits of various approaches to information extraction tasks.

22.6 SUMMARY

This chapter has explored a series of techniques for extracting limited formsof
semantic content from texts. Most techniques can be characterized as problems in
detection followed by classification.

• Named entitiescan be recognized and classified bystatistical sequence la-
beling techniques.

• Relations among entitiescan be detected and classified using supervised
learning methods when annotated training data is available; lightly super-
visedbootstrapping methods can be used when small numbers ofseed tu-
plesor seed patternsare available.

• Reasoning about time can be facilitated by detecting and normalizingtempo-
ral expressionsthrough a combination of statistical learning and rule-based
methods.

• Rule-based and statistical methods can be used to detect, classify and order
eventsin time. TheTimeBank corpus can facilitate the training and evalu-
ation of temporal analysis systems.

• Template-filling applications can recognize stereotypical situations in texts
and assign elements from the text to roles represented asfixed sets of slots.

• Information extraction techniques have proven to be particularly effective in
processing texts from thebiological domain.

• Scripts, plans and goals...
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

The earliest work on information extraction addressed the template-filling taskand
was performed in the context of the Frump system (DeJong, 1982). Laterwork was
stimulated by the U.S. government sponsored MUC conferences (Sundheim, 1991,
1992, 1993, 1995). Chinchor et al. (1993) describes the evaluation techniques used
in the MUC-3 and MUC-4 conferences. Hobbs (1997) partially credits theinspira-
tion for FASTUS to the success of the University of MassachusettsCIRCUSsystem
(Lehnert et al., 1991) in MUC-3. TheSCISOR system is another system based
loosely on cascades and semantic expectations that did well in MUC-3 (Jacobs and
Rau, 1990).

Due to the difficulty of reusing or porting systems from one domain to an-
other, attention shifted to the problem of automatic knowledge acquisition for these
systems. The earliest supervised learning approaches to IE are described in Cardie
(1993), Cardie (1994), Riloff (1993), Soderland et al. (1995), Huffman (1996), and
Freitag (1998).

These early learning efforts focused on automating the knowledge acquisi-
tion process for mostly finite-state rule-based systems. Their success, and the ear-
lier success of HMM-based methods for automatic speech recognition, led tothe
development of statistical systems based on sequence labeling. Early efforts ap-
plying HMMs to IE problems include the work of Bikel et al. (1997, 1999) and
Freitag and McCallum (1999). Subsequent efforts demonstrated the effectiveness
of a range of statistical methods including MEMMs (McCallum et al., 2000), CRFs
(Lafferty et al., 2001) and SVMs (Sassano and Utsuro, 2000; McNamee and May-
field, 2002).

Progress in this area continues to be stimulated by formal evaluations with
shared benchmark datasets. The MUC evaluations of the mid-1990s were suc-
ceeded by the Automatic Content Extraction (ACE) program evaluations heldpe-
riodically from 2000 to 2007.6 These evaluations focused on the named entity
recognition, relation detection, and temporal expression detection and normaliza-
tion tasks. Other IE evaluations include the 2002 and 2003 CoNLL shared tasks on
language-independent named entity recognition (Sang, 2002; Sang andDe Meul-
der, 2003), and the 2007 SemEval tasks on temporal analysis (Verhagen et al.,
2007) and people search (Artiles et al., 2007).

The scope of information extraction continues to expand to meet the ever-
increasing needs of applications for novel kinds of information. Some of the
emerging IE tasks that we haven’t discussed include the classification of gender

6 www.nist.gov/speech/tests/ace/
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(Koppel et al., 2002), moods (Mishne and de Rijke, 2006), sentiment, affect and
opinions (Qu et al., 2004). Much of this work involvesuser generated contentUSER GENERATED

CONTENT

in the context ofsocial mediasuch as blogs, discussion forums, newsgroups andSOCIAL MEDIA

the like. Research results in this domain have been the focus of a number of recent
workshops and conferences (Nicolov et al., 2006; Nicolov and Glance, 2007).

EXERCISES

22.1 Develop a set of regular expressions to recognize the character shape fea-
tures described in Fig. 22.7.

22.2 Using a statistical sequence modeling toolkit of your choosing, develop and
evaluate an NER system.

22.3 The IOB labeling scheme given in this chapter isn’t the only possible one.
For example, anE tag might be added to mark the end of entities, or theB tag
can be reserved only for those situations where an ambiguity exists betweenad-
jacent entities. Propose a new set ofIOB tags for use with your NER system.
Perform experiments and compare its performance against the scheme presented
in this chapter.

22.4 Names of works of art (books, movies, video games, etc.) are quite different
from the kinds of named entities we’ve discussed in this chapter. Collect a listof
names of works of art from a particular category from a web-based source (eg.
gutenberg.org, amazon.com, imdb.com, etc.). Analyze your list and give examples
of ways that the names in it are likely to be problematic for the techniques described
in this chapter.

22.5 Develop an NER system specific to the category of names that you collected
in the last exercise. Evaluate your system on a collection of text likely to contain
instances of these named entities.

22.6 Acronym expansion, the process of associating a phrase with a particular
acronym, can be accomplished by a simple form of relational analysis. Develop
a system based on the relation analysis approaches described in this chapter to
populate a database of acronym expansions. If you focus on EnglishThree Letter
Acronyms (TLAs) you can evaluate your system’s performance by comparing it to
Wikipedia’s TLA page (en.wikipedia.org/wiki/Category:Lists_of_TLAs).

22.7 Collect a corpus of biographical Wikipedia entries of prominent people from
some coherent area of interest (sports, business, computer science,linguistics, etc.).
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Develop a system that can extract an occupational timeline for the subjects of these
articles. For example, the Wikipedia entry for Peter Norvig might result in the
ordering: Sun, Harlequin, Junglee, NASA, Google; the entry for DavidBeckham
would be: Manchester United, Real Madrid, Los Angeles Galaxy.

22.8 A useful functionality in newer email and calendar applications is the abil-
ity to associate temporal expressions associated with events in emails (doctor’s
appointments, meeting planning, party invitations, etc.) with specific calendar en-
tries. Collect a corpus of emails containing temporal expressions related to event
planning. How do these expressions compare to the kind of expressions commonly
found in news text that we’ve been discussing in this chapter?

22.9 Develop and evaluate a recognition system capable of recognizing temporal
expressions of the kind appearing in your email corpus.

22.10 Design a system capable of normalizing these expressions to the degree
required to insert them into a standard calendaring application.

22.11 Acquire the CMU seminar announcement corpus and develop a template-
filling system using any of the techniques mentioned in Sec. 22.4. Analyze how
well your system performs as compared to state-of-the-art results on thiscor-
pus.

22.12 Develop a new template that covers a situation commonly reported on by
standard news sources. Carefully characterize your slots in terms of thekinds of
entities that appear as slot-fillers. Your first step in this exercise should beto acquire
a reasonably sized corpus of stories that instantiate your template.

22.13 Given your corpus, develop an approach to annotating the relevant slots in
your corpus so that it can serve as a training corpus. Your approachshould involve
some hand-annotation, but should not be based solely on it.

22.14 Retrain your system and analyze how well it functions on your new do-
main.

22.15 Species identification is a critical issue for biomedical information extrac-
tion applications such as document routing and classification. But it is especially
crucial for realistic versions of the gene normalization problem.

Build a species identification system that works on the document level, using
the machine learning or rule-based method of your choice. As gold standard data,
use the BioCreative gene normalization data (biocreative.sourceforge.net).

22.16 Build, or borrow, a named entity recognition system that targets mentions
of genes and gene products in texts. As development data, use the BioCreative
gene mention corpus (biocreative.sourceforge.net).
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22.17 Build a gene normalization system that maps the output of your gene men-
tion recognition system to the appropriate database entry. Use the BioCreative gene
normalization data as your development and test data,be sure you don’t give your
system access to the species identification in the metadata.
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