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COMPUTATIONAL
LEXICAL SEMANTICS

To get a single right meaning is better than a ship-load oflpea
To resolve a single doubt is like the bottom falling off thecket.

Yuen Mei (1785) (translation by Arthur Waley)

The asphalt that Los Angeles is famous for occurs mainly ®fréeways. But in the
middle of the city is another patch of asphalt, the La Breaits; and this asphalt pre-
serves millions of fossil bones from the last of the Ice Agkthe Pleistocene Epoch.
One of these fossils is themilodon or sabre-toothed tiger, instantly recognizable by
its long canines. Five million years ago or so, a completéfent sabre-tooth tiger
calledThylacosmilugived in Argentina and other parts of South America. Thykco
milus was a marsupial where Smilodon was a placental mamboahad the same
long upper canines and, like Smilodon, had a protective lilange on the lower jaw.
The similarity of these two mammals is one of many exampleaoélitel or convergent
evolution, in which particular contexts or environmenisdedo the evolution of very
similar structures in different species (Gould, 1980).

The role of context is also important in the similarity of adebiological kind of
organism: the word. Suppose we wanted to decide if two woadg lsimilar mean-
ings. Not surprisingly, words with similar meanings oftector in similar contexts,
whether in terms of corpora (having similar neighboring @®or syntactic structures
in sentences) or in terms of dictionaries and thesaurusein(@nsimilar definitions, or
being nearby in the thesaurus hierarchy). Thus similafigoatext turns out to be an
important way to detect semantic similarity. Semantic Einty turns out to play an
importantroles in a diverse set of applications includirfgimation retrieval, question
answering, summarization and generation, text classitcaautomatic essay grading
and the detection of plagiarism.

In this chapter we introduce a series of topics related toprdmg with word mean-
ings, orcomputational lexical semantics Roughly in parallel with the sequence of
topics in Ch. 19, we'll introduce computational tasks agsed with word senses, re-
lations among words, and the thematic structure of preglibatiring words. We’'ll see
the role of important role of context and similarity of semseach of these.

We begin withword sense disambiguationthe task of examining word tokens in
context and determining which sense of each word is beind. U&D is a task with
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a long history in computational linguistics, and as we wélésis a non-trivial under-

taking given the somewhat elusive nature of many word sensesertheless, there
are robust algorithms that can achieve high levels of acgugiven certain reasonable
assumptions. Many of these algorithms rely on contextuailaiity to help choose the

proper sense.

This will lead us natural to a consideration of the compotabfword similarity
and other relations between words, includinghgpernym, hyponym, andmeronym
WordNet relations introduced in Ch. 19. We'll introduce hmads based purely on
corpus similarity, and others based on structured resesweh as WordNet.

Finally, we describe algorithms fegemantic role labeling also known asase role
or thematic role assignment These algorithms generally use features extracted from
syntactic parses to assign semantic roles suetcasiT, THEME andINSTRUMENT to
the phrases in a sentence with respect to particular ptedica

20.1 WORD SENSEDISAMBIGUATION: OVERVIEW

WORD SENSE
DISAMBIGUATION

WSD

Our discussion of compositional semantic analyzers in Ghpretty much ignored
the issue of lexical ambiguity. It should be clear by now tihés is an unreasonable
approach. Without some means of selecting correct sensésefevords in an input,
the enormous amount of homonymy and polysemy in the lexicomavwuickly over-
whelm any approach in an avalanche of competing interpoetat

The task of selecting the correct sense for a word is caltad sense disambigua-
tion, or WSD. Disambiguating word senses has the potential to improveymatural
language processing tasks. As we’'ll see in Ch.rA&chine translationis one area
where word sense ambiguities can cause severe problengss dtitludequestion-
answering, information retrieval , andtext classification The way that WSD is
exploited in these and other applications varies widelyeam the particular needs
of the application. The discussion presented here igntresetapplication-specific
differences and focuses on the implementation and evatluafi WSD systems as a
stand-alone task.

In their most basic form, WSD algorithms take as input a wordantext along
with a fixed inventory of potential word senses, and retumdbrrect word sense for
that use. Both the nature of the input and the inventory o$sgdepends on the task.
For machine translation from English to Spanish, the semgéntventory for an En-
glish word might be the set of different Spanish translatidhspeech synthesis is our
task, the inventory might be restricted to homographs wifferihg pronunciations
such aassandbow If our task is automatic indexing of medical articles, tease
tag inventory might be the set of MeSH (Medical Subject Hegsdlj thesaurus entries.
When we are evaluating WSD in isolation, we can use the sedrifes from a dictio-
nary/thesaurus resource like WordNet or LDOCE. Fig. 20dwshan example for the
word bass which can refer to a musical instrument or a kind of fish.

1 The WordNet database includes 8 senses; we have arbitsaliygted two for this example; we have
also arbitrarily selected one of the many possible Sparashes for fishes which could be used to translate
Englishsea-bass
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LEXICAL SAMPLE

ALL-WORDS

WordNet| Spanish Roget

Sense Translation Category Target Word in Context

bas$ lubina FISH/INSECT| ...fish as Pacific salmon and stripealssand. . .

bas$ lubina FISH/INSECT| ...produce filets of smokedohssor sturgeon. ..

bas$ bajo MUSIC ...exciting jazzbassplayer since Ray Brown. .|

bas$ bajo MUSIC ... playbassbecause he doesn'’t have to solo.}| .
Figure 20.1  Possible definitions for the inventory of sense tagdfss

It is useful to distinguish two variants of the generic WSBkta In thelexical
sampletask, a small pre-selected set of target words is chosemg &lih an inventory
of senses for each word from some lexicon. Since the set oflsvand the set of
senses is smalkupervised machine learningapproaches are often used to handle
lexical sample tasks. For each word, a number of corpusrinsta(context sentences)
can be selected and hand-labeled with the correct sense déhet word in each.
Classifier systems can then be trained using these labetedes. Unlabeled target
words in context can then be labeled using such a trainedifitas Early work in
word sense disambiguation focused solely on lexical sataples of this sort, building
word-specific algorithms for disambiguating single wori#e line, interest or plant

In contrast, in thall-words task systems are given entire texts and a lexicon with
an inventory of senses for each entry, and are required sonigjuate every content
word in the text. The all-words task is very similar to paftspeech tagging, except
with a much larger set of tags, since each lemma has its owA seinsequence of this
larger set of tags is a serious data sparseness problem;ishamlikely to be adequate
training data for every word in the test set. Moreover, gitrenumber of polysemous
words in reasonably-sized lexicons, approaches basedamint one classifier per
term are unlikely to be practical.

In the following sections we explore the application of vals machine learning
paradigms to word sense disambiguation. We begin with sigeet learning, followed
by a section on how systems are standardly evaluated. Wetdheno a variety of
methods for dealing with the lack of sufficient day for fuBypervised training, in-
cluding dictionary-based approaches and bootstrappaimiques.

Finally, after we have introduced the necessary notionssirfilbutional word sim-
ilarity in Sec. 20.7, we return in Sec. 20.10 to the problerartgupervised approaches
to sense disambiguation.

20.2 SJPERVISEDWORD SENSEDISAMBIGUATION

If we have data which has been hand-labeled with correct werdes, we can use
a supervised learningapproach to the problem of sense disambiguation. extactin
features from the text that are helpful in predicting paiiaic senses, and then training
a classifier to assign the correct sense given these feaflinesoutput of training is
thus a classifier system capable of assigning sense lahgistioeled words in context.
For lexical sampletasks, there are various labeled corpora for individualdspr
consisting of context sentences labeled with the corredtestor the target word. These
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include theline-hard-servecorpus containing 4,000 sense-tagged examplds®@fs

a nounard as an adjective angerveas a verb (Leacock et al., 1993) , and ithier-
estcorpus with 2,369 sense-tagged examplemrestas a noun (Bruce and Wiebe,
1994). TheseNSEVAL project has also produced a number of such sense-labeled lex
cal sample corporasENSEVAL-1 with 34 words from theiECcTORIexicon and corpus
(Kilgarriff and Rosenzweig, 2000; Atkins, 1993)ENSEVAL-2 and -3 with 73 and 57
target words, respectively (Palmer et al., 2001; Kilg&r£i601)).

CONCEMIANTIC For trainingall-word disambiguation tasks we usesamantic concordance a
corpus in which each open-class word in each sentence iethith its word sense
from a specific dictionary or thesaurus. One commonly useglsis SemCor, a subset
of the Brown Corpus consisting of over 234,000 words whicheamanually tagged
with WordNet senses (Miller et al., 1993; Landes et al., 998 addition, sense-
tagged corpora have been built for tRENSEVAL all-word tasks. TheSENSEVAL-3
English all-words test data consisted of 2081 tagged comterd tokens, from 5,000
total running words of English from the WSJ and Brown corg@&almer et al., 2001).

20.2.1 Extracting Feature Vectors for Supervised Learning

The first step in supervised training is to extract a usefubkteatures that are predic-
tive of word senses. As Ide and Véronis (1998b) point owd,itisight that underlies
all modern algorithms for word sense disambiguation wasditsculated by Weaver
(1955) in the context of machine translation:

If one examines the words in a book, one at a time as througipagque mask
with a hole in it one word wide, then it is obviously impossilib determine, one
at a time, the meaning of the words. [...] But if one lengthtresslit in the
opaque mask, until one can see not only the central word istiqurebut also say
N words on either side, then if N is large enough one can unguobisly decide
the meaning of the central word. [...] The practical questio: “What minimum
value of N will, at least in a tolerable fraction of casesdiéa the correct choice
of meaning for the central word?”

To extract useful features from such a window, a minimal amhofi processing is
first performed on the sentence containing the window. Thiggssing varies from
approach to approach but typically includes part-of-spheagging, lemmatization or
stemming, and in some cases syntactic parsing to reveaimiation such as head
words and dependency relations. Context features relévdiné target word can then

FEATURE VECTOR be extracted from this enriched input.f@ature vector consisting of numeric or nom-
inal values is used to encode this linguistic informatioraasnput to most machine
learning algorithms.

Two classes of features are generally extracted from thegghinoring contexts:

cotocation  collocational features and bag-of-words featuregofocationis a word or phrase in
a position-specific relationship to a target word (i.e.,atlyeone word to the right, or
coLLaeATIONAL - exactly 4 words to the left, and so on). Thudlocational featuresencode information
aboutspecificpositions located to the left or right of the target word. itgbfeatures
extracted for these context words include the word itsl, oot form of the word,
and the word’s part-of-speech. Such features are effeatigacoding local lexical and
grammatical information that can often accurately isotatgven sense.
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(20.1)

(20.2)

BAG-OF-WORDS

As an example of this type of feature-encoding, considersthmtion where we
need to disambiguate the wdbdssin the following WSJ sentence:

An electric guitar andbassplayer stand off to one side, not really part of the scene,
just as a sort of nod to gringo expectations perhaps.

A collocational feature-vector, extracted from a windowwwb words to the right and
left of the target word, made up of the words themselves agid tespective parts-of-
speech, i.e.,

Wi_2,POS_2,Wi_1,POS_1,Wi;1,POS 1, Wi 2, POS, ]

would yield the following vector:
[guitar, NN, and, CC, player, NN, stand, VB]

The second type of feature consist®af-of-wordsinformation about neighboring
words. Abag-of-wordsmeans an unordered set of words, ignoring their exact pasiti
The simplest bag-of-words approach represents the carftexttirget word by a vector
of features, each binary feature indicating whether a valeapwordw does or doesn't
occur in the context. This vocabulary is typically prestddas some useful subset of
words in a training corpus. In most WSD applications, thetextregion surrounding
the target word is generally a small symmetric fixed size wimdvith the target word
at the center. Bag-of-word features are effective at capuihe general topic of the
discourse in which the target word has occurred. This, in,tiends to identify senses
of a word that are specific to certain domains. We generallytdesse stop-words
as features, and may also limit the bag-of-words to only iclemsa small number of
frequently used content words.

For example a bag-of-words vector consisting of the 12 miesjuent content
words from a collection obasssentences drawn from the WSJ corpus would have
the following ordered word feature set:

[fishing, big, sound, player, fly, rod, pound, double, runayjpig, guitar, bangl

Using these word features with a window size of 10, examplel(?would be
represented by the following binary vector:

[0,0,0,1,0,0,0,0,0,0,1,0]

We'll revisit the bag-of-words technique in Ch. 23 where h&e that it forms the
basis for thevector space modebf search in modern search engines.

Most approaches to sense disambiguation use both cobboedind bag-of-words
features, either by joining them into one long vector, or bijding a distinct classifier
for each feature type, and combining them in some manner.

20.2.2 Naive Bayes and Decision List Classifiers

Given training data together with the extracted featuneg saipervised machine learn-
ing paradigm can be used to train a sense classifier. We wifliceour discussion
here to the naive Bayes and decision list approaches, $irgehtive been the focus of
considerable work in word sense disambiguation and havgetdieen introduced in
previous chapters.
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NAIVE BAYES
CLASSIFIER

(20.3)

(20.4)

(20.5)

(20.6)

(20.7)

(20.8)

Thenaive Bayes classifieapproach to WSD is based on the premise that choosing
the best sensedut of the set of possible sens8sor a feature vectof amounts to
choosing the most probable sense given that vector. In atbets:

§=argmaw(s|f)
seS

As is almost always the case, it would be difficult to colleztsonable statistics for this
equation directly. To see this, consider that a simple lyibag of words vector defined
over a vocabulary of 20 words would havé® Dossible feature vectors. It's unlikely
that any corpus we have access to will provide coverage tquadely train this kind
of feature vector. To get around this problem we first refdataiour problem in the
usual Bayesian manner as follows:

§= argmaxw
seS P(f)

Even this equation isn’t helpful enough, since the datdaks that associates spe-
cific vectorsf with each senssis also too sparse. However, what is available in greater
abundance in a tagged training set is information abouviddal feature-value pairs
in the context of specific senses. Therefore, we can makadependence assumption
that gives this method its name, and that has served us wadirirof-speech tagging,
speech recognition, and probabilistic parsingnaively assume that the features are
independent of one another. Making this assumption thdetttares areonditionally
independent given the word sensgields the following approximation fd?(ﬂs):

P(f|s) ~ - P(fi|s)
JI:I1 i

In other words, we can estimate the probability of an entreter given a sense by the
product of the probabilities of its individual features givthat sense. Sin¢¥ F) is the
same for all possible senses, it does not effect the finalimgrdf senses, leaving us
with the following formulation of anaive Bayes classifier for WSD

seS

§=argmax(s) - P(fjls)
[P

Given this equationtraining a naive Bayes classifier consists of estimating each
of these probabilities. (20.6) first requires an estimatetfe prior probability of each
sensd>(s). We get the maximum likelihood estimate of this probabiliom the sense-
tagged training corpus by counting the number of times theeseoccurs and dividing
by the total count of the target wowg (i.e. the sum of the instances of each sense of
the word). That is:

__counts,w;)
P(s) = countw;)

We also need to know each of the individual feature prohisIP(fj|s). The

maximum likelihood estimate for these would be:

coun(fj,s)

P(fils) = counts)
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Thus, if a collocational feature such ag [, = guitar] occurred 3 times for sense
bass$, and sense basgself occurred 60 times in training, the MLE estimat®{d;|s) =
0.05. Binary bag-of-word features are treated in a similar meaywe simply count the
number of times a given vocabulary item is present with eddhepossible senses
and divide by the count for each sense.

With the necessary estimates in place, we can assign sensesds in context by
applying Equation (20.6). More specifically, we take thgé&tmvord in context, extract
the specified features, compwRés) [1]_, P(fj|s) for each sense, and return the sense
associated with the highest score. Note that in practieeptbbabilities produced for
even the highest scoring senses will be dangerously low atiget various multipli-
cations involved; mapping everything to log-space andaperforming additions is
the usual solution.

The use of a simple maximum likelihood estimator means thatsting, when a
target word cooccurs with a word that it did not cooccur withtiaining, all of its
senses will receive a probability of zero. Smoothing iselfene essential to the whole
enterprise. Naive Bayes approaches to sense disambigugtin@rally use the simple
Laplace (add-one or add-k) smoothing discussed in Ch. 4.

One problem with naive Bayes and some other classifiers istth&ard for hu-
mans to examine their workings and understand their derssidecision lists and
decision trees are somewhat more transparent approactdent themselves to in-

DECRIONEST  spection. Decision list classifiersare equivalent to simple case statements in most
programming languages. In a decision list classifier, a secgi of tests is applied to
each target word feature vector. Each test is indicative pdréicular sense. If a test
succeeds, then the sense associated with that test iseétufrthe test fails, then the
next test in the sequence is applied. This continues urgietid of the list, where a
default test simply returns the majority sense.

Figure 20.2 shows a portion of a decision list for the taskiséiminating the fish
sense obassfrom the music sense. The first test says that if the wistdoccurs
anywhere within the input context théxass is the correct answer. If it doesn’t then
each of the subsequent tests is consulted in turn until coensetrue; as with case
statements a default test that returns true is includedeaitld of the list.

Learning a decision list classifier consists of generating ardering individual
tests based on the characteristics of the training datareTée a wide number of
methods that can be used to create such lists. In the appusadiby Yarowsky (1994)
for binary homonym discrimination, each individual feawalue pair constitutes a
test. We can measure how much a feature indicates a partseuiae by computing the
log-likelihood of the sense given the feature. The ratioveen the log-likelihoods of
the two senses tells us how discriminative a feature is batvgenses:

P(Sensg fi)
Log (P(Sensg fi))
The decision list is then created from these tests by simpgring the tests in the
list according to the log-likelihood ratio. Each test is cked in order and returns the
appropriate sense. This training method differs quite d&rbih standard decision list
learning algorithms. For the details and theoretical naditbn for these approaches see
Rivest (1987) or Russell and Norvig (1995).

(20.9)
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Rule Sense
fishwithin window = bass
striped bass = bass
guitar within window = bas$
bass player = bas$
pianowithin window = basg
tenorwithin window = basg
sea bass = basg
play/V bass = bas$
river within window = basg
violin within window = basg
salmonwithin window = basg
on bass = basg
bass are = basg
Figure 20.2  An abbreviated decision list for disambiguating the fishsgenf bass from
the music sense. Adapted from Yarowsky (1997).

20.3 WSD B/ALUATION, BASELINES, AND CEILINGS

Evaluating component technologies like WSD is always a dmaed affair. In the
long term, we're primarily interested in the extent to whibky improve performance
in some end-to-end application such as information redtjeyuestion answering or
machine translation. Evaluating component NLP tasks ehxdth end-to-end appli-
cAIPNSIC cations is calleaxtrinsic evaluation, task-basedevaluation.end-to-endevaluation,
Nvivo  orinvivo evaluation. Itis only with extrinsic evaluation that we a¢ahif a technology
such as WSD is working in the sense of actually improvinggrenince on some real
task.

Extrinsic evaluations are much more difficult and time-aonig to implement,
however, since they require integration into complete \waylsystems. Furthermore,
an extrinsic evaluation may only tell us something about W&Ehe context of the
application, and may not generalize to other applications.

For these reasons, WSD systems are typically developediahcéed intrinsically.

INTRINSIC In intrinsic orin vitro we treat a WSD component as if it were a stand-alone system
NvitRo  operating independently of any given application. In tiydesof evaluation, systems
SEnsEAccURACY  are evaluated either using exact matehse accuracythe percentage of words that are
tagged identically with the hand-labeled sense tags intas&tsor with standard pre-
cision and recall measures if systems are permitted to pelsdbeling some instances.
In general, we evaluate using held out data from the samegagged corpora that we
used for training, such as the SemCor corpus discussed atotree various corpora
produced by thesENSEVAL effort.

Many aspects of sense evaluation have been standardizee$sNSEVAL/SEMEVAL
efforts (Palmer et al., 2006; Kilgarriff and Palmer, 200This framework provides a
shared task with training and testing materials along wéhss inventories for all-
words and lexical sample tasks in a variety of languages.
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MOST FREQUENT
SENSE

TAKE THE FIRST
SENSE

PSEUDOWORDS

Whichever WSD task we are performing, we ideally need twatadthl measures
to assess how well we're doing: a baseline measure to tehasavell we're doing as
compared to relatively simple approaches, and a ceilingltai$ how close we are to
optimal performance.

The simplest baseline is to choose thest frequent sensdor each word (Gale
et al., 1992b) from the senses in a labeled corpus. For Wdrdhis corresponds to
thetake the first senseheuristic, since senses in WordNet are generally ordeced fr
most-frequent to least-frequent. WordNet sense freqesmmmme from the SemCor
sense-tagged corpus described above.

Unfortunately, many WordNet senses do not occur in Sem@esg unseen senses
are thus ordered arbitrarily after those that do. The fourdMet senses of the noun
plant, for example, are as follows:

Freq Synset Gloss

338 plant, works, industrial plantbuildings for carrying on industrial labor

207 plant, flora, plant life a living organism lacking the power of locomotion

2 plant?’ something planted secretly for discovery by another

0 planf1 an actor situated in the audience whose acting is reheatged b

seems spontaneous to the audience

The most frequent sense baseline can be quite accurates tredtéfore often used
as a default, to supply a word sense when a supervised &liganis insufficient train-
ing data. A second commonly used baseline isltbgk algorithm, discussed in the
next section.

Human inter-annotator agreement is generally considesea eeiling, or upper
bound, for sense disambiguation evaluations. Human agneesmeasured by com-
paring the annotations of two human annotators on the sataggden the same tag-
ging guidelines. The ceiling (inter-annotator agreemértmany all-words corpora
using WordNet-style sense inventories seems to range foout&d 5% to 80% (Palmer
et al.,, 2006). Agreement on more coarse grained, often ypisanse inventories is
closer to 90% (Gale et al., 1992b).

While using hand-labeled test sets is the best current mdtr@valuation, label-
ing large amounts of data is still quite expensive. For sviped approaches, we need
this data anyhow for training so the effort to label large ants of data seems justified.
But for unsupervised algorithms like those we will discus$ec. 20.10, it would be
nice to have an evaluation method that avoided hand labéling use opseudowords
is one such simplified evaluation method (Gale et al., 1992hiitze, 1992a). A pseu-
doword is an artificial word created by concatenating twalmanly-chosen words to-
gether (e.g.bananaanddoor to createbanana-door) Each occurrence of the two
words in the test set is replaced by the new concatenatieating a new ‘word’ which
is now ambiguous between the senksasanaanddoor. The ‘correct sense’ is defined
by the original word, and so we can apply our disambiguatigarédthm and compute
accuracy as usual. In general, pseudowords give an ovdityisfic measure of perfor-
mance, since they are a bit easier to disambiguate thangevanabiguous words. This
is because the different senses of real words tend to beasjwihile pseudowords are
generally not semantically similar, acting like homonyrmbut not polysemous words
(Gaustad, 2001). Nakov and Hearst (2003) shows that it isilplesto improve the
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accuracy of pseudoword evaluation by more carefully chrapie pseudowords.

20.4 WSD: DCTIONARY AND THESAURUSMETHODS

LESK ALGORITHM

SIMPLIFIED LESK

(20.10)

Supervised algorithms based on sense-labeled corporhateest performing algo-
rithms for sense disambiguation. However, such labeleditig data is expensive and
limited and supervised approaches fail on words not in theitrg data. Thus this sec-
tion and the next describe different ways to get indirecesvigion from other sources.
In this section, we describe methods for using a dictionahesaurus as an indirect
kind of supervision; the next section describes bootsirgpapproaches.

20.4.1 The Lesk Algorithm

By far the most well-studied dictionary-based algorithm $ense disambiguation is
theLesk algorithm, really a family of algorithms that choose the sense whostodi
nary gloss or definition shares the most words with the tanget’s neighborhood.
Fig. 20.3 shows the simplest version of the algorithm, ofi@ied theSimplified Lesk
algorithm (Kilgarriff and Rosenzweig, 2000).

function SIMPLIFIED LESK(word, sentendereturns best sense aford

best-sense- most frequent sense forord
max-overlap— 0
context— set of words irsentence
for each sensean senses ofvord do
signature— set of words in the gloss and examplesehse
overlap— COMPUTEOVERLAP(Signature contexy
if overlap> max-overlapghen
max-overlap— overlap
best-sense- sense
end
return (best-senge

Figure 20.3  The Simplified Lesk Algorithm. The GMPUTEOVERLAP function returns
the number of words in common between two sets, ignoringtiomevords or other words
on a stop list. The original Lesk algorithm defines tlomtextin a more complex way. The|
Corpus Leslalgorithm weights each overlapping wondby its —logP(w), and includes
labeled training corpus data in tegnature

As an example of the Lesk algorithm at work, consider disgdiing the word
bankin the following context:

Thebank can guarantee deposits will eventually cover future toitosts because it
invests in adjustable-rate mortgage securities.

given the following two WordNet senses:



Section 20.4. WSD: Dictionary and Thesaurus Methods 11

bank | Gloss: a financial institution that accepts deposits and chanhelsioney into
lending activities

Examples] “he cashed a check at the bank”, “that bank holds the mortgagay
home”

bank | Gloss: sloping land (especially the slope beside a body of water)
Examples] “they pulled the canoe up on the bank”, “he sat on the bankefitrer
and watched the currents”

Sensebank! has two (non-stop) words overlapping with the context in.12:
depositeaandmortgage while sense barfkhas zero, so sensank! is chosen.

There are many obvious extensions to Simplified Lesk. Thgraal Lesk algorithm
(Lesk, 1986) is slightly more indirect. Instead of compgrintarget word’s signature
with the context words, the target signature is compareld thig signatures of each of
the context words. For example, consider Lesk’s exampleletting the appropriate
sense otonein the phras@ine conggiven the following definitions fopineandcone

pine 1 kinds of evergreen tree with needle-shaped leaves
2 waste away through sorrow or illness

cone 1 solid body which narrows to a point
2 something of this shape whether solid or hollow
3 fruit of certain evergreen trees

In this example, Lesk’s method would seleoné® as the correct sense since two of the
words in its entryevergreerandtree, overlap with words in the entry fqine whereas
neither of the other entries have any overlap with words endgfinition ofpine In
general Simplified Lesk seems to work better than originakLe
The primary problem with either the original or simplifiedompaches, however, is
that the dictionary entries for the target words are shod, may not provide enough
chance of overlap with the contékDne remedy is to expand the list of words used in
the classifier to include words related to, but not containedeir individual sense def-
initions. But the best solution, if any sense-tagged codatia like SemCor is available,
is to add all the words in the labeled corpus sentences forrd sense into the signa-
corrustesk  ture for that sense. This version of the algorithm, @@pus Lesk algorithm is the
best-performing of all the Lesk variants (Kilgarriff and $&mzweig, 2000; Vasilescu
et al., 2004) and is used as a baseline ingA®SEVAL competitions. Instead of just
counting up the overlapping words, t@®rpus Lesk algorithm also applies a weight
INVERSEROCUMENT  to each overlapping word. The weight is tmwerse document frequencyor IDF,
oF  a standard information-retrieval measure to be introducedh. 23. IDF measures
how many different 'documents’ (in this case glosses andngtes) a word occurs in
(Ch. 23) and is thus a way of discounting function words. 8ifunction words like
the of, etc, occur in many documents, their IDF is very low, while tBF of content
words is high. Corpus Lesk thus uses IDF instead of a stoplist
Formally the IDF for a word can be defined as

(20.11) idf; — log <Nnd dioc>

2 Indeed, Lesk (1986) notes that the performance of his syseams to roughly correlate with the length
of the dictionary entries.
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whereNdocis the total number of ‘documents’ (glosses and exampledhanis the
number of these documents containing word

Finally, it is possible to combine the Lesk and supervisegatr@gches, by adding
new Lesk-like bag-of-words features. For example, thesglegind example sentences
for the target sense in WordNet could be used to compute hergised bag-of-words
features instead of (or in addition to) the words in the Sentdatext sentence for the
sense (Yuret, 2004).

20.4.2 Selectional Restrictions and Selectional Preferees

One of the earliest knowledge-sources for sense disamigua the notion oselec-
tional restrictions defined in Ch. 19. For example the vexditmight have a restriction
that itsTHEME argument bg+FOOD] . In early systems, selectional restrictions were
used to rule out senses that violate the selectional réstricof neighboring words
(Katz and Fodor, 1963; Hirst, 1987). Consider the followgair of WSJ examples of
the worddish

(20.12)  “In our house, everybody has a career and none of them inglwdshingdishes” he
says.

(20.13) In her tiny kitchen at home, Ms. Chen works efficiently, $tirng several simple
dishes including braised pig’s ears and chicken livers with grpeppers.

These correspond to WordNeish! (a piece of dishware normally used as a con-
tainer for holding or serving food), with hypernyms lietifact, anddish? (a particular
item of prepared food) with hypernyms likeod

The fact that we perceive no ambiguity in these examples eaatthibuted to the
selectional restrictions imposed yashandstir-fry on their THEME semantic roles.
The restrictions imposed byash(perhaps [wASHABLE]) conflict with dish?. The
restrictions orstir-fry ([+EDIBLE]) conflict with dish®. In early systems, the predicate
strictly selected the correct sense of an ambiguous arguoyesliminating the sense
that fails to match one of its selectional restrictions. Buth hard constraints have
a number of problems. The main problem is that selectiorsttiction violations of-
ten occur in well-formed sentences, either because thegpeggated as in (20.14), or
because selectional restrictions are overstated as ih5R0.

(20.14) Butitfell apartin 1931, perhaps because people realizedccpo’teat gold for lunch
if you're hungry.

(20.15)  In his two championship trials, Mr. Kulkaraite glass on an empty stomach,
accompanied only by water and tea.

As Hirst (1987) observes, examples like these often resule elimination of all
senses, bringing semantic analysis to a halt. Modern mdetsadopt the view of se-
lectional restrictions as preferences, rather than rigglirements. Although there
have been many instantiations of this approach over thesy@ag., Wilks, 1975c,
1975b, 1978), we'll discuss a member of the popular proksdigilor information-
theoretic family of approaches: Resnik’s (1997) moddealectional association

EEEEEEEQ@E Resnik first defines theelectional preference strengttas the general amount of
information that a predicate tells us about the semantissctd its arguments. For
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RELATIVE ENTROPY

KULLBACK-LEIBLER
DIVERGENCE

(20.16)

(20.17)

SELECTIONAL
ASSOCIATION

(20.18)

example, the verkattells us a lot about the semantic class of its direct objeates
they tend to be edible. The vebl® by contrast, tells us less about its direct objects.
The selectional preference strength can be defined by tferatite in information
between two distributions: the distribution of expectethastic classe®(c) (how
likely is it that a direct object will fall into class) and the distribution of expected
semantic classes for the particular v&Xe|v) (how likely is it that the direct object of
specific verbs will fall into semantic class). The greater the difference between these
distributions, the more information the verb is giving u®abpossible objects. This
difference can be quantified by thedative entropy between these two distributions, or
Kullback-Leibler divergence (Kullback and Leibler, 1951). The Kullback-Leibler or
KL divergenceD(P||Q) can be used to express the difference between two prolyabilit
distributionsP andQ, and will be discussed further when we discuss word sintylari
in Equation (20.50).

P(X)
Q(x)
The selectional preferen&g(v) uses the KL divergence to express how much in-

formation, in bits, the verly expresses about the possible semantic class of its argu-
ment.

D(P||Q) ZP Iog

(V) = D(P(c[v)[[P(c))

= Z P(c|v)log P(civ)

P(c)

Resnik then defines treelectional associatioof a particular class and verb as the
relative contribution of that class to the general seleai@reference of the verb:

1 P(c|v)
AR(VC) = o sP(eV)Iog oo

The selectional association is thus a probabilistic mesastithe strength of associ-
ation between a predicate and a class dominating the arguoide predicate. Resnik
estimates the probabilities for these associations byiqgaescorpus, counting all the
times each predicate occurs with each argument word, andasg that each word is
a partial observation of all the WordNet concepts contgire word. The following
table from Resnik (1996) shows some sample high and lowtsetet associations for
verbs and some WordNet semantic classes of their directtsbje

Direct Object Direct Object
Verb || Semantic Class Asso&emantic Class Assoc
read || WRITING 6.80 [ACTIVITY -.20
write || WRITING 7.26 |COMMERCE O
see ||ENTITY 5.79 |METHOD -0.01

Resnik (1998) shows that these selectional associationbeaised to perform a
limited form of word sense disambiguation. Roughly spegkire algorithm selects as
the correct sense for an argument the one that has the hggiestional association
between one of its ancestor hypernyms and the predicate.
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While we have presented only the Resnik model of selectipreferences, there
are other more recent models, using probabilistic methadsusing other relations
than just direct object; see the end of the chapter for a lsieimary. In general,
selectional restriction approaches perform as well asathgupervised approaches at
sense disambiguation, but not as well as Lesk or as supdrgmmoaches.

20.5 MINIMALLY SUPERVISEDWSD: BOOTSTRAPPING

BOOTSTRAPPING

YAROWSKY
ALGORITHM

ONE SENSE PER
COLLOCATION

Both the supervised approach and the dictionary-basedagpipto WSD require large
hand-built resources; supervised training sets in oneg age dictionaries in the other.
We can instead udeootstrapping algorithms, often calledemi-supervised learning
or minimally supervised learning, which need only a very small hand-labeled training
set. The most widely emulated bootstrapping algorithm f@Ms the Yarowsky
algorithm (Yarowsky, 1995).

The goal of the Yarowsky algorithm is to learn a classifierddarget word (in a
lexical-sample task). The algorithm is given a small sestd\g of labeled instances
of each sense, and a much larger unlabeled covpudhe algorithm first trains an
initial decision-list classifier on the seed-g&f. It then uses this classifier to label
the unlabeled corpug. The algorithm then selects the example¥rhat it is most
confident about, removes them, and adds them to the traipir(@all it nowA1). The
algorithm then trains a new decision list classifier (a nevetriles) on\1, and iterates
by applying the classifier to the now-smaller unlabeled/gse¢xtracting a new training
set/\; and so on. With each iteration of this process, the trainorges grows and the
untagged corpus shrinks. The process is repeated until soffi@ently low error-rate
on the training set is reached, or until no further examplemfthe untagged corpus
are above threshold.

The key to any bootstrapping approach lies in its abilityreate a larger training
set from a small set of seeds. This requires an accuratalisét of seeds and a good
confidence metric for picking good new examples to add tortinihg set. The confi-
dence metric used by Yarowsky (1995) is the measure deslceddier in Sec. 20.2.2,
the log-likelihood ratio of the decision-list rule that stified the example.

One way to generate the initial seeds is to hand-label a ssealbf examples
(Hearst, 1991). Instead of hand-labeling, it is also pdsgib use a heuristic to auto-
matically select accurate seeds. Yarowsky (1995) use@tigeSense per Collocation
heuristic, which relies on the intuition that certain woadghrases strongly associated
with the target senses tend not to occur with the other séfasewsky defines his seed
set by choosing a single collocation for each sense. Aswstridition of this technique,
consider generating seed sentences for the fish and musis#sobass Without too
much thought, we might come up witishas a reasonable indicatorlmiss, andplay
as a reasonable indicator lbés$. Figure 20.5 shows a partial result of such a search
for the strings “fish” and “play” in a corpus dfassexamples drawn from the WSJ.

We can also suggest collocates automatically, for examgita@ing words from
machine readable dictionary entries, and selecting sesidg gollocational statistics
such as those described in Sec. 20.7 (Yarowsky, 1995).
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g B>
> ” OB B
s 2 2777 [EQUIPMENT] [MANUFAGTURINGT
7 UFACTURING
(b)

Figure 20.4 The Yarowsky algorithm disambiguating 'plant’ at two stag®’ indicates an unlabeled obser-
vation, A and B are observations labeled as SENSE-A or SERSEH-E’ indicates observations occur with
collocate “life”. The initial stage (a) shows only seed sswes/\g labeled by collocates (‘life’ and 'manu
facturing’). An intermediate stage is shown in (b) where enoollocates have been discovered (‘equipment’,
‘microscopic’, etc) and more instancesvimhave been moved inth,, leaving a smaller unlabeled 34t Figure
adapted from Yarowsky (1995).

? 0 9

We need more good teachers — right now, there are only a halfZ@ndvho carplay the
freebasswith ease.

An electric guitar andbass player stand off to one side, not really part of the scene, just|as
a sort of nod to gringo expectations perhaps.

When the New Jersey Jazz Society, in a fund-raiser for therisare Jazz Hall of Fame,
honors this historic night next Saturday, Harry Goodman, K&oodman’s brother and
bass plar at the original concert, will be in the audience with otfaenily members.
The researchers said the worms spend part of their life @ydechfish as Pacific salmon
and stripebassand Pacific rockfish or snapper.

And it all started wherfishermen decided the stripddssin Lake Mead were too skinny.

Though still a far cry from the lake’s record 52-poubdssof a decade ago, “you could
fillet thesefish again, and that made people very, very happy,” Mr. Paulsgs sa

Figure 20.5 Samples obasssentences extracted from the WSJ using the simple cofre-
latesplay andfish

The original Yarowsky algorithm also makes use of a secondi$téc, calledOne
ONESENSEPER  Sense Per Discoursebased on the work of Gale et al. (1992c), who noticed that a
particular word appearing multiple times in a text or dissauoften appeared with the
same sense. Yarowsky (1995), for example, showed in a cafpBig,232 examples
that every time the wortlassoccurred more than once in a discourse, that it occurred
in only thefishor only themusiccoarse-grain sense throughout the discourse. The va-
lidity of this heuristic depends on the granularity of thaseinventory and is not valid
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in every discourse situation; it seems to be true mostly &@mrse-grain senses, and
particularly for cases of homonymy rather than polysemyog€tz, 1998). Nonethe-

less, it has still been useful in a number of unsupervisedsand-supervised sense
disambiguation situations.

20.6 WORD SIMILARITY : THESAURUSMETHODS

WORD SIMILARITY
SEMANTIC DISTANCE

We turn now to the computation of various semantic relattbashold between words.
We saw in Ch. 19 that such relations include synonymy, amtgniryponymy, hyper-
nymy, and meronymy. Of these, the one that has been most ¢atigmally developed
and has the greatest number of applications is the idea af symonymyandsimilar-
ity .

Synonymy is a binary relation between words; two words alteeeisynonyms or
not. For most computational purposes we use instead a loteteic ofword similar-
ity or semantic distance Two words are more similar if they share more features of
meaning, or are near-synonyms. Two words are less similéiawe greater semantic
distance, if they have fewer common meaning elements. Ahave have described
them as relations between words, synonymy, similarity,disthnce are actually rela-
tions between wordensesFor example of the two senseshidnk we might say that
the financial sense is similar to one of the sense&ind while the riparian sense is
more similar to one of the sensesaibpe In the next few sections of this chapter, we
will need to compute these relations over both words andesens

The ability to compute word similarity is a useful part of gdanguage under-
standing applications. limformation retrieval or question answeringwe might want
to retrieve documents whose words have similar meanindgetquery words. lisum-
marization, generation, and machine translation, we need to know whether two
words are similar to know if we can substitute one for the pthgarticular contexts.
In language modelingwe can use semantic similarity to cluster words for classeh
models. One interesting class of applications for word Isinity is automatic grading
of student responses. For example algorithmsafdomatic essay gradinguse word
similarity to determine if an essay is similar in meaning tocoarect answer. We can
also use word-similarity as part of an algorithmtédke an exam, such as a multiple-
choice vocabulary test. Automatically taking exams is ulsieftest designs in order to
see how easy or hard a particular multiple-choice questi@xam is.

There are two classes of algorithms for measuring word aiitjl This section
focuses orthesaurus-basedalgorithms, in which we measure the distance between
two senses in an on-line thesaurus like WordNet or MeSH. Etxésection focuses on
distributional algorithms, in which we estimate word similarity by findingsds that
have similar distributions in a corpus.

The thesaurus-based algorithms use the structure of thauhes to define word
similarity. In principle we could measure similarity usiagy information available
in a thesaurus (meronymy, glosses, etc). In practice, hexvévesaurus-based word
similarity algorithms generally use only the hypernym/agpm (s-aor subsumption)
hierarchy. In WordNet, verbs and nouns are in separate hypehierarchies, so a
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WORD
RELATEDNESS

PATH-LENGTH BASED
SIMILARITY

(20.19)

thesaurus-based algorithm for WordNet can thus only coenpotin-noun similarity, or
verb-verb similarity; we can’t compare nouns to verbs, oadgthing with adjectives
or other parts of speech.

Resnik (1995) and Budanitsky and Hirst (2001) draw the irtgpardistinction be-
tweenword similarity andword relatedness Two words are similar if they are near-
synonyms, or roughly substitutable in context. Word relatsss characterizes a larger
set of potential relationships between words; antonynrsefample, have high relat-
edness, but low similarity. The wordar andgasolineare very related, but not similar,
while carandbicycleare similar. Word similarity is thus a subcase of word relatss.
In general, the five algorithms we describe in this sectionataattempt to distinguish
between similarity and semantic relatedness; for conveeieve will call themsimi-
larity measures, although some would be more appropriately teskcas relatedness
measures; we return to this question in Sec. 20.8.

hickel  dime

Figure 20.6 A fragment of the WordNet hypernym hierarchy, showing pathgths
from nickelto coin (1), dime(2), money(5), andRichter scalg7).

The oldest and simplest thesaurus-based algorithms agd basthe intuition that
the shorter th@ath between two words or senses in the graph defined by the thessaur
hierarchy, the more similar they are. Thus a word/senserissmnilar to its parents or
its siblings, and less similar to words that are far away ertetwork. This notion can
be operationalized by measuring the number of edges betiiedwo concept nodes
in the thesaurus graph. Fig. 20.6 shows an intuition; theeptimeis most similar to
nickelandcoin, less similar tanoneyand even less similar Richter scale Formally,
we specify path length as follows:

pathlericy,c;) = the number of edges in the shortest path in the thesaurus
graph between the sense nodeandc;

Path-based similarity can be defined just as the path lenfjin with a log transform
(Leacock and Chodorow, 1998), resulting in the followingeoon definition ofpath-
length based similarity:

simpath(cl,cz) = —log pathlercy, c;)
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WORD SIMILARITY

(20.20)

INFORMATION
CONTENT

(20.21)

(20.22)

For most applications, we don’t have sense-tagged datdahasdve need our algo-
rithm to give us the similarity between words rather thammleein senses or concepts.
For any of the thesaurus-based algorithms, following Re€895), we can approxi-
mate the correct similarity (which would require sense miisiguation) by just using
the pair of senses for the two words that results in maximumsessimilarity. Thus
based on sense similarity we can defiverd similarity as follows:

wordsimwi,wp) =  max  sim(cg,Cp)
c1ESeNSedy)
cpESensesy)

The basic path-length algorithm makes the implicit assionghat each link in the
network represents a uniform distance. In practice, tlis@mption is not appropriate.
Some links (for example those that are very deep in the Warbildearchy) often seem
to represent an intuitively narrow distance, while othakdi (e.g., higher up in the
WordNet hierarchy) represent an intuitively wider distanEor example, in Fig. 20.6,
the distance fronmickelto money(5) seems intuitively much shorter than the distance
from nickelto an abstract wordtandard the link betweermedium of exchangand
standardseems wider than that between, sajin andcoinage

Itis possible to refine path-based algorithms with nornagiins based on depth in
the hierarchy (Wu and Palmer, 1994), but in general we’'ddikepproach which lets
us represent the distance associated with each edge irceybn

A second class of thesaurus-based similarity algorithbesrgdts to offer just such
a fine-grained metric. Theggformation content word similarity algorithms still rely
on the structure of the thesaurus, but also add probabiligtirmation derived from a
corpus.

Using similar notions to those we introduced earlier to defioft selectional re-
strictions, let’s first defind®(c), following Resnik (1995), as the probability that a
randomly selected word in a corpus is an instance of concépe., a separate ran-
dom variable, ranging over words, associated with eachegutic This implies that
P(root) = 1, since any word is subsumed by the root concept. Intuytiibe lower
a concept in the hierarchy, the lower its probability. Wartridnese probabilities by
counting in a corpus; each word in the corpus counts as anrmecae of each con-
cept that contains it. For example, in Fig. 20.6 above, aniweace of the wordlime
would count toward the frequency obin, currency standard etc. More formally,
Resnik computeB(c) as follows:

P(c) = zwewords/ﬁ count(w)

where wordéc) is the set of words subsumed by concepandN is the total number
of words in the corpus that are also present in the thesaurus.

Fig. 20.7, from Lin (1998b), shows a fragment of the WordNmteept hierarchy
augmented with the probabiliti€Xc).

We now need two additional definitions. First, following lwaigformation theory,
we define the information content (IC) of a concejais:

IC(c) = —logP(c)
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entity 0.395
inanimate-object0.167
|
natural-object0.0163

|
geological-formation0.00176

0.000113natural-elevation shore 0.0000836

| |
0.0000189hill coast0.0000216

Figure 20.7 A fragment of the WordNet hierarchy, showing the probapif{c) at-
tached to each content, adapted from a figure from Lin (1998b)

LOWEST COMMON - Second, we define tHewest common subsumepr LCS of two concepts:

Les LCS(c1,¢,) = the lowest common subsumer, i.e., the lowest node in the

hierarchy that subsumes (is a hypernym of) bmthndc,

There are now a number of ways to use the information confenhode in a word
similarity metric. The simplest way was first proposed by itle$1995). We think
of the similarity between two words as related to their comrimformation; the more
two words have in common, the more similar they are. Resrap@ses to estimate the
common amount of information by thieformation content of the lowest common

ResNKk smiLARITY — subsumer of the two nodesMore formally, theResnik similarity measure is:

(20.23) SiMagnik(C1,C2) = —logP(LCS(cy,¢2))

Lin (1998b) extended the Resnik intuition by pointing oudtta similarity metric
between objects A and B needs to do more than measure the aofanformation
in common between A and B. For example, he pointed out thatlditian, the more
differencesbetween A and B, the less similar they are. In summary:

e commonality: the more information A and B have in common, the more similar
they are.

o difference: the more differences between the information in A and B,|dss
similar they are

Lin measures the commonality between A and B as the infoonatntent of the
proposition that states the commonality between A and B:

(20.24) IC(Common(A,B))
He measures the difference between A and B as

(20.25) IC(description(A,B))- IC(common(A,B))
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(20.26)

LIN SIMILARITY

(20.27)

(20.28)

JIANG-CONRATH
DISTANCE

(20.29)

EXTENDED GLOSS
OVERLAP

EXTENDED LESK

where description(A,B) describes A and B. Given a few adddl assumptions about
similarity, Lin proves the following theorem:

Similarity Theorem: The similarity between A and B is measluby the ratio
between the amount of information needed to state the comlityof A and B
and the information needed to fully describe what A and B are:

. logP(common(A,B)
in(AB) = —
SIMLjn (A.B) logP(description(A,B)
Applying this idea to the thesaurus domain, Lin shows (inghsimodification of
Resnik’s assumption) that the information in common betw®e concepts is twice
the information in the lowest common subsumer L&Scy). Adding in the above

definitions of the information content of thesaurus consethte finalLin similarity
function is:

2 x logP(LCS(cy,¢2))
logP(c1) + logP(c;)

For example, using sip,, Lin (1998b) shows that the similarity between the con-
cepts ofhill andcoastfrom Fig. 20.7 is:

simpjn (C1,C2) =

2 x logP(geological-formation

logP(hill) 4+ logP(coas}) =059

simp i (hill,coasy =

A very similar formula,Jiang-Conrath distance (Jiang and Conrath, 1997) (al-
though derived in a completely different way from Lin, angmssed as a distance
rather than similarity function) has been shown to work a8 mebetter than all the
other thesaurus-based methods:

disty(c1,C2) = 2 x logP(LCS(cy,¢2)) — (logP(cy) +logP(c2))

dis1]C can be transformed into a similarity by taking the reciptoca

Finally, we describe d@ictionary-based method, an extension of the Lesk algo-
rithm for word-sense disambiguation described in Sec..20.We call this a dictio-
nary rather than a thesaurus method because it makes usességl which are in
general a property of dictionaries rather than thesautfigagh WordNet does have
glosses). Like the Lesk algorithm, the intuition of tiistended Gloss Overlap or
Extended Leskmeasure (Banerjee and Pedersen, 2003) is that two corsspsss
in a thesaurus are similar if their glosses contain oveifapwords. We'll begin by
sketching an overlap function for two glosses. Considesdghlteo concepts, with their
glosses:

e drawing paper:paper that isspecially prepared for use in drafting

e decal:the art of transferring designs frospecially preparedogper to a wood or
glass or metal surface.

For eacm-word phrase that occurs in both glosses, Extended Leskiaddscore
of n? (the relation is non-linear because of the Zipfian relatigmbetween lengths of
phrases and their corpus frequencies; longer overlapsaageso should be weighted
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(20.30)

more heavily). Here the overlapping phrases@aperandspecially preparegdfor a
total similarity score of 4+22 = 5.

Given such an overlap function, when comparing two conagptssets), Extended
Lesk not only looks for overlap between their glosses, bad &ketween the glosses of
the senses which are hypernyms, hyponyms, meronyms, aedrethtions of the two
concepts. For example if we just considered hyponyms, afidetkgloss(hypo(A)) as
the concatenation of all the glosses of all the hyponym seoisg, the total relatedness
between two concepts A and B might be:

similarity(A,B) = overlap(gloss(A), gloss(B))
+overlap(gloss(hypo(A)), gloss(hypo(B)))
—+overlap(gloss(A), gloss(hypo(B)))
+overlap(gloss(hypo(A)),gloss(B))

Let RELS be the set of possible WordNet relations whose gkgge compare;
assuming a basic overlap measure as sketched above, wespatefine thé&xtended
Lesk overlap measure as:

SiMe| esiC1,C2) = gELSOVGHaF@OSE{r(Cl)),glosiQ(Cz)))

r,ge

simpath(cl,cz) = —log pathlertcy, cp)
SiMResnikC1,¢2) = —logP(LCS(cy,c2))
2 x logP(LCS(cy,C)))
logP(c1) +logP(cy)
1
2x1logP(LCS(cy,C2)) — (logP(c1) 4 logP(cy))

SiMgeskC1,C2) = gE overlagiglosgr(cy)),glosgq(cy)))
rageRELS

sim iy (c1,C2) =

simjc(C1,C2) =

Figure 20.8  Five thesaurus-based (and dictionary-based) similarigsares.

Fig. 20.8 summarizes the five similarity measures we haveritbesl in this section
The publicly availabléWordnet::Similarity package implementing all these
and other thesaurus-based word similarity measures igideddn Pedersen et al.
(2004).

Evaluating Thesaurus-based Similarity Which of these similarity measures is best?
Word similarity measures have been evaluated in two ways. ifstrinic method is to
compute the correlation coefficient between word simiasitores from an algorithm
and word similarity ratings assigned by humans; such huratings have been ob-
tained for 65 word pairs by Rubenstein and Goodenough (1868)30 word pairs by
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Miller and Charles (1991). Another more extrinsic evaloatmethod is to embed the
similarity measure in some end application like detectibmalapropisms(real-word
spelling errors) (Budanitsky and Hirst, 2006; Hirst and Bnitisky, 2005), or other
NLP applications like word-sense disambiguation (Pativarcet al., 2003; McCarthy
et al., 2004) and evaluate its impact on end-to-end perfoceaAll of these evalu-
ations suggest that all the above measures perform rdiatixal, and that of these,
Jiang-Conrath similarity and Extended Lesk similarity e of the best approaches,
depending on the application.

20.7 WORD SIMILARITY : DISTRIBUTIONAL METHODS

(20.31)

FEATURE VECTOR

The previous section showed how to compute similarity betweny two senses in a
thesaurus, and by extension between any two words in thauheshierarchy. But of
course we don’t have such thesauri for every language. Exdariguages where we
do have such resources, thesaurus-based methods have arroftfimitations. The
obvious limitation is that thesauri often lack words, esalicnew or domain-specific
words. In addition, thesaurus-based methods only worlkckf hyponymy knowledge
is present in the thesaurus. While we have this for nounspimgm information for
verbs tends to be much sparser, and doesn't exist at all fectaes and adverbs.
Finally, it is more difficult with thesaurus-based methazlsémpare words in different
hierarchies, such as nouns with verbs.

For these reasons, methods which can automatically exdyacinyms and other
word relations from corpora have been developed. In this@eee introduce such
distributional methods, which can be applied directly to supply a word eela¢ss
measure for NLP tasks. Distributional methods can also bd @ automatic the-
saurus generatiorfor automatically populating or augmenting on-line thesaas like
WordNet with new synonyms and, as we will see in Sec. 20.8) atiter relations like
hyponymy and meronymy.

The intuition of distributional methods is that the meandig word is related to
the distribution of words around it; in the famous dictum ath-(1957), “You shall
know a word by the company it keeps!”. Consider the followexgmple, modified by
Lin (1998a) from (?):

A bottle oftezdlinois on the table.
Everybody likegezgiino.

Tezdlino makes you drunk.

We maketezgiino out of corn.

The contexts in whictiezgiino occurs suggest that it might be some kind of fer-
mented alcoholic drink made from corn. The distributionathod tries to capture this
intuition by representing features of the contextexfgiinothat might overlap with fea-
tures of similar words likéoeer, liquor, tequila, and so on. For example such features
might beoccursbefore drunkor occursafter bottleor is the directobject of likes

We can then represent a wondas afeature vector just as we saw with the bag-
of-words features in Sec. 20.2. For example, suppose we hadinary featurd
representing each of thié words in the lexicorv;. The feature means occursin the




Section 20.7.

Word Similarity: Distributional Methods 23

neigtborhoodof wordv;, and hence takes the value Wifandv; occur in some context

window, and O otherwise. We could represent the meaning ofl woas the feature
vector

W= (f17 f27 f37"'afN)

If w=tezgiino, vi=bottle, vo=drunk andvs=matrix, the co-occurrence vector far
from the corpus above would be:

W= (171707)

Given two words represented by such sparse feature veatersan apply a vector
distance measure and say that the words are similar if thevegtors are close by
this measure. Fig. 20.9 shows an intuition about vectorlaiity for the four words
apricot, pineapple digital, andinformation Based on the meanings of these four
words, we would like a metric that showapricot andpineappleto be similar,digital
andinformation to be similar, and the other four pairings to produce lowilsirity.
For each word, Fig. 20.9 shows a short piece (8 dimensioneofbinary) word co-
occurrence vectors, computed from words that occur withinaline context in the
Brown corpus. The reader should convince themselves tleavehtors forapricot
and pineappleare indeed more similar than those of, sagricot andinformation
For pedagogical purposes we've shown the context wordsatteaparticularly good
at discrimination. Note that since vocabularies are quaitgd (10,000-100,000 words)
and most words don’t occur near each other in any corpusyeetdrs are quite sparse.

arts | boil | data | function | large | sugar | summarized | water
apricot 0 1 0 0 1 1 0 1
pineapple 0 1 0 0 1 1 0 1
digital 0 0 1 1 1 0 1 0
information 0 0 1 1 1 0 1 0

Figure 20.9 Co-occurrence vectors for four words, computed from thesBroorpus,
showing only 8 of the (binary) dimensions (hand-picked feda@gogical purposes to shoy
discrimination). Note thalarge occurs in all the contexts aratts occurs in none; a real
vector would be extremely sparse.

Now that we have some intuitions, let's move on to examinediiails of these
measures. Specifying a distributional similarity measeopiires that we specify three
parameters: (1) how the co-occurrence terms are definedvfi&t counts as a neigh-
bor), (2) how these terms are weighted (binary? frequenayt2iahinformation?) and
(3) what vector distance metric we use (cosine? Euclidestaniie?). Let's look at
each of these requirements in the next three subsections.

20.7.1 Defining a Word’s Co-occurrence Vectors

In our example feature vector, we used the featureccursin the neighborhood of
word vj. That is, for a vocabulary sizd, each wordw had N features, specifying
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STOPWORDS
STOPLIST

(20.32)

whether vocabulary elememf occurred in the neighborhood. Neighborhoods range
from a small window of words (as few as one or two words on eitfiée) to very
large windows oft500 words. In a minimal window, for example, we might have two
features for each worgj in the vocabularyword v occursimmediately before word

w andword vy occursimmediately after word w.

~ To keep these contexts efficient, we often ignore very fraguerds which tend
not to be very discriminative, e.g., function words suctagam the of, 1, 2, and so

on. These removed words are calktdpwordsor thestoplist.

Even with the removal of the stopwords, when used on verglaogpora these co-
occurrence vectors tend to be very large. Instead of usiagyevord in the neighbor-
hood, Hindle (1990) suggested choosing words that occuarressort oframmatical
relation or dependencyto the target words. Hindle suggested that nouns which bear
the same grammatical relation to the same verb might beaimitor example, the
wordstea, water, andbeerare all frequent direct objects of the vatbink. The words
senate congresspanel| andlegislatureall tend to be subjects of the verbensider
vote andapprove

Hindle’s intuition follows from the early work of Harris (88), who suggested
that:

The meaning of entities, and the meaning of grammaticatiosla among
them, is related to the restriction of combinations of thestties relative
to other entities.

There have been a wide variety of realizations of Hindleg&aidince then. In general,
in these methods each sentence in a large corpus is parseddepegndency parse is
extracted. We saw in Ch. 12 lists of grammatical relatiorssdpced by dependency
parsers, including noun-verb relations like subject, ohjmdirect object, and noun-
noun relations like genitive, ncomp, and so on. A sentereethe following would
result in the set of dependencies shown here:

| discovered dried tangerines:

discover (subject I) | (subj-of discover)
tangerine (obj-of discover) tangerine (adj-mod dried)
dried (adj-mod-of tangerine)

Since each word can be in a variety of different dependeriejyioas with other
words, we’'ll need to augment the feature space. Each feaurew a pairing of a
word and a relation, so instead of a vectoMbfeatures, we have a vector Bfx R
features, wher® is the number of possible relations. Fig. 20.10 shows a satiem
example of such a vector, taken from Lin (1998a), for the waelll As the value of
each attribute we have shown the frequency of the featurccarring withcell; the
next section will discuss the use of what values and weightisé for each attribute.

Since full parsing is very expensive, itis common to use akbuor shallow parser
of the type defined in Se@?, with the goal of extracting only a smaller set of relations
like subject, direct object, and prepositional object obatigular preposition (Curran,
2003).
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Figure 20.10 Co-occurrence vector for the woegll, from Lin (1998a), showing gram-
matical function (dependency) features. Values for eatfbate are frequency counts
from a 64-million word corpus, parsed by an early version oRNPAR.

20.7.2 Measures of Association with Context

Now that we have a definition for the features or dimensiorsswérd’s context vector,
we are ready to discuss the values that should be associdtethese features. These

associaTion  values are typically thought of ageights or measures ofssociationbetween each
target wordw and a given featuré. In the example in Fig. 20.9, our association
measure was a binary value for each feature, 1 if the relevard had occurred in the
context, O if not. In the example in Fig. 20.10, we used a rigssociation measure,
the relative frequency with which the particular contexdttee had co-occurred with
the target word.

Frequency, or probability, is certainly a better measurassociation than just a
binary value; features that occur often with a target wordrapre likely to be good
indicators of the word’s meaning. Let's define some termagglfor implementing
a probabilistic measure of association. For a target wgrdach element of its co-
occurrence vector is a featufe consisting of a relation and a related word/; we
can sayf = (r,w). For example, one of the features of the weoall in Fig. 20.10 is
f = (r,w) =(obj-of, attack. The probability of a featuré given a target worav is
P(f|w), for which the maximum likelihood estimate is:

(20.33) P(f|w) = %

Similarly, the maximum likelihood estimate for the joinoability P(f,w) is:

coun{f,w)

P(w) andP(f) are computed similarly.
Thus if we were to define simple probability as a measure af@aton it would
look as follows:

(20.35) assogrob(w, f) =P(f|w)

It turns out, however, that simple probability doesn’t waskwell as more sophis-
ticated association schemes for word similarity.
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COLLOCATIONS

MUTUAL
INFORMATION
(20.36)

POINTWISE MUTUAL
INFORMATION

(20.37)

(20.38)

LIN ASSOCIATION
MEASURE

(20.39)

Why isn’t frequency or probability a good measure of ass@sicbetween a word
and a context feature? Intuitively, if we want to know whatdg of contexts are
shared byapricotandpineapplebut not bydigital andinformation we’re not going to
get good discrimination from words likie, it, or they, which occur frequently with
all sorts of words, and aren’t informative about any patticword. We'd like context
words which are particularly informative about the targetav We, therefore, need
a weighting or measure of association which asks how mucle mften than chance
that the feature co-occurs with the target word. As Curr@®8} points out, such a
weighting is what we also want for finding goedllocations and so the measures of
association used for weighting context words for semartilarity are exactly the
same measure used for finding a word’s collocations.

One of the most important measures of association was fiogtoged by Church
and Hanks (1989, 1990) and is based on the notianwiial information . Themu-
tual information between two random variablésandy is

I(XY) = 3 3 Pixy) oz oo -
X Y

The pointwise mutual information (Fano, 19613 is a measure of how often two
eventsx andy occur, compared with what we would expect if they were indelest:

P(x,y)
l(x,y) =log, 5=~
( 2PRIP(Y)
We can apply this intuition to co-occurrence vectors, byrdefj the pointwise
mutual information association between a target werhd a featurd as:

assopp(w, f) =log, %

The intuition of the PMI measure is that the numerator tefidiaw often we ob-
served the two words together (assuming we compute pratyalsing MLE as above).
The denominator tells us how often we woelkpectthe two words to co-occur assum-
ing they each occurred independently, so their probadslitiould just be multiplied.
Thus the ratio gives us an estimate of how much more the targkfeature co-occur
than we expect by chance.

Sincef is itself composed of two variablesandw/, there is a slight variant on
this model, due to Lin (1998a), that breaks down the expeaéd forP(f) slightly
differently; we’'ll call it theLin association measureassog y, , hot to be confused with
the WordNet measure sji, that we discussed in the previous section:

_ B P(w, f)
assogin (W 1) =100 5 wipwiw)

For both assgs), and assqg,, we generally only use the featufefor a word
w if the assoc value is positive, since negative PMI valuegpling things are co-

3 Fano actually used the phrasautual informationto refer to what we now cafpointwise mutual infor-
mation and the phrasexpectation of the mutual informatidar what we now calmutual information the
termmutual informationis still often used to meapointwise mutual informatian
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T-TEST

(20.40)

(20.41)

|[Object | Count] PMlassod| Object | Count| PMIassod
bunch beer 12.34 wine 2 9.34
tea 11.75 water 7 7.65
Pepsi 11.75 anything 3 5.15
3
3

champagne 11.75 much 5.15
liquid 10.53 it 1.25
beer 10.20 <SOME AMOUNT>| 2 1.22

Figure 20.11 Obijects of the verldrink, sorted by PMI, from Hindle (1990).

GNP DNDNDN

occurringless ofterthan we would expect by chance) tend to be unreliable uniess t
training corpora are enormous (Dagan et al., 1993; Lin, 4998n addition, when
we are using the assoc-weighted features to compare twet targyds, we only use
features that co-occur with both target words.

Fig. 20.11 from Hindle (1990) shows the difference betwesmfrequency counts
and PMlI-style association, for some direct objects of thé deink.

One of the most successful association measures for woithstgnattempts to
capture the same intuition as mutual information, but usestest statistic to measure
how much more frequent the association is than chance. Té&suane was proposed
for collocation-detection by Manning and Schitze (1998a@er 5) and then applied
to word similarity by Curran and Moens (2002), Curran (2003)

The t-test statistic computes the difference between gbdeand expected means,
normalized by the variance. The higher the valug tfie more likely we can reject the
null hypothesis that the observed and expected means asartine

t=

>|<I
el

When applied to association between words, the null hysighe that the two
words are independent, and heriid,w) = P(f)P(w) correctly models the relation-
ship between the two words. We want to know how different tttea MLE proba-
bility P(f,w) is from this null hypothesis value, normalized by the vac@nNote the
similarity to the comparison with the product model in the IRiveasure above. The
variances’ can be approximated by the expected probabitit§)P(w) (see Manning
and Schitze (1999)). Ignorirg (since it is constant), the resulting t-test association
measure from Curran (2003) is thus:

P(w, f) — P(w)P(f)
P(f)P(w)

See the history section for a summary of various other weighactors that have
been tested on word similarity.

assog.tesfW; f) =

20.7.3 Defining similarity between two vectors

From the previous sections we can now compute a co-occunegator for a target
word, with each co-occurrence feature weighted by an asocimeasure, giving us
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MANHATTAN
DISTANCE
LEVENSHTEIN
DISTANCE

L1 NORM

(20.42)

L2 NORM

(20.43)

BINARY VECTOR
DOT PRODUCT
INNER PRODUCT

(20.44)

a distributional definition of the meaning of a target word.

To define similarity between two target wordsandw, we need a measure for
taking two such vectors and giving a measure of vector siitylédPerhaps the simplest
two measures of vector distance are the Manhattan and Eadlidistance. Fig. 20.12
shows a graphical intuition for Euclidean and Manhattatadise between two two-
dimensional vectors andb. TheManhattan distance also known ag.evenshtein
distanceor L1 norm, is

N
distanc@,anhattaf®¥) = Zi X — Vil
i=

TheEuclidean distance also called th&2 norm, was introduced in Ch. 9:

N
distancgcligeat® ¥) = ;(Xi —¥i)?

Euclidean(a,b) = L2(a,b) ... “__,....v-Manhattan(?i,lg) =Ll(a,b)

QU

Figure 20.12 The Euclidean and Manhattan distance metrics for veetersa;, ay),
andb = (by,by), just to give the reader a grpahical intuition about the idedistance
between vectors; these particular metrics are generatlysed for word similarity. See|
Ch. 9 for more on distance metrics.

Although the Euclidean and Manhattan distance metricsigeoa nice geometric
intuition for vector similarity and distance, these measuare rarely used for word
similarity. This is because both measures turn out to besamgitive to extreme values.
Instead of these simple distance metrics, word similagtpased on closely related
metrics frominformation retrieval and frominformation theory. The information
retrieval methods seem to work better for word similarityyee’ll define a number of
these in this section.

Let's begin with the intuition for a similarity metric in Fig20.9, in which the
similarity between two binary vectors was just the numbefeatures the two words
had in common. If we assume a feature vectorlignary vector, we can define such
a similarity metric as follows, using thaot product or inner product operator from
linear algebra:

N
SiMyot-product¥, W) = V- W = 'ZIVi X Wi
i=
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(20.45)

VECTOR LENGTH

(20.46)

NORMALIZED DOT
PRODUCT

COSINE

(20.47)

JACCARD
TANIMOTO
MIN/MAX

(20.48)

DICE

In most cases, though, as we saw in the previous sectionathes/of our vector are
not binary. Let’s assume for the rest of this section thaethteies in the co-occurrence
vector are thassociationvalues between the target words and each of the features. In
other words, let's define the vector for a target wardiith N featuresf; .. fy as:

W = (asso¢w, f1),asso¢w, f»),asso€w, f3),...,assocw, fy))

Now we can apply Si@ot-productto vectors with values defined as associations, to
get the dot-product similarity between weighted valuess Tdw dot-product, however,
has a problem as a similarity metric: it favdong vectors. Thevector length is

defined as:
N

9=/ 3

A vector can be longer because it has more non-zero valudgaause each dimen-
sion has a higher value. Both of these facts will increasedtiteproduct. It turns
out that both of these can occur as a by-product of word frecueA vector from
a very frequent word will have more non-zero co-occurrerssoeiation values, and
will probably have higher values in each (even using astioaiaveights that control
somewhat for frequency). The raw dot product thus favorgpieat words.

We need to modify the dot product to normalize for the veaagth. The simplest
way is just to divide the dot product by the lengths of eachheftivo vectors. This
normalized dot product turns out to be the same as the cosine of the angle between
the two vectors. Theosineor normalized dot product similarity metric is thus:

EiNlei X W

SiMgosind Vs W) = W _
Teosine® v VLV /s we

Because we have transformed the vectors to unit length,abi@e metric, unlike
Euclidean or Manhattan distance, is no longer sensitiveng lvectors from high-
frequency words. The cosine value ranges from 1 for vectoistipg in the same
direction, through 0 for vectors which are orthogonal (shao common terms), to
-1 for vectors pointing in opposite directions, althoughpiractice values tend to be
positive.

Let's discuss two more similarity measures derived froroiinfation retrieval. The
Jaccard (Jaccard, 1908, 1912) (also call@dnimoto or min/max (Dagan, 2000))
measure was originally designed for binary vectors. It waeraled by Grefenstette
(1994) to vectors of weighted associations as follows:

. o SN min(vi,w)
sim vw)==4<=t__~1T"1/
Jaccarél ) ziN: Lmax(Vi,w)

The numerator of the Grefenstette/Jaccard function ugemth function, essen-
tially computing the (weighted) number of overlapping teat (since if either vector
has a zero association value for an attribute, the resulbeitero). The denominator
can be viewed as a normalizing factor.

A very similar measure, thB®ice measure, was similarly extended from binary
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vectors to vectors of weighted associations; one extetigdom Curran (2003) uses the
Jaccard numerator, but uses as the denominator normaitiZatitor the total weighted
value of non-zero entries in the two vectors.

2x N min(vi,w)

(20.49) Simpira(V,W) =
Dicel ™) Sl (Vi +w)
assogrob(w, f) = P(f|lw) (20.35)
f
assop (W) = 108, pryprh W()f> (20.38)
P(w, f
assogin (w, f) = log, p(W)p(r(i‘Wﬁg(W‘W) (20.39)
_ Pwf)-Pw)P(f)
assogtesiW, f) = TORT (20.41)
SiMp i VW) = v 20.47
MeosindVs W) \;Hw\ (\/Z.)T\/T ( )
. , min(v;,w;
SiMjaccardV-W) = Wiz.',lleaxv. e (20.48)
- ) - _2x3L min(vi,w;)
Simpice(¥. W) B Z;:] i(\/ﬁwﬂ ) (20.49)
sim3g(V| W) = D(V|Y¥) + D(w|15Y) (20.52)
Figure 20.13  Defining word similarity: measures of association betwe&arget word
w and a featurd = (r,w') to another wordv/, and measures of vector similarity between
word co-occurrence vectovsandw.

Finally, there is a family of information-theoretic didiutational similarity mea-
sures, (Pereira et al., 1993; Dagan et al., 1994, 1999; 19%9)1 also based on the
conditional probability association measuref |w). The intuition of these models is
that two vectors/ andw are similar to the extent that their probability distritmurts
P(f|w) andP(f|v) are similar. The basis of comparing two probability disitibns

KL DIVERGENCE P andQ is theKullback-Leibler divergence or KL divergence or relative entropy
(Kullback and Leibler, 1951) :

(20.50) D(P||Q) ZP Iog )

Unfortunately, the KL-divergence is undefined wt@(n() = 0 andP(x) # 0, which
is a problem since these word distribution vectors are gdiyequite sparse. One
JENSQN-SHANNON  alternative (Lee, 1999) is to use tdenson-Shannon divergencewhich represents
the divergence of each distribution from the mean of the tanal doesn’t have this
problem with zeros:

P10 P+Q

(20.51) JSPIQ) = D(P[——)+D(Q——)
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(20.52)

(20.53)

Rephrased in terms of vectoarandw,

simyg(vw) = o 5%+ o L)

Fig. 20.13 summarizes the measures of association and afrv@milarity that
we have designed. See the history section for a summary ef edttor similarity
measures.

Finally, let's look at some of the results of distributionadrd similarity. The fol-
lowing are the ten most similar words to the different paftspeech ohopeandbrief,
derived using the online dependency-based similarity(dal 2007); this tool defines
the co-occurrence vector using all minipar grammaticatiehs, uses the assqg
measure of association, and a vector similarity metric ftam(1998a).

e hope (N):optimism 0.141338, chance 0.136681, expectation 0.13¢B6Spect
0.125597, dream 0.119079, desire 0.117939, fear 0.116#81 0.111264,
confidence 0.109136, promise 0.108269

e hope (V): would like 0.157988, wish 0.139532, plan 0.139349, say &/88,
believe 0.135058, think 0.132673, agree 0.129985, wond2eJ 09, try 0.127047,
decide 0.125387,

o brief (N): legal brief 0.139177, affidavit 0.103401, filing 0.0982636étition
0.0864875, document 0.0835244, argument 0.0831851r, ;2G€85654, rebut-
tal 0.077766, memo 0.0768226, article 0.0758248

o brief (A): lengthy 0.256242, hour-long0.191421, short 0.17356 &reded 0.163085,
frequent 0.162555, recent 0.15815, short-lived 0.154856longed 0.149289,
week-long 0.149128, occasional 0.146385

20.7.4 Evaluating Distributional Word Similarity

Distributional similarity can be evaluated in the same wagghesaurus-based simi-
larity; we can compare intrinsically to human similarityoses, or we can evaluate it
extrinsically as part of end-to-end applications. Besidesd sense disambiguation
and malapropism detection, similarity measures have bsed as a part of systems
for the grading of exams and essays(Landauer et al., 196t8kiog TOEFL multiple-
choice exams (Landauer and Dumais, 1997; Turney et al.,)2003

Distributional algorithms are also often evaluated in adtlmtrinsic way: by com-
parison with a gold-standard thesaurus. This comparisarbeadirect with a single
thesaurus (Grefenstette, 1994; Lin, 1998a) or by usingigiogcand recall measure
against an ensemble of thesauri (Curran and Moens, 20025 lhe the set of words
that are defined as similar in the thesaurus, by being in three synset, or perhaps
sharing the same hypernym, or being in the hypernym-hypaejation. LetS be the
set of words that are classified as similar by some algoritWia.can define precision

and recall as:
|SLS"recallf S0 S|
S| S
Curran (2003) evaluated a humber of distributional alpons using comparison
with thesauri and found that the Dice and Jaccard methodisrpezd best as measures

precision=
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of vector similarity, while t-test performed best as a measf association. Thus the
best metric weighted the associations with t-test, and tisex either Dice or Jaccard
to measure vector similarity.

20.8 HYPONYMY AND OTHER WORD RELATIONS

Similarity is only one kind of semantic relation between d&r As we discussed in
Ch. 19, WordNet and MeSH both inclutgponymy/hypernymy, as do many the-
sauruses for other languages, such as CiLin for Chinese/{8jdNet also includes
antonymy, meronymy, and other relations. Thus if we want to know if two senses are
related by one of these relations, and the senses occur idN&bior MeSH, we can
just look them up. But since many words are not in these ressuit is important to
be able to learn new hypernym and meronym relations autoallti

Much work on automatic learning of word relations is baseadey insight first
articulated by Hearst (1992), that the presence of centilcd-syntactic patterns can
indicate a particular semantic relationship between twanso Consider the following
sentence extracted by Hearst from the Groliers encyclapedi

(20.54)  Agar is a substance prepared from a mixture of red algae,au@elidium, for
laboratory or industrial use.
Hearst points out that most human readers will not know v@didiumis, but that
they can readily infer that it is a kind of @/ponym of) red algae whatever that is.
She suggests that the followitexico-syntactic pattern
(20.55) NPy such as NP{,NP,..., (andor)NP; },i > 1
implies the following semantics
(20.56) YNP;,i > 1 hyponyn{NP;, NPg)
allowing us to infer
(20.57) hyponyn{Gelidiumred algag
NP{,NP} x{, } (andor) otherNPy ...temples, treasuries, and other important civic bugdin
NPy such as{NP,}* (or|and)NP red algae such as Gelidium
suchNPy as{NP,}* (or|jand)NP works by such authors as Herrick, Goldsmith, and Shakespea
NPy {,} including {NP,}* (or|and)NP All common-law countries, including Canada and England
NPy {,} especially{NP,}* (or|and)NP ... most European countries, especially France, EnglamtiSpain
Figure 20.14 Hand-built lexico-syntactic patterns for finding hyperrg/fhearst, 1992, 1998)

Fig. 20.14 shows five patterns Hearst (1992, 1998) suggéstéaferring the hy-
ponym relation; we've showNPy as the parent/hyponym. There are a number of other
attempts to extract different WordNet relations using suatterns; see the history sec-
tion for more details.



Section 20.8.

Hyponymy and other word relations 33

(20.58)

(20.59)

Of course, the coverage of such pattern-based methodsteditry the number and
accuracy of the available patterns. Unfortunately, onestivious examples have been
found, the process of creating patterns by hand become$i@tlibnd slow process.
Fortunately, we've already seen the solution to this kingpafblem. We can find
new patterns usingootstrapping methods that are common in information extraction
(Riloff, 1996; Brin, 1998), and are also key to the Yarowskgthod described earlier
in Sec. 20.5.

The key insight for the use of bootstrapping in relationdtgra discovery is that
with a large corpus we can expect that words involved in aicgldo show up with
many different patterns that express that same relatioerefbre, in theory at least,
we need only start with a small number of precise patternstiee a set of seed
words involved in a given relation. These words can then leel ts query a large
corpus for sentences containing both terms in some kind pémidency relation; new
patterns can then be extracted from these new sentencegprddess can be repeated
until the pattern set is large enough.

As an example of this process, consider the terms “red algad”“Gelidium”
discovered earlier using Hearst's simple pattern set. Agrtbe results of a simple
Google search using these as query terms is the followingpbea

One example of a red algae is Gelidium.

Removing the seed words from such a sentence and repla@nglith simple
wildcards is the crudest kind of pattern generation. In tlaise, submitting the pattern
“One example of a * is *” to Google currently yields nearly 5000 hits, including the
following example:

One example of a boson is a photon.

We can also extract slightly more sophisticated patternpdrging the extracted
sentences and putting wildcards into the parse tree.

The key to the success of bootstrapping approaches is td g#wwsemantic drift
that tends to occur as part of repeated applications of bapfsng. The further we
get from the original set of seed words or patterns the miedyit is that we’ll come
across patterns with meanings quite different from what eteoat to discover. We'll
see methods for dealing with this drift when we discuss hoayiping for information
extraction in Ch. 22.

An alternative to bootstrapping is to use large lexical ueses like WordNet as a
source of training information, in which each WordNet hypen/hyponym pair tells
us something about kinds of words are in this relation, andraia a classifier to help
find new words that exhibit this relation.

This hyponym learning algorithm of Snow et al. (2005), foample, relies on
WordNet to help learn large numbers of weak hyponym patteand then combine
them in a supervised classifier in 4 steps:

1. Collectall pairs of WordNet noun conceptsc; that are in the hypernym/hyponym
relation.

2. For each noun pair, collect all sentences (in a 6 milliomdaadrpus) in which
both nouns occur.
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SUPERSENSES

(20.60)

(20.61)

THESAURUS
INDUCTION

3. Parse the sentences and automatically extract everipfmkiearst-style lexico-
syntactic pattern from the parse tree

4. Use the large set of patterns as features in an logistiessmn classifier

5. Given a pair of nouns in the test set, extract features aedthe classifier to
determine if the noun pair is related by the hypernym/hypongiation or not.

Four of the new patterns automatically learned by this algrinclude:

NPy like NP NRy called NP
NP is a NRy NP, a NR; (appositive):

Snow et al. (2005) then showed good hypernym detection padiace by using
each of these patterns as a weak feature combined by a togigtiession classifier.

Another way to use WordNet to help address the hypernym enokd to model the
task as choosing the place to insert unknown words into agnathe complete hierar-
chy. It is possible to do this without using lexico-syntagiatterns. For example, we
can use a similarity classifier (using distributional imf@tion, or morphological infor-
mation) to find the words in the hierarchy that are most simdaan unknown word,
using an approach like K-Nearest-Neighbors, and inserh#ve word there (Tseng,
2003). Or we can treat the task of hypernym labeling as aitadpéhsk like named-
entity tagging. Ciaramita and Johnson (2003) take this @aagr, using as tags 26
supersensesfrom the 26 broad-category ‘lexicographer class’ labedsnf WordNet
(person location event quantity, etc). They use features such as surrounding part-of-
speech tags, word bigram and trigram features, spellingnamgbhological features,
and apply a multiclass perceptron classifier.

Finding meronyms seems to be harder than hyponyms; here are some examples
from Girju et al. (2003):

The car's mail messenger is busy at work in #®ART>mail cax/PART> as the
<WHOLEtrain</WHOLE>moves along.

Through the operPART>side dook/PART> of the <WHOLEea</WHOLE> moving
scenery can be seen.

Meronyms are hard to find because the lexico-syntactic ppattdat characterize
them are very ambiguous. For example the two most commoerpatindicating
meronymy are the English genitive constructions {MPNP,] and [NP;’s NP,], which
also express many other meanings suchassessiorsee Girju et al. (2003, 2006) for
discussion and possible algorithms.

Learning individual relations between words is an impartamponent of the gen-
eral task ofthesaurus induction In thesaurus induction, we combine our estimates
of word similarity with our hypernym or other relations toilouan entire ontology or
thesaurus. For example the two-step thesaurus inductionitiim of Caraballo (1999,
2001) first applies a bottom-uglustering algorithm to group together semantically
similar words into an unlabeled word hierarchy. Recall fr8ext. 20.10 that in ag-
glomerative clustering, we start by assigning each wordwis cluster. New clusters
are then formed in a bottom-up fashion by successively mgrtie two clusters that
are most similar; we can use any metric for semantic sinylasuch as one of the
distributional metrics described in the previous sectibnthe second step, given the
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unlabeled hierarchy, the algorithm uses a pattern-basealriyyn classifier to assign a
hypernym label to each cluster of words. See the historymsefir more recent work
on thesaurus induction.

20.9 SMANTIC ROLE LABELING

SEMANTIC ROLE
LABELING

(20.62)

(20.63)

The final task we’ll discuss in this chapter links word megsimith sentence mean-
ings. This is the task afemantic role labeling sometimes callethematic role label-
ing, case role assignmendr evenshallow semantic parsing Semantic role labeling
is the task of automatically finding tteemantic rolesfor each predicate in a sentence.
More specifically, that means determining which constits@ma sentence are seman-
tic arguments for a given predicate, and then determiniagfipropriate role for each
of those arguments. Semantic role labeling has the poltémtiaprove performance in
any language understanding task, although to date its prigplications have been
in question answering and information extraction.

Current approaches to semantic role labeling are based mer\dsed machine
learning and hence require access to adequate amountsnifigrand testing mate-
rials. Over the last few years, both the FrameNet and PropBesources discussed
in Ch. 19 have played this role. That is, they have been ussgdoify what counts
as a predicate, to define the set of roles used in the task gmebtae training and
test data. Thes8ENSEVAL-3 evaluation used Framenet, while the CONLL evaluations
in 2004 and 2005 were based on PropBank.

The following examples show the different representatioom the two efforts.
Recall that FrameNet (20.62) employs a large number of frapeeific frame elements
as roles, while PropBank (20.63) makes use of a smaller nuofibembered argument
labels which can be interpreted as verb-specific labels.

[You] can't [blame] [the program] [for being unable to idépta processor]
COGNIZER TARGET EVALUEE REASON

[The San Francisco Examiner] issued [a special editionpyad noon yesterday]
ARGO TARGET ARGl ARGM-TMP

A simplified semantic role labeling algorithm is sketchedrig. 20.15. Following
the very earliest work on semantic role analysis (SimmoB883), most work on se-
mantic role labeling begins by parsing the sentence. Rylali@ilable broad-coverage
parsers (such as Collins (1996) or Charniak (1997)) are#ipiused to assign a parse
to the input string. Fig. 20.16 shows a parse of (20.63) abdwee resulting parse
is then traversed to find all predicate-bearing words. Fohed these predicates the
tree is again traversed to determine which role, if any, eamistituent in the parse
plays with respect to that predicate. This judgment is madirst characterizing the
constituent as a set of features with respect to the predicatclassifier trained on
an appropriate training set is then passed this featurensetreakes the appropriate
assignment.

Let’s look in more detail at the simple set of features sutggey Gildea and Juraf-
sky (2000, 2002), which have been incorporated into mostlaeling systems. We'll
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function SEMANTICROLEL ABEL(Wordg returns labeled tree

parse— PARSEwordg
for each predicatein parsedo
for each nodein parsedo
featurevector— EXTRACTFEATUREYnode predicate parse
CLAssIFYNODE(node featurevectarparse

Figure 20.15 A generic semantic role labeling algorithm. TheASsIFYNODE com-
ponent can be a simple 1-of-N classifier which assigns a si@enanbe (or NONE for
non-role constituents). IASSIFYNODE can be trained on labeled data such as FrameNet
or PropBank.

_-—=>S

—~
—~ ~
Ve ~

NP-SBJ= ARGO =~ >VP

DT NNP NNP NNP

/
/

The San Francisco Exam;rier

VBD =TARGET NP=ARGl1 PP-TMP=ARGM-TMP

issued DT 31 NN IN NP

a special edition around NN NP-TMP

noon yesterday

Figure 20.16 Parse tree for a PropBank sentence, showing the PropBaoknary labels. The dotted line
shows thepath feature NRS|VP|VBD for ARGO, the NP-SBJ constituettie San Francisco Examiner

extract them for the firslP in Fig. 20.16, theNP-SBJconstituenthe San Francisco
Examiner

e The governingredicate, in this case the verissued For PropBank, the pred-
icates are always verbs; FrameNet also has noun and adjgcédicates. The
predicate is a crucial feature, since both PropBank and &xanlabels are de-
fined only with respect to a particular predicate.

e Thephrase typeof the constituent, in this ca$¢P (or NP-SBJ. This is simply
the name of the parse node which dominates this constitnghei parse tree.
Some semantic roles tend to appeal®s, others asor PP, and so on.

e The head word of the constituentExaminer The head word of a constituent
can be computed using standard head rules, such as thoseigi@h. 12 in
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Fig. ??. Certain head words (e.g. pronouns) place strong contgraim the
possible semantic roles they are likely to fill.

e Thehead word part-of-speechof the constituentNNP.

e Thepath in the parse tree from the constituent to the predicate. paih is
marked by the dotted line in Fig. 20.16. Following (Gildea darafsky, 2000),
we can use a simple linear representation of the path I\WPP|VBD. 1 and |
represent upward and downward movement in the tree regplctihe path is
very useful as a compact representation of many kinds of gpaioal function
relationships between the constituent and the predicate.

e The voice of the clause in which the constituent appears, in this catee
(as contrasted witlpassivg. Passive sentences tend to have strongly different
linkings of semantic roles to surface form than active ones.

e The binanylinear position of the constituent with respect to the predicate, either
before or after.

e The sub-categorizationof the predicate. Recall from Ch. 12 that the subcat-
egorization of a verb is the set of expected arguments thaapin the verb
phrase. We can extract this information by using the phrasetsre rule that
expands the immediate parent of the predicate-VRP PP for the predicate in
Fig. 20.16.

Many other features are generally extracted by seman#dabkling systems, such
as named entity tags (it is useful to know if a constituent i®aATION or PERSON
for example), or more complex versions of the path featutesypward or downward
halves, whether particular nodes occur in the path), tHemgst or leftmost words of
the constituent, and so on.

We now have a set of observations like the following examgédeh with a vector
of features; we have shown the features in the order descabeve (recall that most
observations will have the value NONE rather than @gG0, since most constituents
in the parse tree will not bear a semantic role):

ARGO: [issued, NP, Examiner, NNP, NB|VP|VBD, active, before, VP- NP PP]

Just as we saw for word sense disambiguation, we can divate thbservations
into a training and a test set, use the training examples ynsapervised machine
learning algorithm, and build a classifier. SVM and Maximunir@py classifiers have
yielded good results on this task on standard evaluationsce@ained, the classi-
fier can be used on unlabeled sentences to propose a rolectoiceastituent in the
sentence. More precisely, an input sentence is parsed aratedure similar to that
described earlier for training is employed.

Instead of training a single stage classifier, some rolditapalgorithms do classi-
fication in multiple stages for efficiency:

e Pruning: to speed up execution, some constituents are eliminatetddomsid-
eration as possible roles, based on simple rules

o Identification: a binary classification of each node as/®G to be labeled or a
NONE.
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o Classification: a one-of-N classification of all the constituents that watmeled
asARG by the previous stage.

There are a number of complications that all semantic rdleliag systems need to
deal with. Constituents in FrameNet and PropBank are redud be non-overlapping.
Thus if a system incorrectly labels two overlapping constilts as arguments, it needs
to decide which of the two is correct. Additionally, the serti@roles of constituents
are not independent; since PropBank does not allow muliiigietical arguments, la-
beling one constituent as &tRGO would greatly increase the probability of another
constituent being labeledrG1. Both these problems can be addressed by the two-
stage approaches based on latticé&Ndvest rescoring discussed in Ch. 9: having the
classifier assign multiple labels to each constituent, @atha probability, and using
a second global optimization pass to pick the best labelesszp

Instead of using parses as input, it is also possible to dasgenrole labeling
directly from raw (or part-of-speech tagged) text by apmiyihe chunking techniques
used for named entity extraction or partial parsing. Suchr@ues are particularly
useful in domains such as bioinformatics where it is unjikiblat syntactic parsers
trained on typical newswire text will perform well.

Finally, semantic role labeling systems have been geyeradlluated by requiring
that each argument label must be assigned to the exactlgatamord sequence or
parse constituent. Precision, recall, and F-measure @anlib computed. A simple
rule-based system can be used as a baseline, for exampiegalg first NP before
the predicate asrRGO and the first NP after the predicatesass1, and switching these
if the verb phrase is passive.

20.10 ADVANCED: UNSUPERVISEDSENSEDISAMBIGUATION

Let’s briefly return to the WSD task. It is expensive and diffi¢do build large cor-
pora in which each word is labeled for its word sense. Forrgéson, unsupervised
approaches to sense disambiguation are an exciting andtmmpcesearch area.

In unsupervised approaches, we don’t use human-definedseosets. Instead, the
set of ‘'senses’ of each word are created automatically franirtstances of each word
in the training set. Let's introduce a simplified version loé tmethods of Schitze’s
(Schitze, 1992b, 1998) on unsupervised sense disamioiguat Schiltze’s method,
we first represent each instance of a word in the training gedigtributional con-
text feature-vectors that are a slight generalization efffature vectors we defined in
Sec. 20.7. (ltis for this reason that we turned to unsupedvéense disambiguation
only after introducing word similarity.)

As in Sec. 20.7 we will represent a wondas a vector based on frequencies of its
neighboring words. For example for a given target word (fypeve might select 1000
words that occur most frequently within 25 words of any inseofw. These 1000
words become the dimension of the vector. Let's defirte mean the frequency with
which wordi occurs in the context of word. We define the word vectov (for a given
token (observation) of) as:

W = (fq, 2, f3,---, f1000)
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So far this is just a version of the distributional context sesv in Sec. 20.7. We
can also use a slightly more complex version of the distidimat context. For example
Schuetze defines theontext vector of a wordw not as this first-order vector, but
instead by itsecond order co-occurrenceThat is, the context vector for a wovdis
built by taking each wora in the context ofv, for eachx computing its word vecta,
and then taking the centroid (average) of the vecXors

Let's see how we use these context vectors (whether firgrandsecond-order) in
unsupervised sense disambiguation of a warth training, we’ll need only 3 steps:

1. For each tokemw; of wordw in a corpus, compute a context vector

2. Use alustering algorithm to cluster these word token context vectd@mto a
predefined number of groups or clusters. Each cluster dedisesse oW.

3. Compute theector centroid of each cluster. Each vector centrgidis asense
vector representing that sensewf

Since this is an unsupervised algorithm we won't have naraegdch of these
‘senses’ ofw; we just refer to thgth sense ofv.
Now how do we disambiguate a particular tokesf w? Again we have three steps:

1. Compute a context vectdifort as discussed above.
2. Retrieve all sense vectassfor w.

3. Assignt to the sense represented by the sense vectbat is closest to.

All we need is a clustering algorithm, and a distance mebratsveen vectors. For-
tunately, clustering is a well-studied problem with a widember of standard algo-
rithms that can be applied to inputs structured as vectorsioferical values (Duda
and Hart, 1973). A frequently used technique in languagdicgjons is known as
agglomerative clustering In this technique, each of th training instances is ini-
tially assigned to its own cluster. New clusters are themfat in a bottom-up fashion
by successively merging the two clusters that are mostainihis process continues
until either a specified number of clusters is reached, oesgisbal goodness measure
among the clusters is achieved. In cases where the numbrairahg instances makes
this method too expensive, random sampling can be used aorigigal training set
(Cutting et al., 1992) to achieve similar results.

How can we evaluate unsupervised sense disambiguationagms? As usual,
the best way is to do extrinsic or in vivo evaluation, in whible WSD algorithm is
embedded in some end-to-end system. Intrinsic evaluasinratso be useful, though,
if we have some way to map the automatically derived senssetainto some hand-
labeled gold standard set, so that we can compare a handdatest set with a set
labeled by our unsupervised classifier. One way of doingrttapping is to map each
sense cluster to a pre-defined sense by choosing the seh¢m thame training set)
has the most word tokens overlapping with the cluster. A@moithto consider all pairs
of words in the test set, testing for each whether both theesyand the hand-labeling
put both members of the pair in the same cluster or not.
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

ONTONOTES

Word sense disambiguation traces its roots to some of thiestapplications of dig-
ital computers. We saw above Warren Weaver's (1955) suiggest disambiguate
a word by looking at a small window around it, in the contexinadichine transla-
tion. Other notions first proposed in this early period ineuhe use of a thesaurus for
disambiguation (Masterman, 1957), supervised trainirfpggfesian models for disam-
biguation (Madhu and Lytel, 1965), and the use of clusteitingord sense analysis
(Sparck Jones, 1986).

An enormous amount of work on disambiguation has been cdeduweithin the
context of early Al-oriented natural language processirggesns. While most natural
language analysis systems of this type exhibited some fétexiwal disambiguation
capability, a number of these efforts made word sense diggration a larger focus
of their work. Among the most influential efforts were theoet§ of Quillian (1968)
and Simmons (1973) with semantic networks, the work of Wikt Preference Se-
manticsWilks (1975c, 1975b, 1975a), and the work of Small and Ri€$682) and
Riesbeck (1975) on word-based understanding systemd!sHiessITY system (Hirst
and Charniak, 1982; Hirst, 1987, 1988), which used a teclenltpsed on semantic
networks called marker passing, represents the most agdaystem of this type. As
with these largely symbolic approaches, most connectiapigroaches to word sense
disambiguation have relied on small lexicons with handecbrepresentations (Cot-
trell, 1985; Kawamoto, 1988).

Considerable work on sense disambiguation has been cawircthe areas of
Cognitive Science and psycholinguistics. Appropriatetpugh, it is generally de-
scribed using a different name: lexical ambiguity resolutiSmall et al. (1988) present
a variety of papers from this perspective.

The earliest implementation of a robust empirical apprdactense disambigua-
tion is due to Kelly and Stone (1975) who directed a team thatkcrafted a set of
disambiguation rules for 1790 ambiguous English wordskl(@986) was the first to
use a machine readable dictionary for word sense disamipguaVilks et al. (1996)
describe extensive explorations of the use of machine bdadiéctionaries. The prob-
lem of dictionary senses being too fine-grained or lackingpropriate organization
has been addressed with models of clustering word senses Pif94), Peters et al.
(1998), Chen and Chang (1998), Mihalcea and Moldovan (208diyre and de La-
calle (2003), Chklovski and Mihalcea (2003), Palmer et2004), McCarthy (2006),
Navigli (2006), Snow et al. (2007); corpora with clusteredré/senses for training
clustering algorithms include Palmer et al. (2006) &doNotes(Hovy et al., 2006).

Modern interest in supervised machine learning approachéisambiguation be-
gan with Black (1988), who applied decision tree learninghi® task. The need for
large amounts of annotated text in these methods led totigatisns into the use of
bootstrapping methods (Hearst, 1991; Yarowsky, 1995).pFbblem of how to weigh
and combine disparate sources of evidence is explored imNd.ae (1996), McRoy
(1992), and Stevenson and Wilks (2001).

Among the semi-supervised methods, more recent modelsledtiemal prefer-
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ence include Li and Abe (1998), Ciaramita and Johnson (2006 arthy and Carroll
(2003), Light and Greiff (2002). Diab and Resnik (2002) gaveemi-supervised al-
gorithm for sense disambiguation based on aligned pahglora in two languages.
For example, the fact that the French waetastrophemight be translated as English
disasterin one instance anttagedyin another instance can be used to disambiguate
the senses of the two English words (i.e. to choose sensdsadterand tragedy
that are similar). Abney (2002, 2004) explores the mathealafoundations of the
Yarowsky algorithm and its relation to co-training. The mfsequent-sense heuristic
is an extremely powerful one, but requires large amountsipérvised training data.
McCarthy et al. (2004) propose an unsupervised way to autoatly estimate the
most frequent sense, based on the thesaurus similaritycsdéfined in Sec. 20.6.

The earliest attempt to use clustering in the study of wondegis due to Sparck Jones
(1986). Zernik (1991) successfully applied a standardrinfdion retrieval clustering
algorithm to the problem, and provided an evaluation basednprovements in re-
trieval performance. More extensive recent work on clusgecan be found in Peder-
sen and Bruce (1997) and Schiitze (1997, 1998).

A few algorithms have attempted to exploit the power of mljugisambiguating
all the words in a sentence, either by multiple passes (Keily Stone, 1975) to take
advantage of easily disambiguated words, or by paralleche@Cowie et al., 1992;
Veronis and Ide, 1990).

Recent work has focused on ways to use the web for trainireyfdatvord sense
disambiguation, either unsupervised (Mihalcea and Maage999) or by using vol-
unteers to label data (Chklovski and Mihalcea, 2002).

Resnik (2006) describes potential applications of WSD. @rent application has
been to improve machine translation Chan et al. (2007), @drnd Wu (2007).

Agirre and Edmonds (2006) is a comprehensive edited volhatesstmmarizes the
state of the art in WSD. Ide and Veronis (1998a) provide a aetmgnsive review of
the history of word sense disambiguation up to 1998. Ng arlé Z£997) provide a
more focused review from a machine learning perspectivéks/t al. (1996) describe
dictionary and corpus experiments, along with detaile@¢dgsons of very early work.

The models of distributional word similarity we discussedsg out of research
in linguistics and psychology of the 1950's. The idea thatinieg was related to
distribution of words in context was widespread in lingigisheory of the 1950's; even
before the well-known Firth (1957) and Harris (1968) dictudiscussed earlier, Joos
(1950) stated that

the linguist’s ‘meaning’ of a morpheme...is by definitiorethet of conditional
probabilities of its occurrence in context with all othernploemes’

The related idea that the meaning of a word could be modeledpaint in a Eu-
clidean space, and that the similarity of meaning betweentards could be modeled
as the distance between these points, was proposed in pegghty Osgood et al.
(1957). The application of these ideas in a computatiormehéwork was first made
by Sparck Jones (1986), and became a core principle of irdftiom retrieval, from
whence it came into broader use in speech and language pinges

There are a wide variety of other weightings and methods todwimilarity. The
largest class of methods not discussed in this chapter aneatiants to and details of
the information-theoretic methods like Jensen-Shannon divergence, KL-divergence
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WEIGHTED MUTUAL
INFORMATION

LATENT SEMANTIC
INDEXING

LSA

and a-skew divergence that we briefly introduced (Pereira etl®93; Dagan et al.,
1994, 1999; Lee, 1999, 2001); there are also other metoes Hindle (1990) and Lin
(1998a). Alternative paradigms include tbe-occurrence retrievalmodel (Weeds,
2003; Weeds and Weir, 2005). Manning and Schiitze (1999t €h& and 8) give col-
location measures and other related similarity measureandmonly used weighting
is weighted mutual information (Fung and McKeown, 1997) in which the pointwise
mutual information is weighted by the joint probability. imformation retrieval the
TF/IDF weight is widely used, as we will see in Ch. 23. See Dagan (0@6-
hammad and Hirst (2005), Curran (2003) and Weeds (2003)dod gummaries of
distributional similarity.

An alternative vector space model of semantic similatiigtent Semantic In-
dexing (LSI) or Latent Semantic Analysis(LSA), usessingular value decomposi-
tion to reduce the dimensionality of the vector space with theninbdf discovering
higher-order regularities (Deerwester et al., 1990). Weslsdready discussed Schiitze
(1992b), another semantic similarity model based on sargrdlue decomposition.

There is a wide variety of recent literature on other lexieddtions and thesaurus
induction. The use of distributional word similarity foresaurus induction was ex-
plored systematically by Grefenstette (1994). A wide wgrad distributional cluster-
ing algorithms have been applied to the task of discoveringpings of semantically
similar words, including hard clustering (Brown et al., 299soft clustering (Pereira
etal., 1993), as well as new algorithms likistering By Committee (CBC) (Lin and
Pantel, 2002). For particular relations, Lin et al. (2003pla&ed hand-crafted patterns
to find antonyms with the goal of improving synonym-detection. The disttibnal
word similarity algorithms from Sec. 20.7 often incorrgcdissign high similarity to
antonyms. Lin et al. (2003) showed that words appearingdp#iterngrom X to Yor
either X or Ytended to be antonyms. Girju et al. (2003, 2006) show impr@rgs in
meronym extraction by learning generalizations about the semantperclasses of the
two nouns. Chklovski and Pantel (2004) used hand-builepagtto extract fine-grained
relations between verbs suchsieength. Much recent work has focused on thesaurus
induction by combining different relation extractors. Rdmnd Ravichandran (2004),
for example, extend Caraballo’s algorithm for combiningiarity and hyponymy in-
formation, while Snow et al. (2006) integrate multiple tela extractors to compute
the most probable thesaurus structure. Recent work ornesitgifocuses on the use of
the Web, for example relying on Wikipedia Strube and Poonz@006), Gabrilovich
and Markovitch (2007); this Web-based work is also closelgted to unsupervised
information extraction; see Ch. 22 and references likedaizt al. (2005).

While not as old a field as word similarity or sense disamhiigna semantic role
labeling has a long history in computational linguisticheTearliest work on semantic
role labeling (Simmons, 1973) first parsed a sentence usiiy &l parser. Each verb
then had a set of rules specifying how the parse should be edappsemantic roles.
These rules mainly made reference to grammatical func{suigject, object, comple-
ment of specific prepositions), but also checked constitirgarnal features such as
the animacy of head nouns.

Statistical work in the area revived in 2000 after the Fraetedhd PropBank
project had created databases large enough and consistergteto make training and
testing possible. Many popular features used for role iabealre defined in Gildea and



Section 20.10. Advanced: Unsupervised Sense Disambaguati 43

Jurafsky (2002), Chen and Rambow (2003), Surdeanu et @3}2&ue and Palmer
(2004), Pradhan et al. (2003, 2005).

To avoid the need for huge labeled training sets, recent Wwaskfocused on unsu-
pervised approaches for semantic role labeling (Swier aeefson, 2004).

The semantic labeling work described above focuses onitapebch sentence
token in a corpus with semantic roles. An alternative apghda semantic role labeling
focuses on lexicon learning, using unsupervised learning corpus to learn the kinds
of semantic classes a verb can belong to in terms of its pessémantic roles or
argument alternation patterns (Stevenson and Merlo, 1968ulte im Walde, 2000;
Merlo and Stevenson, 2001; Merlo et al., 2001; Grenager aahihg, 2006).

EXERCISES

20.1 Collect a small corpus of example sentences of varying lesfiyjom any news-
paper or magazine. Using WordNet, or any standard dictiom@termine how many
senses there are for each of the open-class words in eagmsenHow many distinct
combinations of senses are there for each sentence? Howhisemimber seem to
vary with sentence length?

20.2 Using WordNet, or a standard reference dictionary, tag egeim-class word in
your corpus with its correct tag. Was choosing the corretssealways a straightfor-
ward task. Report on any difficulties you encountered.

20.3 Using the same corpus, isolate the words taking part in ali/érb-subject and
verb-object relations. How often does it appear to be the taat the words taking
part in these relations could be disambiguated using ofidynmation about the words
in the relation?

20.4 Between the wordsatandfind which would you expect to be more effective in
selectional restriction-based sense disambiguation?2Vhy

20.5 Using your favorite dictionary, simulate the Original Lesbord overlap dis-
ambiguation algorithm described on page 11 on the phrase flies like an arrow
Assume that the words are to be disambiguated one at a tiora, l&ft to right, and
that the results from earlier decisions are used later iptbeess.

20.6 Build an implementation of your solution to the previousrexee. Using Word-
Net, implement the Original Lesk word overlap disambigoatilgorithm described on
page 11 on the phra3éme flies like an arrow

20.7 Implement and experiment with a decision-list sense disgnabion system.
As a model, use the kinds of features shown in Figure 20.2. ddseof the publicly
available decision-list packages like WEKA (or see Russadl Norvig (1995) for more
details on implementing decision-list learning yoursel) facilitate evaluation of your
system, you should obtain one of the freely available s¢agged corpora.

20.8 Evaluate two or three of the similarity methods from the [iplavailable
Wordnet::Similarity package (Pedersen et al., 2004). You might do this by
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hand-labeling some word pairs with similarity scores argireg how well the algo-
rithms approximate your hand labels.

20.9 Implement a distributional word similarity algorithm thegtin take different mea-
sures of association and different measures of vectoragiityil Now evaluate two mea-
sures of association and two measures of vector similanty fig. 20.13. Again, you
might do this by hand-labeling some word pairs with similasicores and seeing how
well the algorithms approximate your hand labels.
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