
DRAFT

Speech and Language Processing: An introduction to natural language processing,
computational linguistics, and speech recognition. Danie l Jurafsky & James H. Martin.
Copyright c© 2007, All rights reserved. Draft of October 11, 2007. Do not c ite
without permission.

2
REGULAR EXPRESSIONS
AND AUTOMATA

User1: Men are all alike.
ELIZA1: IN WHAT WAY
User2: They’re always bugging us about something or other.
ELIZA2: CAN YOU THINK OF A SPECIFIC EXAMPLE
User3: Well, my boyfriend made me come here.
ELIZA3: YOUR BOYFRIEND MADE YOU COME HERE
User4: He says I’m depressed much of the time.
ELIZA4: I AM SORRY TO HEAR YOU ARE DEPRESSED.

Weizenbaum (1966)

Imagine that you have become a passionate fan of woodchucks.Desiring more in-
formation on this celebrated woodland creature, you turn toyour favorite Web browser
and type inwoodchuck. Your browser returns a few sites. You have a flash of inspira-
tion and type inwoodchucks. This time you discover “interesting links to woodchucks
and lemurs” and “all about Vermont’s unique, endangered species”. Instead of having
to do this search twice, you would have rather typed one search command specify-
ing something likewoodchuck with an optional final s. Or perhaps you might want
to search for all the prices in some document; you might want to see all strings that
look like $199or $25or $24.99. In this chapter we introduce theregular expression,
the standard notation for characterizing text sequences. The regular expression is used
for specifying text strings in situations like this Web-search example, and in other in-
formation retrieval applications, but also plays an important role in word-processing,
computation of frequencies from corpora, and other such tasks.

After we have defined regular expressions, we show how they can be implemented
via thefinite-state automaton. The finite-state automaton is not only the mathemati-
cal device used to implement regular expressions, but also one of the most significant
tools of computational linguistics. Variations of automata such as finite-state trans-
ducers, Hidden Markov Models, andN-gram grammars are important components of
applications that we will introduce in later chapters, including speech recognition and
synthesis, machine translation, spell-checking, and information-extraction.

DRAFT

2 Chapter 2. Regular Expressions and Automata

2.1 REGULAR EXPRESSIONS

SIR ANDREW: Her C’s, her U’s and her T’s: why that?
Shakespeare,Twelfth Night

One of the unsung successes in standardization in computer science has been the
regular expression(RE), a language for specifying text search strings. The regularREGULAR

EXPRESSION

expression languages used for searching texts in UNIX (vi, Perl, Emacs, grep), Mi-
crosoft Word (version 6 and beyond), and WordPerfect are almost identical, and many
RE features exist in the various Web search engines. Besidesthis practical use, the
regular expression is an important theoretical tool throughout computer science and
linguistics.

A regular expression (first developed by Kleene (1956) but see the History section
for more details) is a formula in a special language that is used for specifying simple
classes ofstrings. A string is a sequence of symbols; for the purpose of most text-STRINGS

based search techniques, a string is any sequence of alphanumeric characters (letters,
numbers, spaces, tabs, and punctuation). For these purposes a space is just a character
like any other, and we represent it with the symbol.

Formally, a regular expression is an algebraic notation forcharacterizing a set of
strings. Thus they can be used to specify search strings as well as to define a language in
a formal way. We will begin by talking about regular expressions as a way of specifying
searches in texts, and proceed to other uses. Section 2.3 shows that the use of just
three regular expression operators is sufficient to characterize strings, but we use the
more convenient and commonly-used regular expression syntax of the Perl language
throughout this section. Since common text-processing programs agree on most of the
syntax of regular expressions, most of what we say extends toall UNIX, Microsoft
Word, and WordPerfect regular expressions. Appendix A shows the few areas where
these programs differ from the Perl syntax.

Regular expression search requires apattern that we want to search for, and acor-
pusof texts to search through. A regular expression search function will search throughCORPUS

the corpus returning all texts that contain the pattern. In an information retrieval (IR)
system such as a Web search engine, the texts might be entire documents or Web pages.
In a word-processor, the texts might be individual words, orlines of a document. In the
rest of this chapter, we will use this last paradigm. Thus when we give a search pattern,
we will assume that the search engine returns theline of the documentreturned. This is
what the UNIXgrep command does. We will underline the exact part of the pattern
that matches the regular expression. A search can be designed to return all matches to
a regular expression or only the first match. We will show onlythe first match.

2.1.1 Basic Regular Expression Patterns

The simplest kind of regular expression is a sequence of simple characters. For ex-
ample, to search forwoodchuck, we type/woodchuck/ . So the regular expression
/Buttercup/ matches any string containing the substringButtercup, for example
the line I’m called little Buttercup) (recall that we are assuming a search application
that returns entire lines). From here on we will put slashes around each regular expres-

DRAFT

Section 2.1. Regular Expressions 3

sion to make it clear what is a regular expression and what is apattern. We use the
slash since this is the notation used by Perl, but the slashesarenot part of the regular
expressions.

The search string can consist of a single character (like/!/) or a sequence of
characters (like/urgl/); Thefirst instance of each match to the regular expression is
underlined below (although a given application might choose to return more than just
the first instance):

RE Example Patterns Matched
/woodchucks/ “interesting links to woodchucksand lemurs”
/a/ “Mary Ann stopped by Mona’s”
/Claire says,/ “Dagmar, my gift please,” Claire says,”
/DOROTHY/ “SURRENDER DOROTHY”
/!/ “You’ve left the burglar behind again!” said Nori

Regular expressions arecase sensitive; lowercase/s/ is distinct from uppercase
/S/ (/s/ matches a lower casesbut not an uppercaseS). This means that the pattern
/woodchucks/ will not match the stringWoodchucks. We can solve this problem
with the use of the square braces[and] . The string of characters inside the braces
specify adisjunction of characters to match. For example Fig. 2.1 shows that the
pattern/[wW]/ matches patterns containing eitherw or W.

RE Match Example Patterns
/[wW]oodchuck/ Woodchuck or woodchuck “Woodchuck”
/[abc]/ ‘a’, ‘b’, or ‘c’ “In uomini, in soldati”
/[1234567890]/ any digit “plenty of 7 to 5”

Figure 2.1 The use of the brackets[] to specify a disjunction of characters.

The regular expression/[1234567890]/ specified any single digit. While classes
of characters like digits or letters are important buildingblocks in expressions, they can
get awkward (e.g., it’s inconvenient to specify

/[ABCDEFGHIJKLMNOPQRSTUVWXYZ]/

to mean “any capital letter”). In these cases the brackets can be used with the dash (-)
to specify any one character in arange. The pattern/[2-5]/ specifies any one of theRANGE

characters2, 3, 4, or 5. The pattern/[b-g]/ specifies one of the charactersb, c, d, e,
f, or g. Some other examples:

RE Match Example Patterns Matched
/[A-Z]/ an uppercase letter “we should call it ‘Drenched Blossoms’”
/[a-z]/ a lowercase letter “my beans were impatient to be hoed!”
/[0-9]/ a single digit “Chapter 1: Down the Rabbit Hole”

Figure 2.2 The use of the brackets[] plus the dash- to specify a range.

The square braces can also be used to specify what a single charactercannotbe,
by use of the caret̂ . If the caret̂ is the first symbol after the open square brace[,

DRAFT

4 Chapter 2. Regular Expressions and Automata

the resulting pattern is negated. For example, the pattern/[ˆa]/ matches any single
character (including special characters) excepta. This is only true when the caret is the
first symbol after the open square brace. If it occurs anywhere else, it usually stands
for a caret; Fig. 2.3 shows some examples.

RE Match (single characters) Example Patterns Matched
[ˆA-Z] not an uppercase letter “Oyfn pripetchik”
[ˆSs] neither ‘S’ nor ‘s’ “I have no exquisite reason for’t”
[ˆ\.] not a period “our resident Djinn”
[eˆ] either ‘e’ or ‘̂ ’ “look up ˆ now”
aˆb the pattern ‘aˆb ’ “look up aˆ bnow”

Figure 2.3 Uses of the caret̂ for negation or just to mean̂ .

The use of square braces solves our capitalization problem for woodchucks. But
we still haven’t answered our original question; how do we specify bothwoodchuck
andwoodchucks? We can’t use the square brackets, because while they allow us to say
“s or S”, they don’t allow us to say “s or nothing”. For this we use the question-mark
/?/ , which means “the preceding character or nothing”, as shownin Fig. 2.4.

RE Match Example Patterns Matched
woodchucks? woodchuck or woodchucks “woodchuck”
colou?r color or colour “colour”

Figure 2.4 The question-mark? marks optionality of the previous expression.

We can think of the question-mark as meaning “zero or one instances of the previ-
ous character”. That is, it’s a way of specifying how many of something that we want.
So far we haven’t needed to specify that we want more than one of something. But
sometimes we need regular expressions that allow repetitions of things. For example,
consider the language of (certain) sheep, which consists ofstrings that look like the
following:

baa!
baaa!
baaaa!
baaaaa!
baaaaaa!
. . .

This language consists of strings with ab, followed by at least twoas, followed by
an exclamation point. The set of operators that allow us to say things like “some num-
ber ofas” are based on the asterisk or* , commonly called theKleene * (pronouncedKLEENE *

“cleany star”). The Kleene star means “zero or more occurrences of the immediately
previous character or regular expression”. So/a * / means “any string of zero or more
as”. This will matcha or aaaaaabut it will also matchOff Minor, since the stringOff
Minor has zeroas. So the regular expression for matching one or morea is /aa * / ,

DRAFT

Section 2.1. Regular Expressions 5

meaning onea followed by zero or moreas. More complex patterns can also be re-
peated. So/[ab] * / means “zero or moreas orbs” (not “zero or more right square
braces”). This will match strings likeaaaaor abababor bbbb.

We now know enough to specify part of our regular expression for prices: multiple
digits. Recall that the regular expression for an individual digit was/[0-9]/ . So the
regular expression for an integer (a string of digits) is/[0-9][0-9] * / . (Why isn’t
it just /[0-9] * / ?)

Sometimes it’s annoying to have to write the regular expression for digits twice, so
there is a shorter way to specify “at least one” of some character. This is theKleene +,KLEENE +

which means “one or more of the previous character”. Thus theexpression/[0-9]+/
is the normal way to specify “a sequence of digits”. There arethus two ways to specify
the sheep language:/baaa * !/ or /baa+!/ .

One very important special character is the period (/./), a wildcard expression
that matches any single character (excepta carriage return):

RE Match Example Patterns
/beg.n/ any character betweenbegandn begin, beg’n, begun

Figure 2.5 The use of the period. to specify any character.

The wildcard is often used together with the Kleene star to mean “any string of
characters”. For example suppose we want to find any line in which a particular word,
for exampleaardvark, appears twice. We can specify this with the regular expression
/aardvark. * aardvark/ .

Anchors are special characters that anchor regular expressions to particular placesANCHORS

in a string. The most common anchors are the caretˆ and the dollar-sign$. The caret
ˆ matches the start of a line. The pattern/ˆThe/ matches the wordTheonly at the
start of a line. Thus there are three uses of the caretˆ : to match the start of a line, as
a negation inside of square brackets, and just to mean a caret. (What are the contexts
that allow Perl to know which function a given caret is supposed to have?) The dollar
sign $ matches the end of a line. So the pattern$ is a useful pattern for matching
a space at the end of a line, and/ˆThe dog\.$/ matches a line that contains only
the phraseThe dog.(We have to use the backslash here since we want the. to mean
“period” and not the wildcard.)

There are also two other anchors:\b matches a word boundary, while\B matches
a non-boundary. Thus/\bthe\b/ matches the wordthe but not the wordother.
More technically, Perl defines a word as any sequence of digits, underscores or letters;
this is based on the definition of “words” in programming languages like Perl or C. For
example,/\b99\b/ will match the string99 in There are 99 bottles of beer on the
wall (because 99 follows a space) but not99 in There are 299 bottles of beer on the
wall (since 99 follows a number). But it will match99 in $99(since99 follows a dollar
sign ($), which is not a digit, underscore, or letter).

DRAFT

6 Chapter 2. Regular Expressions and Automata

2.1.2 Disjunction, Grouping, and Precedence

Suppose we need to search for texts about pets; perhaps we areparticularly interested
in cats and dogs. In such a case we might want to search for either the stringcat or
the stringdog. Since we can’t use the square-brackets to search for “cat ordog” (why
not?) we need a new operator, thedisjunction operator, also called thepipe symbol| .DISJUNCTION

The pattern/cat|dog/ matches either the stringcat or the stringdog .
Sometimes we need to use this disjunction operator in the midst of a larger se-

quence. For example, suppose I want to search for information about pet fish for my
cousin David. How can I specify bothguppyand guppies? We cannot simply say
/guppy|ies/ , because that would match only the stringsguppyand ies. This is
because sequences likeguppy takeprecedenceover the disjunction operator| . InPRECEDENCE

order to make the disjunction operator apply only to a specific pattern, we need to use
the parenthesis operators(and) . Enclosing a pattern in parentheses makes it act like
a single character for the purposes of neighboring operators like the pipe| and the
Kleene* . So the pattern/gupp(y|ies)/ would specify that we meant the disjunc-
tion only to apply to the suffixesy andies .

The parenthesis operator(is also useful when we are using counters like the
Kleene* . Unlike the | operator, the Kleene* operator applies by default only to a
single character, not a whole sequence. Suppose we want to match repeated instances
of a string. Perhaps we have a line that has column labels of the formColumn 1 Col-
umn 2 Column 3. The expression/Column [0-9]+ * / will not match any col-
umn; instead, it will match a column followed by any number ofspaces! The star here
applies only to the space that precedes it, not the whole sequence. With the paren-
theses, we could write the expression/(Column [0-9]+ *) * / to match the word
Column, followed by a number and optional spaces, the whole patternrepeated any
number of times.

This idea that one operator may take precedence over another, requiring us to some-
times use parentheses to specify what we mean, is formalizedby theoperator prece-
dence hierarchy for regular expressions. The following table gives the order of REOPERATOR

PRECEDENCE

operator precedence, from highest precedence to lowest precedence:

Parenthesis ()
Counters * + ? {}
Sequences and anchorsthe ˆmy end$
Disjunction |

Thus, because counters have a higher precedence than sequences,
/the * / matchestheeeeebut notthethe. Because sequences have a higher precedence
than disjunction,/the|any/ matchestheor anybut nottheny.

Patterns can be ambiguous in another way. Consider the expression/[a-z] * /
when matching against the textonce upon a time. Since/[a-z] * / matches zero or
more letters, this expression could match nothing, or just the first lettero, oron, oronc,
or once. In these cases regular expressions always match thelargeststring they can;
we say that patterns aregreedy, expanding to cover as much of a string as they can.GREEDY

DRAFT

Section 2.1. Regular Expressions 7

2.1.3 A Simple Example

Suppose we wanted to write a RE to find cases of the English article the. A simple (but
incorrect) pattern might be:

/the/

One problem is that this pattern will miss the word when it begins a sentence and
hence is capitalized (i.e.,The). This might lead us to the following pattern:

/[tT]he/

But we will still incorrectly return texts withthe embedded in other words (e.g.,
otheror theology). So we need to specify that we want instances with a word boundary
on both sides:

/\b[tT]he\b/

Suppose we wanted to do this without the use of/\b/ ? We might want this since
/\b/ won’t treat underscores and numbers as word boundaries; butwe might want to
find the in some context where it might also have underlines or numbers nearby (the
or the25). We need to specify that we want instances in which there areno alphabetic
letters on either side of thethe:

/[ˆa-zA-Z][tT]he[ˆa-zA-Z]/

But there is still one more problem with this pattern: it won’t find the wordthe
when it begins a line. This is because the regular expression[ˆa-zA-Z] , which we
used to avoid embeddedthes, implies that there must be some single (although non-
alphabetic) character before thethe . We can avoid this by specifying that before the
thewe requireeitherthe beginning-of-line or a non-alphabetic character, and the same
at the end of the line:

/(ˆ|[ˆa-zA-Z])[tT]he([ˆa-zA-Z]|$)/

The process we just went through was based on fixing two kinds of errors: false
positives, strings that we incorrectly matched likeotheror there, andfalse negatives,FALSE POSITIVES

FALSE NEGATIVES strings that we incorrectly missed, likeThe. Addressing these two kinds of errors
comes up again and again in building and improving speech andlanguage processing
systems. Reducing the error rate for an application thus involves two antagonistic
efforts:

• Increasingaccuracy(minimizing false positives)
• Increasingcoverage(minimizing false negatives).

2.1.4 A More Complex Example

Let’s try out a more significant example of the power of REs. Suppose we want to build
an application to help a user buy a computer on the Web. The user might want “any PC
with more than 500 MHz and 32 Gb of disk space for less than $1000”. In order to do
this kind of retrieval we will first need to be able to look for expressions like500 MHz

DRAFT

8 Chapter 2. Regular Expressions and Automata

or 32 Gbor Compaqor Macor $999.99. In the rest of this section we’ll work out some
simple regular expressions for this task.

First, let’s complete our regular expression for prices. Here’s a regular expression
for a dollar sign followed by a string of digits. Note that Perl is smart enough to realize
that$ here doesn’t mean end-of-line; how might it know that?

/$[0-9]+/

Now we just need to deal with fractions of dollars. We’ll add adecimal point and
two digits afterwards:

/$[0-9]+\.[0-9][0-9]/

This pattern only allows$199.99but not$199. We need to make the cents optional,
and make sure we’re at a word boundary:

/\b$[0-9]+(\.[0-9][0-9])?\b/

How about specifications for processor speed (in megahertz =MHz or gigahertz =
GHz)? Here’s a pattern for that:

/\b[0-9]+ * (MHz|[Mm]egahertz|GHz|[Gg]igahertz)\b/

Note that we use/ * / to mean “zero or more spaces”, since there might always
be extra spaces lying around. Dealing with disk space (in Gb =gigabytes), or memory
size (in Mb = megabytes or Gb = gigabytes), we need to allow foroptional gigabyte
fractions again (5.5 Gb). Note the use of? for making the finals optional:

/\b[0-9]+ * (Mb|[Mm]egabytes?)\b/
/\b[0-9](\.[0-9]+)? * (Gb|[Gg]igabytes?)\b/

Finally, we might want some simple patterns to specify operating systems and ven-
dors:

/\b(Win95|Win98|WinNT|Windows * (NT|95|98|2000)?)\b/
/\b(Mac|Macintosh|Apple)\b/

2.1.5 Advanced Operators

RE Expansion Match Example Patterns
\d [0-9] any digit Party of 5
\D [ˆ0-9] any non-digit Blue moon
\w [a-zA-Z0-9_] any alphanumeric or underscore Daiyu
\W [ˆ\w] a non-alphanumeric !!!!
\s [\r\t\n\f] whitespace (space, tab)
\S [ˆ\s] Non-whitespace in Concord

Figure 2.6 Aliases for common sets of characters.

DRAFT

Section 2.1. Regular Expressions 9

There are also some useful advanced regular expression operators. Fig. 2.6 shows
some useful aliases for common ranges, which can be used mainly to save typing.
Besides the Kleene * and Kleene +, we can also use explicit numbers as counters, by
enclosing them in curly brackets. The regular expression/{3}/ means “exactly 3
occurrences of the previous character or expression”. So/a\.{24}z/ will match a
followed by 24 dots followed byz (but nota followed by 23 or 25 dots followed by a
z).

A range of numbers can also be specified; so/{n,m}/ specifies from n to m occur-
rences of the previous char or expression, while/{n,}/ means at least n occurrences
of the previous expression. REs for counting are summarizedin Figure 2.7.

RE Match

* zero or more occurrences of the previous char or expression
+ one or more occurrences of the previous char or expression
? exactly zero or one occurrence of the previous char or expression
{n} n occurrences of the previous char or expression
{n,m} from n to m occurrences of the previous char or expression
{n,} at leastn occurrences of the previous char or expression

Figure 2.7 Regular expression operators for counting.

Finally, certain special characters are referred to by special notation based on the
backslash (\). The most common of these are thenewline character\n and thetabNEWLINE

character\t . To refer to characters that are special themselves (like. , * , [, and\),
precede them with a backslash, (i.e.,/\./ , /\ * / , /\[/ , and/\\/).

RE Match Example Patterns Matched
\ * an asterisk “*” “K* A*P*L*A*N”
\. a period “.” “Dr. Livingston, I presume”
\? a question mark “Why don’t they come and lend a hand?”
\n a newline
\t a tab

Figure 2.8 Some characters that need to be backslashed.

The reader should consult Appendix A for further details of regular expressions,
and especially for the differences between regular expressions in Perl, UNIX, and Mi-
crosoft Word.

2.1.6 Regular Expression Substitution, Memory, and ELIZA

An important use of regular expressions is insubstitutions. For example, the Perl sub-SUBSTITUTION

stitution operators/regexp1/pattern/ allows a string characterized by a regular
expression to be replaced by another string:

s/colour/color/

DRAFT

10 Chapter 2. Regular Expressions and Automata

It is often useful to be able to refer to a particular subpart of the string matching the
first pattern. For example, suppose we wanted to put angle brackets around all integers
in a text, changing e.g.,the 35 boxesto the<35> boxes. We’d like a way to refer back
to the integer we’ve found so that we can easily add the brackets. To do this, we put
parentheses(and) around the first pattern, and use thenumber operator\1 in the
second pattern to refer back. Here’s how it looks:

s/([0-9]+)/<\1>/

The parenthesis and number operators can also be used to specify that a certain
string or expression must occur twice in the text. For example, suppose we are looking
for the pattern “the Xer they were, the Xer they will be”, where we want to constrain the
two X’s to be the same string. We do this by surrounding the first X with the parenthesis
operator, and replacing the second X with the number operator \1 , as follows:

/the (. *)er they were, the \1er they will be/

Here the\1 will be replaced by whatever string matched the first item in parentheses.
So this will matchThe bigger they were, the bigger they will bebut notThe bigger they
were, the faster they will be.

The number operator can be used with other numbers: if you match two different
sets of parenthesis,\2 means whatever matched thesecondset. For example

/the (. *)er they (. *), the \1er they \2/

will match The bigger they were, the bigger they werebut notThe bigger they were,
the bigger they will be. These numbered memories are calledregisters(e.g. register 1,REGISTERS

register 2, register 3, etc). This memory feature is not partof every regular expression
language and is often considered an “extended” feature of regular expressions.

Substitutions using memory are very useful in implementinga simple natural-
language understanding program like ELIZA (Weizenbaum, 1966). Recall that ELIZA
simulated a Rogerian psychologist and could carry on conversations with the user like
the following:

User1: Men are all alike.
ELIZA1: IN WHAT WAY
User2: They’re always bugging us about something or other.
ELIZA2: CAN YOU THINK OF A SPECIFIC EXAMPLE
User3: Well, my boyfriend made me come here.
ELIZA3: YOUR BOYFRIEND MADE YOU COME HERE
User4: He says I’m depressed much of the time.
ELIZA4: I AM SORRY TO HEAR YOU ARE DEPRESSED.

Eliza worked by having a cascade of regular expression substitutions that each
matched some part of the input lines and changed them. The first substitutions changed
all instances ofmy to YOUR, andI’m to YOU ARE, and so on. The next set of substi-
tutions looked for relevant patterns in the input and created an appropriate output; here
are some examples:

s/. * YOU ARE (depressed|sad) . * /I AM SORRY TO HEAR YOU ARE \1/

s/. * YOU ARE (depressed|sad) . * /WHY DO YOU THINK YOU ARE \1/

DRAFT
Section 2.2. Finite-State Automata 11

s/. * all . * /IN WHAT WAY/

s/. * always . * /CAN YOU THINK OF A SPECIFIC EXAMPLE/

Since multiple substitutions could apply to a given input, substitutions were as-
signed a rank and were applied in order. Creation of such patterns is addressed in
Exercise 2.2.

2.2 FINITE-STATE AUTOMATA

The regular expression is more than just a convenient metalanguage for text searching.
First, a regular expression is one way of describing afinite-state automaton(FSA).FINITESTATE

AUTOMATON

FSA Finite-state automata are the theoretical foundation of a good deal of the computational
work we will describe in this book. Any regular expression can be implemented as a
finite-state automaton (except regular expressions that use the memory feature; more
on this later). Symmetrically, any finite-state automaton can be described with a regular
expression. Second, a regular expression is one way of characterizing a particular kind
of formal language called aregular language. Both regular expressions and finite-REGULAR LANGUAGE

state automata can be used to describe regular languages. A third equivalent method
of characterizing the regular languages, theregular grammar , will be introduced in
Ch. 15. The relation among these four theoretical constructions is sketched out in
Fig. 2.9.

regular
grammars

finite
automata

regular
expressionsregular

languages

Figure 2.9 Finite automata, regular expressions, and regular grammars are all equiva-
lent ways of describing regular languages.

This section will begin by introducing finite-state automata for some of the regu-
lar expressions from the last section, and then suggest how the mapping from regular
expressions to automata proceeds in general. Although we begin with their use for
implementing regular expressions, FSAs have a wide varietyof other uses that we will
explore in this chapter and the next.

2.2.1 Using an FSA to Recognize Sheeptalk

After a while, with the parrot’s help, the Doctor got to learnthe language of the
animals so well that he could talk to them himself and understand everything
they said.

DRAFT

12 Chapter 2. Regular Expressions and Automata

Hugh Lofting,The Story of Doctor Dolittle

Let’s begin with the “sheep language” we discussed previously. Recall that we
defined the sheep language as any string from the following (infinite) set:

baa!
baaa!
baaaa!
baaaaa!
baaaaaa!
. . .

q3

a

q0 q4q1 q2

b a a !

Figure 2.10 A finite-state automaton for talking sheep.

The regular expression for this kind of “sheeptalk” is/baa+!/ . Fig. 2.10 shows
an automaton for modeling this regular expression. The automaton (i.e.,machine,AUTOMATON

also calledfinite automaton, finite-state automaton, or FSA) recognizes a set of
strings, in this case the strings characterizing sheep talk, in the same way that a regular
expression does. We represent the automaton as a directed graph: a finite set of vertices
(also called nodes), together with a set of directed links between pairs of vertices called
arcs. We’ll represent vertices with circles and arcs with arrows. The automaton has five
statess, which are represented by nodes in the graph. State 0 is thestart state. In ourSTATES

START STATE examples state 0 will generally be the start state; to mark another state as the start state
we can add an incoming arrow to the start state. State 4 is thefinal state or accepting
state, which we represent by the double circle. It also has fourtransitions, which we
represent by arcs in the graph.

The FSA can be used for recognizing (we also sayaccepting) strings in the follow-
ing way. First, think of the input as being written on a long tape broken up into cells,
with one symbol written in each cell of the tape, as in Fig. 2.11.

a b a ! b

q0

Figure 2.11 A tape with cells.

The machine starts in the start state (q0), and iterates the following process: Check
the next letter of the input. If it matches the symbol on an arcleaving the current
state, then cross that arc, move to the next state, and also advance one symbol in the

DRAFT
Section 2.2. Finite-State Automata 13

input. If we are in the accepting state (q4) when we run out of input, the machine has
successfully recognized an instance of sheeptalk. If the machine never gets to the final
state, either because it runs out of input, or it gets some input that doesn’t match an arc
(as in Fig. 2.11), or if it just happens to get stuck in some non-final state, we say the
machinerejectsor fails to accept an input.REJECTS

We can also represent an automaton with astate-transition table. As in the graphSTATETRANSITION
TABLE

notation, the state-transition table represents the startstate, the accepting states, and
what transitions leave each state with which symbols. Here’s the state-transition table
for the FSA of Figure 2.10.

Input
State b a !
0 1 /0 /0
1 /0 2 /0
2 /0 3 /0
3 /0 3 4
4: /0 /0 /0

Figure 2.12 The state-transition table for the FSA of Figure 2.10.

We’ve marked state 4 with a colon to indicate that it’s a final state (you can have as
many final states as you want), and the/0 indicates an illegal or missing transition. We
can read the first row as “if we’re in state 0 and we see the inputb we must go to state
1. If we’re in state 0 and we see the inputa or !, we fail”.

More formally, a finite automaton is defined by the following five parameters:

Q = q0q1q2 . . .qN−1 a finite set ofN states

Σ a finite input alphabet of symbols

q0 thestart state

F the set offinal states, F ⊆Q

δ(q, i) the transition function or transition matrix be-
tween states. Given a stateq ∈ Q and an input
symboli ∈ Σ, δ(q, i) returns a new stateq′ ∈Q. δ
is thus a relation fromQ×Σ to Q;

For the sheeptalk automaton in Fig. 2.10,Q = {q0,q1,q2,q3,q4}, Σ = {a,b, !},
F = {q4}, andδ(q, i) is defined by the transition table in Fig. 2.12.

Figure 2.13 presents an algorithm for recognizing a string using a state-transition
table. The algorithm is calledD-RECOGNIZEfor “deterministic recognizer”. Adeter-
ministic algorithm is one that has no choice points; the algorithm always knows whatDETERMINISTIC

to do for any input. The next section will introduce non-deterministic automata that
must make decisions about which states to move to.

D-RECOGNIZEtakes as input a tape and an automaton. It returnsacceptif the string
it is pointing to on the tape is accepted by the automaton, andrejectotherwise. Note
that sinceD-RECOGNIZEassumes it is already pointing at the string to be checked, its
task is only a subpart of the general problem that we often useregular expressions for,

DRAFT

14 Chapter 2. Regular Expressions and Automata

finding a string in a corpus. (The general problem is left as anexercise to the reader in
Exercise 2.9.)

D-RECOGNIZEbegins by setting the variableindexto the beginning of the tape, and
current-stateto the machine’s initial state.D-RECOGNIZEthen enters a loop that drives
the rest of the algorithm. It first checks whether it has reached the end of its input. If
so, it either accepts the input (if the current state is an accept state) or rejects the input
(if not).

If there is input left on the tape,D-RECOGNIZElooks at the transition table to decide
which state to move to. The variablecurrent-stateindicates which row of the table to
consult, while the current symbol on the tape indicates which column of the table to
consult. The resulting transition-table cell is used to update the variablecurrent-state
and index is incremented to move forward on the tape. If the transition-table cell is
empty then the machine has nowhere to go and must reject the input.

function D-RECOGNIZE(tape, machine) returns accept or reject

index←Beginning of tape
current-state← Initial state of machine
loop
if End of input has been reachedthen
if current-state is an accept statethen

return accept
else

return reject
elsif transition-table[current-state,tape[index]]is emptythen

return reject
else

current-state← transition-table[current-state,tape[index]]
index← index+ 1

end

Figure 2.13 An algorithm for deterministic recognition of FSAs. This algorithm returns
acceptif the entire string it is pointing at is in the language defined by the FSA, andreject
if the string is not in the language.

Figure 2.14 traces the execution of this algorithm on the sheep language FSA given
the sample input stringbaaa!.

b a a a !

q0 q1 q2 q3 q3 q4

Figure 2.14 Tracing the execution of FSA #1 on some sheeptalk.

DRAFT
Section 2.2. Finite-State Automata 15

Before examining the beginning of the tape, the machine is instateq0. Finding ab
on input tape, it changes to stateq1 as indicated by the contents oftransition-table[q0,b]
in Fig. 2.12 on page 13. It then finds ana and switches to stateq2, anothera puts it in
stateq3, a thirda leaves it in stateq3, where it reads the “!”, and switches to stateq4.
Since there is no more input, theEnd of input condition at the beginning of the
loop is satisfied for the first time and the machine halts inq4. Stateq4 is an accepting
state, and so the machine has accepted the stringbaaa! as a sentence in the sheep
language.

The algorithm will fail whenever there is no legal transition for a given combination
of state and input. The inputabc will fail to be recognized since there is no legal
transition out of stateq0 on the inputa, (i.e., this entry of the transition table in Fig. 2.12
on page 13 has a/0). Even if the automaton had allowed an initiala it would have
certainly failed onc, sincec isn’t even in the sheeptalk alphabet! We can think of these
“empty” elements in the table as if they all pointed at one “empty” state, which we
might call thefail state or sink state. In a sense then, we could view any machine withFAIL STATE

empty transitionsas if we had augmented it with a fail state, and drawn in all the extra
arcs, so we always had somewhere to go from any state on any possible input. Just for
completeness, Fig. 2.15 shows the FSA from Figure 2.10 with the fail stateqF filled in.

q3

a

q0 q4q1 q2

b a a !

qfail

b! ! ! !b
b

a
a

b

Figure 2.15 Adding a fail state to Fig. 2.10.

2.2.2 Formal Languages

We can use the same graph in Fig. 2.10 as an automaton forGENERATING sheeptalk.
If we do, we would say that the automaton starts at stateq0, and crosses arcs to new
states, printing out the symbols that label each arc it follows. When the automaton gets
to the final state it stops. Notice that at state 3, the automaton has to chose between
printing out a! and going to state 4, or printing out ana and returning to state 3. Let’s
say for now that we don’t care how the machine makes this decision; maybe it flips a
coin. For now, we don’t care which exact string of sheeptalk we generate, as long as
it’s a string captured by the regular expression for sheeptalk above.

Formal Language: A model which can both generate and recognize all
and only the strings of a formal language acts as adefinitionof the formal
language.

DRAFT

16 Chapter 2. Regular Expressions and Automata

A formal language is a set of strings, each string composed of symbols from aFORMAL LANGUAGE

finite symbol-set called analphabet (the same alphabet used above for defining anALPHABET

automaton!). The alphabet for the sheep language is the setΣ = {a,b, !}. Given a
modelm (such as a particular FSA), we can useL(m) to mean “the formal language
characterized bym”. So the formal language defined by our sheeptalk automatonm in
Fig. 2.10 (and Fig. 2.12) is the infinite set:

L(m) = {baa!,baaa!,baaaa!,baaaaa!,baaaaaa!, . . .}(2.1)

The usefulness of an automaton for defining a language is thatit can express an
infinite set (such as this one above) in a closed form. Formal languages are not the
same asnatural languages, which are the kind of languages that real people speak.NATURAL

LANGUAGES

In fact, a formal language may bear no resemblance at all to a real language (e.g., a
formal language can be used to model the different states of asoda machine). But we
often use a formal language to model part of a natural language, such as parts of the
phonology, morphology, or syntax. The termgenerative grammar is sometimes used
in linguistics to mean a grammar of a formal language; the origin of the term is this use
of an automaton to define a language by generating all possible strings.

2.2.3 Another Example

In the previous examples our formal alphabet consisted of letters; but we can also
have a higher level alphabet consisting of words. In this waywe can write finite-state
automata that model facts about word combinations. For example, suppose we wanted
to build an FSA that modeled the subpart of English dealing with amounts of money.
Such a formal language would model the subset of English consisting of phrases like
ten cents, three dollars, one dollar thirty-five centsand so on.

We might break this down by first building just the automaton to account for the
numbers from 1 to 99, since we’ll need them to deal with cents.Fig. 2.16 shows this.

q q1 q2twenty
thirty
forty
fifty

sixty
seventy
eighty
ninety

one
two
three
four
five

six
seven
eight
nine

one
two
three
four
five

six
seven
eight
nine
ten

eleven
twelve
thirteen
fourteen

fifteen
sixteen
seventeen
eighteen
nineteen

Figure 2.16 An FSA for the words for English numbers 1–99.

We could now addcentsanddollars to our automaton. Fig. 2.17 shows a simple
version of this, where we just made two copies of the automaton in Fig. 2.16 and

DRAFT
Section 2.2. Finite-State Automata 17

appended the wordscentsanddollars.

q� q1 q2twenty
thirty
forty
fifty

sixty
seventy
eighty
ninety

one
two
three
four
five

six
seven
eight
nine

q3

q4 q5 q�
twenty
thirty
forty
fifty

sixty
seventy
eighty
ninety

one
two
three
four
five

six
seven
eight
nine

one
two
three
four
five

six
seven
eight
nine

sixteen
seventeen
eighteen
nineteen

ten
twenty
thirty
forty
fifty

sixty
seventy
eighty
ninety

q������ �����
dollars

one
two
three
four
five

six
seven
eight
nine

eleven
twelve
thirteen
fourteen
fifteen

sixteen
seventeen
eighteen
nineteen

ten
twenty
thirty
forty
fifty

sixty
seventy
eighty
ninety

eleven
twelve
thirteen
fourteen
fifteen

Figure 2.17 FSA for the simple dollars and cents.

We would now need to add in the grammar for different amounts of dollars; in-
cluding higher numbers likehundred, thousand. We’d also need to make sure that the
nouns likecentsanddollars are singular when appropriate (one cent, one dollar), and
plural when appropriate (ten cents, two dollars). This is left as an exercise for the
reader (Exercise 2.3). We can think of the FSAs in Fig. 2.16 and Fig. 2.17 as simple
grammars of parts of English. We will return to grammar-building in Part II of this
book, particularly in Ch. 12.

2.2.4 Non-Deterministic FSAs

Let’s extend our discussion now to another class of FSAs:non-deterministic FSAs
(or NFSAs). Consider the sheeptalk automaton in Figure 2.18, which is much like our
first automaton in Figure 2.10:

q�a

q0 q	q1 q2

b a a !

Figure 2.18 A non-deterministic finite-state automaton for talking sheep (NFSA #1).
Compare with the deterministic automaton in Fig. 2.10.

The only difference between this automaton and the previousone is that here in
Figure 2.18 the self-loop is on state 2 instead of state 3. Consider using this network
as an automaton for recognizing sheeptalk. When we get to state 2, if we see ana we
don’t know whether to remain in state 2 or go on to state 3. Automata with decision
points like this are callednon-deterministic FSAs (or NFSAs). Recall by contrastNONDETERMINISTIC

NFSA that Figure 2.10 specified adeterministic automaton, i.e., one whose behavior during
recognition is fullydeterminedby the state it is in and the symbol it is looking at. A
deterministic automaton can be referred to as aDFSA. That is not true for the machineDFSA

in Figure 2.18 (NFSA #1).
There is another common type of non-determinism, caused by arcs that have no

symbols on them (calledε-transitions). The automaton in Fig. 2.19 defines the exactεTRANSITION

DRAFT

18 Chapter 2. Regular Expressions and Automata

same language as the last one, or our first one, but it does it with anε-transition.

q
q0 �4�1 q2

b a a !

∋

Figure 2.19 Another NFSA for the sheep language (NFSA #2). It differs from NFSA
#1 in Fig. 2.18 in having anε-transition.

We interpret this new arc as follows: If we are in state 3, we are allowed to move
to state 2without looking at the input, or advancing our input pointer. So thisintro-
duces another kind of non-determinism — we might not know whether to follow the
ε-transition or the! arc.

2.2.5 Using an NFSA to Accept Strings

If we want to know whether a string is an instance of sheeptalkor not, and if we use a
non-deterministic machine to recognize it, we might followthe wrong arc and reject it
when we should have accepted it. That is, since there is more than one choice at some
point, we might take the wrong choice. This problem of choicein non-deterministic
models will come up again and again as we build computationalmodels, particularly
for parsing. There are three standardsolutions to the problem of non-determinism:

• Backup: Whenever we come to a choice point, we could put amarkerto markBACKUP

where we were in the input, and what state the automaton was in. Then if it turns
out that we took the wrong choice, we could back up and try another path.

• Look-ahead: We could look ahead in the input to help us decide which path toLOOKAHEAD

take.

• Parallelism: Whenever we come to a choice point, we could look at everyPARALLELISM

alternative path in parallel.

We will focus here on the backup approach and defer discussion of the look-ahead
and parallelism approaches to later chapters.

The backup approach suggests that we should blithely make choices that might
lead to deadends, knowing that we can always return to unexplored alternative choices.
There are two keys to this approach: we need to remember all the alternatives for each
choice point, and we need to store sufficient information about each alternative so that
we can return to it when necessary. When a backup algorithm reaches a point in its
processing where no progress can be made (because it runs outof input, or has no
legal transitions), it returns to a previous choice point, selects one of the unexplored
alternatives, and continues from there. Applying this notion to our non-deterministic
recognizer, we need only remember two things for each choicepoint: the state, or node,
of the machine that we can go to and the corresponding position on the tape. We will
call the combination of the node and position thesearch-stateof the recognition algo-SEARCHSTATE

DRAFT
Section 2.2. Finite-State Automata 19

Input
State b a ! ε
0 1 /0 /0 /0
1 /0 2 /0 /0
2 /0 2,3 /0 /0
3 /0 /0 4 /0
4: /0 /0 /0 /0

Figure 2.20 The transition table from NFSA #1 in Fig. 2.18.

rithm. To avoid confusion, we will refer to the state of the automaton (as opposed to the
state of the search) as anodeor amachine-state. Figure 2.21 presents a recognition
algorithm based on this approach.

Before going on to describe the main part of this algorithm, we should note two
changes to the transition table that drives it. First, in order to represent nodes that have
outgoingε-transitions, we add a newε-column to the transition table. If a node has
an ε-transition, we list the destination node in theε-column for that node’s row. The
second addition is needed to account for multiple transitions to different nodes from
the same input symbol. We let each cell entry consist of a listof destination nodes
rather than a single node. Fig. 2.20 shows the transition table for the machine in Figure
2.18 (NFSA #1). While it has noε-transitions, it does show that in machine-stateq2

the inputa can lead back toq2 or on toq3.
Fig. 2.21 shows the algorithm for using a non-deterministicFSA to recognize an

input string. The functionND-RECOGNIZEuses the variableagendato keep track of
all the currently unexplored choices generated during the course of processing. Each
choice (search state) is a tuple consisting of a node (state)of the machine and a posi-
tion on the tape. The variablecurrent-search-staterepresents the branch choice being
currently explored.

ND-RECOGNIZE begins by creating an initial search-state and placing it onthe
agenda. For now we don’t specify what order the search-states are placed on the
agenda. This search-state consists of the initial machine-state of the machine and a
pointer to the beginning of the tape. The functionNEXT is then called to retrieve an
item from the agenda and assign it to the variablecurrent-search-state.

As with D-RECOGNIZE, the first task of the main loop is to determine if the en-
tire contents of the tape have been successfully recognized. This is done via a call
to ACCEPT-STATE?, which returnsacceptif the current search-state contains both an
accepting machine-state and a pointer to the end of the tape.If we’re not done, the
machine generates a set of possible next steps by callingGENERATE-NEW-STATES,
which creates search-states for anyε-transitions and any normal input-symbol transi-
tions from the transition table. All of these search-state tuples are then added to the
current agenda.

Finally, we attempt to get a new search-state to process fromthe agenda. If the
agenda is empty we’ve run out of options and have to reject theinput. Otherwise, an
unexplored option is selected and the loop continues.

It is important to understand whyND-RECOGNIZE returns a value of reject only
when the agenda is found to be empty. UnlikeD-RECOGNIZE, it does not return reject

DRAFT

20 Chapter 2. Regular Expressions and Automata

when it reaches the end of the tape in a non-accept machine-state or when it finds
itself unable to advance the tape from some machine-state. This is because, in the non-
deterministic case, such roadblocks only indicate failuredown a given path, not overall
failure. We can only be sure we can reject a string when all possible choices have been
examined and found lacking.

function ND-RECOGNIZE(tape, machine) returns accept or reject

agenda←{(Initial state of machine, beginning of tape)}
current-search-state←NEXT(agenda)
loop

if ACCEPT-STATE?(current-search-state) returns truethen
return accept

else
agenda←agenda∪ GENERATE-NEW-STATES(current-search-state)

if agendais emptythen
return reject

else
current-search-state←NEXT(agenda)

end

function GENERATE-NEW-STATES(current-state) returns a set of search-states

current-node← the node the current search-state is in
index← the point on the tape the current search-state is looking at
return a list of search states from transition table as follows:

(transition-table[current-node,ε], index)
∪
(transition-table[current-node, tape[index]], index + 1)

function ACCEPT-STATE?(search-state) returns true or false

current-node← the node search-state is in
index← the point on the tape search-state is looking at
if indexis at the end of the tapeand current-nodeis an accept state of machine
then

return true
else

return false

Figure 2.21 An algorithm for NFSA recognition. The wordnodemeans a state of the
FSA, whilestateor search-statemeans “the state of the search process”, i.e., a combination
of nodeandtape-position.

Figure 2.22 illustrates the progress ofND-RECOGNIZEas it attempts to handle the
input baaa! . Each strip illustrates the state of the algorithm at a givenpoint in its
processing. Thecurrent-search-statevariable is captured by the solid bubbles repre-
senting the machine-state along with the arrow representing progress on the tape. Each
strip lower down in the figure represents progress from onecurrent-search-stateto the

DRAFT
Section 2.2. Finite-State Automata 21

b a a a !

q0

b a a a !

q0 q1

b a a a !

q1 q2

b a a a !

q4

b a a a !

q3

b a a a !

q2 q3

b a a a !

q2

b a a a !

q3

1

2

3

4

5

6

7

8

Figure 2.22 Tracing the execution of NFSA #1 (Fig. 2.18) on some sheeptalk.

next.
Little of interest happens until the algorithm finds itself in stateq2 while looking at

the second a on the tape. An examination of the entry for transition-table[q2,a] returns
bothq2 andq3. Search states are created for each of these choices and placed on the
agenda. Unfortunately, our algorithm chooses to move to state q3, a move that results
in neither an accept state nor any new states since the entry for transition-table[q3, a]
is empty. At this point, the algorithm simply asks the agendafor a new state to pursue.
Since the choice of returning toq2 fromq2 is the only unexamined choice on the agenda
it is returned with the tape pointer advanced to the next a. Somewhat diabolically,ND-
RECOGNIZEfinds itself faced with the same choice. The entry for transition-table[q2,a]
still indicates that looping back toq2 or advancing toq3 are valid choices. As before,
states representing both are placed on the agenda. These search states are not the same
as the previous ones since their tape index values have advanced. This time the agenda
provides the move toq3 as the next move. The move toq4, and success, is then uniquely
determined by the tape and the transition-table.

DRAFT

22 Chapter 2. Regular Expressions and Automata

2.2.6 Recognition as Search

ND-RECOGNIZEaccomplishes the task of recognizing strings in a regular language by
providing a way to systematically explore all the possible paths through a machine. If
this exploration yields a path ending in an accept state, it accepts the string, otherwise
it rejects it. This systematic exploration is made possibleby the agenda mechanism,
which on each iteration selects a partial path to explore andkeeps track of any remain-
ing, as yet unexplored, partial paths.

Algorithms such asND-RECOGNIZE, which operate by systematically searching
for solutions, are known asstate-space searchalgorithms. In such algorithms, theSTATESPACE

SEARCH

problem definition creates a space of possible solutions; the goal is to explore this
space, returning an answer when one is found or rejecting theinput when the space
has been exhaustively explored. InND-RECOGNIZE, search states consist of pairings
of machine-states with positions on the input tape. The state-space consists of all the
pairings of machine-state and tape positions that are possible given the machine in
question. The goal of the search is to navigate through this space from one state to
another looking for a pairing of an accept state with an end oftape position.

The key to the effectiveness of such programs is often theorder in which the states
in the space are considered. A poor ordering of states may lead to the examination of
a large number of unfruitful states before a successful solution is discovered. Unfortu-
nately, it is typically not possible to tell a good choice from a bad one, and often the
best we can do is to insure that each possible solution is eventually considered.

Careful readers may have noticed that the ordering of statesin ND-RECOGNIZEhas
been left unspecified. We know only that unexplored states are added to the agenda
as they are created and that the (undefined) function NEXT returns an unexplored state
from the agenda when asked. How should the function NEXT be defined? Consider
an ordering strategy where the states that are considered next are the most recently
created ones. Such a policy can be implemented by placing newly created states at the
front of the agenda and having NEXT return the state at the front of the agenda when
called. Thus the agenda is implemented by astack. This is commonly referred to as a
depth-first searchor Last In First Out (LIFO) strategy.DEPTHFIRST

Such a strategy dives into the search space following newly developed leads as
they are generated. It will only return to consider earlier options when progress along
a current lead has been blocked. The trace of the execution ofND-RECOGNIZEon the
stringbaaa! as shown in Fig. 2.22 illustrates a depth-first search. The algorithm hits
the first choice point after seeingba when it has to decide whether to stay inq2 or
advance to stateq3. At this point, it chooses one alternative and follows it until it is
sure it’s wrong. The algorithm then backs up and tries another older alternative.

Depth first strategies have one major pitfall: under certaincircumstances they can
enter an infinite loop. This is possible either if the search space happens to be set
up in such a way that a search-state can be accidentally re-visited, or if there are an
infinite number of search states. We will revisit this question when we turn to more
complicated search problems in parsing in Ch. 13.

The second way to order the states in the search space is to consider states in the
order in which they are created. Such a policy can be implemented by placing newly
created states at the back of the agenda and still have NEXT return the state at the

DRAFT
Section 2.2. Finite-State Automata 23

front of the agenda. Thus the agenda is implemented via aqueue. This is commonly
referred to as abreadth-first searchor First In First Out (FIFO) strategy. ConsiderBREADTHFIRST

a different trace of the execution ofND-RECOGNIZEon the stringbaaa! as shown in
Fig. 2.23. Again, the algorithm hits its first choice point after seeingba when it had to
decide whether to stay inq2 or advance to stateq3. But now rather than picking one
choice and following it up, we imagine examining all possible choices, expanding one
ply of the search tree at a time.

b a a a !

q0

b a a a !

q0 q1

b a a a !

q1 q2

b a a a !

q4

b a a a !

q3

b a a a !

q2 q3

b a a a !

q2

b a a a !

q3

1

2

3

4

5

4

5

6

b a a a !

q2

5

Figure 2.23 A breadth-first trace of FSA #1 on some sheeptalk.

Like depth-first search, breadth-first search has its pitfalls. As with depth-first if
the state-space is infinite, the search may never terminate.More importantly, due to
growth in the size of the agenda if the state-space is even moderately large, the search
may require an impractically large amount of memory. For small problems, either
depth-first or breadth-first search strategies may be adequate, although depth-first is
normally preferred for its more efficient use of memory. For larger problems, more
complex search techniques such asdynamic programming or A∗ must be used, as we
will see in Chapters 7 and 10.

2.2.7 Relating Deterministic and Non-Deterministic Automata

It may seem that allowing NFSAs to have non-deterministic features likeε-transitions
would make them more powerful than DFSAs. In fact this is not the case; for any
NFSA, there is an exactly equivalent DFSA. In fact there is a simple algorithm for

DRAFT

24 Chapter 2. Regular Expressions and Automata

converting an NFSA to an equivalent DFSA, although the number of states in this
equivalent deterministic automaton may be much larger. SeeLewis and Papadimitriou
(1988) or Hopcroft and Ullman (1979) for the proof of the correspondence. The basic
intuition of the proof is worth mentioning, however, and builds on the way NFSAs parse
their input. Recall that the difference between NFSAs and DFSAs is that in an NFSA
a stateqi may have more than one possible next state given an inputi (for example
qa andqb). The algorithm in Figure 2.21 dealt with this problem by choosing either
qa or qb and thenbacktrackingif the choice turned out to be wrong. We mentioned
that a parallel version of the algorithm would follow both paths (towardqa andqb)
simultaneously.

The algorithm for converting a NFSA to a DFSA is like this parallel algorithm; we
build an automaton that has a deterministic path for every path our parallel recognizer
might have followed in the search space. We imagine following both paths simultane-
ously, and group together into an equivalence class all the states we reach on the same
input symbol (i.e.,qa andqb). We now give a new state label to this new equivalence
class state (for exampleqab). We continue doing this for every possible input for every
possible group of states. The resulting DFSA can have as manystates as there are dis-
tinct sets of states in the original NFSA. The number of different subsets of a set with
N elements is 2N, hence the new DFSA can have as many as 2N states.

2.3 REGULAR LANGUAGES AND FSAS

As we suggested above, the class of languages that are definable by regular expressions
is exactly the same as the class of languages that are characterizable by finite-state
automata (whether deterministic or non-deterministic). Because of this, we call these
languages theregular languages. In order to give a formal definition of the class ofREGULAR

LANGUAGES

regular languages, we need to refer back to two earlier concepts: the alphabetΣ, which
is the set of all symbols in the language, and theempty stringε, which is conventionally
not included inΣ. In addition, we make reference to theempty set/0 (which is distinct
fromε). The class of regular languages (orregular sets) overΣ is then formally defined
as follows:1

1. /0 is a regular language
2. ∀a∈ Σ∪ ε, {a} is a regular language
3. If L1 andL2 are regular languages, then so are:

(a) L1 · L2 = {xy|x∈ L1,y∈ L2}, theconcatenationof L1 andL2

(b) L1∪L2, theunion or disjunction of L1andL2

(c) L∗1, theKleene closureof L1

Only languages which meet the above properties are regular languages. Since the
regular languages are the languages characterizable by regular expressions, all the reg-
ular expression operators introduced in this chapter (except memory) can be imple-
mented by the three operations which define regular languages: concatenation, dis-
junction/union (also called “|”), and Kleene closure. For example all the counters (* ,+,

1 Following van Santen and Sproat (1998), Kaplan and Kay (1994), and Lewis and Papadimitriou (1988).

DRAFT

Section 2.3. Regular Languages and FSAs 25

{n,m}) are just a special case of repetition plus Kleene *. All the anchors can be
thought of as individual special symbols. The square braces[] are a kind of disjunc-
tion (i.e.,[ab] means “a or b”, or the disjunction ofa andb). Thus it is true that any
regular expression can be turned into a (perhaps larger) expression which only makes
use of the three primitive operations.

Regular languages are also closed under the following operations (Σ∗ means the
infinite set of all possible strings formed from the alphabetΣ):

• intersection: if L1 andL2 are regular languages, then so isL1∩L2, the language
consisting of the set of strings that are in bothL1 andL2.
• difference: if L1 andL2 are regular languages, then so isL1−L2, the language

consisting of the set of strings that are inL1 but notL2.
• complementation: If L1 is a regular language, then so isΣ∗−L1, the set of all

possible strings that aren’t inL1.
• reversal: If L1 is a regular language, then so isLR

1 , the language consisting of
the set of reversals of all the strings inL1.

The proof that regular expressions are equivalent to finite-state automata can be
found in Hopcroft and Ullman (1979), and has two parts: showing that an automaton
can be built for each regular language, and conversely that aregular language can be
built for each automaton.

We won’t give the proof, but we give the intuition by showing how to do the first
part: take any regular expression and build an automaton from it. The intuition is
inductive on the number of operators: for the base case we build an automaton to
correspond to the regular expressions with no operators, i.e. the regular expressions/0,
ε, or any single symbola∈ Σ. Fig. 2.24 shows the automata for these three base cases.

(a) r=ε

q0 qf q0 qf q0 qf

(b) r=∅ (c) r=a

a

Figure 2.24 Automata for the base case (no operators) for the induction showing that
any regular expression can be turned into an equivalent automaton.

Now for the inductive step, we show that each of the primitiveoperations of a
regular expression (concatenation, union, closure) can beimitated by an automaton:

• concatenation: We just string two FSAs next to each other by connecting all the
final states of FSA1 to the initial state of FSA2 by anε-transition.
• closure: We create a new final and initial state, connect the originalfinal states

of the FSA back to the initial states byε-transitions (this implements the rep-
etition part of the Kleene *), and then put direct links between the new initial
and final states byε-transitions (this implements the possibility of havingzero
occurrences). We’d leave out this last part to implement Kleene-plus instead.
• union: We add a single new initial stateq′0, and add newε-transitions from it to

the former initial states of the two machines to be joined.

DRAFT

26 Chapter 2. Regular Expressions and Automata

q0

qf q0 qf

ε

FSA1
FSA2

Figure 2.25 The concatenation of two FSAs.

q0 qfq0 qf

ε

FSA1

ε ε

Figure 2.26 The closure (Kleene *) of an FSA.

q0

qf

q0 qf

ε

FSA1

FSA2

q0 qf

ε

ε ε

Figure 2.27 The union (|) of two FSAs.

We will return to regular languages and their relationship to regular grammars in Ch. 15.

DRAFT

Section 2.4. Summary 27

2.4 SUMMARY

This chapter introduced the most important fundamental concept in language process-
ing, thefinite automaton, and the practical tool based on automaton, theregular ex-
pression. Here’s a summary of the main points we covered about these ideas:

• Theregular expressionlanguage is a powerful tool for pattern-matching.

• Basic operations in regular expressions includeconcatenationof symbols,dis-
junction of symbols ([] , | , and.), counters(* , +, and{n,m}), anchors (ˆ ,
$) and precedence operators ((,)).

• Any regular expression can be realized as afinite state automaton(FSA).

• Memory (\1 together with()) is an advanced operation that is often considered
part of regular expressions, but which cannot be realized asa finite automaton.

• An automaton implicitly defines aformal language as the set of strings the
automatonaccepts.
• An automaton can use any set of symbols for its vocabulary, including letters,

words, or even graphic images.

• The behavior of adeterministic automaton (DFSA) is fully determined by the
state it is in.

• A non-deterministic automaton (NFSA) sometimes has to make a choice be-
tween multiple paths to take given the same current state andnext input.

• Any NFSA can be converted to aDFSA.

• The order in which aNFSA chooses the next state to explore on the agenda de-
fines itssearch strategy. Thedepth-first searchor LIFO strategy corresponds
to the agenda-as-stack; thebreadth-first search or FIFO strategy corresponds
to the agenda-as-queue.

• Any regular expression can be automatically compiled into aNFSA and hence
into aFSA.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Finite automata arose in the 1950s out of Turing’s (1936) model of algorithmic com-
putation, considered by many to be the foundation of modern computer science. The
Turing machine was an abstract machine with a finite control and an input/output tape.
In one move, the Turing machine could read a symbol on the tape, write a different
symbol on the tape, change state, and move left or right. Thusthe Turing machine
differs from a finite-state automaton mainly in its ability to change the symbols on its
tape.

Inspired by Turing’s work, McCulloch and Pitts built an automata-like model of
the neuron (see von Neumann, 1963, p. 319). Their model, which is now usually
called theMcCulloch-Pitts neuron (McCulloch and Pitts, 1943), was a simplifiedMCCULLOCHPITTS

NEURON

model of the neuron as a kind of “computing element” that could be described in terms

DRAFT

28 Chapter 2. Regular Expressions and Automata

of propositional logic. The model was a binary device, at anypoint either active or
not, which took excitatory and inhibitatory input from other neurons and fired if its
activation passed some fixed threshold. Based on the McCulloch-Pitts neuron, Kleene
(1951) and (1956) defined the finite automaton and regular expressions, and proved
their equivalence. Non-deterministic automata were introduced by Rabin and Scott
(1959), who also proved them equivalent to deterministic ones.

Ken Thompson was one of the first to build regular expressionscompilers into edi-
tors for text searching (Thompson, 1968). His editoredincluded a command “g/regular
expression/p”, or Global Regular Expression Print, which later became the UNIX
grep utility.

There are many general-purpose introductions to the mathematics underlying au-
tomata theory, such as Hopcroft and Ullman (1979) and Lewis and Papadimitriou
(1988). These cover the mathematical foundations of the simple automata of this chap-
ter, as well as the finite-state transducers of Ch. 3, the context-free grammars of Ch. 12,
and the Chomsky hierarchy of Ch. 15. Friedl (1997) is a very useful comprehensive
guide to the advanced use of regular expressions.

The metaphor of problem-solving as search is basic to Artificial Intelligence (AI);
more details on search can be found in any AI textbook such as Russell and Norvig
(2002).

EXERCISES

2.1 Write regular expressions for the following languages: Youmay use either Perl
notation or the minimal “algebraic” notation of Sec. 2.3, but make sure to say which
one you are using. By “word”, we mean an alphabetic string separated from other
words by white space, any relevant punctuation, line breaks, and so forth.

a. the set of all alphabetic strings.

b. the set of all lowercase alphabetic strings ending in ab.

c. the set of all strings with two consecutive repeated words (e.g., “Humbert Hum-
bert” and “the the” but not “the bug” or “the big bug”).

d. the set of all strings from the alphabeta,b such that eacha is immediately pre-
ceded and immediately followed by ab.

e. all strings which start at the beginning of the line with an integer (i.e., 1,2,3,...,10,...,10000,...)
and which end at the end of the line with a word.

f. all strings which have both the wordgrottoand the wordravenin them. (but not,
for example, words likegrottosthat merelycontainthe wordgrotto).

g. write a pattern which places the first word of an English sentence in a register.
Deal with punctuation.

DRAFT

Section 2.4. Summary 29

2.2 Implement an ELIZA-like program, using substitutions suchas those described
on page 10. You may choose a different domain than a Rogerian psychologist, if you
wish, although keep in mind that you would need a domain in which your program can
legitimately do a lot of simple repeating-back.

2.3 Complete the FSA for English money expressions in Fig. 2.16 as suggested in the
text following the figure. You should handle amounts up to $100,000, and make sure
that “cent” and “dollar” have the proper plural endings whenappropriate.

2.4 Design an FSA that recognizes simple date expressions likeMarch 15, the 22nd
of November, Christmas. You should try to include all such “absolute” dates, (e.g. not
“deictic” ones relative to the current day likethe day before yesterday). Each edge of
the graph should have a word or a set of words on it. You should use some sort of
shorthand for classes of words to avoid drawing too many arcs(e.g., furniture→ desk,
chair, table).

2.5 Now extend your date FSA to handle deictic expressions likeyesterday, tomor-
row, a week from tomorrow, the day before yesterday, Sunday, next Monday, three
weeks from Saturday.

2.6 Write an FSA for time-of-day expressions likeeleven o’clock, twelve-thirty, mid-
night, or a quarter to tenand others.

2.7 (Due to Pauline Welby; this problem probably requires the ability to knit.) Write
a regular expression (or draw an FSA) which matches all knitting patterns for scarves
with the following specification:32 stitches wide, K1P1 ribbing on both ends, stock-
inette stitch body, exactly two raised stripes. All knitting patterns must include a cast-
on row (to put the correct number of stitches on the needle) and a bind-off row (to
end the pattern and prevent unraveling). Here’s a sample pattern for one possible scarf
matching the above description:2

1. Cast on 32 stitches. cast on; puts stitches on needle
2. K1 P1 across row (i.e. do (K1 P1) 16 times).K1P1 ribbing
3. Repeat instruction 2 seven more times. adds length
4. K32, P32. stockinette stitch
5. Repeat instruction 4 an additional 13 times.adds length
6. P32, P32. raised stripe stitch
7. K32, P32. stockinette stitch
8. Repeat instruction 7 an additional 251 times.adds length
9. P32, P32. raised stripe stitch

10. K32, P32. stockinette stitch
11. Repeat instruction 10 an additional 13 times.adds length
12. K1 P1 across row. K1P1 ribbing
13. Repeat instruction 12 an additional 7 times.adds length
14. Bind off 32 stitches. binds off row: ends pattern

2 Knit andpurl are two different types of stitches. The notation Kn means don knit stitches. Similarly for
purl stitches. Ribbing has a striped texture—most sweatershave ribbing at the sleeves, bottom, and neck.
Stockinette stitch is a series of knit and purl rows that produces a plain pattern— socks or stockings are knit
with this basic pattern, hence the name.

DRAFT

30 Chapter 2. Regular Expressions and Automata

2.8 Write a regular expression for the language accepted by the NFSA in Fig. 2.28.

q3q0 q1 q2

a b a

b
a

Figure 2.28 A mystery language

2.9 Currently the functionD-RECOGNIZE in Fig. 2.13 only solves a subpart of the
important problem of finding a string in some text. Extend thealgorithm to solve
the following two deficiencies: (1)D-RECOGNIZEcurrently assumes that it is already
pointing at the string to be checked, and (2)D-RECOGNIZEfails if the string it is point-
ing includes as a proper substring a legal string for the FSA.That is,D-RECOGNIZE

fails if there is an extra character at the end of the string.

2.10 Give an algorithm for negating a deterministic FSA. The negation of an FSA
accepts exactly the set of strings that the original FSA rejects (over the same alphabet),
and rejects all the strings that the original FSA accepts.

2.11 Why doesn’t your previous algorithm work with NFSAs? Now extend your
algorithm to negate an NFSA.

DRAFT

Section 2.4. Summary 31

Friedl, J. E. F. (1997).Master Regular Expressions. O’Reilly.

Hopcroft, J. E. and Ullman, J. D. (1979).Introduction to
Automata Theory, Languages, and Computation. Addison-
Wesley, Reading, MA.

Kaplan, R. M. and Kay, M. (1994). Regular models of phono-
logical rule systems.Computational Linguistics, 20(3), 331–
378.

Kleene, S. C. (1951). Representation of events in nerve nets
and finite automata. Tech. rep. RM-704, RAND Corporation.
RAND Research Memorandum†.

Kleene, S. C. (1956). Representation of events in nerve netsand
finite automata. In Shannon, C. and McCarthy, J. (Eds.),Au-
tomata Studies, pp. 3–41. Princeton University Press, Prince-
ton, NJ.

Lewis, H. and Papadimitriou, C. (1988).Elements of the Theory
of Computation. Prentice-Hall. Second edition.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of
ideas immanent in nervous activity.Bulletin of Mathematical
Biophysics, 5, 115–133. Reprinted inNeurocomputing: Foun-
dations of Research, ed. by J. A. Anderson and E Rosenfeld.
MIT Press 1988.

Rabin, M. O. and Scott, D. (1959). Finite automata and their de-
cision problems.IBM Journal of Research and Development,
3(2), 114–125.

Russell, S. and Norvig, P. (2002).Artificial Intelligence: A
Modern Approach. Prentice Hall. Second edition.

Thompson, K. (1968). Regular expression search algorithm.
Communications of the ACM, 11(6), 419–422.

Turing, A. M. (1936). On computable numbers, with an ap-
plication to the Entscheidungsproblem.Proceedings of the
London Mathematical Society, 42, 230–265. Read to the So-
ciety in 1936, but published in 1937. Correction in volume 43,
544–546.

van Santen, J. P. H. and Sproat, R. (1998). Methods and tools.In
Sproat, R. (Ed.),Multilingual Text-To-Speech Synthesis: The
Bell Labs Approach, pp. 7–30. Kluwer, Dordrecht.

von Neumann, J. (1963).Collected Works: Volume V. Macmil-
lan Company, New York.

Weizenbaum, J. (1966). ELIZA – A computer program for the
study of natural language communication between man and
machine.Communications of the ACM, 9(1), 36–45.

