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REGULAR EXPRESSIONS
2 AND AUTOMATA

User;: Men are all alike.

ELIZA;: IN WHAT WAY

Usen: They're always bugging us about something or other.
ELIZAx: CAN YOU THINK OF A SPECIFIC EXAMPLE

User: Well, my boyfriend made me come here.

ELIZAs: YOUR BOYFRIEND MADE YOU COME HERE
User: He says I'm depressed much of the time.

ELIZAs: 1| AM SORRY TO HEAR YOU ARE DEPRESSED.

Weizenbaum (1966)

Imagine that you have become a passionate fan of woodchDels&ing more in-
formation on this celebrated woodland creature, you tugrota favorite Web browser
and type inwoodchuck Your browser returns a few sites. You have a flash of inspira-
tion and type invoodchucksThis time you discover “interesting links to woodchucks
and lemurs” and “all about Vermont’s unique, endangeredisgt Instead of having
to do this search twice, you would have rather typed one keasmmand specify-
ing something likewoodchuck with an optional final SOr perhaps you might want
to search for all the prices in some document; you might warsee all strings that
look like $1990r $25 or $24.99 In this chapter we introduce tliegular expression
the standard notation for characterizing text sequendesrdgular expression is used
for specifying text strings in situations like this Web-sgaexample, and in other in-
formation retrieval applications, but also plays an impanttrole in word-processing,
computation of frequencies from corpora, and other sudtstas

After we have defined regular expressions, we show how theypeamplemented
via thefinite-state automaton The finite-state automaton is not only the mathemati-
cal device used to implement regular expressions, but alsmbthe most significant
tools of computational linguistics. Variations of automauch as finite-state trans-
ducers, Hidden Markov Models, amdigram grammars are important components of
applications that we will introduce in later chapters, irdihg speech recognition and
synthesis, machine translation, spell-checking, andinéion-extraction.
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Chapter 2. Regular Expressions and Automata

2.1 REGULAR EXPRESSIONS

REGULAR
EXPRESSION

STRINGS

CORPUS

SIR ANDREW: Her C’s, her U's and her T's: why that?
Shakespear@welfth Night

One of the unsung successes in standardization in compuiégrice has been the
regular expression(RE), a language for specifying text search strings. The regula
expression languages used for searching texts in UNIX @il, Emacs, grep), Mi-
crosoft Word (version 6 and beyond), and WordPerfect ar@stiidentical, and many
RE features exist in the various Web search engines. Be8itepractical use, the
regular expression is an important theoretical tool thhmug computer science and
linguistics.

A regular expression (first developed by Kleene (1956) bettse History section
for more details) is a formula in a special language that éxlder specifying simple
classes oftrings. A string is a sequence of symbols; for the purpose of mogst tex
based search techniques, a string is any sequence of atpkanwharacters (letters,
numbers, spaces, tabs, and punctuation). For these psraagace is just a character
like any other, and we represent it with the sympol

Formally, a regular expression is an algebraic notatiorcFaracterizing a set of
strings. Thus they can be used to specify search stringslesste define alanguage in
aformal way. We will begin by talking about regular expressias a way of specifying
searches in texts, and proceed to other uses. Section 2:& $hat the use of just
three regular expression operators is sufficient to charaet strings, but we use the
more convenient and commonly-used regular expressioms\yaitthe Perl language
throughout this section. Since common text-processingraras agree on most of the
syntax of regular expressions, most of what we say extendd tdNIX, Microsoft
Word, and WordPerfect regular expressions. Appendix A shibve few areas where
these programs differ from the Perl syntax.

Regular expression search requirgeaétern that we want to search for, andtar-
pusof texts to search through. A regular expression searchibtmwill search through
the corpus returning all texts that contain the pattern.nlindormation retrieval (IR)
system such as a Web search engine, the texts might be estirenénts or Web pages.
In a word-processor, the texts might be individual worddinas of a document. In the
rest of this chapter, we will use this last paradigm. Thusmive give a search pattern,
we will assume that the search engine returnditteeof the documeneturned. This is
what the UNIXgrep command does. We will underline the exact part of the pattern
that matches the regular expression. A search can be dddigneturn all matches to
a regular expression or only the first match. We will show dh#/first match.

2.1.1 Basic Regular Expression Patterns

The simplest kind of regular expression is a sequence oflsictaracters. For ex-
ample, to search fovoodchuckwe type/woodchuck/ . So the regular expression
/Buttercup/ matches any string containing the substridgttercup for example
the linel'm called little Buttercup (recall that we are assuming a search application
that returns entire lines). From here on we will put slasiesrad each regular expres-



Section 2.1.

Regular Expressions 3

RANGE

sion to make it clear what is a regular expression and whatpiat@rn. We use the
slash since this is the notation used by Perl, but the slasiee®t part of the regular
expressions.

The search string can consist of a single character (like) or a sequence of
characters (likéurgl/  ); Thefirstinstance of each match to the regular expression is
underlined below (although a given application might cleotmsreturn more than just
the first instance):

RE Example Patterns Matched

/woodchucks/ “interesting links to woodchuckand lemurs”
lal “Mary Ann stopped by Mona’s”

[Claire _says,/ |“Dagmar, my gift please,” Claire says,
/IDOROTHY/ “SURRENDER DOROTHY

" “You've left the burglar behind agaihsaid Nori

Regular expressions acase sensitivelowercasds/ is distinct from uppercase
IS/ (Is/ matches a lower casebut not an uppercas®). This means that the pattern
/woodchucks/  will not match the stringMoodchucksWe can solve this problem
with the use of the square bradesnd] . The string of characters inside the braces
specify adisjunction of characters to match. For example Fig. 2.1 shows that the
pattern/[wW]/ matches patterns containing eithreor W.

RE Match Example Patterns

/[wW]oodchuck/ Woodchuck or woodchugk “WoodchucK

/[abc]/ ‘a’,'b’, or‘c’ “In uomini, in solddi”

/[1234567890]/ any digit “plenty of 7to 5”
Figure 2.1  The use of the brackefl to specify a disjunction of characters.

The regular expressidfi234567890]/ specified any single digit. While classes
of characters like digits or letters are important buildimgcks in expressions, they can
get awkward (e.qg., it's inconvenient to specify

[[ABCDEFGHIJKLMNOPQRSTUVWXYZ])/
to mean “any capital letter”). In these cases the bracketbeaised with the dash
to specify any one character ir@ange. The patteri[2-5]/ specifies any one of the

characterg, 3, 4, or 5. The patterri[b-g]/ specifies one of the charactéxs, d, e,
f, org. Some other examples:

RE Match Example Patterns Matched

N[A-Z]/ an uppercase letter  “we should call it ‘Drenched Blossoms?’
l[a-z]/ a lowercase letter “my beans were impatient to be hoed!!
/[0-9]/ a single digit “Chapter 1 Down the Rabbit Hole”

Figure 2.2  The use of the brackeff plus the dash to specify a range.

The square braces can also be used to specify what a singkctdr@annotbe,
by use of the carét. If the caret” is the first symbol after the open square brpce
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KLEENE *

the resulting pattern is negated. For example, the pafffajd  matches any single

character (including special characters) exeefthis is only true when the caret is the
first symbol after the open square brace. If it occurs anya/eée, it usually stands
for a caret; Fig. 2.3 shows some examples.

RE Match (single characters) Example Patterns Matched
[CA-Z] not an uppercase letter “Oyfn pripetchik”
[(Ss] neither ‘S’ nor ‘s’ “|_have no exquisite reason forlt”
["\.] not a period “our resident Djinn”
[e7] either ‘e’ or *’ “look up~ now”
ab the patterna’™b ’ “look up a” bnow”

Figure 2.3  Uses of the carét for negation or just to meah .

The use of square braces solves our capitalization probdemvdodchucks But
we still haven’t answered our original question; how do wecsfy bothwoodchuck
andwoodchuckd We can't use the square brackets, because while they adldovaay
“s or S”, they don't allow us to say “s or nothing”. For this weeuthe question-mark
/?/ , which means “the preceding character or nothing”, as shiowag. 2.4.

RE Match Example Patterns Matched
woodchucks? woodchuck or woodchucks “woodchuck
colou?r color or colour “colour’

Figure 2.4  The question-marR marks optionality of the previous expression.

We can think of the question-mark as meaning “zero or onaitss of the previ-
ous character”. That s, it's a way of specifying how manyahgthing that we want.
So far we haven't needed to specify that we want more than 6seroething. But
sometimes we need regular expressions that allow repetitdthings. For example,
consider the language of (certain) sheep, which consissérioigs that look like the
following:

baal
baaa!
baaaa!
baaaaa!
baaaaaa!

This language consists of strings witlvaollowed by at least twas, followed by
an exclamation point. The set of operators that allow usydtsags like “some num-
ber ofas” are based on the asteriskxarcommonly called th&leene * (pronounced
“cleany star”). The Kleene star means “zero or more occegsof the immediately
previous character or regular expression”./&e/ means “any string of zero or more
as”. This will matcha or aaaaaabut it will also matchOff Minor, since the stringDff
Minor has zeraas. So the regular expression for matching one or nadee/aa */ ,
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meaning one followed by zero or mor@s. More complex patterns can also be re-
peated. Sd[ab] */ means “zero or moras orbs” (not “zero or more right square
braces”). This will match strings likeaaaor abababor bbbh

We now know enough to specify part of our regular expressopfices: multiple
digits. Recall that the regular expression for an individligit was/[0-9])/ . So the
regular expression for an integer (a string of digits)@s9][0-9] +/ . (Why isn't
it just/[0-9] */7)

Sometimes it's annoying to have to write the regular expoader digits twice, so
there is a shorter way to specify “at least one” of some cliarathis is theKleene +
which means “one or more of the previous character”. Thusxipeessior[0-9]+/
is the normal way to specify “a sequence of digits”. Theretlans two ways to specify
the sheep languag#oaaa *!/ or/baa+!/

One very important special character is the period (), a wildcard expression
that matches any single charactex¢ept carriage return):

RE Match Example Patterns
/beg.n/ any character betwedregandn begin beg'n begun

Figure 2.5 The use of the period to specify any character.

The wildcard is often used together with the Kleene star tami@any string of
characters”. For example suppose we want to find any line inlwdnparticular word,
for exampleaardvark appears twice. We can specify this with the regular exprass
laardvark.  xaardvark/

Anchors are special characters that anchor regular expressiorstioyar places
in a string. The most common anchors are the camatd the dollar-sig$. The caret
" matches the start of a line. The pattéiithe/ matches the wordheonly at the
start of a line. Thus there are three uses of the ¢ar& match the start of a line, as
a negation inside of square brackets, and just to mean a ¢wat are the contexts
that allow Perl to know which function a given caret is supgzb® have?) The dollar
sign$ matches the end of a line. So the pattefhis a useful pattern for matching
a space at the end of a line, afitthe dog\.$/ matches a line that contains only
the phras@’he dog.(We have to use the backslash here since we want tilemean
“period” and not the wildcard.)

There are also two other ancho¥s: matches a word boundary, whilB matches
a non-boundary. ThuBbthe\b/ matches the wordhe but not the wordother.
More technically, Perl defines a word as any sequence ofdigitderscores or letters;
this is based on the definition of “words” in programming laages like Perl or C. For
example/Ab99\b/  will match the string99 in There are 99 bottles of beer on the
wall (because 99 follows a space) but 8&tin There are 299 bottles of beer on the
wall (since 99 follows a number). But it will mat@®in $99 (since99follows a dollar
sign ($), which is not a digit, underscore, or letter).
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DISJUNCTION

PRECEDENCE

OPERATOR
PRECEDENCE

GREEDY

2.1.2 Disjunction, Grouping, and Precedence

Suppose we need to search for texts about pets; perhaps warticellarly interested
in cats and dogs. In such a case we might want to search far ¢fth stringcat or
the stringdog Since we can’t use the square-brackets to search for “agt(why
not?) we need a new operator, tfisjunction operator, also called th@pe symbol| .
The patterricat/dog/  matches either the strirgat or the stringdog .

Sometimes we need to use this disjunction operator in thestnoila larger se-
quence. For example, suppose | want to search for informatimut pet fish for my
cousin David. How can | specify bothuppyand guppie® We cannot simply say
/guppylies/  , because that would match only the strirgggopyandies. This is
because sequences ligappy takeprecedenceover the disjunction operatdr. In
order to make the disjunction operator apply only to a spepditern, we need to use
the parenthesis operatdrsaand) . Enclosing a pattern in parentheses makes it act like
a single character for the purposes of neighboring opeyditce the pipe| and the
Kleene:. So the patterigupp(y|ies)/ would specify that we meant the disjunc-
tion only to apply to the suffixeg andies .

The parenthesis operatéris also useful when we are using counters like the
Kleene-. Unlike the| operator, the Kleereoperator applies by default only to a
single character, not a whole sequence. Suppose we wantth nepeated instances
of a string. Perhaps we have a line that has column labelsedbiim Column 1 Col-
umn 2 Column 3 The expressiofColumn _[0-9]+ _*/ will not match any col-
umn; instead, it will match a column followed by any numbespéces! The star here
applies only to the spagethat precedes it, not the whole sequence. With the paren-
theses, we could write the expressi¢@olumn _[0-9]+ _ *)*/ to match the word
Column followed by a number and optional spaces, the whole pategaated any
number of times.

This idea that one operator may take precedence over anahairing us to some-
times use parentheses to specify what we mean, is formalizéueoperator prece-
dence hierarchyfor regular expressions. The following table gives the ofeRE
operator precedence, from highest precedence to lowestgeace:

Parenthesis 0

Counters * + ? {}
Sequences and anchorghe "my end$
Disjunction |

Thus, because counters have a higher precedence than eesuen
/the */ matchegheeeedut notthethe Because sequences have a higher precedence
than disjunction/the|any/ matchegheor anybut nottheny

Patterns can be ambiguous in another way. Consider thessipnda-z] =/
when matching against the teotice upon a timeSince/[a-z] */ matches zero or
more letters, this expression could match nothing, or hssfitst lettero, oron, orong
or once In these cases regular expressions always matclateststring they can;
we say that patterns ageeedy, expanding to cover as much of a string as they can.
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FALSE POSITIVES
FALSE NEGATIVES

2.1.3 A Simple Example

Suppose we wanted to write a RE to find cases of the Englistieditte. A simple (but
incorrect) pattern might be:

lthe/

One problem is that this pattern will miss the word when itihe@ sentence and
hence is capitalized (i.eThe). This might lead us to the following pattern:

N[tT]he/

But we will still incorrectly return texts witlihe embedded in other words (e.g.,
otheror theology. So we need to specify that we want instances with a word deryn
on both sides:

No[tT]he\b/

Suppose we wanted to do this without the usdlof ? We might want this since
N\b/ won't treat underscores and numbers as word boundariesjébatight want to
find thein some context where it might also have underlines or nusmbearby the.
or the25. We need to specify that we want instances in which theramam@phabetic
letters on either side of thae

I[a-zA-Z][tT]he[ a-zA-Z)/

But there is still one more problem with this pattern: it wiofind the wordthe
when it begins a line. This is because the regular expre$@erA-Z] , which we
used to avoid embeddeles, implies that there must be some single (although non-
alphabetic) character before ttiee . We can avoid this by specifying that before the
thewe requireeitherthe beginning-of-line or a non-alphabetic character, Aedsame
at the end of the line:

IC[["a-zA-Z))[tT]he(["a-zA-Z]|$)/

The process we just went through was based on fixing two kifiésrors: false
positives strings that we incorrectly matched lik¢heror therg andfalse negatives
strings that we incorrectly missed, likehe Addressing these two kinds of errors
comes up again and again in building and improving speecHaagliage processing
systems. Reducing the error rate for an application thushieg two antagonistic
efforts:

e Increasingaccuracy(minimizing false positives)
e Increasingcoverage(minimizing false negatives).

2.1.4 A More Complex Example

Let’s try out a more significant example of the power of REqse we want to build
an application to help a user buy a computer on the Web. Themight want “any PC
with more than 500 MHz and 32 Gb of disk space for less than @100 order to do
this kind of retrieval we will first need to be able to look foqpeessions likds00 MHz



Chapter 2. Regular Expressions and Automata

or 32 Gbor Compacgpr Mac or $999.99 In the rest of this section we’ll work out some
simple regular expressions for this task.

First, let's complete our regular expression for pricesreiea regular expression
for a dollar sign followed by a string of digits. Note that Fersmart enough to realize
that$ here doesn’'t mean end-of-line; how might it know that?

1$[0-9]+/

Now we just need to deal with fractions of dollars. We'll addeximal point and
two digits afterwards:

/$[0-9]+\.[0-9][0-9)/

This pattern only allow$199.9%ut not$199. We need to make the cents optional,
and make sure we're at a word boundary:

No$[0-9]+(\.[0-9][0-9]) 2\b/

How about specifications for processor speed (in megahevtElz or gigahertz =
GHz)? Here’s a pattern for that:

Nb[0-9]+  _*(MHz|[Mm]egahertz|GHz|[Ggligahertz)\b/

Note that we usé _*/ to mean “zero or more spaces”, since there might always
be extra spaces lying around. Dealing with disk space (in @lyabytes), or memory
size (in Mb = megabytes or Gb = gigabytes), we need to allovofitional gigabyte
fractions again%.5 GB. Note the use o? for making the finak optional:

Ab[0-9]+  _*(Mb|[Mm]egabytes?)\b/
N\b[0-9](\.[0-9]+)? _* (Gb|[Ggligabytes?)\b/

Finally, we might want some simple patterns to specify ofiegeasystems and ven-
dors:

Ab(Win95|Win98|WinNT|Windows _*(NT|95]|98|2000)?)\b/
N\b(Mac|Macintosh|Apple)\b/

2.1.5 Advanced Operators

RE| Expansion Match Example Patterns

\d [0-9] any digit Party of 5

\D [(0-9] any non-digit Blue_moon

\w [a-zA-Z0-9 ] any alphanumeric or underscare Daiyu

\W [(\w] a non-alphanumeric m

\s [ \n\t\n\f] whitespace (space, tab)

\S [\s] Non-whitespace in_Concord
Figure 2.6  Aliases for common sets of characters.
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NEWLINE

SUBSTITUTION

There are also some useful advanced regular expressioatoperFig. 2.6 shows
some useful aliases for common ranges, which can be usedyntaisave typing.
Besides the Kleene * and Kleene +, we can also use explicibeusmas counters, by
enclosing them in curly brackets. The regular expres§8ii  means “exactly 3
occurrences of the previous character or expression’aS@4}z/ will match a
followed by 24 dots followed by (but nota followed by 23 or 25 dots followed by a
2.

Arange of numbers can also be specified{sgm}/  specifies from nto m occur-
rences of the previous char or expression, wHitg}/ ~ means at least n occurrences
of the previous expression. REs for counting are summaiizEdyure 2.7.

RE Match

* zero or more occurrences of the previous char or expression

+ one or more occurrences of the previous char or expression

? exactly zero or one occurrence of the previous char or exjes

{n} n occurrences of the previous char or expression

{n,m} from n to moccurrences of the previous char or expression

{n} at leastn occurrences of the previous char or expression
Figure 2.7  Regular expression operators for counting.

Finally, certain special characters are referred to byiapaotation based on the
backslash\(). The most common of these are thewline charactein and thetab
characteit . To refer to characters that are special themselves (likg [ , and\ ),
precede them with a backslash, (i/, ,\ =/, N/ ,and\V ).

RE | Match Example Patterns Matched
\ an asterisk “*” “K* A*P*L*A*N”
\. a period “” “Dr. Livingston, | presume”

\? a question mark “Why don’t they come and lend a harid?
\n a newline
\t atab

Figure 2.8  Some characters that need to be backslashed.

The reader should consult Appendix A for further details efular expressions,
and especially for the differences between regular exjmes# Perl, UNIX, and Mi-
crosoft Word.

2.1.6 Regular Expression Substitution, Memory, and ELIZA

An important use of regular expressions isubstitutions. For example, the Perl sub-
stitution operatos/regexpl/pattern/ allows a string characterized by a regular
expression to be replaced by another string:

s/colour/color/



10

Chapter 2. Regular Expressions and Automata

REGISTERS

Itis often useful to be able to refer to a particular subpéite string matching the
first pattern. For example, suppose we wanted to put angt&étsaround all integers
in a text, changing e.gthe 35 boxeto the <35> boxes We'd like a way to refer back
to the integer we've found so that we can easily add the btack® do this, we put
parenthese§é and) around the first pattern, and use tgmber operatoAl in the
second pattern to refer back. Here’s how it looks:

S/([0-9]+)/<\1>/

The parenthesis and number operators can also be used tfy shat a certain
string or expression must occur twice in the text. For exayglppose we are looking
for the pattern “the Xer they were, the Xer they will be”, waere want to constrain the
two X’s to be the same string. We do this by surrounding theXingith the parenthesis
operator, and replacing the second X with the number opevhatoas follows:

Ithe (. =*)er they were, the \ler they will be/

Here thé\l will be replaced by whatever string matched the first itemareptheses.
So this will matchThe bigger they were, the bigger they will lnét notThe bigger they
were, the faster they will be

The number operator can be used with other numbers: if youhrtaio different
sets of parenthesi® means whatever matched tbecondset. For example

Ithe (. =*)er they (. =*), the \ler they \2/

will match The bigger they were, the bigger they wérg notThe bigger they were,
the bigger they will beThese numbered memories are calegisters(e.g. register 1,
register 2, register 3, etc). This memory feature is not petvery regular expression
language and is often considered an “extended” featuregolaeexpressions.

Substitutions using memory are very useful in implement@ngimple natural-
language understanding program like ELIZA (Weizenbaur6g)9Recall that ELIZA
simulated a Rogerian psychologist and could carry on caaiens with the user like
the following:

User: Men are all alike.

ELIZA1: IN WHAT WAY

Usep:  They're always bugging us about something or other.
ELIZA2: CAN YOU THINK OF A SPECIFIC EXAMPLE

User:  Well, my boyfriend made me come here.

ELIZA3: YOUR BOYFRIEND MADE YOU COME HERE
User: He says I'm depressed much of the time.

ELIZA4: | AM SORRY TO HEAR YOU ARE DEPRESSED.

Eliza worked by having a cascade of regular expression isutists that each
matched some part of the input lines and changed them. Thsubstitutions changed
all instances ofnyto YOUR andI’'m to YOU ARE and so on. The next set of substi-
tutions looked for relevant patterns in the input and crateappropriate output; here
are some examples:

s/. * YOU ARE (depressed|sad) . =/l AM SORRY TO HEAR YOU ARE \1/
s/. * YOU ARE (depressed|sad) . */WHY DO YOU THINK YOU ARE \1/
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s/. = all . *=/IN WHAT WAY/
s/. * always . */CAN YOU THINK OF A SPECIFIC EXAMPLE/

Since multiple substitutions could apply to a given inputhstitutions were as-
signed a rank and were applied in order. Creation of sucleettis addressed in
Exercise 2.2.

2.2 HNITE-STATE AUTOMATA

FINITE-STATE
AUTOMATON

FSA

REGULAR LANGUAGE

The regular expression is more than just a convenient nmgtatage for text searching.
First, a regular expression is one way of describirfjnide-state automaton(FSA).
Finite-state automata are the theoretical foundation afigleal of the computational
work we will describe in this book. Any regular expressiom ¢e implemented as a
finite-state automaton (except regular expressions tlethesmemory feature; more
on this later). Symmetrically, any finite-state automatan lbe described with a regular
expression. Second, a regular expression is one way ofatkézing a particular kind
of formal language called segular language Both regular expressions and finite-
state automata can be used to describe regular languagés.dAgquivalent method
of characterizing the regular languages, thgular grammar, will be introduced in
Ch. 15. The relation among these four theoretical constnistis sketched out in
Fig. 2.9.

finite
automata

regular
expressions

regular
languages

regular
grammars

Figure 2.9  Finite automata, regular expressions, and regular gramararall equiva-
lent ways of describing regular languages.

This section will begin by introducing finite-state automédr some of the regu-
lar expressions from the last section, and then suggest@mapping from regular
expressions to automata proceeds in general. Although wia béth their use for
implementing regular expressions, FSAs have a wide vaoityher uses that we will
explore in this chapter and the next.

2.2.1 Using an FSA to Recognize Sheeptalk

After a while, with the parrot’s help, the Doctor got to leaire language of the
animals so well that he could talk to them himself and undex$teverything
they said.
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AUTOMATON

STATES
START STATE

Hugh Lofting, The Story of Doctor Dolittle

Let's begin with the “sheep language” we discussed prelouRecall that we
defined the sheep language as any string from the follownfin{ie) set:

baa!
baaa!
baaaa!
baaaaa!
baaaaaal!

a
b _ a () !
(g2 (%)(%)(%)

Figure 2.10 A finite-state automaton for talking sheep.

a

The regular expression for this kind of “sheeptalk’/ima+!/ . Fig. 2.10 shows
an automaton for modeling this regular expression. The automaton (reagchine,
also calledfinite automaton, finite-state automaton or FSA) recognizes a set of
strings, in this case the strings characterizing sheepitathe same way that a regular
expression does. We represent the automaton as a direafgt grfinite set of vertices
(also called nodes), together with a set of directed linke/ben pairs of vertices called
arcs. We'll represent vertices with circles and arcs witbwas. The automaton has five
states, which are represented by nodes in the graph. State 0 &dhestate. In our
examples state O will generally be the start state; to maokien state as the start state
we can add an incoming arrow to the start state. State 4 inhlestate or accepting
state which we represent by the double circle. It also has foamsitions, which we
represent by arcs in the graph.

The FSA can be used for recognizing (we also&egepting strings in the follow-
ing way. First, think of the input as being written on a longaaroken up into cells,
with one symbol written in each cell of the tape, as in Fig12.1

9o

{lalblal!|b !

Figure 2.11 A tape with cells.

The machine starts in the start statg)( and iterates the following process: Check
the next letter of the input. If it matches the symbol on anlaaving the current
state, then cross that arc, move to the next state, and alsm@slone symbol in the
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input. If we are in the accepting statg) when we run out of input, the machine has

successfully recognized an instance of sheeptalk. If thehina never gets to the final

state, either because it runs out of input, or it gets sometithat doesn’t match an arc

(as in Fig. 2.11), or if it just happens to get stuck in some-fioal state, we say the
REJECTS machinerejectsor fails to accept an input.

STATE-TRANSITION We can also represent an automaton witliade-transition table. As in the graph
notation, the state-transition table represents the stat#, the accepting states, and
what transitions leave each state with which symbols. Idehe state-transition table
for the FSA of Figure 2.10.

Input
State|b a !
0 100
1 020
2 030
3 0 3 4
4: 00O

Figure 2.12 The state-transition table for the FSA of Figure 2.10.

We've marked state 4 with a colon to indicate that it's a fitates(you can have as
many final states as you want), and thimdicates an illegal or missing transition. We
can read the first row as “if we're in state 0 and we see the inpu¢ must go to state
1. If we're in state 0 and we see the ingubr !, we fail”.

More formally, a finite automaton is defined by the followingefparameters:

Q=0o010...0n-1  afinite set oiN states

> a finiteinput alphabet of symbols

do thestart state

F the set offinal states F C Q

0(q,i) the transition function or transition matrix be-

tween states. Given a stage= Q and an input
symboli € Z, 8(q,i) returns a new staig € Q. d
is thus a relation fron® x ~ to Q;

For the sheeptalk automaton in Fig. 2.1~ {qo,q1,02,03,04}, < = {a,b,!},
F = {04}, andd(q,i) is defined by the transition table in Fig. 2.12.

Figure 2.13 presents an algorithm for recognizing a strisiggia state-transition
table. The algorithm is called-RECOGNIzEfor “deterministic recognizer”. Aleter-

DETERMINISTIC ministic algorithm is one that has no choice points; the algorithmagiwknows what

to do for any input. The next section will introduce non-detmistic automata that
must make decisions about which states to move to.

D-RECOGNIzEtakes as input a tape and an automaton. It retacospif the string
it is pointing to on the tape is accepted by the automaton rejedt otherwise. Note
that sinceD-RECOGNIZEassumes it is already pointing at the string to be checked, it
task is only a subpart of the general problem that we oftemerpa@lar expressions for,
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finding a string in a corpus. (The general problem is left aexarcise to the reader in
Exercise 2.9.)

D-RECOGNIZEbegins by setting the variabiledexto the beginning of the tape, and
current-statdo the machine’s initial stat&-RECOGNIZEthen enters a loop that drives
the rest of the algorithm. It first checks whether it has reddhe end of its input. If
S0, it either accepts the input (if the current state is aepicstate) or rejects the input
(if not).

If there is input left on the tap®-RECOGNIZElIooks at the transition table to decide
which state to move to. The varialgarrent-statendicates which row of the table to
consult, while the current symbol on the tape indicates Wwisislumn of the table to
consult. The resulting transition-table cell is used toatpdhe variableurrent-state
andindexis incremented to move forward on the tape. If the transitabie cell is
empty then the machine has nowhere to go and must rejectghe in

function D-RECOGNIzKtape, machingreturns accept or reject

index— Beginning of tape
current-state— Initial state of machine
loop
if End of input has been reachtiten
if current-state is an accept stéten
return accept
else
return reject
elsif transition-table[current-state, tape[index] emptythen
return reject
else
current-state— transition-table[current-state,tape[index]]
index— index+ 1
end

Figure 2.13  An algorithm for deterministic recognition of FSAs. Thigatithm returns
acceptif the entire string it is pointing at is in the language defifgy the FSA, andeject
if the string is not in the language.

Figure 2.14 traces the execution of this algorithm on thegh&nguage FSA given
the sample input stringaaal

Jo)(d4)(d2)(93 Q3

ébaaa! f

Figure 2.14  Tracing the execution of FSA #1 on some sheeptalk.
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FAIL STATE

Before examining the beginning of the tape, the machine s¢ateqp. Finding ab
oninputtape, it changes to stateas indicated by the contentstedinsition-tablgqp,b]
in Fig. 2.12 on page 13. It then finds arand switches to statp, another puts it in
stateqs, a thirda leaves it in stat@s, where it reads the “!”, and switches to state
Since there is no more input, tlegnd of 1 nput condition at the beginning of the
loop is satisfied for the first time and the machine haltgsinStateq, is an accepting
state, and so the machine has accepted the dbda@! as a sentence in the sheep
language.

The algorithm will fail whenever there is no legal trangitior a given combination
of state and input. The inputbc will fail to be recognized since there is no legal
transition out of statgg on the inpug, (i.e., this entry of the transition table in Fig. 2.12
on page 13 has @). Even if the automaton had allowed an initalit would have
certainly failed orc, sincecisn’t even in the sheeptalk alphabet! We can think of these
“empty” elements in the table as if they all pointed at one ¢yt state, which we
might call thefail state or sink state In a sense then, we could view any machine with
empty transitiongs if we had augmented it with a fail state, and drawn in all theaextr
arcs, so we always had somewhere to go from any state on asyplgasput. Just for
completeness, Fig. 2.15 shows the FSA from Figure 2.10 Wéldil stategr filled in.

a
() !

Figure 2.15 Adding a fail state to Fig. 2.10.

2.2.2 Formal Languages

We can use the same graph in Fig. 2.10 as an automat@ef0ERATING sheeptalk.
If we do, we would say that the automaton starts at sigt@nd crosses arcs to new
states, printing out the symbols that label each arc it fedlowhen the automaton gets
to the final state it stops. Notice that at state 3, the automliaas to chose between
printing out al and going to state 4, or printing out arand returning to state 3. Let’s
say for now that we don't care how the machine makes this ecimaybe it flips a
coin. For now, we don't care which exact string of sheeptadkgenerate, as long as
it's a string captured by the regular expression for shdleptaove.

Formal Language: A model which can both generate and recognize all
and only the strings of a formal language acts dsfnitionof the formal
language.
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FORMAL LANGUAGE
ALPHABET

A formal languageis a set of strings, each string composed of symbols from a
finite symbol-set called anlphabet (the same alphabet used above for defining an
automaton!). The alphabet for the sheep language is thE sefa,b,!}. Given a
modelm (such as a particular FSA), we can ugen) to mean “the formal language
characterized by". So the formal language defined by our sheeptalk autonation
Fig. 2.10 (and Fig. 2.12) is the infinite set:

(2.1) L(m) = {bad,baad,baaad,baaaad,baaaaas,...}

The usefulness of an automaton for defining a language idtthah express an
infinite set (such as this one above) in a closed form. Forarajuages are not the
same asatural languages which are the kind of languages that real people speak.
In fact, a formal language may bear no resemblance at all gallanguage (e.g., a
formal language can be used to model the different statesofla machine). But we
often use a formal language to model part of a natural langusuch as parts of the
phonology, morphology, or syntax. The tegenerative grammaris sometimes used
in linguistics to mean a grammar of a formal language; thgioof the term is this use
of an automaton to define a language by generating all pessitihgs.

NATURAL
LANGUAGES

2.2.3 Another Example

In the previous examples our formal alphabet consisted tadre but we can also
have a higher level alphabet consisting of words. In this waycan write finite-state
automata that model facts about word combinations. For pigreuppose we wanted
to build an FSA that modeled the subpart of English dealinth wmounts of money.
Such a formal language would model the subset of Englishistimg of phrases like
ten centsthree dollars one dollar thirty-five centand so on.

We might break this down by first building just the automatoratcount for the
numbers from 1 to 99, since we’ll need them to deal with cefitp. 2.16 shows this.

twenty sixty

one

one eleven fifteen

two seven twelve sixteen
three e!ght thirteen seventeen
four nine fourteen  eighteen

nineteen

thirty seventy two seven

forty  eighty three eight

fifty ninety four nine
five

Figure 2.16  An FSA for the words for English numbers 1-99.

We could now adatentsanddollars to our automaton. Fig. 2.17 shows a simple
version of this, where we just made two copies of the automatd~ig. 2.16 and
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appended the wordsntsanddollars.

one  six

two  seven

three eight

four  nine

twenty sixty

ten sixty eleven  sixteen one  six ten sixty eleven  sixteen
twenty seventy twelve seventeen two seven twenty seventy twelve seventeen
thirty  eighty  thirteen eighteen three eight thirty eighty thirteen eighteen
forty ninety  fourteen nineteen four nine  forty ninety  fourteen nineteen

twenty sixty

thirty seventy thirty seventy
forty eighty three  eight forty eighty three  eight
fifty  ninety four nine fifty  ninety four nine
five five
Figure 2.17 FSA for the simple dollars and cents.

NON-DETERMINISTIC
NFSA

DFSA

E-TRANSITION

We would now need to add in the grammar for different amouhtiotiars; in-
cluding higher numbers likeundred thousand We'd also need to make sure that the
nouns likecentsanddollars are singular when appropriatene centone dollaj), and
plural when appropriatetgn centstwo dollarg. This is left as an exercise for the
reader (Exercise 2.3). We can think of the FSAs in Fig. 2.16Rig. 2.17 as simple
grammars of parts of English. We will return to grammar-tmy in Part 11 of this
book, particularly in Ch. 12.

2.2.4 Non-Deterministic FSAs

Let’s extend our discussion now to another class of FS#®1-deterministic FSAs
(or NFSAs). Consider the sheeptalk automaton in Figure 2.18, whkiahch like our
first automaton in Figure 2.10:

a
& @ @ @
Figure 2.18 A non-deterministic finite-state automaton for talking efh€NFSA #1).
Compare with the deterministic automaton in Fig. 2.10.

The only difference between this automaton and the prewvoogsis that here in
Figure 2.18 the self-loop is on state 2 instead of state 3.sidenusing this network
as an automaton for recognizing sheeptalk. When we gett® 3tif we see ama we
don’t know whether to remain in state 2 or go on to state 3. Aatia with decision
points like this are callecion-deterministic FSAs (or NFSAs). Recall by contrast
that Figure 2.10 specifieddeterministic automaton, i.e., one whose behavior during
recognition is fullydeterminedoy the state it is in and the symbol it is looking at. A
deterministic automaton can be referred to &-&A. That is not true for the machine
in Figure 2.18 (NFSA #1).

There is another common type of non-determinism, causeddsythat have no
symbols on them (callegttransitions). The automaton in Fig. 2.19 defines the exact
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BACKUP

LOOK-AHEAD

PARALLELISM

SEARCH-STATE

same language as the last one, or our first one, but it doethianwe-transition.
& @ @ -®
€

Figure 2.19  Another NFSA for the sheep language (NFSA #2). It differsifridFSA
#1 in Fig. 2.18 in having ae-transition.

We interpret this new arc as follows: If we are in state 3, wealowed to move
to state 2withoutlooking at the input, or advancing our input pointer. So thiso-
duces another kind of non-determinism — we might not knowtivaieto follow the
e-transition or the arc.

2.2.5 Using an NFSA to Accept Strings

If we want to know whether a string is an instance of sheemaltot, and if we use a
non-deterministic machine to recognize it, we might folline wrong arc and reject it
when we should have accepted it. That is, since there is rharedne choice at some
point, we might take the wrong choice. This problem of chdicaon-deterministic
models will come up again and again as we build computatiomalels, particularly
for parsing. There are three standaadutions to the problem of non-determinism

e Backup: Whenever we come to a choice point, we could potaakerto mark
where we were in the input, and what state the automaton wa$en if it turns
out that we took the wrong choice, we could back up and trytergiath.

e Look-ahead: We could look ahead in the input to help us decide which path to
take.

e Parallelism: Whenever we come to a choice point, we could look at every
alternative path in parallel.

We will focus here on the backup approach and defer discusdithe look-ahead
and parallelism approaches to later chapters.

The backup approach suggests that we should blithely matieehthat might
lead to deadends, knowing that we can always return to uaegbhlternative choices.
There are two keys to this approach: we need to remembeeadlltbrnatives for each
choice point, and we need to store sufficient informatiorudleach alternative so that
we can return to it when necessary. When a backup algoritlches a point in its
processing where no progress can be made (because it run$ ioput, or has no
legal transitions), it returns to a previous choice poietests one of the unexplored
alternatives, and continues from there. Applying this ootio our non-deterministic
recognizer, we need only remember two things for each clpmicd: the state, or node,
of the machine that we can go to and the corresponding positiche tape. We will
call the combination of the node and position #earch-stateof the recognition algo-
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Input
Statelb a ! ¢
0 10 00
1 02 00
2 0 2300
3 00 40
4: 00 00O
Figure 2.20  The transition table from NFSA #1 in Fig. 2.18.

rithm. To avoid confusion, we will refer to the state of theauaton (as opposed to the
state of the search) asn@de or amachine-state Figure 2.21 presents a recognition
algorithm based on this approach.

Before going on to describe the main part of this algorithra,slkiould note two
changes to the transition table that drives it. First, ineottd represent nodes that have
outgoinge-transitions, we add a negrcolumn to the transition table. If a node has
ane-transition, we list the destination node in theolumn for that node’s row. The
second addition is needed to account for multiple transitim different nodes from
the same input symbol. We let each cell entry consist of aoligtestination nodes
rather than a single node. Fig. 2.20 shows the transitide fabthe machine in Figure
2.18 (NFSA #1). While it has ne-transitions, it does show that in machine-stgie
the inputa can lead back tgy or on togs.

Fig. 2.21 shows the algorithm for using a non-determiniS8A to recognize an
input string. The functiombD-RECOGNIZE uUses the variablagendato keep track of
all the currently unexplored choices generated during these of processing. Each
choice (search state) is a tuple consisting of a node (sthte machine and a posi-
tion on the tape. The variabteirrent-search-stateepresents the branch choice being
currently explored.

ND-RECOGNIZE begins by creating an initial search-state and placing ithen
agenda. For now we don't specify what order the searchsstate placed on the
agenda. This search-state consists of the initial mac$tate- of the machine and a
pointer to the beginning of the tape. The functiobXT is then called to retrieve an
item from the agenda and assign it to the variaeent-search-state

As with D-RECOGNIZE, the first task of the main loop is to determine if the en-
tire contents of the tape have been successfully recognizéd is done via a call
to ACCEPTSTATE?, which returnsacceptif the current search-state contains both an
accepting machine-state and a pointer to the end of the tpee’re not done, the
machine generates a set of possible next steps by caliNERATENEW-STATES,
which creates search-states for &dlyansitions and any normal input-symbol transi-
tions from the transition table. All of these search-stajads are then added to the
current agenda.

Finally, we attempt to get a new search-state to process fnenagenda. If the
agenda is empty we've run out of options and have to rejecingng. Otherwise, an
unexplored option is selected and the loop continues.

It is important to understand whyD-RECOGNIZEreturns a value of reject only
when the agenda is found to be empty. Unlik&kECOGNIZE it does not return reject
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when it reaches the end of the tape in a non-accept mactate@t when it finds
itself unable to advance the tape from some machine-state iSTbecause, in the non-
deterministic case, such roadblocks only indicate faitlown a given path, not overall
failure. We can only be sure we can reject a string when aBipteschoices have been
examined and found lacking.

function ND-RECOGNIzHtape, machingreturns accept or reject

agenda— {(Initial state of machine, beginning of tage)
current-search-state- NExT(agenda
loop
if ACCEPFSTATE?(current-search-stajereturns trughen
return accept
else
agenda— agendaJ GENERATE-NEW-STATEScurrent-search-staje
if agendais emptythen
return reject
else
current-search-state- NExT(agenda
end

function GENERATE-NEW- STATEScurrent-statg returns a set of search-states

current-node— the node the current search-state is in
index— the point on the tape the current search-state is looking at
return a list of search states from transition table as follows:
(transition-table[current-node], index)
U
(transition-table[current-node, tape[index]], index 4 1

function ACCEPTFSTATE?(search-statgreturns true or false

current-node— the node search-state is in
index— the point on the tape search-state is looking at
if indexis at the end of the tapend current-nodes an accept state of machine
then
return true
else
return false

Figure 2.21  An algorithm for NFSA recognition. The wondodemeans a state of the
FSA, whilestateor search-stateneans “the state of the search process”, i.e., a combination
of nodeandtape-position

Figure 2.22 illustrates the progressnaf-RECOGNIZEaS it attempts to handle the
inputbaaa! . Each strip illustrates the state of the algorithm at a gpeimt in its
processing. Theurrent-search-statgariable is captured by the solid bubbles repre-
senting the machine-state along with the arrow represgptiogress on the tape. Each
strip lower down in the figure represents progress fromaueent-search-statto the
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8 {[blalafalt] [ [}

Figure 2.22  Tracing the execution of NFSA #1 (Fig. 2.18) on some shekptal

next.

Little of interest happens until the algorithm finds itselfstateq, while looking at
the second a on the tape. An examination of the entry foritrangablelg,,a] returns
bothg; andqgz. Search states are created for each of these choices ard plathe
agenda. Unfortunately, our algorithm chooses to move te gta a move that results
in neither an accept state nor any new states since the @nttyahsition-tablefs, aj
is empty. At this point, the algorithm simply asks the agefuda@ new state to pursue.
Since the choice of returning tp from g is the only unexamined choice on the agenda
it is returned with the tape pointer advanced to the next mxe®¢hat diabolicallynD-
RECOGNIZzEfinds itself faced with the same choice. The entry for tramsitablef,a]
still indicates that looping back tgy or advancing tays are valid choices. As before,
states representing both are placed on the agenda. Thesk sides are not the same
as the previous ones since their tape index values have eglvanhis time the agenda
provides the move tqs as the next move. The movedg, and success, is then uniquely
determined by the tape and the transition-table.
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STATE-SPACE
SEARCH

DEPTH-FIRST

2.2.6 Recognition as Search

ND-RECOGNIZEaccomplishes the task of recognizing strings in a reguteguage by
providing a way to systematically explore all the possitdéhg through a machine. If
this exploration yields a path ending in an accept statecépts the string, otherwise
it rejects it. This systematic exploration is made possilyléhe agenda mechanism,
which on each iteration selects a partial path to explorekaegs track of any remain-
ing, as yet unexplored, partial paths.

Algorithms such asND-RECOGNIZE which operate by systematically searching
for solutions, are known astate-space searckalgorithms. In such algorithms, the
problem definition creates a space of possible solutiors;gthal is to explore this
space, returning an answer when one is found or rejectingnihe when the space
has been exhaustively explored. ND-RECOGNIZE search states consist of pairings
of machine-states with positions on the input tape. Thestptice consists of all the
pairings of machine-state and tape positions that are lpesgiven the machine in
question. The goal of the search is to navigate through thases from one state to
another looking for a pairing of an accept state with an endj@é position.

The key to the effectiveness of such programs is oftemttierin which the states
in the space are considered. A poor ordering of states maytdethe examination of
a large number of unfruitful states before a successfutisolis discovered. Unfortu-
nately, it is typically not possible to tell a good choicerfra bad one, and often the
best we can do is to insure that each possible solution igeatynconsidered.

Careful readers may have noticed that the ordering of states-RECOGNIZEhas
been left unspecified. We know only that unexplored statesadded to the agenda
as they are created and that the (undefined) functiexmNeturns an unexplored state
from the agenda when asked. How should the functi@x™Nbe defined? Consider
an ordering strategy where the states that are considesechreethe most recently
created ones. Such a policy can be implemented by placinty megated states at the
front of the agenda and havingeXT return the state at the front of the agenda when
called. Thus the agenda is implemented Istack This is commonly referred to as a
depth-first searchor Last In First Out (LIFO ) strategy.

Such a strategy dives into the search space following needgldped leads as
they are generated. It will only return to consider earligtians when progress along
a current lead has been blocked. The trace of the executivp-®ECOGNIZEoN the
stringbaaa! as shown in Fig. 2.22 illustrates a depth-first search. Thersthm hits
the first choice point after seeirlza when it has to decide whether to stayds or
advance to statgz. At this point, it chooses one alternative and follows itilibtis
sure it's wrong. The algorithm then backs up and tries anatltker alternative.

Depth first strategies have one major pitfall: under cert&icumstances they can
enter an infinite loop. This is possible either if the seanghce happens to be set
up in such a way that a search-state can be accidentallysiteeii or if there are an
infinite number of search states. We will revisit this quastivhen we turn to more
complicated search problems in parsing in Ch. 13.

The second way to order the states in the search space isd@epstates in the
order in which they are created. Such a policy can be implésdeoy placing newly
created states at the back of the agenda and still hauer Meturn the state at the
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BREADTH-FIRST

front of the agenda. Thus the agenda is implemented giaeaie This is commonly
referred to as areadth-first searchor First In First Out (FIFO) strategy. Consider
a different trace of the execution 8b-RECOGNIZEON the stringbaaa! as shown in
Fig. 2.23. Again, the algorithm hits its first choice poineafseeinda when it had to
decide whether to stay ig, or advance to statgs. But now rather than picking one
choice and following it up, we imagine examining all possibhoices, expanding one
ply of the search tree at a time.

1 ilelafafaft] [ |§
2 ilblafalaft] | [¢
e
3 ilblafalaft] | [¢
¢
4 {[ofafala[t] [ [} 4 ilofafafalr] | |¢
a a
5 {[ofafalalt] | [{ 5 {[blalalalt] [ [ 5 T[blafalalt] [ ]}
a
6 1|bfalalaft] [ ][]
Figure 2.23 A breadth-first trace of FSA #1 on some sheeptalk.

Like depth-first search, breadth-first search has its fstfahs with depth-first if
the state-space is infinite, the search may never termifdtee importantly, due to
growth in the size of the agenda if the state-space is everrataly large, the search
may require an impractically large amount of memory. For lsm@blems, either
depth-first or breadth-first search strategies may be atiegalshough depth-first is
normally preferred for its more efficient use of memory. Fangkr problems, more
complex search techniques suchdgaamic programming or A* must be used, as we
will see in Chapters 7 and 10.

2.2.7 Relating Deterministic and Non-Deterministic Autonata

It may seem that allowing NFSAs to have non-deterministitifees likee-transitions
would make them more powerful than DFSAs. In fact this is tat ¢ase; for any
NFSA, there is an exactly equivalent DFSA. In fact there isnapte algorithm for
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converting an NFSA to an equivalent DFSA, although the nunabestates in this
equivalent deterministic automaton may be much largerL8egs and Papadimitriou
(1988) or Hopcroft and Uliman (1979) for the proof of the aspondence. The basic
intuition of the proofis worth mentioning, however, andldaion the way NFSAs parse
their input. Recall that the difference between NFSAs an&ABs-is that in an NFSA

a stateg; may have more than one possible next state given an inffat example
Oa andqp). The algorithm in Figure 2.21 dealt with this problem by obimg either
0a Or gp and thenbacktrackingif the choice turned out to be wrong. We mentioned
that a parallel version of the algorithm would follow bothtips (towardgs and gp)
simultaneously.

The algorithm for converting a NFSA to a DFSA is like this dealaalgorithm; we
build an automaton that has a deterministic path for evetty par parallel recognizer
might have followed in the search space. We imagine follgwioth paths simultane-
ously, and group together into an equivalence class alltdieswe reach on the same
input symbol (i.e.gs andqy). We now give a new state label to this new equivalence
class state (for examptgy). We continue doing this for every possible input for every
possible group of states. The resulting DFSA can have as statgs as there are dis-
tinct sets of states in the original NFSA. The number of défe subsets of a set with
N elements is ?, hence the new DFSA can have as many"astates.

2.3 REGULAR LANGUAGES AND FSAs

REGULAR
LANGUAGES

As we suggested above, the class of languages that are detayaiegular expressions
is exactly the same as the class of languages that are abvdzabte by finite-state
automata (whether deterministic or non-deterministigc&use of this, we call these
languages theegular languages In order to give a formal definition of the class of
regular languages, we need to refer back to two earlier guscthe alphabef, which

is the set of all symbols in the language, andehwoty stringe, which is conventionally
not included inZ. In addition, we make reference to tampty se® (which is distinct
frome). The class of regular languages fegular setg overZ is then formally defined
as follows:*

1. Ois aregular language
2. Yae€ ZUg, {a} is aregular language
3. If Ly andL; are regular languages, then so are:

(@) L1 - Lo = {xy|x € L1,y € Ly}, theconcatenationof L; andL,
(b) L1 ULy, theunion or disjunction of LyandL;
(c) L%, theKleene closureof L

Only languages which meet the above properties are reguigubges. Since the
regular languages are the languages characterizable biaregpressions, all the reg-
ular expression operators introduced in this chapter (@xeemory) can be imple-
mented by the three operations which define regular languaggncatenation, dis-
junction/union (also called|”), and Kleene closure. For example all the counters (

1 Following van Santen and Sproat (1998), Kaplan and Kay (1,384 Lewis and Papadimitriou (1988).
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{n,m} ) are just a special case of repetition plus Kleene *. All theteors can be
thought of as individual special symbols. The square brfceare a kind of disjunc-
tion (i.e.,[ab] means &or b”, or the disjunction ofa andb). Thus it is true that any
regular expression can be turned into a (perhaps largergssion which only makes
use of the three primitive operations.

Regular languages are also closed under the following tipesa* means the
infinite set of all possible strings formed from the alphabet

e intersection: if L; andLy are regular languages, then s&.is1L,, the language
consisting of the set of strings that are in bathandL,.

o difference: if L; andL; are regular languages, then sd is— L, the language
consisting of the set of strings that arelinbut notL.

e complementation If L; is a regular language, then so2§— L1, the set of all
possible strings that aren’t Iy .

e reversal If Li is a regular language, then soU%, the language consisting of
the set of reversals of all the stringsLip.

The proof that regular expressions are equivalent to fstiéite automata can be
found in Hopcroft and Ullman (1979), and has two parts: singwhat an automaton
can be built for each regular language, and conversely thequaar language can be
built for each automaton.

We won't give the proof, but we give the intuition by showingwhto do the first
part: take any regular expression and build an automatan fto The intuition is
inductive on the number of operators: for the base case wd bui automaton to
correspond to the regular expressions with no operatershie regular expressiofs
g, or any single symba € 2. Fig. 2.24 shows the automata for these three base cases.

(a) r=€ (b) r=0& (c)r=a

Figure 2.24  Automata for the base case (no operators) for the inductiowisig that
any regular expression can be turned into an equivalentraitm.

Now for the inductive step, we show that each of the primitygerations of a
regular expression (concatenation, union, closure) camibated by an automaton:

e concatenation We just string two FSAs next to each other by connectinghall t
final states of FSAto the initial state of FSAby ane-transition.

e closure We create a new final and initial state, connect the oridinal states
of the FSA back to the initial states fytransitions (this implements the rep-
etition part of the Kleene *), and then put direct links bedweahe new initial
and final states bg-transitions (this implements the possibility of havirgro
occurrences). We’'d leave out this last part to implemeneKéplus instead.

e union: We add a single new initial statf, and add neve-transitions from it to
the former initial states of the two machines to be joined.
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Figure 2.27  The union () of two FSAs.

We will return to regular languages and their relationsbigggular grammarsin Ch. 15.
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2.4 SUMMARY

This chapter introduced the most important fundamentatephnin language process-
ing, thefinite automaton, and the practical tool based on automaton rédwailar ex-
pression Here’s a summary of the main points we covered about thesssid

e Theregular expressionlanguage is a powerful tool for pattern-matching.

e Basic operations in regular expressions includecatenationof symbols,dis-
junction of symbols[] , |, and. ), counters(*, +, and{n,m} ), anchors(",
$) and precedence operatofs)().

e Any regular expression can be realized dimiie state automaton(FSA).

e Memory (1 together with() ) is an advanced operation that is often considered
part of regular expressions, but which cannot be realizedfaste automaton.

e An automaton implicitly defines éormal language as the set of strings the
automatoraccepts

e An automaton can use any set of symbols for its vocabulacjidting letters,
words, or even graphic images.

e The behavior of aleterministic automatonDFSA) is fully determined by the
state it is in.

e A non-deterministic automaton lFSA) sometimes has to make a choice be-
tween multiple paths to take given the same current stat@extdnput.

e Any NFSA can be converted to@RFSA.

e The order in which &NFSA chooses the next state to explore on the agenda de-
fines itssearch strategy Thedepth-first searchor LIFO strategy corresponds
to the agenda-as-stack; theeadth-first search or FIFO strategy corresponds
to the agenda-as-queue.

e Any regular expression can be automatically compiled inldFSA and hence
into aFSA.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

MCCULLOCH-PITTS
NEURON

Finite automata arose in the 1950s out of Turing’s (1936) ehotlalgorithmic com-
putation, considered by many to be the foundation of modempuiter science. The
Turing machine was an abstract machine with a finite contrdlan input/output tape.
In one move, the Turing machine could read a symbol on the tapte a different
symbol on the tape, change state, and move left or right. Tei§uring machine
differs from a finite-state automaton mainly in its ability¢hange the symbols on its
tape.

Inspired by Turing’s work, McCulloch and Pitts built an anotata-like model of
the neuron (see von Neumann, 1963, p. 319). Their model,hnikimow usually
called theMcCulloch-Pitts neuron (McCulloch and Pitts, 1943), was a simplified
model of the neuron as a kind of “computing element” that ddod described in terms
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of propositional logic. The model was a binary device, at paint either active or

not, which took excitatory and inhibitatory input from otheeurons and fired if its

activation passed some fixed threshold. Based on the MatuRtts neuron, Kleene
(1951) and (1956) defined the finite automaton and regularessons, and proved
their equivalence. Non-deterministic automata were thiced by Rabin and Scott
(1959), who also proved them equivalent to deterministieson

Ken Thompson was one of the first to build regular expressiongpilers into edi-
tors for text searching (Thompson, 1968). His ed&dincluded a command “g/regular
expression/p”, or Global Regular Expression Print, whiated became the UNIX
grep utility.

There are many general-purpose introductions to the mattiesrunderlying au-
tomata theory, such as Hopcroft and Ullman (1979) and Lewi Rapadimitriou
(1988). These cover the mathematical foundations of thplsimutomata of this chap-
ter, as well as the finite-state transducers of Ch. 3, theegbifitee grammars of Ch. 12,
and the Chomsky hierarchy of Ch. 15. Friedl (1997) is a vesfulzomprehensive
guide to the advanced use of regular expressions.

The metaphor of problem-solving as search is basic to Asilflatelligence (Al);
more details on search can be found in any Al textbook suchuasé® and Norvig
(2002).

EXERCISES

2.1 Write regular expressions for the following languages: Yoay use either Perl
notation or the minimal “algebraic” notation of Sec. 2.3f make sure to say which
one you are using. By “word”, we mean an alphabetic stringassipd from other
words by white space, any relevant punctuation, line breaks so forth.

a. the set of all alphabetic strings.
b. the set of all lowercase alphabetic strings endinglin a

c. the set of all strings with two consecutive repeated woeds. ( “Humbert Hum-
bert” and “the the” but not “the bug” or “the big bug”).

d. the set of all strings from the alphal®b such that each is immediately pre-
ceded and immediately followed byba
e. all strings which start at the beginning of the line with ateger (i.e., 1,2,3,...,10,...,10000,...)
and which end at the end of the line with a word.
f. all strings which have both the wogtlotto and the wordavenin them. (but not,
for example, words likgrottosthat merelycontainthe wordgrotto).
g. write a pattern which places the first word of an English eece in a register.
Deal with punctuation.
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2.2 Implement an ELIZA-like program, using substitutions sashthose described
on page 10. You may choose a different domain than a Rogesiahplogist, if you
wish, although keep in mind that you would need a domain irctvlgpur program can
legitimately do a lot of simple repeating-back.

2.3 Complete the FSA for English money expressions in Fig. 2sl€iggested in the
text following the figure. You should handle amounts up to&Q00, and make sure
that “cent” and “dollar” have the proper plural endings wiag@propriate.

2.4 Design an FSA that recognizes simple date expression®lgeh 15 the 22nd
of NovemberChristmas You should try to include all such “absolute” dates, (e.@t n
“deictic” ones relative to the current day liltke day before yesterdpyEach edge of
the graph should have a word or a set of words on it. You shos#édsome sort of
shorthand for classes of words to avoid drawing too many(@&rgs, furniture— desk,
chair, table).

2.5 Now extend your date FSA to handle deictic expressionsylésterdaytomor-
row, a week from tomorrowthe day before yesterdagunday next Monday three
weeks from Saturday

2.6 Write an FSA for time-of-day expressions likeeven o’clocktwelve-thirty mid-
night, or a quarter to terand others.

2.7 (Due to Pauline Welby; this problem probably requires thiétgio knit.) Write

a regular expression (or draw an FSA) which matches allikgipatterns for scarves
with the following specification32 stitches wide, K1P1 ribbing on both ends, stock-
inette stitch body, exactly two raised stripésl knitting patterns must include a cast-
on row (to put the correct number of stitches on the needld)aabind-off row (to
end the pattern and prevent unraveling). Here's a samplerpdbr one possible scarf
matching the above descriptidn:

1. Cast on 32 stitches. cast on; puts stitches on needle
2. K1 P1 across row (i.e. do (K1 P1) 16 times1P1 ribbing
3. Repeat instruction 2 seven more times.  adds length
4, K32, P32. stockinette stitch
5. Repeat instruction 4 an additional 13 timesadds length
6. P32, P32. raised stripe stitch
7. K32, P32. stockinette stitch
8. Repeat instruction 7 an additional 251 timesdds length
9. P32, P32. raised stripe stitch
10. K32, P32. stockinette stitch
11. Repeat instruction 10 an additional 13 timeslds length
12. K1 P1 across row. K1P1 ribbing
13. Repeat instruction 12 an additional 7 timesdds length
14. Bind off 32 stitches. binds off row: ends pattern

2 Knit andpurl are two different types of stitches. The notation ileans da knit stitches. Similarly for
purl stitches. Ribbing has a striped texture—most swe#tave ribbing at the sleeves, bottom, and neck.
Stockinette stitch is a series of knit and purl rows that poes a plain pattern— socks or stockings are knit
with this basic pattern, hence the name.
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2.8 Write a regular expression for the language accepted by BE®ANn Fig. 2.28.

Figure 2.28 A mystery language

2.9 Currently the functiorb-RECOGNIZEINn Fig. 2.13 only solves a subpart of the
important problem of finding a string in some text. Extend #éhgorithm to solve
the following two deficiencies: (1)-RECOGNIZEcurrently assumes that it is already
pointing at the string to be checked, and i2RECcOGNIzEfails if the string it is point-
ing includes as a proper substring a legal string for the FB#at is,D-RECOGNIZE
fails if there is an extra character at the end of the string.

2.10 Give an algorithm for negating a deterministic FSA. The tiegaof an FSA
accepts exactly the set of strings that the original FSActsj@ver the same alphabet),
and rejects all the strings that the original FSA accepts.

2.11 Why doesn’t your previous algorithm work with NFSAs? Nowend your
algorithm to negate an NFSA.
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