
DRAFT

Speech and Language Processing: An introduction to natural language processing,
computational linguistics, and speech recognition. Daniel Jurafsky & James H.
Martin. Copyright c© 2006, All rights reserved. Draft of September 27, 2007.
Do not cite without permission.

18
COMPUTATIONAL
SEMANTICS

“Then you should say what you mean,” the March Hare went on.
“I do,” Alice hastily replied; “at least–at least I mean what I say–
that’s the same thing, you know.”
“Not the same thing a bit!” said the Hatter. “You might just as well
say that ‘I see what I eat’ is the same thing as ‘I eat what I see’!”

Lewis Carroll, Alice in Wonderland

This chapter presents a principled computational approach to the problem of se-
mantic analysis, the process whereby meaning representations of the kind dis-SEMANTIC ANALYSIS

cussed in the last chapter are composed and associated with linguistic expressions.
The automated creation of accurate and expressive meaning representations nec-
essarily involves a wide range of knowledge-sources and inference techniques.
Among the sources of knowledge that are typically involved are the meanings
of words, the conventional meanings associated with grammatical constructions,
knowledge about the structure of the discourse, common-sense knowledge about
the topic at hand and knowledge about the state of affairs in which the discourse is
occurring.

The focus of this chapter is a kind of syntax-driven semantic analysis that isSYNTAX-DRIVEN
SEMANTIC ANALYSIS

fairly modest in its scope. In this approach, meaning representations are assigned to
sentences based solely on knowledge gleaned from the lexicon and the grammar.
When we refer to an expression’s meaning, or meaning representation, we have
in mind a representation that is both context independent and free of inference.
Representations of this type correspond to the traditional notion of literal meaning
discussed in the last chapter.

There are two motivations for proceeding along these lines: there are applica-
tion domains, including question answering, where such primitive representations
are sufficient to produce useful results, and these impoverished representations can
serve as useful inputs to subsequent processes that can produce richer, more com-

DRAFT

2 Chapter 18. Computational Semantics

Syntactic Analysis Semantic AnalysisInputs

Syntactic Structures

Meaning
Representations

Figure 18.1 A simple pipeline approach to semantic analysis.

plete, meaning representations. Chs. 21 and 24 will discuss how these meaning
representations can be used in processing extended discourses and dialogs.

18.1 SYNTAX-DRIVEN SEMANTIC ANALYSIS

The approach detailed in this section is based on the principle of composition-
ality. The key idea behind this approach is that the meaning of a sentence canPRINCIPLE OF

COMPOSITIONALITY

be constructed from the meanings of its parts. When interpreted superficially this
principle is somewhat less than useful. We know that sentences are composed of
words, and that words are the primary carriers of meaning in language. It would
seem then that all this principle tells us is that we should compose the meaning
representation for sentences from the meanings of the words that make them up.

Fortunately, the Mad Hatter has provided us with a hint as to how to make
this principle useful. The meaning of a sentence is not based solely on the words
that make it up, but also on the ordering and grouping of words, and on the re-
lations among the words in the sentence. Of course, this is simply another way
of saying that the meaning of a sentence is partially based on its syntactic struc-
ture. Therefore, in syntax-driven semantic analysis, the composition of meaning
representations is guided by the syntactic components and relations provided by
the kind of grammars discussed in Ch. 12.

Let’s begin by assuming that the syntactic analysis of an input sentence serves
as the input to a semantic analyzer. Figure 18.1 illustrates an obvious pipeline-
oriented approach that follows directly from this assumption. An input is first
passed through a parser to derive its syntactic analysis. This analysis is then passed
as input to a semantic analyzer to produce a meaning representation. Note thatSEMANTIC ANALYZER

DRAFT

Section 18.1. Syntax-Driven Semantic Analysis 3

although this diagram shows a parse tree as input, other syntactic representations
such as flat chunks, feature structures, or dependency structures can also be used.
For the remainder of this chapter we’ll assume tree-like inputs.

Before moving on, we should touch on the role of ambiguity in this story. As
we’ve seen, ambiguous representations can arise from numerous sources includ-
ing competing syntactic analyses, ambiguous lexical items, competing anaphoric
references and as we’ll see later in this chapter ambiguous quantifier scopes. In
the syntax-driven approach presented here, we assume that syntactic, lexical and
anaphoric ambiguities are not a problem. That is, we’ll assume that some larger
system is capable of iterating through the possible ambiguous interpretations and
passing them individually to the kind of semantic analyzer described here.

Let’s consider how such an analysis might proceed with the following exam-
ple:

(18.1) Franco likes Frasca.

Fig. 18.1 shows a simplified parse tree (lacking any feature attachments), along
with a plausible meaning representation for this example. As suggested by the
dashed arrows, a semantic analyzer given this tree as input might fruitfully pro-
ceed by first retrieving a skeletal meaning representation from the subtree corre-
sponding to the verb likes. The analyzer would then retrieve or compose meaning
representations corresponding to the two noun phrases in the sentence. Then using
the representation acquired from the verb as a kind of template, the noun phrase
meaning representations would be used to bind the appropriate variables in the
verb representation, thus producing the meaning representation for the sentence as
a whole.

Unfortunately, there are a number of serious difficulties with this simplified
story. As described, the function used to interpret the tree in Fig. 18.1 must know,
among other things, that it is the verb that carries the template upon which the
final representation is based, where its corresponding arguments are and which
argument fills which role in the verb’s meaning representation. In other words, it
requires a good deal of specific knowledge about this particular example and its
parse tree to create the required meaning representation. Given that there are an
infinite number of such trees for any reasonable grammar, any approach based on
one semantic function for every possible tree is in serious trouble.

Fortunately, we have faced this problem before. Languages are not defined
by enumerating the strings or trees that are permitted, but rather by specifying
finite devices that are capable of generating the desired set of outputs. It would
seem, therefore, that the right place for semantic knowledge in a syntax-directed
approach is with the finite set of devices that are used to generate trees in the first
place: the grammar rules and the lexical entries. This is known as the rule-to-rule

DRAFT

4 Chapter 18. Computational Semantics

S ∃eLiking(e)∧Liker(e,Franco)∧Liked(e,Frasca)

NP VP

NP

ProperNoun Verb ProperNoun

Franco likes Frasca

Figure 18.2 Parse tree for the sentence Franco likes Frasca.

hypothesis (Bach, 1976).RULE-TO-RULE
HYPOTHESIS

Designing an analyzer based on this approach brings us back to the notion of
parts and what it means for them to have meanings. The following section is an
attempt to answer the following two questions:

• What does it mean for a syntactic constituent to have a meaning?

• What do these meanings have to be like so that they can be composed into
larger meanings?

18.2 SEMANTIC AUGMENTATIONS TO CONTEXT-FREE GRAMMAR RULES

In keeping with the approach used in Ch. 16, we will begin by augmenting our
context-free grammar rules with semantic attachments. These attachments areSEMANTIC

ATTACHMENTS

instructions that specify how to compute the meaning representation of a construc-
tion from the meanings of its constituent parts. Abstractly, our augmented rules
have the following structure:

A → α1 . . .αn { f (α j.sem, . . . ,αk.sem)}
The semantic attachment to the basic context-free rule is shown in the {. . .}

to the right of the rule’s syntactic constituents. This notation states that the meaning
representation assigned to the construction A, which we will denote as A.sem, can
be computed by running the function f on some subset of the semantic attachments
of A’s constituents.

There are myriad ways to instantiate this style of rule-to-rule approach. Our
semantic attachments could, for example, take the form of arbitrary programming
language fragments. A meaning representation for a given derivation could then be
constructed by passing the appropriate fragments to an interpreter in a bottom-up
fashion and then storing the resulting representations as the value for the associated

DRAFT

Section 18.2. Semantic Augmentations to Context-Free Grammar Rules 5

non-terminals.1 Such an approach would allow us to create any meaning represen-
tation we might like. Unfortunately, the unrestricted power of this approach would
also allow us to create representations that have no correspondence at all with the
kind of formal logical expressions described in the last chapter. Moreover, this ap-
proach would provide us with very little guidance as to how to go about designing
the semantic attachments to our grammar rules.

For these reasons, more principled approaches are typically used to instan-
tiate the rule-to-rule approach. We’ll introduce two such constrained approaches
in this chapter. The first makes direct use of FOL and the λ -calculus notation in-
troduced in Ch. 17. This approach essentially uses a logical notation to guide the
creation of logical forms in a principled fashion. The second approach, described
later in Sec. 18.4 is based on the feature-structure and unification formalisms in-
troduced in Ch. 16.

To get started, let’s take a look at a very basic example along with a simplified
target semantic representation.

(18.2) Maharani closed.

Closed(Maharani)
Let’s work our way bottom-up through the rules involved in this example’s

derivation. Starting with the proper noun, the simplest possible approach is to
assign a unique FOL constant to it, as in the following.

ProperNoun → Maharani {Maharani}
The non-branching NP rule that dominates this one doesn’t add anything seman-
tically, so we’ll just copy the semantics of the ProperNoun up unchanged to the
NP.

NP → ProperNoun {ProperNoun.sem}
Moving on to the VP, the semantic attachment for the verb needs to provide

the name of the predicate, specify its arity and provide the means to incorporate
an argument once it’s discovered. We’ll make use of a λ -expression to accomplish
these tasks.

VP → Verb {Verb.sem}
Verb → closed {λx.Closed(x)}

This attachment stipulates that the verb closed has a unary predicate Closed as its
representation. The λ -notation gives us the means to leave unspecified, as the x
variable, the entity that is closing. As with our earlier NP rule, the intransitive VP
rule that dominates the verb simply copies upward the semantics of the verb below
it.
1 Those familiar with the UNIX compiler tools YACC and Bison will recognize this approach.

DRAFT

6 Chapter 18. Computational Semantics

Proceeding upward, it remains for the semantic attachment for the S rule to
bring things together by inserting the semantic representation of the subject NP as
the first argument to the predicate.

S → NP VP {VP.sem(NP.sem)}
Since the value of VP.sem is a λ -expression and the value of NP.sem is a simply
a FOL constant, we can create our desired final meaning representation by using
λ -reduction to apply the VP.sem to the NP.sem.

λx.Closed(x)(Maharani) =⇒Closed(Maharani)

This example illustrates a general pattern which will repeat itself throughout
this chapter. The semantic attachments to our grammar rules will consist primarily
of λ -reductions, where one element of an attachment serves as a functor and the
rest serve as arguments to it. As we’ll see, the real work resides in the lexicon
where the bulk of the meaning representations are introduced.

Although this example illustrates the basic approach, the full story is a bit
more complex. Let’s begin by replacing our earlier target representation with one
that is more in keeping with the event-oriented representations introduced in the
last chapter, and by considering an example with a more complex noun phrase as
its subject.

(18.3) Every restaurant closed.

The target representation for this example should be the following.

∀xRestaurant(x) ⇒ (∃eClosing(e)∧ClosedThing(e,x)

Clearly, the semantic contribution of the subject noun phrase in this exam-
ple is much more extensive than in our previous one. In our earlier example, the
FOL constant representing the subject was simply plugged into the correct place in
Closed predicate via a single λ -reduction. Here the final result involves a complex
intertwining of the content provided by the NP and the content provided by the VP.
We’ll have to do some work if we want rely on λ -reduction to produce what we
want here.

The first step is to determine exactly what we’d like the meaning represen-
tation of Every restaurant to be. Let’s start by assuming that Every invokes the ∀
quantifier and that restaurant specifies the category of concept that we’re quantify-
ing over, which we’ll call the restriction of the noun phrase. Putting these togetherRESTRICTION

we might expect the meaning representation to be something like ∀xRestaurant(x).
Although this is a valid FOL formula its not a terribly useful one, since it says that
everything is a restaurant. What’s missing from it is the notion that noun phrases
like every restaurant are normally embedded in expressions that stipulate some-
thing about the universally quantified variable. That is, we’re probably trying to

DRAFT

Section 18.2. Semantic Augmentations to Context-Free Grammar Rules 7

say something about all restaurants. This notion is traditionally referred to as the
NP’s nuclear scope. In this case, the nuclear scope of this noun phrase is closed.NUCLEAR SCOPE

We can capture these notions in our target representation by adding a dummy
predicate, Q, representing the scope and attaching that predicate to the restriction
predicate with an ⇒ logical connective, leaving us with the following expression:

∀xRestaurant(x) ⇒ Q(x)

Ultimately, what we need to do to make this expression meaningful is to replace
Q with the logical expression corresponding to the nuclear scope. Fortunately, the
λ -calculus can come to our rescue again. All we need to do is to permit λ -variables
to range over FOL predicates as well as terms. The following expression captures
exactly what we need.

λQ.∀xRestaurant(x) ⇒ Q(x)

The following series of grammar rules with their semantic attachments serve
to produce this desired meaning representation for this kind of NP.

NP → Det Nominal {Det.Sem(Nominal.Sem)}
Det → every {λP.λQ.∀xP(x) ⇒ Q(x)}
Nominal → Noun {Noun.sem}
Noun → restaurant {λxRestaurant(x)}
The critical step in this sequence involves the λ -reduction in the NP rule.

This rule applies the λ -expression attached to the Det to the semantic attachment
of the Nominal, which is itself a λ -expression. The following are the intermediate
steps in this process.

λP.λQ.∀xP(x) ⇒ Q(x)(λx.Restaurant(x))

λQ.∀xλx.Restaurant(x)(x) ⇒ Q(x)

λQ.∀x Restaurant(x) ⇒ Q(x)

The first expression is the expansion of the Det.Sem(Nominal.Sem) semantic at-
tachment to the NP rule. The second formula is the result of this λ -reduction.
Note that this second formula has a λ -application embedded in it. Reducing this
expression in place gives us the final form.

Having revised our semantic attachment for the subject noun phrase portion
of our example, let’s move to the S and VP and Verb rules to see how they need to
change to accommodate these revisions. Let’s start with the S rule and work our
way down. Since the meaning of the subject NP is now a λ -expression, it makes
sense to consider it as a functor to be called with the meaning of the VP as its
argument. The following attachment accomplishes this.

S → NP VP {NP.sem(VP.sem)}

DRAFT

8 Chapter 18. Computational Semantics

Note that we’ve flipped the role of functor and argument from our original proposal
for this S rule.

The last attachment to revisit is the one for the verb close. We need to update
it to provide a proper event-oriented representation and to make sure that it is in-
terfaces well with the new S and NP rules. The following attachment accomplishes
both goals.

Verb → close {λx.∃eClosed(e)∧Closed(e,x)}
This attachment is passed unchanged to the VP constituent via the intransitive VP
rule. It is then combined with the meaning representation of Every restaurant as
dictated by the semantic attachment for the S given earlier. The following expres-
sions illustrate the intermediate steps in this process.

λQ.∀xRestaurant(x) ⇒ Q(x)(λy.∃eClosed(e)∧Closed(e,y))

∀xRestaurant(x) ⇒ λy.∃eClosed(e)∧Closed(e,y)(x)

∀xRestaurant(x) ⇒ ∃eClosed(e)∧Closed(e,x)

These steps achieve our goal of getting the VP’s meaning representation spliced in
as the nuclear scope in the NP’s representation.

As is always the case with any kind of grammar engineering effort we now
need to make sure that our earlier simpler examples still work. One area that we
need to revisit is our representation of proper nouns. Let’s consider them in the
context of our earlier example.

(18.4) Maharani closed.

The S rule now expects the subject NP’s semantic attachment to be a functor
applied to the semantics of the VP, therefore our earlier representation of proper
nouns as FOL constants won’t do. Fortunately, we can once again exploit the flexi-
bility of the λ -calculus to accomplish what we need with the following expression.

λx.x(Maharani)

This trick turns a simple FOL constant into a lambda-expression, which when
reduced serves to inject the constant into a larger expression. You should work
through our original example with all of the new semantic rules to make sure that
you can come up with the following intended representation:

∃eClosing(e)∧ closed(Maharani)

As one final exercise, let’s see how this approach extends to an expression
involving a transitive verb phrase, as in the following.

(18.5) Matthew opened a restaurant.

DRAFT

Section 18.2. Semantic Augmentations to Context-Free Grammar Rules 9

If we’ve done things correctly we ought to be able to specify the semantic attach-
ments for transitive verb phrases, for the verb open and for the determiner a, while
leaving the rest of our rules alone.

Let’s start by modeling the semantics for the determiner a on our earlier at-
tachment for every.

Det → a {λP.λQ.∃xP(x)∧Q(x)}
This rule differs from the attachment for every in two ways. First we’re using the
existential quantifier ∃ to capture the semantics of a. And second we’ve replaced
the ⇒ operator with a logical ∧. The overall framework remains the same with
the λ -variables P and Q standing in for the restriction and nuclear scopes to be
filled in later. With this addition our existing NP rule will create the appropriate
representation for a restaurant:

λQ∃xRestaurant(x)∧Q(x)

Next let’s move on to the Verb and VP rules. There are two arguments that
need to be incorporated into the underlying meaning representation. One argument
is available at the level of the transitive VP rule, and the second at the S rule. Let’s
assume the following form for the VP semantic attachment.

VP → Verb NP {Verb.Sem(NP.Sem)}
This attachment assumes that the verb’s semantic attachment will be applied as
a functor to the semantics of its noun phrase argument. And let’s assume for now
that the representations we developed earlier for quantified noun phrases and proper
nouns will remain unchanged. With these assumptions in mind, the following at-
tachment for the verb opened will do what we want.

Verb → opened{λw.λ z.w(λx∃eOpening(e)∧Opener(e,z)∧Opened(e,x))}
With this attachment in place, the transitive VP rule will incorporate the vari-

able standing for a restaurant as the second argument to opened, incorporate the
entire expression representing the opening event as the nuclear scope of a restau-
rant and finally produce a λ -expression suitable for use with our S rule. As with
the previous example you should walk through this example step by step to make
sure that you arrive at our intended meaning representation.

∃xRestaurant(x)∧∃eOpening(e)∧Opener(e,Matthew)∧Opened(e,x)

The list of semantic attachments which we’ve developed for this small gram-
mar fragment is shown in Fig. 18.2. Sec. 18.5 expands the coverage of this frag-
ment to some of the more important constructions in English.

In walking through these examples, we have introduced three techniques that
instantiate the rule-to-rule approach to semantic analysis introduced at the begin-
ning of this section:

DRAFT

10 Chapter 18. Computational Semantics

Grammar Rule Semantic Attachment
S → NP VP {NP.sem(VP.sem)}
NP → Det Nominal {Det.sem(Nominal.sem)}
NP → ProperNoun {ProperNoun.sem}
Nominal → Noun {Noun.sem}
VP → Verb {Verb.sem}
VP → Verb NP {Verb.sem(NP.sem)}
Det → every {λP.λQ.∀xP(x) ⇒ Q(x)}
Det → a {λP.λQ.∃xP(x)∧Q(x)}
Noun → restaurant {λ r.Restaurant(r)}
ProperNoun → Matthew {λm.m(Matthew)}
ProperNoun → Franco {λ f . f (Franco)}
ProperNoun → Franco {λ f . f (Frasca)}
Verb → closed {λx.∃eClosing(e)∧Closed(e,x)}
Verb → opened {λw.λ z.w(λx.∃eOpening(e)∧Opener(e,z)

∧Opened(e,x))

Figure 18.3 Semantic attachments for a fragment of our English grammar and
lexicon.

1. Associating complex, function-like, λ -expressions with lexical items

2. Copying of semantic values from children to parents in non-branching rules

3. Function-like application of the semantics of one of the children of a rule to
the semantics of the other children of the rule via λ -reduction.

These techniques serve to illustrate a general division of labor that guides the
design of semantic attachments in this compositional framework. In general, it is
the lexical rules that introduce quantifiers, predicates and terms into our meaning
representations. The semantic attachments for grammar rules put these elements
together in the right ways, but do not in general introduce new elements into the
representations being created.

18.3 QUANTIFIER SCOPE AMBIGUITY AND UNDERSPECIFICATION

The grammar fragment developed in the last section appears to be sufficient to han-
dle examples like the following that contain two or more quantified noun phrases.

(18.6) Every restaurant has a menu.

DRAFT

Section 18.3. Quantifier Scope Ambiguity and Underspecification 11

Systematically applying the rules given in Fig. 18.2 to this example produces
the following perfectly reasonable meaning representation.

∀x Restaurant(x) ⇒
∃y Menu(y)∧∃eHaving(e)∧Haver(e,x)∧Had(e,y)

This formula more or less corresponds to the common sense notion that all restau-
rants have menus.

Unfortunately, this isn’t the only possible interpretation for this example. The
following is also possible.

∃y Menu(y)∧∀x Restaurant(x) ⇒
∃e Having(e)∧Haver(e,x)∧Had(e,y)

This formula asserts that there is one menu out there in the world and all restaurants
share it. Now from a common sense point of view this seems pretty unlikely, but
remember that our semantic analyzer only has access to the semantic attachments
in the grammar and the lexicon in producing meaning representations. Of course,
world knowledge and contextual information can be used to select between these
two readings, but only if we are able to produce both.

This example illustrates that expressions containing quantified terms can give
rise to ambiguous representations even in the absence of syntactic, lexical or anaphoric
ambiguities. This is generally known as the problem of quantifier scoping. TheQUANTIFIER

SCOPING

difference between the two interpretations given above arises from which of the
two quantified variables has the outer scope.

The approach outlined in the last section can not handle this phenomena. To
fix this we’ll need the following capabilities.

• The ability to efficiently create underspecified representations that embody
all possible readings without explicitly enumerating them

• A means to generate, or extract, all of the possible readings from this repre-
sentation

• And the ability to choose among the possible readings

The following sections will outline approaches to the first two problems. The
solution to the last, most important problem, requires the use of context and world
knowledge and unfortunately remains a largely unsolved problem.

18.3.1 Store and Retrieve Approaches

One way to address the quantifier scope problem is to add a new notation to our
existing semantic attachments to facilitate the compositional creation of the desired
meaning representations. In this case, we’ll introduce the notion of a complex-
term that permits FOL expressions like ∀x Restaurant(x) to appear in places whereCOMPLEX-TERM

DRAFT

12 Chapter 18. Computational Semantics

we would normally only allow FOL terms to appear. Formally, a complex-term will
be an expression with the following three-part structure:

〈Quanti f ier variable f ormula〉
Applying this notation to our current example, we would arrive at the follow-

ing representation:

∃e Having(e)
∧Haver(e,〈∀x Restaurant(x)〉)
∧Had(e,〈∃y Menu(y)〉)

The intent of the this approach is to capture the basic predicate argument structure
of an expression, while remaining agnostic about where the various quantifiers will
end up in the final representation.

As was the case with λ -expressions, this notational device is only useful if
we can provide an algorithm to convert it back into an ordinary FOL expression.
This can be accomplished by rewriting any predicate containing a complex-term
according to the following schema:

P(〈Quanti f ier variable f ormula〉)
=⇒
Quanti f ier variable f ormula Connective P(variable)

In other words, the complex-term:

1. is extracted from the predicate in which it appears,
2. is replaced by the specified variable,
3. and has its variable, quantifier, and formula prepended to the new expression

through the use of an appropriate connective.

The connective that is used to attach the extracted formula to the front of the new
expression depends on the type of the quantifier being used: ∧ is used with ∃, and
⇒ is used with ∀.

How does this scheme help with our ambiguity problem? Note that our new
representation contains two complex terms. The order in which we process them
determines which of the two readings we end up with. Let’s consider the case
where we proceed left-to-right through the expression transforming the complex
terms as we find them. In this case, we encounter Every restaurant first; transform-
ing it yields the following expression.

∀xRestaurant(x) ⇒ ∃e Having(e)∧Haver(e,x)∧Had(e,〈∃yMenu(y)〉)
Proceeding onward we next encounter a menu. Transforming this complex term
yields the following final form which corresponds to the non-intuitive reading that
we couldn’t get with our earlier method.

∃yMenu(y)∧∀xRestaurant(x) ⇒ ∃e Having(e)∧Haver(e,x)∧Had(e,y)

DRAFT

Section 18.4. Unification-Based Approaches to Semantic Analysis 13

To get the more common-sense reading that we had earlier all we have to is
pull out the complex-terms in the other order; first a menu and then every restau-
rant.

This approach to quantifier scope provides solutions to the two of the desider-
ata given earlier: complex terms provide a compact underspecified representation
of all the possible quantifier-based ambiguous readings, and the method for trans-
forming them provides a deterministic method for eliminating complex terms and
thus retrieving valid FOL formulas. And by altering the ordering by which complex
terms are eliminated we can recover all the possible readings. Of course, sentences
with N quantifiers will have O(N!) different quantifier-based readings.

In practice, most systems employ an ad hoc set of heuristic preference rules
that can be used to generate preferred forms in order of their overall likelihood.
In cases where no preference rules apply, a left-to-right quantifier ordering that
mirrors the surface order of the quantifiers is used. Domain specific knowledge
can then be used to either accept a quantified formula, or reject it and request
another formula. Alshawi (1992) presents a comprehensive approach to generating
plausible quantifier scopings.

18.3.2 Constraint-Based Approaches

NEXT DRAFT HOLE SEMANTICS

18.4 UNIFICATION-BASED APPROACHES TO SEMANTIC ANALYSIS

As mentioned in Sec. 18.2, feature structures and the unification operator pro-
vide an effective way to implement syntax-driven semantic analysis. Recall that in
Ch. 16 we paired complex feature structures with individual context-free grammar
rules to encode syntactic constraints such as number agreement and subcategoriza-
tion; constraints that were awkward or in some cases impossible to convey directly
using context-free grammars. For example, the following rule was used to capture
agreement constraints on English noun phrases.

NP → Det Nominal

〈Det AGREEMENT〉 = 〈Nominal AGREEMENT〉
〈NP AGREEMENT〉 = 〈Nominal AGREEMENT〉

Rules such as this one serve two functions at the same time: they insure that the
grammar rejects expressions that violate this constraint, and more importantly for
our current topic, they create complex structures that can be associated with parts
of grammatical derivations. The following structure, for example, results from the

DRAFT

14 Chapter 18. Computational Semantics

application of the above rule to a singular noun phrase.[
AGREEMENT

[
NUMBER SG

]]
We’ll use this latter capability to compose meaning representations and associate
them with constituents in parse.

In this unification-based approach, our FOL representations and λ -based se-
mantic attachments are replaced by complex feature structures and unification equa-
tions. To see how this works, let’s walk through a series of examples similar to
those discussed earlier in Sec. 18.2. Let’s start with a simple intransitive sentence
with a proper noun as it’s subject.

(18.7) Rhumba closed

Using an event-oriented approach, the meaning representation for this sentence
should be something like the following.

∃e Closing(e)∧Closed(e,Rhumba)

Our first task will be to show that we can encode representations like this within the
feature structure framework. The most straightforward way to approach this task
is to simply follow the BNF-style definition of FOL statements given in Ch. 17.
The relevant elements of this definition stipulate that FOL formulas come in three
varieties: atomic formulas consisting of predicates with the appropriate number
of term arguments, formulas conjoined with other formulas via the ∧, ∨ and ⇒
operators, and finally quantified formulas which consist of a quantifier, variables
and a formula. Using this definition as a guide, we can capture this FOL expression
with the following feature structure.



QUANT ∃
VAR 1

FORMULA




OP AND

FORMULA1

[
PRED CLOSING

ARG0 1

]

FORMULA2




PRED CLOSED

ARG0 1

ARG1 RHUMBA










Fig. 18.4 shows this expression using the DAG-style notation introduced in
Ch. 16. This figure reveals the way that variables are handled. Instead of introduc-
ing explicit FOL variables, we’ll use the path-based feature-sharing capability of
feature structures to accomplish the same goal. In this example, the event variable
e is captured by the three paths leading to the same shared node.

DRAFT

Section 18.4. Unification-Based Approaches to Semantic Analysis 15

OP

FORMULA1

PRED

ARG0

ARG1

PRED

ARG0

QUANT

VAR

FORMULA

Rhumba

Closed

Closing

∃

∧

FORMULA2

Figure 18.4 A directed graph notation for semantic feature structures.

Our next step is to associate unification equations with the grammar rules
involved in this example’s derivation. Let’s start at the top with the S rule.

S → NP VP

〈S SEM〉 = 〈NP SEM〉
〈VP ARG0〉 = 〈NP INDEXVAR〉
〈NP SCOPE〉 = 〈VP SEM〉

The first line simply equates the meaning representation of the NP (encoded under
the SEM feature) with our top-level S. The purpose of the second equation is to as-
sign the subject NP to the appropriate role inside the VP’s meaning representation.
More concretely, it fills the appropriate role in the VP’s semantic representation by
unifying the ARG0 feature with a path that leads to a representation of the semantics
of the NP. Finally, it unifies the SCOPE feature in the NP’s meaning representation
with a pointer to the VP’s meaning representation. As we’ll see, this is a somewhat
convoluted way to bring the representation of an event up to where it belongs in
the representation. The motivation for this apparatus should become clear in the

DRAFT

16 Chapter 18. Computational Semantics

ensuing discussion where we consider quantified noun phrases.
Carrying on, let’s consider the attachments for the NP and ProperNoun parts

of this derivation.

NP → ProperNoun

〈NP SEM〉 = 〈ProperNoun SEM〉
〈NP SCOPE〉 = 〈ProperNoun SCOPE〉
〈NP INDEXVAR〉 = 〈ProperNoun INDEXVAR〉

ProperNoun → Rhumba

〈ProperNoun SEM PRED〉 = RHUMBA

〈ProperNoun INDEXVAR〉 = 〈ProperNoun SEM PRED〉
As we saw earlier, there isn’t much to the semantics of proper nouns in this ap-
proach. Here we’re just introducing a constant and providing an index variable to
point at that constant.

Next, let’s move on to the semantic attachments for the VP and Verb rules.

VP → Verb

〈VP SEM〉 = 〈 Verb SEM〉
〈VP ARG0〉 = 〈 Verb ARG0〉

Verb → closed

〈Verb SEM QUANT〉 = ∃
〈Verb SEM FORMULA OP〉 = ∧
〈Verb SEM FORMULA FORMULA1 PRED〉 = CLOSING

〈Verb SEM FORMULA FORMULA1 ARG0〉 = 〈Verb SEM VAR〉
〈Verb SEM FORMULA FORMULA2 PRED〉 = CLOSED

〈Verb SEM FORMULA FORMULA2 ARG0〉= 〈Verb SEM VAR〉
〈Verb SEM FORMULA FORMULA2 ARG1〉 = 〈Verb ARG0〉

The attachments for the VP rule parallel our earlier treatment of non-branching
grammatical rules. These unification equations are simply making the appropriate
semantic fragments of the Verb available at the VP level. In contrast, the unifica-
tion equations for the Verb introduce the bulk of the event representation that is at
the core of this example. Specifically, it introduces the quantifier, event variable
and predications that make up the body of the final expression. What would be
an event variable in FOL is captured by the equations unifying the Verb SEM VAR

path with the appropriate arguments to the predicates in the body of the formula.
Finally, it exposes the single missing argument (the entity being closed) through
the 〈 Verb ARG0〉 equation.

DRAFT

Section 18.4. Unification-Based Approaches to Semantic Analysis 17

Taking a step back we can see that these equations serve the same basic func-
tions as the λ -expressions in Sec. 18.2; they provide the content of the FOL formula
being created, and they serve to expose and name the external arguments that will
be filled in later at higher levels in the grammar.

These last few rules also display the division of labor that we’ve seen several
times now; lexical rules introduce the bulk of the semantic content, while higher
level grammatical rules assemble the pieces in the right way, rather than introduc-
ing content.

Of course, as was the case with the λ -based approach things get quite a bit
more complex when we look at expressions containing quantifiers. To see this,
let’s work through the following example.

(18.8) Every restaurant closed

Again, the meaning representation for this expression should be the following

∀xRestaurant(x) ⇒ (∃eClosing(e)∧Closed(e,x))

which is captured by the following feature structure.


QUANT ∀
VAR 1

FORMULA




OP ⇒

FORMULA1

[
PRED RESTAURANT

ARG0 1

]

FORMULA2




QUANT EXISTS

VAR 2

FORMULA




OP ∧

FORMULA1

[
PRED CLOSING

ARG0 2

]

FORMULA2




PRED CLOSED

ARG0 2

ARG1 1
















DRAFT

18 Chapter 18. Computational Semantics

As we saw earlier with the λ -based approach, the outer structure for expres-
sions like this comes largely from the subject noun phrase. Recall that schemati-
cally this semantic structure has the form ∀xP(x) ⇒ Q(x) where the P expression
is traditionally referred to as the restrictor and is provided by the head noun and Q
is referred to as the nuclear scope and comes from the verb phrase.

This structure gives rise to two distinct tasks for our semantic attachments:
the semantics of the VP semantics must be unified with the nuclear scope of the
subject noun phrase, and the variable representing that noun phrase must be as-
signed to the ARG1 role of the CLOSED predicate in the event structure. The fol-
lowing rules involved in the derivation of Every restaurant address these two tasks

NP → Det Nominal

〈 NP SEM〉 = 〈Det SEM 〉
〈 NP SEM VAR 〉 = 〈 NP INDEXVAR 〉
〈 NP SEM FORMULA FORMULA1 〉 = 〈 Nominal SEM 〉
〈 NP SEM FORMULA FORMULA2 〉 = 〈 NP SCOPE 〉

Nominal → Noun

〈 Nominal SEM 〉 = 〈 Noun SEM 〉
〈 Nominal INDEXVAR 〉 = 〈 Noun INDEXVAR 〉

Noun → restaurant

〈 Noun SEM PRED 〉 = 〈 RESTAURANT 〉
〈 Noun INDEXVAR 〉 = 〈 Noun SEM PRED 〉

Det → every

〈 Det SEM QUANT 〉 = ∀
〈 Det SEM FORMULA OP 〉 = ⇒

As one final exercise, let’s walk through an example with a transitive verb
phrase.

(18.9) Franco opened a restaurant

This example has the following meaning representation.

∃x Resaurant(x)∧∃e Opening(e)∧Opener(e,Franco)∧Opened(e,x)

DRAFT

Section 18.4. Unification-Based Approaches to Semantic Analysis 19




QUANT EXISTS

VAR 1

FORMULA




OP ∧

FORMULA1

[
PRED RESTAURANT

ARG1 1

]

FORMULA2




QUANT ∃
VAR 2

FORMULA




OP ∧

FORMULA1

[
PRED OPENING

ARG0 2

]

FORMULA2




PRED OPENER

ARG0 2

ARG1 FRANCO




FORMULA3




PRED OPENED

ARG0 2

ARG1 1
















The only really new element that we need to address in this example is the
following transitive VP rule.

VP → Verb NP

〈VP SEM〉 = 〈Verb SEM〉
〈NP SCOPE〉 = 〈VP SEM〉
〈Verb ARG1〉 = 〈NP INDEXVAR〉

This rule has the two primary tasks that parallel those in our S rule: it has to fill
the nuclear scope of the object NP with the semantics of the VP, and it has to
insert the variable representing the object into to the right role in the VP’s meaning
representation.

One obvious problem with the approach we just described is that it fails to
generate all the possible ambiguous representations arising from quantifier scope
ambiguities. Fortunately, the approaches to underspecification described earlier in
Sec. 18.3 can be adapted to the unification-based approach.

DRAFT

20 Chapter 18. Computational Semantics

18.5 SEMANTIC ATTACHMENTS FOR A FRAGMENT OF ENGLISH

This section describes a set of semantic attachments for a small fragment of En-
glish, the bulk of which are based on those used in the Core Language Engine
(Alshawi, 1992). As in the rest of this chapter, to keep the presentation simple, we
omit the feature structures associated with these rules when they are not needed.
Remember that these features are needed to ensure that the correct rules are applied
in the correct situations. Most importantly for this discussion, they are needed to
ensure that the correct verb entries are being employed based on their subcatego-
rization feature structures.

18.5.1 Sentences

To this point, we’ve only dealt with simple declarative sentences. This section
expands our coverage to include the other sentence types first introduced in Ch. 12:
imperatives, yes-no-questions, and wh-questions. Let’s start by considering the
following examples:

(18.10) Flight 487 serves lunch.

(18.11) Serve lunch.

(18.12) Does Flight 207 serve lunch?

(18.13) Which flights serve lunch?

The meaning representations of these examples all contain propositions con-
cerning the serving of lunch on flights. However, they differ with respect to the
role that these propositions are intended to serve in the settings in which they are
uttered. More specifically, the first example is intended to convey factual informa-
tion to a listener, the second is a request for an action, and the last two are requests
for information. To capture these differences, we will introduce a set of operators
that can be applied to FOL sentences in the same way that belief operators were
used in Ch. 17. Specifically, the operators DCL, IMP, YNQ, and WHQ will be ap-
plied to the FOL representations of declaratives, imperatives, yes-no-questions, and
wh-questions, respectively.

Producing meaning representations that make appropriate use of these opera-
tors requires the right set of semantic attachments for each of the possible sentence
types. For declarative sentences, we can simply alter the basic sentence rule we
have been using as follows:

S → NP VP {DCL(NP.sem(VP.sem))}
The normal interpretation for a representation headed by the DCL operator would
be as a factual statement to be added to the current knowledge-base.

DRAFT

Section 18.5. Semantic Attachments for a Fragment of English 21

Imperative sentences begin with a verb phrase and lack an overt subject. Be-
cause of the missing subject, the meaning representation for the main verb phrase
will consist of a λ -expression with an unbound λ -variable representing this miss-
ing subject. To deal with this, we can simply supply a subject to the λ -expression
by applying a final λ -reduction to a dummy constant. The IMP operator can then
be applied to this representation as in the following semantic attachment:

S → VP {IMP(VP.sem(DummyYou))}
Applying this rule to example (18.11), results in the following representation:

IMP(∃eServing(e)∧Server(e,DummyYou)∧Served(e,Lunch)

As will be discussed in Ch. 23, imperatives can be viewed as a kind of speech act.
As discussed in Ch. 12, yes-no-questions consist of a sentence-initial auxil-

iary verb, followed by a subject noun phrase and then a verb phrase. The following
semantic attachment simply ignores the auxiliary, and with the exception of the
YNQ operator, constructs the same representation that would be created for the
corresponding declarative sentence:

S → Aux NP VP {YNQ(VP.sem(NP.sem))}
The use of this rule with for example (18.12) produces the following repre-

sentation:

YNQ(∃eServing(e)∧Server(e,Flt207)∧Served(e,Lunch))

Yes-no-questions should be thought as asking whether the propositional part
of its meaning is true or false given the knowledge currently contained in the
knowledge-base. Adopting the kind of semantics described in Ch. 17, yes-no-
questions can be answered by determining if the proposition is in the knowledge-
base, or can be inferred from it.

Unlike yes-no-questions, wh-subject-questions ask for specific information
about the subject of the sentence rather than the sentence as a whole. The following
attachment produces a representation that consists of the operator WHQ, the vari-
able corresponding to the subject of the sentence, and the body of the proposition:

S → WhWord NP VP {WHQ(NP.sem.var,VP.sem(NP.sem))}
The following representation is the result of applying this rule to example

(18.13):

WHQ(x,∃e,x Isa(e,Serving)∧Server(e,x)
∧Served(e,Lunch)∧ Isa(x,Flight))

Such questions can be answered by returning a set of assignments for the sub-
ject variable that make the resulting proposition true with respect to the current
knowledge-base.

Finally, consider the following wh-non-subject-question:

DRAFT

22 Chapter 18. Computational Semantics

(18.14) How can I go from Minneapolis to Long Beach?

In examples like this, the question is not about the subject of the sentence but rather
some other argument, or some aspect of the proposition as a whole. In this case,
the representation needs to provide an indication as to what the question is about.
The following attachment provides this information by providing the semantics of
the auxiliary as an argument to the WHQ operator:

S → WhWord Aux NP VP {WHQ(WhWord.sem VP.sem(NP.sem))}
The following representation would result from an application of this rule to

example (18.14):

WHQ(How,∃e Isa(e,Going)∧Goer(e,User)
∧Origin(e,Minn)∧Destination(e,LongBeach))

As we’ll see in Ch. 23, correctly answering this kind of question involves a fair
amount of domain specific reasoning. For example, the correct way to answer
example (18.14) is to search for flights with the specified departure and arrival
cities. Note, however, that there is no mention of flights or flying in the actual
question. The question-answerer, therefore, has to apply knowledge specific to this
domain to the effect that questions about going places are really questions about
flights to those places.

Finally, we should make it clear that this particular attachment is only useful
for rather simple wh-questions without missing arguments or embedded clauses.
As discussed in Ch. 16, the presence of long-distance dependencies in these ques-
tions requires additional mechanisms to determine exactly what is being asked
about. Woods (1977) and Alshawi (1992) provide extensive discussions of gen-
eral mechanisms for handling wh-non-subject questions.

18.5.2 Noun Phrases

As we have already seen, the meaning representations for noun phrases can be ei-
ther normal FOL terms or complex-terms. The following sections detail the seman-
tic attachments needed to produce meaning representations for some of the most
frequent kinds of English noun phrases. Unfortunately, as we will see, the syntax
of English noun phrases provides surprisingly little insight into their meaning. It is
often the case that the best we can do is provide a rather vague intermediate level of
meaning representation that can serve as input to further interpretation processes.

Compound Nominals

Compound nominals, also known as noun-noun sequences, consist of simple se-
quences of nouns, as in the following examples:

DRAFT

Section 18.5. Semantic Attachments for a Fragment of English 23

(18.15) Flight schedule

(18.16) Summer flight schedule

As noted in Ch. 12, the syntactic structure of this construction can be captured by
the regular expression Noun∗, or by the following context-free grammar rules:

Nominal → Noun

Nominal → Nominal Noun

In these constructions, the final noun in the sequence is the head of the phrase
and denotes an object that is semantically related in some unspecified way to the
other nouns that precede it in the sequence. In general, an extremely wide range
of common-sense relations can be denoted by this construction. Discerning the
exact nature of these relationships is well beyond the scope of the kind of super-
ficial semantic analysis presented in this chapter. The attachment in the following
rule builds up a vague representation that simply notes the existence of a semantic
relation between the head noun and the modifying nouns, by incrementally noting
such a relation between the head noun and each noun to its left:

Nominal → Noun Nominal
{λx Nominal.sem(x)∧NN(Noun.sem, x)}

The relation NN is used to specify that a relation holds between the modifying
elements of a compound nominal and the head Noun. In the examples given above,
this leads to the following meaning representations:

λxIsa(x,Schedule)∧NN(x,Flight)

λxIsa(x,Schedule)∧NN(x,Flight)∧NN(x,Summer)

Note that this representation correctly instantiates a term representing a Schedule,
while avoiding the creation of terms representing either a Flight or Summer.

Genitive Noun Phrases

Recall from Ch. 12 that genitive noun phrases make use of complex determiners
that consist of noun phrases with possessive markers, as in Atlanta’s airport and
Maharani’s menu. It is quite tempting to represent the relation between these words
as an abstract kind of possession. A little introspection, however, reveals that the
relation between a city and its airport has little in common with a restaurant and its
menu. Therefore, as with compound nominals, it’s best to simply state an abstract
semantic relation between the various constituents.

NP → ComplexDet Nominal
{< ∃xNominal.sem(x)∧GN(x,ComplexDet.sem) >}

ComplexDet → NP ’s {NP.sem}

DRAFT

24 Chapter 18. Computational Semantics

Applying these rules to Atlanta’s airport results in the following complex-
term:

< ∃xIsa(x,Airport)∧GN(x,Atlanta) >

Subsequent semantic interpretation would have to determine that the relation de-
noted by the relation GN is actually a location.

Adjective Phrases

English adjectives can be split into two major categories: pre-nominal and predica-
tive. These categories are exemplified by the following BERP examples:

(18.17) I don’t mind a cheap restaurant.

(18.18) This restaurant is cheap.

For the pre-nominal case, an obvious and often incorrect proposal for the
semantic attachment is illustrated in the following rules:

Nominal → Adj Nominal
{λx Nominal.sem(x)∧ Isa(x,Adj.sem)}

Adj → cheap {Cheap}
This solution modifies the semantics of the nominal by applying the predicate pro-
vided by the adjective to the variable representing the nominal. For our cheap
restaurant example, this yields the following not unreasonable representation:

λx Isa(x,Restaurant)∧ Isa(x,Cheap)

This is an example of what is known as intersective semantics since theINTERSECTIVE
SEMANTICS

meaning of the phrase can be thought of as the intersection of the category stipu-
lated by the nominal and the category stipulated by the adjective. In this case, this
amounts to the intersection of the category of cheap things with the category of
restaurants.

Unfortunately, this solution often does the wrong thing. For example, con-
sider the following meaning representations for the phrases small elephant, former
friend, and fake gun:

λx Isa(x,Elephant)∧ Isa(x,Small)

λx Isa(x,Friend)∧ Isa(x,Former)

λx Isa(x,Gun)∧ Isa(x,Fake)

Each of these representations is peculiar in some way. The first one states that this
particular elephant is a member of the general category of small things, which is
probably not true. The second example is strange in two ways: it asserts that the

DRAFT

Section 18.5. Semantic Attachments for a Fragment of English 25

person in question is a friend, which is false, and it makes use of a fairly unreason-
able category of former things. Similarly, the third example asserts that the object
in question is a gun despite the fact that fake means it is not one.

As with compound nominals, there is no clever solution to these problems
within the bounds of our current compositional framework. Therefore, the best
approach is to simply note the status of a specific kind of modification relation and
assume that some further procedure with access to additional relevant knowledge
can replace this vague relation with an appropriate representation (Alshawi, 1992).

Nominal → Adj Nominal
{λx Nominal.sem(x)∧AM(x,Ad j.sem)}

Applying this rule to a cheap restaurant results in the following formula:

∃x Isa(x,Restaurant)∧AM(x,Cheap)

Note that even this watered-down proposal produces representations that are
logically incorrect for the fake and former examples. In both cases, it asserts that
the objects in question are in fact members of their stated categories. In general, the
solution to this problem has to be based on the specific semantics of the adjectives
and nouns in question. For example, the semantics of former has to involve some
form of temporal reasoning, while fake requires the ability to reason about the
nature of concepts and categories.

18.5.3 Verb Phrases

The general schema for computing the semantics of verb phrases relies on the
notion of function application. In most cases, the λ -expression attached to the verb
is simply applied to the semantic attachments of the verb’s arguments. There are,
however, a number of situations that force us to depart somewhat from this general
pattern.

Infinitive Verb Phrases

A fair number of English verbs take some form of verb phrase as one of their
arguments. This complicates the normal verb phrase semantic schema since these
argument verb phrases interact with the other arguments of the head verb in ways
that are not completely obvious.

Consider the following example:

(18.19) I told Harry to go to Maharani.

The meaning representation for this example should be something like the follow-

DRAFT

26 Chapter 18. Computational Semantics

S

NP VP

NP VPto

VP

PP

NP

Pro Verb Prop-Noun Inf-To Verb Prep PropNoun

I told Harry to go to Maharani

Figure 18.5 Parse tree for I told Harry to go to Maharani.

ing:

∃e, f ,x Isa(e,Telling)∧ Isa(f ,Going)
∧Teller(e,Speaker)∧Tellee(e,Harry)∧ToldThing(e, f)
∧Goer(f ,Harry)∧Destination(f ,x)

There are two interesting things to note about this meaning representation:
the first is that it consists of two events, and the second is that one of the partici-
pants, Harry, plays a role in both of the two events. The difficulty in creating this
complex representation falls to the verb phrase dominating the verb tell which will
need something like the following as its semantic attachment:

λx,y λ z ∃e Isa(e,Telling)
∧Teller(e,z)∧Tellee(e,x)∧ToldThing(e,y)

Semantically, we can interpret this subcategorization frame for Tell as providing
three semantic roles: a person doing the telling, a recipient of the telling, and the
proposition being conveyed.

The difficult part of this example involves getting the meaning representation
for the main verb phrase correct. As shown in Figure 18.5, Harry plays the role
of both the Tellee of the Telling event and the Goer of the Going event. However,
Harry is not available when the Going event is created within the infinitive verb
phrase.

Although there are several possible solutions to this problem, it is usually
best to stick with a uniform approach to these problems. Therefore, we will start by
simply applying the semantics of the verb to the semantics of the other arguments

DRAFT

Section 18.5. Semantic Attachments for a Fragment of English 27

of the verb as follows:

VP → Verb NP VPto {Verb.sem(NP.sem, VPto.sem)}
Since the to in the infinitive verb phrase construction does not contribute to its

meaning, we simply copy the meaning of the child verb phrase up to the infinitive
verb phrase. Recall, that we are relying on the unseen feature structures to ensure
that only the correct verb phrases can be used with this construction.

VPto → to VP {VP.sem}
In this solution, the verb’s semantic attachment has two tasks: incorporating

the NP.sem, the Goer, into the VPto.sem, and incorporating the Going event as the
ToldThing of the Telling. The following attachment performs both tasks:

Verb → tell
{λx,y

λ z
∃e,y.variable Isa(e,Telling)

∧Teller(e,z)∧Tellee(e,x)
∧ToldThing(e,y.variable)∧ y(x)

In this approach, the λ -variable x plays the role of the Tellee of the telling and
the argument to the semantics of the infinitive, which is now contained as a λ -
expression in the variable y. The expression y(x) represents a λ -reduction that
inserts Harry into the Going event as the Goer. The notation y.variable, is anal-
ogous to the notation used for complex-term variables, and gives us access to the
event variable representing the Going event within the infinitive’s meaning repre-
sentation.

Note that this approach plays fast and loose with the definition of λ -reduction,
in that it allows λ -expressions to be passed as arguments to other λ -expressions,
when technically only FOPC terms can serve that role. This technique is a conve-
nience similar to the use of complex-terms in that it allows us to temporarily treat
complex expressions as terms during the creation of meaning representations.

18.5.4 Prepositional Phrases

At a fairly abstract level, prepositional phrases serve two distinct functions: they
assert binary relations between their heads and the constituents to which they are
attached, and they signal arguments to constituents that have an argument structure.
These two functions argue for two distinct types of prepositional phrases that differ
based on their semantic attachments. We will consider three places in the grammar
where prepositional phrases serve these roles: modifiers of noun phrases, modifiers
of verb phrases, and arguments to verb phrases.

DRAFT

28 Chapter 18. Computational Semantics

Nominal Modifier Prepositional Phrases

Modifier prepositional phrases denote a binary relation between the concept be-
ing modified, which is external to the prepositional phrase, and the head of the
prepositional phrase. Consider the following example and its associated meaning
representation:

(18.20) A restaurant on Broadway.

∃x Isa(x,Restaurant)∧On(x,Pearl)

The relevant grammar rules that govern this example are the following:

NP → Det Nominal

Nominal → Nominal PP

PP → P NP

Proceeding in a bottom-up fashion, the semantic attachment for this kind
of relational preposition should provide a two-place predicate with its arguments
distributed over two λ -expressions, as in the following:

P → on {λyλx On(x,y)}
With this kind of arrangement, the first argument to the predicate is provided by the
head of prepositional phrase and the second is provided by the constituent that the
prepositional phrase is ultimately attached to. The following semantic attachment
provides the first part:

PP → P NP {P.sem(NP.sem)}
This λ -application results in a new λ -expression where the remaining argument is
the inner λ -variable.

This remaining argument can be incorporated using the following nominal
construction:

Nominal → Nominal PP {λ zNominal.sem(z)∧PP.sem(z)}

Verb Phrase Modifier Prepositional Phrases

The general approach to modifying verb phrases is similar to that of modifying
nominals. The differences lie in the details of the modification in the verb phrase
rule; the attachments for the preposition and prepositional phrase rules are un-
changed. Let’s consider the phrase ate dinner in a hurry which is governed by the
following verb phrase rule:

VP → VP PP

DRAFT

Section 18.5. Semantic Attachments for a Fragment of English 29

The meaning representation of the verb phrase constituent in this construc-
tion, ate dinner, is a λ -expression where the λ -variable represents the as yet unseen
subject.

λx∃e Isa(e,Eating)∧Eater(e,x)∧Eaten(e,Dinner)

The representation of the prepositional phrase is also a λ -expression where
the λ -variable is the second argument in the PP semantics.

λx In(x,< ∃h Hurry(h) >)

The correct representation for the modified verb phrase should contain the
conjunction of these two representations with the Eating event variable filling
the first argument slot of the In expression. In addition, this modified represen-
tation must remain a λ -expression with the unbound Eater variable as the new
λ -variable. The following attachment expression fulfills all of these requirements:

VP → VP PP {λyVP.sem(y)∧PP.sem(VP.sem.variable)}
There are two aspects of this attachment that require some elaboration. The

first involves the application of the constituent verb phrases’ λ -expression to the
variable y. Binding the lower λ -expression’s variable to a new variable allows us
to lift the lower variable to the level of the newly created λ -expression. The result
of this technique is a new λ -expression with a variable that, in effect, plays the
same role as the original variable in the lower expression. In this case, this allows
a λ -expression to be modified during the analysis process before the argument to
the expression is actually available.

The second notable aspect of this attachment involves the VP.sem.variable
notation. This notation is used to access the event-variable representing the under-
lying meaning of the verb phrase, in this case, e. This is analogous to the notation
used to provide access to the various parts of complex-terms introduced earlier.

Applying this attachment to the current example yields the following repre-
sentation, which is suitable for combination with a subsequent subject noun phrase:

λy∃e Isa(e,Eating)∧Eater(e,y)∧Eaten(e,Dinner)
∧In(e,< ∃hHurry(h) >)

Verb Argument Prepositional Phrases

The prepositional phrases in this category serve to signal the role an argument plays
in some larger event structure. As such, the preposition itself does not actually
modify the meaning of the noun phrase. Consider the following example of role
signaling prepositional phrases:

(18.21) I need to go from Boston to Dallas.

DRAFT

30 Chapter 18. Computational Semantics

In examples like this, the arguments of go are expressed as prepositional phrases.
However, the meaning representations of these phrases should consist solely of the
unaltered representation of their head nouns. To handle this, argument preposi-
tional phrases are treated in the same way that non-branching grammatical rules
are; the semantic attachment of the noun phrase is copied unchanged to the seman-
tics of the larger phrase.

PP → P NP {NP.sem}
The verb phrase can then assign this meaning representation to the appropriate
event role. A more complete account of how these argument bearing prepositional
phrases map to underlying event roles will be presented in Ch. 19.

18.6 INTEGRATING SEMANTIC ANALYSIS INTO THE EARLEY PARSER

In Section 18.1, we suggested a simple pipeline architecture for a semantic an-
alyzer where the results of a complete syntactic parse are passed to a semantic
analyzer. The motivation for this notion stems from the fact that the compositional
approach requires the syntactic parse before it can proceed. It is, however, also
possible to perform semantic analysis in parallel with syntactic processing. This is
possible because in our compositional framework, the meaning representation for
a constituent can be created as soon as all of its constituent parts are present. This
section describes just such an approach to integrating semantic analysis into the
Earley parser from Ch. 13.

The integration of semantic analysis into an Earley parser is straightforward
and follows precisely the same lines as the integration of unification into the algo-
rithm given in Ch. 16. Three modifications are required to the original algorithm:

1. The rules of the grammar are given a new field to contain their semantic
attachments.

2. The states in the chart are given a new field to hold the meaning representation
of the constituent.

3. The ENQUEUE function is altered so that when a complete state is entered
into the chart its semantics are computed and stored in the state’s semantic
field.

Figure 18.6 shows ENQUEUE modified to create meaning representations.
When ENQUEUE is passed a complete state that can successfully unify its unifi-
cation constraints it calls APPLY-SEMANTICS to compute and store the meaning
representation for this state. Note the importance of performing feature-structure
unification prior to semantic analysis. This ensures that semantic analysis will be

DRAFT

Section 18.6. Integrating Semantic Analysis into the Earley Parser 31

procedure ENQUEUE(state, chart-entry)
if INCOMPLETE?(state) then

if state is not already in chart-entry then
PUSH(state, chart-entry)

else if UNIFY-STATE(state) succeeds then
if APPLY-SEMANTICS(state) succeeds then

if state is not already in chart-entry then
PUSH(state, chart-entry)

procedure APPLY-SEMANTICS(state)
meaning-rep←APPLY(state.semantic-attachment, state)
if meaning-rep does not equal failure then

state.meaning-rep←meaning-rep

Figure 18.6 The ENQUEUE function modified to handle semantics. If the state
is complete and unification succeeds then ENQUEUE calls APPLY-SEMANTICS to
compute and store the meaning representation of completed states.

performed only on valid trees and that features needed for semantic analysis will
be present.

The primary advantage of this integrated approach over the pipeline approach
lies in the fact that APPLY-SEMANTICS can fail in a manner similar to the way that
unification can fail. If a semantic ill-formedness is found in the meaning repre-
sentation being created, the corresponding state can be blocked from entering the
chart. In this way, semantic considerations can be brought to bear during syntactic
processing. Ch. 19 describes in some detail the various ways that this notion of
ill-formedness can be realized.

Unfortunately, this also illustrates one of the primary disadvantages of in-
tegrating semantics directly into the parser—considerable effort may be spent on
the semantic analysis of orphan constituents that do not in the end contribute to a
successful parse. The question of whether the gains made by bringing semantics
to bear early in the process outweigh the costs involved in performing extraneous
semantic processing can only be answered on a case-by-case basis.

DRAFT

32 Chapter 18. Computational Semantics

18.7 IDIOMS AND COMPOSITIONALITY

Ce corps qui s’appelait et qui s’appelle encore le saint empire ro-
main n’était en aucune manière ni saint, ni romain, ni empire.

This body, which called itself and still calls itself the Holy Roman
Empire, was neither Holy, nor Roman, nor an Empire.

Voltaire2, 1756

As innocuous as it seems, the principle of compositionality runs into trouble fairly
quickly when real language is examined. There are many cases where the mean-
ing of a constituent is not based on the meaning of its parts, at least not in the
straightforward compositional sense. Consider the following WSJ examples:

(18.22) Coupons are just the tip of the iceberg.

(18.23) The SEC’s allegations are only the tip of the iceberg.

(18.24) Coronary bypass surgery, hip replacement and intensive-care units are
but the tip of the iceberg.

The phrase the tip of the iceberg in each of these examples clearly doesn’t have
much to do with tips or icebergs. Instead, it roughly means something like the be-
ginning. The most straightforward way to handle idiomatic constructions like these
is to introduce new grammar rules specifically designed to handle them. These
idiomatic rules mix lexical items with grammatical constituents, and introduce se-
mantic content that is not derived from any of its parts. Consider the following rule
as an example of this approach:

NP → the tip o f the iceberg
{Beginning}

The lower case items on the right-hand side of this rule are intended to rep-
resent precisely words in the input. Although, the constant Beginning should not
be taken too seriously as a meaning representation for this idiom, it does illustrate
the idea that the meaning of this idiom is not based on the meaning of any of its
parts. Note that an Earley-style analyzer with this rule will now produce two parses
when this phrase is encountered: one representing the idiom and one representing
the compositional meaning.

As with the rest of the grammar, it may take a few tries to get these rules
right. Consider the following iceberg examples from the WSJ corpus:

(18.25) And that’s but the tip of Mrs. Ford’s iceberg.

2 Essai sur les moeurs et les esprit des nations. Translation by Y. Sills, as quoted in Sills and Merton
(1991).

DRAFT

Section 18.8. Summary 33

(18.26) These comments describe only the tip of a 1,000-page iceberg.

(18.27) The 10 employees represent the merest tip of the iceberg.

The rule given above is clearly not general enough to handle these cases. These ex-
amples indicate that there is a vestigial syntactic structure to this idiom that permits
some variation in the determiners used, and also permits some adjectival modifica-
tion of both the iceberg and the tip. A more promising rule would be something
like the following:

NP → TipNP o f IcebergNP
{Beginning}

Here the categories TipNP and IcebergNP can be given an internal nominal-
like structure that permits some adjectival modification and some variation in the
determiners, while still restricting the heads of these noun phrases to the lexical
items tip and iceberg. Note that this syntactic solution ignores the thorny issue that
the modifiers mere and 1000-page seem to indicate that both the tip and iceberg
may in fact play some compositional role in the meaning of the idiom. We will
return to this topic in Ch. 19, when we take up the issue of metaphor.

To summarize, handling idioms requires at least the following changes to the
general compositional framework:

• Allow the mixing of lexical items with traditional grammatical constituents.

• Allow the creation of additional idiom-specific constituents needed to handle
the correct range of productivity of the idiom.

• Permit semantic attachments that introduce logical terms and predicates that
are not related to any of the constituents of the rule.

This discussion is obviously only the tip of an enormous iceberg. Idioms
are far more frequent and far more productive than is generally recognized and
pose serious difficulties for many applications, including, as we will see in Ch. 24,
machine translation.

18.8 SUMMARY

This chapter explores the notion of syntax-driven semantic analysis. Among the
highlights of this chapter are the following topics:

• Semantic analysis is the process whereby meaning representations are cre-
ated and assigned to linguistic inputs.

• Semantic analyzers that make use of static knowledge from the lexicon and
grammar can create context-independent literal, or conventional, meanings.

DRAFT

34 Chapter 18. Computational Semantics

• The Principle of Compositionality states that the meaning of a sentence can
be composed from the meanings of its parts.

• In Syntax-driven semantic analysis, the parts are the syntactic constituents
of an input.

• Compositional creation of FOL formulas is possible with a few notational
extensions including λ -expressions and complex-terms.

• Compositional creation of FOL formulas is also possible using the mecha-
nisms provided by feature structures and unification.

• Natural language quantifiers introduce a kind of ambiguity that is difficult
to handle compositionally. Complex-terms can be used to compactly encode
this ambiguity.

• Idiomatic language defies the principle of compositionality but can easily be
handled by adapting the techniques used to design grammar rules and their
semantic attachments.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

As noted earlier, the principle of compositionality is traditionally attributed to
Frege; Janssen (1997) discusses this attribution. Using the categorial grammar
framework described in Ch. 14, Montague (1973) demonstrated that a composi-
tional approach could be systematically applied to an interesting fragment of nat-
ural language. The rule-to-rule hypothesis was first articulated by Bach (1976).
On the computational side of things, Woods’s LUNAR system (Woods, 1977) was
based on a pipelined syntax-first compositional analysis. Schubert and Pelletier
(1982) developed an incremental rule-to-rule system based on Gazdar’s GPSG ap-
proach (Gazdar, 1981, 1982; Gazdar et al., 1985). Main and Benson (1983) ex-
tended Montague’s approach to the domain of question-answering.

In one of the all-too-frequent cases of parallel development, researchers in
programming languages developed essentially identical compositional techniques
to aid in the design of compilers. Specifically, Knuth (1968) introduced the notion
of attribute grammars that associate semantic structures with syntactic structures in
a one-to-one correspondence. As a consequence, the style of semantic attachments
used in this chapter will be familiar to users of the YACC-style (Johnson and Lesk,
1978) compiler tools.

Semantic Grammars are due to Burton (Brown and Burton, 1975). Similar
notions developed around the same time included Pragmatic Grammars (Woods,
1977) and Performance Grammars (Robinson, 1975). All centered around the no-
tion of reshaping syntactic grammars to serve the needs of semantic processing. It

DRAFT

Section 18.8. Summary 35

is safe to say that most modern systems developed for use in limited domains make
use of some form of semantic grammar.

Most of the techniques used in the fragment of English presented in Section
18.5 are adapted from SRI’s Core Language Engine (Alshawi, 1992). Additional
bits and pieces were adapted from Woods (1977), Schubert and Pelletier (1982),
and Gazdar et al. (1985). Of necessity, a large number of important topics were
not covered in this chapter. See Alshawi (1992) for the standard gap-threading
approach to semantic interpretation in the presence of long-distance dependencies.
ter Meulen (1995) presents an modern treatment of tense, aspect, and the repre-
sentation of temporal information. Extensive coverage of approaches to quantifier
scoping can be found in Hobbs and Shieber (1987) and Alshawi (1992). van Lehn
(1978) presents a set of human preferences for quantifier scoping. Over the years,
a considerable amount of effort has been directed toward the interpretation of com-
pound nominals. Linguistic research on this topic can be found in Lees (1970),
Downing (1977), Levi (1978), and Ryder (1994), more computational approaches
are described in Gershman (1977), Finin (1980), McDonald (1982), Pierre (1984),
Arens et al. (1987), Wu (1992), Vanderwende (1994), and Lauer (1995).

There is a long and extensive literature on idioms. Fillmore et al. (1988) de-
scribe a general grammatical framework called Construction Grammar that places
idioms at the center of its underlying theory. Makkai (1972) presents an exten-
sive linguistic analysis of many English idioms. Hundreds of idiom dictionaries
for second-language learners are also available. On the computational side, Becker
(1975) was among the first to suggest the use of phrasal rules in parsers. Wilensky
and Arens (1980) were among the first to successfully make use of this notion in
their PHRAN system. Zernik (1987) demonstrated a system that could learn such
phrasal idioms in context. A collection of papers on computational approaches to
idioms appeared in (Fass et al., 1992).

Finally, we have skipped an entire branch of semantic analysis in which ex-
pectations driven from deep meaning representations drive the analysis process.
Such systems avoid the direct representation and use of syntax, rarely making use
of anything resembling a parse tree. Some of the earliest and most successful ef-
forts along these lines were developed by Simmons (1973, 1978, 1983) and (Wilks,
1975a, 1975b). A series of similar approaches were developed by Roger Schank
and his students (Riesbeck, 1975; Birnbaum and Selfridge, 1981; Riesbeck, 1986).
In these approaches, the semantic analysis process is guided by detailed proce-
dures associated with individual lexical items. The CIRCUS information extraction
system (Lehnert et al., 1991) traces its roots to these systems.

DRAFT

36 Chapter 18. Computational Semantics

EXERCISES

18.1 The attachment given on page 23 for handling noun phrases with complex
determiners is not general enough to handle most possessive noun phrases. Specif-
ically, it doesn’t work for phrases like the following:

a. My sister’s flight

b. My fiance’s mother’s flight

Create a new set of semantic attachments to handle cases like these.

18.2 Develop a set of grammar rules and semantic attachments to handle predi-
cate adjectives such as the one following:

a. Flight 308 from New York is expensive.

b. Murphy’s restaurant is cheap.

18.3 None of the attachments given in this chapter provide temporal information.
Augment a small number of the most basic rules to add temporal information along
the lines sketched in Ch. 17. Use your rules to create meaning representations for
the following examples:

a. Flight 299 departed at 9 o’clock.

b. Flight 208 will arrive at 3 o’clock.

c. Flight 1405 will arrive late.

18.4 As noted in Ch. 17, the present tense in English can be used to refer to either
the present or the future. However, it can also be used to express habitual behavior,
as in the following:

Flight 208 leaves at 3 o’clock.

This could be a simple statement about today’s Flight 208, or alternatively
it might state that this flight leaves at 3 o’clock every day. Create a FOPC mean-
ing representation along with appropriate semantic attachments for this habitual
sense.

18.5 Implement an Earley-style semantic analyzer based on the discussion on
page 30.

18.6 It has been claimed that it is not necessary to explicitly list the semantic
attachment for most grammar rules. Instead, the semantic attachment for a rule
should be inferable from the semantic types of the rule’s constituents. For example,
if a rule has two constituents, where one is a single argument λ -expression and the

DRAFT

Section 18.8. Summary 37

other is a constant, then the semantic attachment should obviously apply the λ -
expression to the constant. Given the attachments presented in this chapter, does
this type-driven semantics seem like a reasonable idea?

18.7 Add a simple type-driven semantics mechanism to the Earley analyzer you
implemented for Exercise 18.5.

18.8 Using a phrasal search on your favorite Web search engine, collect a small
corpus of the tip of the iceberg examples. Be certain that you search for an ap-
propriate range of examples (i.e., don’t just search for “the tip of the iceberg”.)
Analyze these examples and come up with a set of grammar rules that correctly
accounts for them.

18.9 Collect a similar corpus of examples for the idiom miss the boat. Analyze
these examples and come up with a set of grammar rules that correctly accounts
for them.

18.10 There are now a fair number of Web-based natural language question an-
swering services that purport to provide answers to questions on a wide range of
topics (see the book’s Web page for pointers to current services). Develop a cor-
pus of questions for some general domain of interest and use it to evaluate one or
more of these services. Report your results. What difficulties did you encounter in
applying the standard evaluation techniques to this task?

18.11 Collect a small corpus of weather reports from your local newspaper or
the Web. Based on an analysis of this corpus, create a set of frames sufficient to
capture the semantic content of these reports.

18.12 Implement and evaluate a small information extraction system for the weather
report corpus you collected for the last exercise.

DRAFT

38 Chapter 18. Computational Semantics

Alshawi, H. (Ed.). (1992). The Core Language Engine.
MIT Press.

Arens, Y., Granacki, J., and Parker, A. (1987). Phrasal
analysis of long noun sequences. In ACL-87, Stanford,
CA, pp. 59–64. ACL.

Bach, E. (1976). An extension of classical transforma-
tional grammar. In Problems of Linguistic Metatheory
(Proceedings of the 1976 Conference). Michigan State
University.

Becker (1975). The phrasal lexicon. In Schank, R. and
Nash-Webber, B. L. (Eds.), Theoretical Issues in Natural
Language Processing. Cambridge, MA.

Birnbaum, L. and Selfridge, M. (1981). Conceptual anal-
ysis of natural language. In Schank, R. C. and Riesbeck,
C. K. (Eds.), Inside Computer Understanding: Five Pro-
grams plus Miniatures, pp. 318–353. Lawrence Erlbaum.

Brown, J. S. and Burton, R. R. (1975). Multiple represen-
tations of knowledge for tutorial reasoning. In Bobrow,
D. G. and Collins, A. (Eds.), Representation and Under-
standing, pp. 311–350. Academic Press.

Downing, P. (1977). On the creation and use of English
compound nouns. Language, 53(4), 810–842.

Fass, D., Martin, J. H., and Hinkelman, E. A. (Eds.).
(1992). Computational Intelligence: Special Issue on
Non-Literal Language, Vol. 8. Blackwell, Cambridge,
MA.

Fillmore, C. J., Kay, P., and O’Connor, M. C. (1988). Reg-
ularity and idiomaticity in grammatical constructions:
The case of Let Alone. Language, 64(3), 510–538.

Finin, T. (1980). The semantic interpretation of nominal
compounds. In AAAI-80, Stanford, CA, pp. 310–312.

Gazdar, G. (1981). Unbounded dependencies and coordi-
nate structure. Linguistic Inquiry, 12(2), 155–184.

Gazdar, G. (1982). Phrase structure grammar. In Jacob-
son, P. and Pullum, G. K. (Eds.), The Nature of Syntactic
Representation, pp. 131–186. Reidel, Dordrecht.

Gazdar, G., Klein, E., Pullum, G. K., and Sag, I. A. (1985).
Generalized Phrase Structure Grammar. Basil Black-
well, Oxford.

Gershman, A. V. (1977). Conceptual analysis of noun
groups in English. In IJCAI-77, Cambridge, MA, pp.
132–138.

Hobbs, J. R. and Shieber, S. M. (1987). An algorithm for
generating quantifier scopings. Computational Linguis-
tics, 13(1), 47–55.

Janssen, T. M. V. (1997). Compositionality. In van Ben-
them, J. and ter Meulen, A. (Eds.), Handbook of Logic
and Language, chap. 7, pp. 417–473. North-Holland,
Amsterdam.

Johnson, S. C. and Lesk, M. E. (1978). Language develop-
ment tools. Bell System Technical Journal, 57(6), 2155–
2175.

Knuth, D. E. (1968). Semantics of context-free languages.
Mathematical Systems Theory, 2(2), 127–145.

Lauer, M. (1995). Corpus statistics meet the noun com-
pound. In ACL-95, Cambridge, MA, pp. 47–54.

Lees, R. (1970). Problems in the grammatical analysis of
English nominal compounds. In Bierwitsch, M. and Hei-
dolph, K. E. (Eds.), Progress in Linguistics, pp. 174–187.
Mouton, The Hague.

Lehnert, W. G., Cardie, C., Fisher, D., Riloff, E., and
Williams, R. (1991). Description of the CIRCUS system
as used for MUC-3. In Sundheim, B. (Ed.), Proceed-
ings of the Third Message Understanding Conference,
pp. 223–233. Morgan Kaufmann.

Levi, J. (1978). The Syntax and Semantics of Complex
Nominals. Academic Press.

Main, M. G. and Benson, D. B. (1983). Denotational
semantics for natural language question-answering pro-
grams. American Journal of Computational Linguistics,
9(1), 11–21.

Makkai, A. (1972). Idiom Structure in English. Mouton,
The Hague.

McDonald, D. B. (1982). Understanding Noun Com-
pounds. Ph.D. thesis, Carnegie Mellon University, Pitts-
burgh, PA. CMU Technical Report CS-82-102.

Montague, R. (1973). The proper treatment of quantifica-
tion in ordinary English. In Thomason, R. (Ed.), Formal
Philosophy: Selected Papers of Richard Montague, pp.
247–270. Yale University Press, New Haven, CT.

Pierre, I. (1984). Another look at nominal compounds. In
COLING-84, Stanford, CA, pp. 509–516.

Riesbeck, C. K. (1975). Conceptual analysis. In Schank,
R. C. (Ed.), Conceptual Information Processing, pp. 83–
156. American Elsevier, New York.

Riesbeck, C. K. (1986). From conceptual analyzer to direct
memory access parsing: An overview. In Advances in
Cognitive Science 1, pp. 236–258. Ellis Horwood, Chich-
ester.

DRAFT

Section 18.8. Summary 39

Robinson, J. J. (1975). Performance grammars. In Reddy,
D. R. (Ed.), Speech Recognition: Invited Paper Pre-
sented at the 1974 IEEE Symposium, pp. 401–427. Aca-
demic Press.

Ryder, M. E. (1994). Ordered Chaos: The Interpretation
of English Noun-Noun Compounds. University of Cali-
fornia Press, Berkeley.

Schubert, L. K. and Pelletier, F. J. (1982). From English to
logic: Context-free computation of ‘conventional’ logi-
cal translation. American Journal of Computational Lin-
guistics, 8(1), 27–44.

Sills, D. L. and Merton, R. K. (Eds.). (1991). Social Sci-
ence Quotations. MacMillan, New York.

Simmons, R. F. (1973). Semantic networks: Their com-
putation and use for understanding English sentences. In
Schank, R. C. and Colby, K. M. (Eds.), Computer Mod-
els of Thought and Language, pp. 61–113. W.H. Freeman
and Co., San Francisco.

Simmons, R. F. (1978). Rule-based computations on En-
glish. In Waterman, D. A. and Hayes-Roth, F. (Eds.),
Pattern-Directed Inference Systems. Academic Press.

Simmons, R. F. (1983). Computations from the English.
Prentice Hall.

ter Meulen, A. (1995). Representing Time in Natural Lan-
guage. MIT Press.

van Lehn, K. (1978). Determining the scope of English
quantifiers. Master’s thesis, MIT, Cambridge, MA. MIT
Technical Report AI-TR-483.

Vanderwende, L. (1994). Algorithm for the automatic in-
terpretation of noun sequences. In COLING-94, Kyoto,
pp. 782–788.

Wilensky, R. and Arens, Y. (1980). PHRAN: A
knowledge-based natural language understander. In
ACL-80, Philadelphia, PA, pp. 117–121. ACL.

Wilks, Y. (1975a). An intelligent analyzer and under-
stander of English. Communications of the ACM, 18(5),
264–274.

Wilks, Y. (1975b). A preferential, pattern-seeking, seman-
tics for natural language inference. Artificial Intelligence,
6(1), 53–74.

Woods, W. A. (1977). Lunar rocks in natural English: Ex-
plorations in natural language question answering. In
Zampolli, A. (Ed.), Linguistic Structures Processing, pp.
521–569. North Holland, Amsterdam.

Wu, D. (1992). Automatic Inference: A Probabilistic Basis
for Natural Language Interpretation. Ph.D. thesis, Uni-
versity of California, Berkeley, Berkeley, CA. UCB/CSD
92-692.

Zernik, U. (1987). Strategies in Language Acquisition:
Learning Phrases from Examples in Context. Ph.D. the-
sis, University of California, Los Angeles, Computer
Science Department, Los Angeles, CA.

