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17
REPRESENTING
MEANING

ISHMAEL: Surely all this is not without meaning.
Herman Melville, Moby Dick

The approach to semantics introduced here, and elaborated on in the next four
chapters, is based on the notion that the meaning of linguistic utterances can be
captured in formal structures, which we will call meaning representations. Cor-MEANING

REPRESENTATIONS

respondingly, the frameworks that are used to specify the syntax and semantics of
these representations will be called meaning representation languages. TheseMEANING

REPRESENTATION
LANGUAGES

meaning representations play a role analogous to that of the phonological, mor-
phological, and syntactic representations introduced in earlier chapters.

The need for meaning representations arises when neither the raw linguistic
inputs, nor any of the structures derivable from them by any of the transducers
we have studied thus far, facilitate the kind of semantic processing that is desired.
More specifically, what we need are representations that bridge the gap from lin-
guistic inputs to the non-linguistic knowledge of the world needed to perform tasks
involving the meaning of linguistic inputs. To illustrate this notion, consider the
following everyday language tasks that require some form of semantic processing
of natural language:

• Answering an essay question on an exam;

• Deciding what to order at a restaurant by reading a menu;

• Learning to use a new piece of software by reading the manual;

• Realizing that you’ve been insulted; and

• Following a recipe.

Simply having access to the phonological, morphological, and syntactic represen-
tations that we have discussed thus far will not get us very far on accomplishing
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any of these tasks. These tasks require access to representations that link the lin-
guistic elements involved in the task to the non-linguistic knowledge of the world
needed to successfully accomplish them. For example, some of the world knowl-
edge needed to perform the above tasks would include the following:

• Answering and grading essay questions requires background knowledge about
the topic of the question, the desired knowledge level of the students, and how
such questions are normally answered.

• Reading a menu and deciding what to order, giving advice about where to go
to dinner, following a recipe, and generating new recipes all require knowl-
edge about food, its preparation, what people like to eat and what restaurants
are like.

• Learning to use a piece of software by reading a manual, or giving advice
about how to do the same, requires knowledge about current computers, the
specific software in question, similar software applications, and knowledge
about users in general.

In the representational approach explored here, we take linguistic inputs and
construct meaning representations that are made up of the same kind of stuff that is
used to represent this kind of everyday commonsense knowledge of the world. The
process whereby such representations are created and assigned to linguistic inputs
is called semantic analysis.SEMANTIC ANALYSIS

To make this notion a bit more concrete, consider Fig. 17.1, which shows
sample meaning representations for the sentence I have a car using four repre-
sentative meaning representation languages. The first row illustrates a sentence in
First-Order Logic, which will be covered in detail in Section 17.4; the graph in
the center illustrates a Semantic Network, which will be discussed further in Sec-
tion 17.6; the third row contains a Conceptual Dependency diagram, discussed in
more detail in Ch. 19, and finally a Frame-Based representation, also covered in
Section 17.6.

While there are non-trivial differences among these approaches, at an abstract
level they all share as a common foundation the notion that a meaning represen-
tation consists of structures composed from a set of symbols, or representational
vocabulary. When appropriately arranged, these symbol structures are taken to cor-
respond to the objects, properties of objects and relations among objects in some
state of affairs being represented. In this case, all four representations make use of
symbols corresponding to the speaker, a car, and relations denoting the possession
of one by the other.

It is important to note that these representations can be viewed from at least
two distinct perspectives in all four of these approaches: as representations of the
meaning of the particular linguistic input I have a car, and as representations of
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∃x,y Having(x)∧Haver(Speaker,x)∧HadT hing(y,x)∧Car(y)

Having

Haver Had-Thing

Speaker Car

Car Having
⇑ POSS-BY Haver: Speaker

Speaker HadThing: Car

Figure 17.1 A list of symbols, two directed graphs, and a record structure: a sam-
pler of meaning representations for I have a car.

the state of affairs in some world. It is this dual perspective that allows these rep-
resentations to be used to link linguistic inputs to the world and to our knowledge
of it.

The structure of this part of the book parallels that of the previous parts. We
will alternate discussions of the nature of meaning representations with discus-
sions of the computational processes that can produce them. More specifically,
this chapter introduces the basics of what is needed in a meaning representation,
while Ch. 18 introduces a number of techniques for assigning meanings to linguis-
tic inputs. Ch. 19 explores a range of complex representational issues related to
the meanings of words. Ch. 20 then explores some robust computational methods
designed to exploit these lexical representations.

Since the focus of this chapter is on some of the basic requirements for mean-
ing representations, we will defer a number of extremely important issues to later
chapters. In particular, the focus of this chapter is on representing what is some-
times called the literal meaning of sentences. By this, we have in mind represen-LITERAL MEANING

tations that are closely tied to the conventional meanings of the words that are used
to create them, and that do not reflect much of the context in which they occur. The
shortcomings of such representations with respect to phenomena such as idioms
and metaphor will be discussed in the next two chapters, while the role of context
in ascertaining the deeper meaning of sentences will be covered in Chs. 20 and 23.
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There are four major parts to this chapter. Section 17.1 explores some of the
key computational requirements for what we need in a meaning representation lan-
guage. Section 17.2 then discusses some of the ways that languages are structured
to convey meaning. Section 17.3 describes how we can more formally specify the
meanings of our meaning representations. Section 17.4 then provides an introduc-
tion to First Order Logic, which has historically been the primary technique used
to investigate issues in natural language semantics.

17.1 COMPUTATIONAL DESIDERATA FOR REPRESENTATIONS

We begin by considering the issue of why meaning representations are needed and
what they should do for us. To focus this discussion, we will consider in more
detail the task of giving advice about restaurants to tourists. In this discussion, we
will assume that we have a computer system that accepts spoken language queries
from tourists and construct appropriate responses by using a knowledge base of
relevant domain knowledge. A series of examples will serve to introduce some
of the basic requirements that a meaning representation must fulfill, and some of
the complications that inevitably arise in the process of designing such meaning
representations. In each of these examples, we will examine the role that the rep-
resentation of the meaning of the request must play in the process of satisfying
it.

17.1.1 Verifiability

Let us begin by considering the following simple question:

(17.1) Does Maharani serve vegetarian food?

This example illustrates the most basic requirement for a meaning representation:
it must be possible to use the representation to determine the relationship between
the meaning of a sentence and the world as we know it. In other words, we need to
be able to determine the truth of our representations. The most straightforward way
to implement this notion is make it possible for a system to compare, or match, the
representation of the meaning of an input against the representations in its knowl-
edge base, its store of information about its world.KNOWLEDGE BASE

In this example, let us assume that the meaning of this question contains, as
a component, the meaning underlying the proposition Maharani serves vegetarian
food. For now, we will simply gloss this representation as:

Serves(Maharani,VegetarianFood)
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It is this representation of the input that will be matched against the knowl-
edge base of facts about a set of restaurants. If the system finds a representation
matching the input proposition in its knowledge base, it can return an affirmative
answer. Otherwise, it must either say No, if its knowledge of local restaurants is
complete, or say that it does not know if there is reason to believe that its knowl-
edge is incomplete.

This notion is known as verifiability, and concerns a system’s ability to com-VERIFIABILITY

pare the state of affairs described by a representation to the state of affairs in some
world as modeled in a knowledge base.

17.1.2 Unambiguous Representations

The domain of semantics, like all the other domains we have studied, is subject
to ambiguity. Specifically, single linguistic inputs can legitimately have different
meaning representations assigned to them based on the circumstances in which
they occur.

Consider the following example from the BERP corpus:

(17.2) I wanna eat someplace that’s close to ICSI.

Given the allowable argument structures for the verb eat, this sentence can either
mean that the speaker wants to eat at some nearby location, or under a Godzilla as
speaker interpretation, the speaker may want to devour some nearby location. The
answer generated by the system for this request will depend on which interpretation
is chosen as the correct one.

Since ambiguities such as this abound in all genres of all languages, some
means of determining that certain interpretations are preferable (or alternatively
less preferable) than others is needed. The various linguistic phenomena that give
rise to such ambiguities, and the techniques that can be employed to deal with
them, will be discussed in detail in the next four chapters.

Our concern in this chapter, however, is with the status of our meaning rep-
resentations with respect to ambiguity, and not with the means by which we might
arrive at correct interpretations. Since we reason about, and act upon, the semantic
content of linguistic inputs, the final representation of an input’s meaning should
be free from any ambiguity. Therefore, regardless of any ambiguity in the raw
input, it is critical that a meaning representation language support representations
that have a single unambiguous interpretation1.

A concept closely related to ambiguity is vagueness. Like ambiguity, vague-VAGUENESS

1 This does not preclude the use of intermediate semantic representations that maintain some level
of ambiguity on the way to a single unambiguous form. Examples of such representations will be
discussed in Ch. 18.
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ness can make it difficult to determine what to do with a particular input based
on its meaning representation. Vagueness, however, does not give rise to multiple
representations.

Consider the following request as an example:

(17.3) I want to eat Italian food.

While the use of the phrase Italian food may provide enough information for a
restaurant advisor to provide reasonable recommendations, it is nevertheless quite
vague as to what the user really wants to eat. Therefore, a vague representation of
the meaning of this phrase may be appropriate for some purposes, while a more
specific representation may be needed for other purposes. It will, therefore, be
advantageous for a meaning representation language to support representations that
maintain a certain level of vagueness. Note that it is not always easy to distinguish
ambiguity from vagueness. Zwicky and Sadock (1975) provide a useful set of tests
that can be used as diagnostics.

17.1.3 Canonical Form

The notion that single sentences can be assigned multiple meanings leads to the re-
lated phenomenon of distinct inputs that should be assigned the same meaning rep-
resentation. Consider the following alternative ways of expressing example (17.1):

(17.4) Does Maharani have vegetarian dishes?
(17.5) Do they have vegetarian food at Maharani?
(17.6) Are vegetarian dishes served at Maharani?
(17.7) Does Maharani serve vegetarian fare?

Given that these alternatives use different words and have widely varying
syntactic analyses, it would not be unreasonable to expect them to have substan-
tially different meaning representations. Such a situation would, however, have
undesirable consequences for our matching approach to determining the truth of
our representations. If the system’s knowledge base contains only a single repre-
sentation of the fact in question, then the representations underlying all but one of
our alternatives will fail to produce a match. We could, of course, store all possible
alternative representations of the same fact in the knowledge base, but this would
lead to an enormous number of problems related to keeping such a knowledge base
consistent.

The way out of this dilemma is motivated by the fact that since the answers
given for each of these alternatives should be the same in all situations, we might
say that they all mean the same thing, at least for the purposes of giving restaurant
recommendations. In other words, at least in this domain, we can legitimately
consider assigning the same meaning representation to the propositions underlying
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each of these requests. Taking such an approach would guarantee that our matching
scheme for answering Yes-No questions will still work.

The notion that inputs that mean the same thing should have the same mean-
ing representation is known as the doctrine of canonical form. This approachCANONICAL FORM

greatly simplifies various reasoning tasks since systems need only deal with a sin-
gle meaning representation for a potentially wide range of expressions.

Canonical form does, of course, complicate the task of semantic analysis.
To see this, note that the alternatives given above use completely different words
and syntax to refer to vegetarian fare and to what restaurants do with it. More
specifically, to assign the same representation to all of these requests our system
will have to conclude that vegetarian fare, vegetarian dishes and vegetarian food
refer to the same thing in this context, that the use here of having and serving
are similarly equivalent, and that the different syntactic parses underlying these
requests are all compatible with the same meaning representation.

Being able to assign the same representation to such diverse inputs is a tall
order. Fortunately there are some systematic meaning relationships among word
senses and among grammatical constructions that can be exploited to make this
task tractable. Consider the issue of the meanings of the words food, dish and
fare in these examples. A little introspection, or a glance at a dictionary, reveals
that these words have a fair number of distinct uses. Fortunately, it also reveals
that there is at least one sense that is shared among them all. If a system has the
ability to choose that shared sense, then an identical meaning representation can be
assigned to the phrases containing these words.

In general, we say that these words all have various word senses and thatWORD SENSES

some of the senses are synonymous with one another. The process of choosing the
right sense in context is called word sense disambiguation, or word sense taggingWORD SENSE

DISAMBIGUATION

by analogy to part-of-speech tagging. The topics of synonymy, sense tagging, and
a host of other topics related to word meanings will be covered in Chs. 17 and
18. Suffice it to say here that the fact that inputs may use different words does not
preclude the assignment of identical meanings to them.

Just as there are systematic relationships among the meanings of different
words, there are similar relationships related to the role that syntactic analyses
play in assigning meanings to sentences. Specifically, alternative syntactic analyses
often have meanings that are, if not identical, at least systematically related to one
another. Consider the following pair of examples:

(17.8) Maharani serves vegetarian dishes.

(17.9) Vegetarian dishes are served by Maharani.

Despite the different placement of the arguments to serve in these examples, we
can still assign Maharani and vegetarian dishes to the same roles in both of these
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examples because of our knowledge of the relationship between active and passive
sentence constructions. In particular, we can use knowledge of where grammatical
subjects and direct objects appear in these constructions to assign Maharani, to the
role of the server, and vegetarian dishes to the role of thing being served in both of
these examples, despite the fact that they appear in different surface locations. The
precise role of the grammar in the construction of meaning representations will be
covered in Ch. 18.

17.1.4 Inference and Variables

Continuing with the topic of the computational purposes that meaning representa-
tions should serve, we should consider more complex requests such as the follow-
ing:

(17.10) Can vegetarians eat at Maharani?

Here, it would be a mistake to invoke canonical form to force our system to assign
the same representation to this request as for the previous examples. The fact
that this request results in the same answer as the others arises not because they
mean the same thing, but because there is a commonsense connection between
what vegetarians eat and what vegetarian restaurants serve. This is a fact about the
world and not a fact about any particular kind of linguistic regularity. This implies
that no approach based on canonical form and simple matching will give us an
appropriate answer to this request. What is needed is a systematic way to connect
the meaning representation of this request with the facts about the world as they
are represented in a knowledge base.

We will use the term inference to refer generically to a system’s ability toINFERENCE

draw valid conclusions based on the meaning representation of inputs and its store
of background knowledge. It must be possible for the system to draw conclusions
about the truth of propositions that are not explicitly represented in the knowledge
base, but are nevertheless logically derivable from the propositions that are present.

Now consider the following somewhat more complex request:

(17.11) I’d like to find a restaurant where I can get vegetarian food.

Unlike our previous examples, this request does not make reference to any par-
ticular restaurant. The user is stating that they would like information about an
unknown and unnamed entity that is a restaurant that serves vegetarian food. Since
this request does not mention any particular restaurant, the kind of simple matching-
based approach we have been advocating is not going to work. Rather, answering
this request requires a more complex kind of matching that involves the use of
variables. We can gloss a representation containing such variables as follows:

Serves(x,VegetarianFood)
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Matching such a proposition succeeds only if the variable x can be replaced
by some known object in the knowledge base in such a way that the entire propo-
sition will then match. The concept that is substituted for the variable can then
be used to fulfill the user’s request. Of course, this simple example only hints at
the issues involved in the use of such variables. Suffice it to say that linguistic in-
puts contain many instances of all kinds of indefinite references and it is therefore
critical for any meaning representation language to be able to handle this kind of
expression.

17.1.5 Expressiveness

Finally, to be useful a meaning representation scheme must be expressive enough
to handle an extremely wide range of subject matter. The ideal situation, of course,
would be to have a single meaning representation language that could adequately
represent the meaning of any sensible natural language utterance. Although this is
probably too much to expect from any single representational system, Section 17.4
will show that First-Order Logic is expressive enough to handle quite a lot of what
needs to be represented.

17.2 MEANING STRUCTURE OF LANGUAGE

The previous section focused on some of the purposes that meaning representations
must serve, without saying much about what we will call the meaning structure
of language. By this, we have in mind the various methods by which human lan-MEANING

STRUCTURE OF
LANGUAGE

guages convey meaning. These include a variety of conventional form-meaning
associations, word-order regularities, tense systems, conjunctions and quantifiers,
and a fundamental predicate-argument structure. The remainder of this section fo-
cuses exclusively on this last notion of a predicate-argument structure, which is the
mechanism that has had the greatest practical influence on the nature of meaning
representation languages. The remaining topics will be addressed in Ch. 18 where
the primary focus will be on how they contribute to how meaning representations
are assembled, rather than on the nature of the representations.

17.2.1 Predicate-Argument Structure

Human languages have a form of predicate-argument arrangement at the core of
their semantic structure. To a first approximation, this predicate-argument struc-
ture asserts that specific relationships, or dependencies, hold among the various
concepts underlying the constituent words and phrases that make up sentences. It
is this underlying structure that permits the creation of a single composite meaning
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representation from the meanings of the various parts of an input. One of the most
important jobs of a grammar is to help organize this predicate-argument structure.
Correspondingly, it is critical that our meaning representation languages support
the predicate-argument structures presented to us by language.

We have already seen the beginnings of this concept in our discussion of
verb complements in Chs. 11 and 15. There we saw that verbs dictate specific
constraints on the number, grammatical category, and location of the phrases that
are expected to accompany them in syntactic structures. To briefly review this idea,
consider the following examples:

(17.12) I want Italian food.

(17.13) I want to spend less than five dollars.

(17.14) I want it to be close by here.

These examples can be classified as having one of the following three syntactic
argument frames:

NP want NP

NP want Inf-VP

NP want NP Inf-VP

These syntactic frames specify the number, position and syntactic category of
the arguments that are expected to accompany a verb. For example, the frame for
the variety of want that appears in example (17.12) specifies the following facts:

• There are two arguments to this predicate.

• Both arguments must be NPs.

• The first argument is pre-verbal and plays the role of the subject.

• The second argument is post-verbal and plays the role of the direct object.

As we have shown in previous chapters, this kind of information is quite valu-
able in capturing a variety of important facts about syntax. By analyzing easily
observable semantic information associated with these frames, we can also gain
considerable insight into our meaning representations. We will begin by consid-
ering two extensions of these frames into the semantic realm: semantic roles and
semantic restrictions on these roles.

The notion of a semantic role can be understood by looking at the similari-
ties among the arguments in examples (17.12) through (17.14). In each of these
cases, the pre-verbal argument always plays the role of the entity doing the want-
ing, while the post-verbal argument plays the role of the concept that is wanted.
By noticing these regularities and labeling them accordingly, we can associate the
surface arguments of a verb with a set of discrete roles in its underlying semantics.
More generally, we can say that verb subcategorization frames allow the linking ofLINKING
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arguments in the surface structure with the semantic roles these arguments play in
the underlying semantic representation of an input. The study of roles associated
with specific verbs and across classes of verbs is usually referred to as thematic
role or case role analysis and will be studied more fully in Ch. 19.THEMATIC ROLE

CASE ROLE The notion of semantic restrictions arises directly from these semantic roles.
Returning to examples 17.12 through 17.14, we can see that it is not merely the
case that each initial noun phrase argument will be the wanter but that only certain
kinds, or categories, of concepts can play the role of wanter in any straightforward
manner. Specifically, want restricts the constituents appearing as the first argument
to those whose underlying concepts can actually partake in a wanting. Tradition-
ally, this notion is referred to as a selectional restriction. Through the use of theseSELECTIONAL

RESTRICTION

selectional restrictions, verbs can specify semantic restrictions on their arguments.
Before leaving this topic, we should note that verbs are by no means the only

objects in a grammar that can carry a predicate-argument structure. Consider the
following phrases from the BERP corpus:

(17.15) an Italian restaurant under fifteen dollars

In this example, the meaning representation associated with the preposition under
can be seen as having something like the following structure:

Under(ItalianRestaurant,$15)

In other words, prepositions can be characterized as two-argument predicates where
the first argument is an object that is being placed in some relation to the second
argument.

Another non-verb based predicate-argument structure is illustrated in the fol-
lowing example:

(17.16) Make a reservation for this evening for a table for two persons at 8.

Here, the predicate-argument structure is based on the concept underlying
the noun reservation, rather than make, the main verb in the phrase. This example
gives rise to a four argument predicate structure like the following:

Reservation(Hearer,Today,8PM,2)

This discussion makes it clear that any useful meaning representation lan-
guage must be organized in a way that supports the specification of semantic
predicate-argument structures. Specifically, it must include support for the kind
of semantic information that languages present:

• variable arity predicate-argument structures

• the semantic labeling of arguments to predicates

• the statement of semantic constraints on the fillers of argument roles
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17.3 MODEL-THEORETIC SEMANTICS

The last two sections focused on various desiderata for meaning representations
and on some of the ways in which natural languages convey meaning. We haven’t
said much formally about what it is about meaning representation languages that
allows them to do all the things we want them to. In particular, we might like to
have some kind of guarantee that these representations can do the work that we
require of them: bridge the gap from merely formal representations to representa-
tions that tell us something about some state of affairs in the world.

To see how we might provide such a guarantee, let’s start with the basic no-
tions shared by most meaning representation schemes. What they all have in com-
mon is the ability to represent objects, properties of objects and relations among
objects. This point of view can be formalized via the notion of a model. The basicMODEL

idea is that a model is a formal construct that stands for the particular state of affairs
in the world that we’re trying to represent. Expressions in a meaning representation
language will then be mapped in a systematic way to the elements of the model. If
the model accurately captures the facts we’re interested in concerning some state
of affairs in the world, then a systematic mapping between the meaning representa-
tion and model provides the necessary bridge between the meaning representation
and world being considered. As we’ll see, models provide a surprisingly simple
and powerful way to ground the expressions in meaning representation languages.

Before we start let’s introduce some terminology. The vocabulary of a mean-
ing representation consists of two parts: the non-logical vocabulary and the logical
vocabulary. The non-logical vocabulary consists of the open-ended set of namesNON-LOGICAL

VOCABULARY

for the objects, properties and relations that make up the world we’re trying to rep-
resent. These appear in various schemes as predicates, nodes, labels on links, or
labels in slots in frames, The logical vocabulary consists of the closed set of sym-LOGICAL

VOCABULARY

bols, operators, quantifiers, links, etc. that provide the formal means for composing
expressions in a given meaning representation language.

We’ll start by requiring that each element of the non-logical vocabulary of a
meaning representation have a denotation in the model. By denotation, we sim-
ply mean that every element of the non-logical vocabulary corresponds to a fixed
well-defined part of the model. Let’s start with objects, the most basic notion in
most representational schemes. The domain of a model is simply the set of objectsDOMAIN

that are part of the application, or state of affairs, being represented. Each distinct
concept, category or individual in an application denotes a unique element in the
domain. A domain is therefore formally a set. Note that it isn’t the case that every
element of the domain have a corresponding concept in our meaning representa-
tion; it’s perfectly acceptable to have domain elements that aren’t mentioned or
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conceived of in the meaning representation. Nor do we require that elements of
the domain have a single denoting concept in the meaning representation; a given
element in the domain might have several distinct representations denoting it, such
as Mary, WifeOf(Abe), or MotherOf(Robert).

We can capture properties of objects in a model by denoting those domain el-
ements that have the property in question; that is, properties denote sets. Similarly,
relations among objects denote sets of ordered lists, or tuples, of domain elements
that take part in the corresponding relations. This approach to properties and rela-
tions is thus an extensional one; the denotation of properties like red is the set of
things we think are red, the denotation of a relation like Married is simply the set
of pairs of domain elements that are married. To summarize:

• Objects denote elements of the domain

• Properties denote sets of elements of the domain

• Relations denote sets of tuples of elements of the domain

There is one additional element that we need to make this scheme work. We
need a mapping that systematically gets us from our meaning representation to the
corresponding denotations. More formally, we need a function that maps from the
non-logical vocabulary of our meaning representation to the proper denotations in
the model. We’ll call such a mapping an interpretation.INTERPRETATION

To make these notions more concrete, let’s return to the realm of restaurants
we introduced in Ch. 4. Assume that our application concerns a particular set of
restaurant patrons and restaurants, various facts about the likes and dislikes of the
patrons, and facts about the restaurants such as their cuisine, typical cost, and noise
level.

To begin populating our domain, D , let’s assume that in the current state
of affairs we’re dealing with four patrons designated by the non-logical symbols
Matthew, Franco, Katie and Caroline. These four symbols will denote 4 unique
domain elements. We’ll use the constants a,b,c and, d to stand for these domain el-
ements. Note that we’re deliberately using meaningless, non-mnemonic names for
our domain elements to emphasize the fact that whatever it is that we know about
these entities has to come from the formal properties of the model and not from the
names of the symbols. Continuing, let’s assume that our application includes three
restaurants, designated as Frasca, Med and Rio in our meaning representation, that
denote the domain elements e, f and g. Finally, let’s assume that we’re dealing
with the three cuisines Italian, Mexican, and Eclectic, denoting i, j, and k in our
model.

Having populated the domain, let’s move on to the properties and relations
we believe to be true in this particular state of affairs. Let’s assume that in our
application we need to represent some properties of restaurants such as the fact that
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Domain D = {a,b,c,d,e, f ,g,h, i, j}
Matthew, Franco, Katie and Caroline a,b,c,d
Frasca, Med, Rio e, f ,g
ItalianCuisine, MexicanCuisne, EclecticCuisine h, i, j

Noisy Noisy = {e, f ,g}
Frasca, Med and Rio are noisy

Likes Likes = {〈a, f 〉,〈c, f 〉,〈c,g〉,〈b,e〉,〈d, f ,〉,〈d,g〉}
Matthew likes the Med
Katie likes the Med and Rio
Franco likes Frasca
Caroline likes the Med and Rio

Serves Serves = {〈e, j〉,〈 f , i〉,〈e,h〉}
Med serves eclectic
Rio serves Mexican
Frasca serves Italian

Figure 17.2 A model of the restaurant world.

some are noisy or expensive. Properties like Noisy denote the subset of restaurants
from our domain that are known to be noisy. Two-place relational notions, such
as which restaurants individual patrons Like, denote ordered pairs, or tuples, of
the objects from the domain. Similarly, since we decided to represent cuisines as
objects in our model, we can also capture which restaurants Serve which cuisines
as a set of tuples. One particular state of affairs using this scheme is given in
Fig. 17.2.

Given this simple scheme, we can ground the meaning of pretty much any of
the representations shown earlier in Fig. ?? by simply consulting the appropriate
denotations in the corresponding model. A representation claiming, for example,
that Matthew likes the Rio , or that the The Med serves Italian can be evaluated by
mapping the objects in the meaning representations to their corresponding domain
elements, and any links, predicates, or slots in the meaning representation to the
appropriate relations in the model. More concretely, a representation asserting that
Matthew likes Frasca can be verified by first using our interpretation function to
map the symbol Matthew to its denotation a, Frasca to e, and the Likes relation
to the appropriate set of tuples. We then simply check that set of tuples for the
presence of the tuple 〈a,e〉. If, as it is in this case, the tuple is present in the model
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then we can conclude that Matthew likes Frasca is true, and if it isn’t we can’t.
This is all pretty much straightforward, we’re simply using sets and opera-

tions on sets to ground the expressions in our meaning representations. Of course,
the more interesting part comes when we consider more complex examples such
as the following:

(17.17) Katie likes the Rio and Matthew likes the Med.

(17.18) Katie and Caroline like the same restaurants.

(17.19) Franco likes noisy, expensive restaurants.

(17.20) Not everybody likes Frasca.

Clearly, our simple scheme for grounding the meaning of representations is
not adequate for examples such as these. Plausible meaning representations for
these examples will not map directly to individual entities, properties or relations.
Instead, they involve complications such as conjunctions, equality, quantified vari-
ables and negations. To assess whether or not these statements are consistent with
our model we’ll have to tear them apart, assess the parts and then determine the
meaning of the whole from the meaning of the parts according to the details of
how the whole is assembled.

Consider the first example given above. A typical meaning representation for
examples like this will include two distinct propositions expressing the individual
patron’s preferences, conjoined with some kind of implicit or explicit conjunction
operator. Obviously, our model doesn’t have a relation that encodes the pairwise
preferences for all of the patrons and restaurants in our model, nor does it need
to. We know from our model that Matthew likes the Med and separately that Katie
likes the Rio (that is, we know that the tuples 〈a, f 〉 and 〈c,g〉 are members of
the set denoted by the Likes relation.) All we really need to know is how to deal
with the semantics of the conjunction operator. If we assume the simplest possible
semantics for the English word and, the whole statement is true if it is the case
each of the components is true in our model. In this case, both components are
true since the appropriate tuples are present and therefore the sentence as a whole
is true.

What we’ve done implicitly in this example is to provide what is called a
truth-conditional semantics for the assumed conjunction operator in some mean-TRUTH-CONDITIONAL

SEMANTICS

ing representation. That is, we’ve provided a method for determining the truth of
a complex expression from the meanings of the parts (by consulting a model) and
the meaning of an operator by essentially consulting a truth-table. The various rep-
resentations that populate Fig. 17.1 are truth-conditional to the extent that they give
a formal specification as to how we can assess the meaning of complex sentences
from the meaning of their parts. In particular, we’ll need to know the semantics of
the entire logical vocabulary of the meaning representation scheme being used.
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Note that although the details of how this happens is dependent on details of
the particular meaning representation being used, it should be clear that assessing
the truth conditions of examples like these involves nothing beyond the simple set
operations we’ve been discussing. We’ll return to these issues in the next section
where we discuss them in the context of the semantics of First Order Logic.

17.4 FIRST-ORDER LOGIC

First-Order Logic (FOL) is a flexible, well-understood, and computationally tractable
approach to the representation of knowledge that satisfies many of the desiderata
given in Sections 17.1 and 17.2 for a meaning representation language. Specifi-
cally, it provides a sound computational basis for the verifiability, inference, and
expressiveness requirements, and as we’ll see a sound model-theoretic semantics.

However, the most attractive feature of FOL is the fact that it makes very few
specific commitments as to how things ought to be represented. As we will see, the
specific commitments it does make are ones that are fairly easy to live with and are
shared by many of the schemes mentioned earlier; the represented world consists
of objects, properties of objects, and relations among objects.

The remainder of this section first provides an introduction to the basic syntax
and semantics of FOPC, and then describes the application of FOPC to a number of
linguistically relevant topics. Section 17.7 then discusses the connections between
FOPC and some of the other representations shown earlier in Figure 17.1.

17.4.1 Elements of First Order Logic

We will explore FOL in a bottom-up fashion by first examining its various
atomic elements and then showing how they can be composed to create larger
meaning representations. Fig. 17.3, which provides a complete context-free gram-
mar for the particular syntax of FOL that we will be using, will be our roadmap for
this section.

Let’s begin by examining the notion of a Term, the FOL device for represent-TERM

ing objects. As can be seen from Figure 17.3, FOL provides three ways to represent
these basic building blocks: constants, functions, and variables. Each of these de-
vices can be thought of as a way of naming, or pointing to, an object in the world
under consideration.

Constants in FOL refer to specific objects in the world being described. SuchCONSTANTS

constants are conventionally depicted as either single capitalized letters such as A
and B or single capitalized words that are often reminiscent of proper nouns such as
Maharani and Harry. Like programming language constants, FOL constants refer
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Formula → AtomicFormula

| Formula Connective Formula

| Quantifier Variable, . . . Formula

| ¬ Formula

| (Formula)

AtomicFormula → Predicate(Term, . . .)

Term → Function(Term, . . .)
| Constant

| Variable

Connective → ∧ | ∨ | ⇒
Quantifier → ∀ | ∃
Constant → A | VegetarianFood | Maharani · · ·
Variable → x | y | · · ·

Predicate → Serves | Near | · · ·
Function → LocationO f | CuisineO f | · · ·

Figure 17.3 A context-free grammar specification of the syntax of First Order
Predicate Calculus representations. Adapted from Russell and Norvig (1995).

to exactly one object. Objects can, however, have multiple constants that refer to
them.

Functions in FOPC correspond to concepts that are often expressed in EnglishFUNCTIONS

as genitives such as Frasca’s location. A FOL translation of such an expression
might look like the following.

LocationO f (Frasca)

FOPC functions are syntactically the same as single argument predicates. It is im-
portant to remember, however, that while they have the appearance of predicates
they are in fact Terms in that they refer to unique objects. Functions provide a
convenient way to refer to specific objects without having to associate a named
constant with them. This is particularly convenient in cases where many named
objects, like restaurants, will have a unique concept such as a location associated
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with them.
The notion of a variable is our final FOPC mechanism for referring to ob-VARIABLE

jects. Variables, which are normally depicted as single lower-case letters, give us
the ability to make assertions and draw inferences about objects without having to
make reference to any particular named object. This ability to make statements
about anonymous objects comes in two flavors: making statements about a partic-
ular unknown object and making statements about all the objects in some arbitrary
world of objects. We will return to the topic of variables after we have presented
quantifiers, the elements of FOPC that will make them useful.

Now that we have the means to refer to objects, we can move on to the FOPC

mechanisms that are used to state relations that hold among objects. As one might
guess from its name, FOPC is organized around the notion of the predicate. Predi-
cates are symbols that refer to, or name, the relations that hold among some fixed
number of objects in a given domain. Returning to the example introduced in-
formally in Section 17.1, a reasonable FOPC representation for Maharani serves
vegetarian food might look like the following formula:

Serves(Maharani,VegetarianFood)

This FOPC sentence asserts that Serves, a two-place predicate, holds between the
objects denoted by the constants Maharani and VegetarianFood.

A somewhat different use of predicates is illustrated by the following typical
representation for a sentence like Maharani is a restaurant:

Restaurant(Maharani)

This is an example of a one-place predicate that is used, not to relate multiple ob-
jects, but rather to assert a property of a single object. In this case, it encodes the
category membership of Maharani. We should note that while this is a common-
place way to deal with categories it is probably not the most useful. Section 17.5
will return to the topic of the representation of categories.

With the ability to refer to objects, to assert facts about objects, and to relate
objects to one another, we have the ability to create rudimentary composite repre-
sentations. These representations correspond to the atomic formula level in Figure
17.3. Recall that this ability to create composite meaning representations was one
of the core components of the meaning structure of language described in Section
17.2.

This ability to compose complex representations is not limited to the use
of single predicates. Larger composite representations can also be put together
through the use of logical connectives. As can be seen from Figure 17.3, logicalLOGICAL

CONNECTIVES

connectives give us the ability to create larger representations by conjoining logical
formulas using one of three operators. Consider, for example, the following BERP

sentence and one possible representation for it:
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(17.21) I only have five dollars and I don’t have a lot of time.

Have(Speaker,FiveDollars)∧¬Have(Speaker,LotO f Time)

The semantic representation for this example is built up in a straightforward way
from semantics of the individual clauses through the use of the ∧ and ¬ operators.
Note that the recursive nature of the grammar in Figure 17.3 allows an infinite
number of logical formulas to be created through the use of these connectives. Thus
as with syntax, we have the ability to create an infinite number of representations
using a finite device.

17.4.2 The Semantics of First Order Logic

The various objects, properties, and relations represented in a FOPC knowledge
base acquire their meanings by virtue of their correspondence to objects, properties,
and relations out in the external world being modeled by the knowledge base. FOPC

sentences can, therefore, be assigned a value of True or False based on whether
the propositions they encode are in accord with the world or not.

Consider the following example:

(17.22) Ay Caramba is near ICSI.

Capturing the meaning of this example in FOPC involves identifying the Terms and
Predicates that correspond to the various grammatical elements in the sentence,
and creating logical formulas that capture the relations implied by the words and
syntax of the sentence. For this example, such an effort might yield something like
the following:

Near(LocationO f (AyCaramba),LocationO f (ICSI))

The meaning of this logical formula then arises from the relationship between
the terms LocationO f (AyCaramba), LocationO f (ICSI), the predicate Near, and
the objects and relation they correspond to in the world being modeled. Specif-
ically, this sentence can be assigned a value of True or False based on whether
or not the real Ay Caramba is actually close to ICSI or not. Of course, since our
computers rarely have direct access to the outside world we have to rely on some
other means to determine the truth of formulas like this one.

For our current purposes, we will adopt what is known as a database se-
mantics for determining the truth of our logical formulas. Operationally, atomic
formulas are taken to be true if they are literally present in the knowledge base or
if they can be inferred from other formula that are in the knowledge base. The
interpretations of formulas involving logical connectives is based on the meaning
of the components in the formulas combined with the meanings of the connectives
they contain. Fig. 17.4 gives interpretations for each of the logical operators shown
in Figure 17.3.
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P Q ¬P P∧Q P∨Q P ⇒ Q

False False True False False True
False True True False True True
True False False False True False
True True False True True True

Figure 17.4 Truth table giving the semantics of the various logical connectives.

The semantics of the ∧ (and), and ¬ (not) operators are fairly straightforward,
and are correlated with at least some of the senses of their corresponding English
terms. However, it is worth pointing out that the ∨ (or) operator is not disjunctive
in the same way that the corresponding English word is, and that the ⇒ (implies)
operator is only loosely based on any commonsense notions of implication or cau-
sation. As we will see in more detail in Section 17.5, in most cases it is safest to
rely directly on the entries in the truth table, rather than on intuitions arising from
the names of the operators.

17.4.3 Variables and Quantifiers

We now have all the machinery necessary to return to our earlier discussion of vari-
ables. As noted above, variables are used in two ways in FOPC: to refer to particular
anonymous objects and to refer generically to all objects in a collection. These two
uses are made possible through the use of operators known as quantifiers. The twoQUANTIFIERS

operators that are basic to FOPC are the existential quantifier, which is denoted ∃,
and is pronounced as “there exists”, and the universal quantifier, which is denoted
∀, and is pronounced as “for all”.

The need for an existentially quantified variable is often signaled by the pres-
ence of an indefinite noun phrase in English. Consider the following example:

(17.23) a restaurant that serves Mexican food near ICSI.

Here reference is being made to an anonymous object of a specified category with
particular properties. The following would be a reasonable representation of the
meaning of such a phrase:

∃xRestaurant(x)
∧Serves(x,MexicanFood)
∧Near((LocationO f (x),LocationO f (ICSI))

The existential quantifier at the head of this sentence instructs us on how to
interpret the variable x in the context of this sentence. Informally, it says that for
this sentence to be true there must be at least one object such that if we were to
substitute it for the variable x, the resulting sentence would be true. For example,



DRAFT

Section 17.4. First-Order Logic 21

if AyCaramba is a Mexican restaurant near ICSI, then substituting AyCaramba for
x results in the following logical formula:

Restaurant(AyCaramba)
∧Serves(AyCaramba,MexicanFood)
∧Near((LocationO f (AyCaramba),LocationO f (ICSI))

Based on the semantics of the ∧ operator, this sentence will be true if all of
its three component atomic formulas are true. These in turn will be true if they are
either present in the system’s knowledge base or can be inferred from other facts
in the knowledge base.

The use of the universal quantifier also has an interpretation based on sub-
stitution of known objects for variables. The substitution semantics for the uni-
versal quantifier takes the expression for all quite literally; the ∀ operator states
that for the logical formula in question to be true the substitution of any object in
the knowledge base for the universally quantified variable should result in a true
formula. This is in marked contrast to the ∃ operator which only insists on a single
valid substitution for the sentence to be true.

Consider the following example:

(17.24) All vegetarian restaurants serve vegetarian food.

A reasonable representation for this sentence would be something like the follow-
ing:

∀xVegetarianRestaurant(x) ⇒ Serves(x,VegetarianFood)

For this sentence to be true, it must be the case that every substitution of a known
object for x must result in a sentence that is true. We can divide up the set of all
possible substitutions into the set of objects consisting of vegetarian restaurants
and the set consisting of everything else. Let us first consider the case where the
substituted object actually is a vegetarian restaurant; one such substitution would
result in the following sentence:

VegetarianRestaurant(Maharani)
⇒ Serves(Maharani,VegetarianFood)

If we assume that we know that the consequent clause,

Serves(Maharani,VegetarianFood)

is true then this sentence as a whole must be true. Both the antecedent and the
consequent have the value True and, therefore, according to the first two rows of
Fig. 17.4 the sentence itself can have the value True. This result will, of course, be
the same for all possible substitutions of Terms representing vegetarian restaurants
for x.
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Remember, however, that for this sentence to be true it must be true for all
possible substitutions. What happens when we consider a substitution from the
set of objects that are not vegetarian restaurants? Consider the substitution of a
non-vegetarian restaurant such as Ay Caramba’s for the variable x:

VegetarianRestaurant(AyCaramba)
⇒ Serves(AyCaramba,VegetarianFood)

Since the antecedent of the implication is False, we can determine from
Fig. 17.4 that the sentence is always True, again satisfying the ∀ constraint.

Note, that it may still be the case that Ay Caramba serves vegetarian food
without actually being a vegetarian restaurant. Note also, that despite our choice
of examples, there are no implied categorical restrictions on the objects that can be
substituted for x by this kind of reasoning. In other words, there is no restriction of
x to restaurants or concepts related to them. Consider the following substitution:

VegetarianRestaurant(Carburetor)
⇒ Serves(Carburetor,VegetarianFood)

Here the antecedent is still false and hence the rule remains true under this kind of
irrelevant substitution.

To review, variables in logical formulas must be either existentially (∃) or uni-
versally (∀) quantified. To satisfy an existentially quantified variable, there must be
at least one substitution that results in a true sentence. Sentences with universally
quantified variables must be true under all possible substitutions.

17.4.4 Inference

One of the most important desiderata given in Section 17.1 for a meaning repre-
sentation language is that it should support inference—the ability to add valid new
propositions to a knowledge base, or to determine the truth of propositions not ex-
plicitly contained within a knowledge base. This section briefly discusses modus
ponens, the most important inference method provided by FOPC. Applications of
modus ponens will be discussed in Ch. 21.

Modus ponens is a familiar form of inference that corresponds to what isMODUS PONENS

informally known as if-then reasoning. We can abstractly define modus ponens as
follows, where α and β should be taken as FOPC formulas:

α
α ⇒ β

β

In general, schemas like this indicate that the formula below the line can be inferred
from the formulas above the line by some form of inference. Modus ponens simply
states that if the left-hand side of an implication rule is present in the knowledge
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base, then the right-hand side of the rule can be inferred. In the following discus-
sions, we will refer to the left-hand side of an implication as the antecedent, and
the right-hand side as the consequent.

As an example of a typical use of modus ponens, consider the following
example, which uses a rule from the last section:

(17.25)

VegetarianRestaurant(Rudys)
∀xVegetarianRestaurant(x) ⇒ Serves(x,VegetarianFood)

Serves(Rudys,VegetarianFood)

Here, the formula VegetarianRestaurant(Rudys) matches the an-
tecedent of the rule, thus allowing us to use modus ponens to conclude
Serves(Rudys,VegetarianFood).

Modus ponens is typically put to practical use in one of two ways: forward
chaining and backward chaining. In forward chaining systems, modus ponens isFORWARD CHAINING

used in precisely the manner just described. As individual facts are added to the
knowledge base, modus ponens is used to fire all applicable implication rules. In
this kind of arrangement, as soon as a new fact is added to the knowledge base, all
applicable implication rules are found and applied, each resulting in the addition
new facts to the knowledge base. These new propositions in turn can be used to fire
implication rules applicable to them. The process continues until no further facts
can be deduced.

The forward chaining approach has the advantage that facts will be present in
the knowledge base when needed, since in a sense all inference is performed in ad-
vance. This can substantially reduce the time needed to answer subsequent queries
since they should all amount to simple lookups. The disadvantage of this approach
is that facts may be inferred and stored that will never be needed. Production
systems, which are heavily used in cognitive modeling work, are forward chain-PRODUCTION

SYSTEMS

ing inference systems augmented with additional control knowledge that governs
which rules are to be fired.

In backward chaining, modus ponens is run in reverse to prove specificBACKWARD
CHAINING

propositions, called queries. The first step is to see if the query formula is true by
determining if it is present in the knowledge base. If it is not, then the next step
is to search for applicable implication rules present in the knowledge base. An
applicable rule is one where the consequent of the rule matches the query formula.
If there are any such rules, then the query can be proved if the antecedent of any one
them can be shown to be true. Not surprisingly, this can be performed recursively
by backward chaining on the antecedent as a new query. The Prolog programming
language is a backward chaining system that implements this strategy.
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To see how this works, let’s assume that we have been asked to verify the
truth of the proposition Serves(Rudys,VegetarianFood), assuming the facts given
above the line in (17.25). Since it is not present in the knowledge base, a search for
an applicable rule is initiated that results in the rule given above. After substituting,
the constant Rudys for the variable x, our next task is to prove the antecedent of
the rule, VegetarianRestaurant(Rudys), which of course is one of the facts we are
given.

Note that it is critical to distinguish between reasoning via backward chaining
from queries to known facts, and reasoning backwards from known consequents to
unknown antecedents. To be specific, by reasoning backwards we mean that if the
consequent of a rule is known to be true, we assume that the antecedent will be as
well. For example, let’s assume that we know that Serves(Rudys,VegetarianFood)
is true. Since this fact matches the consequent of our rule, we might reason back-
wards to the conclusion that VegetarianRestaurant(Rudys).

While backward chaining is a sound method of reasoning, reasoning back-
wards is an invalid, though frequently useful, form of plausible reasoning. Plausi-
ble reasoning from consequents to antecedents is known as abduction, and as weABDUCTION

will see in Ch. 21 is often useful in accounting for many of the inferences people
make while analyzing extended discourses.

While forward and backward reasoning are sound, neither is complete. ThisCOMPLETE

means that there are valid inferences that can not be found by systems using these
methods alone. Fortunately, there is an alternative inference technique called reso-
lution that is sound and complete. Unfortunately, inference systems based on res-RESOLUTION

olution are far more computationally expensive than forward or backward chaining
systems. In practice, therefore, most systems use some form of chaining, and place
a burden on knowledge base developers to encode the knowledge in a fashion that
permits the necessary inferences to be drawn.

17.5 SOME LINGUISTICALLY RELEVANT CONCEPTS

Entire lives have been spent studying the representation of various aspects of hu-
man knowledge. These efforts have ranged from tightly focused efforts to repre-
sent individual domains such as time, to monumental efforts to encode all of our
commonsense knowledge of the world (Lenat and Guha, 1991). Our focus here
is considerably more modest. This section provides a brief overview of the repre-
sentation of a few important topics that have clear implications for language pro-
cessing. Specifically, the following sections provide introductions to the meaning
representations of categories, events, time, and beliefs.
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17.5.1 Categories

As we noted in Section 17.2, words with predicate-like semantics often express
preferences for the semantics of their arguments in the form of selectional restric-
tions. These restrictions are typically expressed in the form of semantically-based
categories where all the members of a category share a set of relevant features.

The most common way to represent categories is to create a unary predicate
for each category of interest. Such predicates can then be asserted for each member
of that category. For example, in our restaurant discussions we have been using the
unary predicate VegetarianRestaurant as in:

VegetarianRestaurant(Maharani)

Similar logical formulas would be included in our knowledge base for each
known vegetarian restaurant.

Unfortunately, in this method categories are relations, rather than full-fledged
objects. It is, therefore, difficult to make assertions about categories themselves,
rather than about their individual members. For example, we might want to desig-
nate the most popular member of a given category as in the following expression:

MostPopular(Maharani,VegetarianRestaurant)

Unfortunately, this is not a legal FOPC formula since the arguments to predicates
in FOPC must be Terms, not other predicates.

One way to solve this problem is to represent all the concepts that we want to
make statements about as full-fledged objects via a technique called reification. InREIFICATION

this case, we can represent the category of VegetarianRestaurant as an object just
as Maharani is. The notion of membership in such a category is then denoted via
a membership relation as in the following:

ISA(Maharani,VegetarianRestaurant)

The relation denoted by ISA (is a) holds between objects and the categories
in which they are members. This technique can be extended to create hierarchies
of categories through the use of other similar relations, as in the following:

AKO(VegetarianRestaurant,Restaurant)

Here, the relation AKO (a kind of) holds between categories and denotes a category
inclusion relationship. Of course, to truly give these predicates meaning they would
have to be situated in a larger set of facts defining categories as sets.

Ch. 19 discusses the practical use of such relations in databases of lexical
relations, in the representation of selectional restrictions, and in word sense disam-
biguation.
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17.5.2 Events

The representations for events that we have used until now have consisted of sin-
gle predicates with as many arguments as are needed to incorporate all the roles
associated with a given example. For example, the representation for making a
reservation discussed in Section 17.2 consisted of a single predicate with argu-
ments for the person making the reservation, the restaurant, the day, the time, and
the number of people in the party, as in the following:

Reservation(Hearer,Maharani,Today,8PM,2)

In the case of verbs, this approach simply assumes that the predicate representing
the meaning of a verb has the same number of arguments as are present in the
verb’s syntactic subcategorization frame.

Unfortunately, there are four problems with this approach that make it awk-
ward to apply in practice:

• Determining the correct number of roles for any given event.

• Representing facts about the roles associated with an event.

• Ensuring that all the correct inferences can be derived directly from the rep-
resentation of an event.

• Ensuring that no incorrect inferences can be derived from the representation
of an event.

We will explore these, and other related issues, by considering a series of
representations for events. This discussion will focus on the following examples of
the verb eat:

(17.26) I ate.

(17.27) I ate a turkey sandwich.

(17.28) I ate a turkey sandwich at my desk.

(17.29) I ate at my desk.

(17.30) I ate lunch.

(17.31) I ate a turkey sandwich for lunch.

(17.32) I ate a turkey sandwich for lunch at my desk.

Clearly, the variable number of arguments for a predicate-bearing verb like
eat poses a tricky problem. While we would like to think that all of these examples
denote the same kind of event, predicates in FOPC have fixed arity—they take aARITY

fixed number of arguments.
One possible solution is suggested by the way that examples like these are

handled syntactically. The solution given in Ch. 16 was to create one subcatego-
rization frame for each of the configurations of arguments that a verb allows. The
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semantic analog to this approach is to create as many different eating predicates
as are needed to handle all of the ways that eat behaves. Such an approach would
yield the following kinds of representations for examples (17.26) through (17.26).

Eating1(Speaker)
Eating2(Speaker,TurkeySandwich)
Eating3(Speaker,TurkeySandwich,Desk)
Eating4(Speaker,Desk)
Eating5(Speaker,Lunch)
Eating6(Speaker,TurkeySandwich,Lunch)
Eating7(Speaker,TurkeySandwich,Lunch,Desk)

This approach simply sidesteps the issue of how many arguments the Eating
predicate should have by creating distinct predicates for each of the subcatego-
rization frames. Unfortunately, this approach comes at a rather high cost. Other
than the suggestive names of the predicates, there is nothing to tie these events to
one another even though there are obvious logical relations among them. Specif-
ically, if example (17.32) is true then all of the other examples are true as well.
Similarly, if example (17.31) is true then examples (17.26), (17.27), and (17.30)
must also be true. Such logical connections can not be made on the basis of these
predicates alone. Moreover, we would expect a commonsense knowledge base to
contain logical connections between concepts like Eating and related concepts like
Hunger and Food.

One method to solve these problems involves the use of what are called
meaning postulates. Consider the following example postulate:MEANING

POSTULATES

∀w,x,y,z Eating7(w,x,y,z) ⇒ Eating6(w,x,y)

This postulate explicitly ties together the semantics of two of our predicates. Other
postulates could be created to handle the rest of the logical relations among the
various Eatings and the connections from them to other related concepts.

Although such an approach might be made to work in small domains, it
clearly has scalability problems. A somewhat more sensible approach is to say
that examples (17.26) through (17.32) all reference the same predicate with some
of the arguments missing from some of the surface forms. Under this approach, as
many arguments are included in the definition of the predicate as ever appear with
it in an input. Adopting the structure of a predicate like Eating7 as an example
would give us a predicate with four arguments denoting the eater, thing eaten, meal
being eaten and the location of the eating. The following formulas would then
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capture the semantics of our examples:

∃w,x,y Eating(Speaker,w,x,y)
∃w,x Eating(Speaker,TurkeySandwich,w,x)
∃w Eating(Speaker,TurkeySandwich,w,Desk)
∃w,x Eating(Speaker,w,x,Desk)
∃w,x Eating(Speaker,w,Lunch,x)
∃w Eating(Speaker,TurkeySandwich,Lunch,w)
Eating(Speaker,TurkeySandwich,Lunch,Desk)

This approach directly yields the obvious logical connections among these
formulas without the use of meaning postulates. Specifically, all of the sentences
with ground terms as arguments logically imply the truth of the formulas with
existentially bound variables as arguments.

Unfortunately, this approach still has at least two glaring deficiencies: it
makes too many commitments, and it does not let us individuate events. As an
example of how it makes too many commitments, consider how we accommodated
the for lunch complement in examples (17.30) through (17.32); a third argument,
the meal being eaten, was added to the Eating predicate. The presence of this
argument implicitly makes it the case that all eating events are associated with a
meal (i.e., breakfast, lunch, or dinner). More specifically, the existentially quanti-
fied variable for the meal argument in the above examples states that there is some
formal meal associated with each of these eatings. This is clearly silly since one
can certainly eat something independent of it being associated with a meal.

To see how this approach fails to properly individuate events, consider the
following formulas.

∃w,x Eating(Speaker,w,x,Desk)
∃w,x Eating(Speaker,w,Lunch,x)
∃w,x Eating(Speaker,w,Lunch,Desk)

If we knew that the first two formulas were referring to the same event, they could
be combined to create the third representation. Unfortunately, with the current
representation we have no way of telling if this is possible. The independent facts
that I ate at my desk and I ate lunch do not permit us to conclude that I ate lunch at
my desk. Clearly what is lacking is some way of referring to the events in question.

As with categories, we can solve these problems if we employ reification to
elevate events to objects that can be quantified and related to other objects via sets
of defined relations (Davidson, 1967; Parsons, 1990). Consider the representation
of example (17.27) under this kind of approach.

∃w ISA(w,Eating)
∧Eater(w,Speaker)∧Eaten(w,TurkeySandwich)
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This representation states that there is an eating event where the Speaker is
doing the eating and a TurkeySandwich is being eaten. The meaning representa-
tions for examples (17.26) and (17.31) can be constructed similarly.

∃w ISA(w,Eating)∧Eater(w,Speaker)
∃w ISA(w,Eating)

∧Eater(w,Speaker)∧Eaten(w,TurkeySandwich)
∧MealEaten(w,Lunch)

Under this reified-event approach:

• There is no need to specify a fixed number of arguments for a given surface
predicate; rather as many roles and fillers can be glued on as appear in the
input.

• No more roles are postulated than are mentioned in the input.
• The logical connections among closely related examples are satisfied without

the need for meaning postulates.

17.5.3 Representing Time

In the preceding discussion of events, we did not address the issue of representing
the time when the represented events are supposed to have occurred. The represen-
tation of such information in a useful form is the domain of temporal logic. ThisTEMPORAL LOGIC

discussion will serve to introduce the most basic concerns of temporal logic along
with a brief discussion of the means by which human languages convey temporal
information, which among other things includes tense logic, the ways that verbTENSE LOGIC

tenses convey temporal information.
The most straightforward theory of time hold that it flows inexorably for-

ward, and that events are associated with either points or intervals in time, as on a
timeline. Given these notions, an ordering can be imposed on distinct events by sit-
uating them on the timeline. More specifically, we can say that one event precedes
another, if the flow of time leads from the first event to the second. Accompanying
these notions in most theories is the idea of the current moment in time. Combin-
ing this notion with the idea of a temporal ordering relationship yields the familiar
notions of past, present and future.

Not surprisingly, there are a large number of schemes for representing this
kind of temporal information. The one presented here is a fairly simple one that
stays within the FOPC framework of reified events that we have been pursuing.
Consider the following examples:

(17.33) I arrived in New York.
(17.34) I am arriving in New York.
(17.35) I will arrive in New York.
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These sentences all refer to the same kind of event and differ solely in the tense of
the verb. In our current scheme for representing events, all three would share the
following kind of representation, which lacks any temporal information:

∃w ISA(w,Arriving)
∧Arriver(w,Speaker)∧Destination(w,NewYork)

The temporal information provided by the tense of the verbs can be exploited
by predicating additional information about the event variable w. Specifically, we
can add temporal variables representing the interval corresponding to the event, the
end point of the event, and temporal predicates relating this end point to the current
time as indicated by the tense of the verb. Such an approach yields the following
representations for our arriving examples:

∃i,e,w, t ISA(w,Arriving)
∧Arriver(w,Speaker)∧Destination(w,NewYork)
IntervalO f (w, i)∧EndPoint(i,e)∧Precedes(e,Now)

∃i,e,w, t ISA(w,Arriving)
∧Arriver(w,Speaker)∧Destination(w,NewYork)
IntervalO f (w, i)∧MemberO f (i,Now)

∃i,e,w, t ISA(w,Arriving)
∧Arriver(w,Speaker)∧Destination(w,NewYork)
IntervalO f (w, i)∧EndPoint(i,e)∧Precedes(Now,e)

This representation introduces a variable to stand for the interval of time associated
with the event, and a variable that stands for the end of that interval. The two-place
predicate Precedes represents the notion that the first time point argument precedes
the second in time; the constant Now refers to the current time. For past events, the
end point of the interval must precede the current time. Similarly, for future events
the current time must precede the end of the event. For events happening in the
present, the current time is contained within the event interval.

Unfortunately, the relation between simple verb tenses and points in time is
by no means straightforward. Consider the following examples:

(17.36) Ok, we fly from San Francisco to Boston at 10.

(17.37) Flight 1390 will be at the gate an hour now.

In the first example, the present tense of the verb fly is used to refer to a future
event, while in the second the future tense is used to refer to a past event.

More complications occur when we consider some of the other verb tenses.
Consider the following examples:

(17.38) Flight 1902 arrived late.
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(17.39) Flight 1902 had arrived late.

Although both refer to events in the past, representing them in the same way seems
wrong. The second example seems to have another unnamed event lurking in the
background (e.g., Flight 1902 had already arrived late when something else hap-
pened). To account for this phenomena, Reichenbach (1947) introduced the notion
of a reference point. In our simple temporal scheme, the current moment in timeREFERENCE POINT

is equated with the time of the utterance, and is used as a reference point for when
the event occurred (before, at, or after). In Reichenbach’s approach, the notion of
the reference point is separated out from the utterance time and the event time. The
following examples illustrate the basics of this approach:

(17.40) When Mary’s flight departed, I ate lunch.
(17.41) When Mary’s flight departed, I had eaten lunch.

In both of these examples, the eating event has happened in the past, i.e. prior
to the utterance. However, the verb tense in the first example indicates that the eat-
ing event began when the flight departed, while the second example indicates that
the eating was accomplished prior to the flight’s departure. Therefore, in Reichen-
bach’s terms the departure event specifies the reference point. These facts can be
accommodated by asserting additional constraints relating the eating and departure
events. In the first example, the reference point precedes the eating event, and in
the second example, the eating precedes the reference point. Figure 17.5 illustrates
Reichenbach’s approach with the primary English tenses. Exercise 17.9 asks you
to represent these examples in FOPC.

Figure 17.5 Reichenbach’s approach applied to various English tenses. In these
diagrams, time flows from left to right, an E denotes the time of the event, an R
denotes the reference time, and an U denotes the time of the utterance.

This discussion has focused narrowly on the broad notions of past, present,
and future and how they are signaled by verb tenses. Of course, languages also have
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many other more direct and more specific ways to convey temporal information,
including the use of a wide variety of temporal expressions as in the following
ATIS examples:

(17.42) I’d like to go at 6:45, in the morning.

(17.43) Somewhere around noon, please.

(17.44) Later in the afternoon, near 6PM.

As we will see in the next chapter, grammars for such temporal expressions are of
considerable practical importance in information extraction and question-answering
applications.

Finally, we should note that there is a systematic conceptual organization re-
flected in examples like these. In particular, temporal expressions in English are
frequently expressed in spatial terms, as is illustrated by the various uses of at, in,
somewhere and near in these examples (Lakoff and Johnson, 1980; Jackendoff,
1983) Metaphorical organizations such as these, where one domain is systemati-
cally expressed in terms of another, will be discussed in more detail in Ch. 19.

17.5.4 Aspect

In the last section, we discussed ways to represent the time of an event with respect
to the time of an utterance describing it. In this section, we address the notion
of aspect, which concerns a cluster of related topics, including whether an eventASPECT

has ended or is ongoing, whether it is conceptualized as happening at a point in
time or over some interval, and whether or not any particular state in the world
comes about because of it. Based on these and related notions, event expressions
have traditionally been divided into four general classes: statives, activities, ac-
complishments, and achievements. The following examples provide prototypical
instances of each class.

Stative: I know my departure gate.

Activity: John is flying.

Accomplishment: Sally booked her flight.

Achievement: She found her gate.

Although the earliest versions of this classification were discussed by Aristotle,
the one presented here is due to Vendler (1967). In the following discussion, we’ll
present a brief characterization of each of the four classes, along with some di-
agnostic techniques suggested in Dowty (1979) for identifying examples of each
kind.

Stative expressions represent the notion of an event participant having a par-STATIVE
EXPRESSIONS

ticular property, or being in a state, at a given point in time. As such, they can be
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thought of as capturing an aspect of a world at a single point in time. Consider the
following ATIS examples.

(17.45) I like Flight 840 arriving at 10:06.
(17.46) I need the cheapest fare.
(17.47) I have a round trip ticket for $662.
(17.48) I want to go first class.

In examples like these, the event participant denoted by the subject can be seen as
experiencing something at a specific point in time. Whether or not the experiencer
was in the same state earlier, or will be in the future is left unspecified.

There are a number of diagnostic tests for identifying statives. As an exam-
ple, stative verbs are distinctly odd when used in the progressive form.

(17.49) *I am needing the cheapest fare on this day.
(17.50) *I am wanting to go first class.

We should note that in these and subsequent examples, we are using an * to indicate
a broadened notion of ill-formedness that may include both semantic and syntactic
factors.

Statives are also odd when used as imperatives.

(17.51) *Need the cheapest fare!

Finally, statives are not easily modified by adverbs like deliberately and care-
fully.

(17.52) *I deliberately like Flight 840 arriving at 10:06.
(17.53) *I carefully like Flight 840 arriving at 10:06.

Activity expressions describe events undertaken by a participant that haveACTIVITYEXPRESSIONS

no particular end point. Unlike statives, activities are seen as occurring over some
span of time, and are therefore not associated with single points in time. Consider
the following examples:

(17.54) She drove a Mazda.
(17.55) I live in Brooklyn.

These examples both specify that the subject is engaged in, or has engaged in, the
activity specified by the verb for some period of time.

Unlike statives, activity expressions are fine in both the progressive and im-
perative forms.

(17.56) She is living in Brooklyn.
(17.57) Drive a Mazda!

However, like statives, activity expressions are odd when temporally modi-
fied with temporal expressions using in.
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(17.58) *I live in Brooklyn in a month.

(17.59) *She drove a Mazda in an hour.

They can, however, successfully be used with for temporal adverbials, as in the
following examples:

(17.60) I live in Brooklyn for a month.

(17.61) She drove a Mazda for an hour.

Unlike activities, accomplishment expressions describe events that have aACCOMPLISHMENT
EXPRESSIONS

natural end point and result in a particular state. Consider the following examples:

(17.62) He booked me a reservation.

(17.63) United flew me to New York.

In these examples, there is an event that is seen as occurring over some period of
time that ends when the intended state is accomplished.

A number of diagnostics can be used to distinguish accomplishment events
from activities. Consider the following examples, which make use of the word stop
as a test.

(17.64) I stopped living in Brooklyn.

(17.65) She stopped booking my flight.

In the first example, which is an activity, one can safely conclude that the statement
I lived in Brooklyn even though this activity came to an end. However, from the
second example, one can not conclude the statement She booked her flight, since
the activity was stopped before the intended state was accomplished. Therefore,
although stopping an activity entails that the activity took place, stopping an ac-
complishment event indicates that the event did not succeed.

Activities and accomplishments can also be distinguished by how they can
be modified by various temporal adverbials. Consider the following examples:

(17.66) *I lived in Brooklyn in a year.

(17.67) She booked a flight in a minute.

In general, accomplishments can be modified by in temporal expressions, while
simple activities can not.

The final aspectual class, achievement expressions, are similar to accom-ACHIEVEMENT
EXPRESSIONS

plishments in that they result in a state. Consider the following examples:

(17.68) She found her gate.

(17.69) I reached New York.

Unlike accomplishments, achievement events are thought of as happening in an
instant, and are not equated with any particular activity leading up to the state. To
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be more specific, the events in these examples may have been preceded by extended
searching or traveling events, but the events corresponding directly to found and
reach are conceived of as points not intervals.

The point-like nature of these events has implications for how they can be
temporally modified. In particular, consider the following examples:

(17.70) I lived in New York for a year.

(17.71) *I reached New York for a few minutes.

Unlike activity and accomplishment expressions, achievements can not be modi-
fied by for adverbials.

Achievements can also be distinguished from accomplishments by employ-
ing the word stop, as we did earlier. Consider the following examples:

(17.72) I stopped booking my flight.

(17.73) *I stopped reaching New York.

As we saw earlier, using stop with an accomplishment expression results in a fail-
ure to reach the intended state. Note, however, that the resulting expression is per-
fectly well-formed. On the other hand, using stop with an achievement example is
unacceptable.

We should note that since both accomplishments and achievements are events
that result in a state, they are sometimes characterized as sub-types of a single
aspectual class. Members of this combined class are known as telic eventualities.TELICEVENTUALITIES

Before moving on, we should make two points about this classification scheme.
The first point is that event expressions can easily be shifted from one class to an-
other. Consider the following examples:

(17.74) I flew.

(17.75) I flew to New York.

The first example is a simple activity; it has no natural end point and can not be
temporally modified by in temporal expressions. On the other hand, the second
example is clearly an accomplishment event since it has an end point, results in a
particular state, and can be temporally modified in all the ways that accomplish-
ments can. Clearly the classification of an event is not solely governed by the verb,
but by the semantics of the entire expression in context.

The second point is that while classifications such as this one are often useful,
they do not explain why it is that events expressed in natural languages fall into
these particular classes. We will revisit this issue in Ch. 19 where we will sketch a
representational approach due to Dowty (1979) that accounts for these classes.
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17.5.5 Representing Beliefs

There are a fair number of words and expressions that have what might be called
a world creating ability. By this, we mean that their meaning representations con-
tain logical formulas that are not intended to be taken as true in the real world,
but rather as part of some kind of hypothetical world. In addition, these meaning
representations often denote a relation from the speaker, or some other entity, to
this hypothetical world. Examples of words that have this ability are believe, want,
imagine and know. World-creating words generally take various sentence-like con-
stituents as arguments.

Consider the following example:

(17.76) I believe that Mary ate British food.

Applying our event-oriented approach we would say that there are two events un-
derlying this sentence: a believing event relating the speaker to some specific be-
lief, and an eating event that plays the role of the believed thing. Ignoring temporal
information, a straightforward application of our reified event approach would pro-
duce the following kind of representation:

∃u,v ISA(u,Believing)∧ ISA(v,Eating)
∧Believer(u,Speaker)∧BelievedProp(u,v)
∧Eater(v,Mary)∧Eaten(v,BritishFood)

This seems relatively straightforward, all the right roles are present and the
two events are tied together in a reasonable way. Recall, however, that in conjunc-
tive representations like this all of the individual conjuncts must be taken to be true.
In this case, this results in a statement that there actually was an eating of British
food by Mary. Specifically, by breaking this formula apart into separate formulas
by conjunction elimination, the following formula can be produced:

∃v ISA(v,Eating)
∧Eater(v,Mary)∧Eaten(v,BritishFood)

This is clearly more than we want to say. The fact that the speaker believes this
proposition does not make it true; it is only true in the world represented by the
speaker’s beliefs. What is needed is a representation that has a structure similar to
this, but where the Eating event is given a special status.

Note that reverting to the simpler predicate representations we used earlier in
this chapter does not help. A common mistake using such representations would
be to represent this sentence with the following kind of formula:

Believing(Speaker,Eating(Mary,BritishFood))

The problem with this representation is that it is not even valid FOPC. The sec-
ond argument to the Believing predicate should be a FOPC term, not a formula.
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This syntactic error reflects a deeper semantic problem. Predicates in FOPC hold
between the objects in the domain being modeled, not between the relations that
hold among the objects in the domain. Therefore, FOPC lacks a meaningful way to
assert relations about full propositions, which is unfortunately exactly what words
like believe, want, imagine and know want to do.

The standard method for handling this situation is to augment FOPC with op-
erators that allow us to make statements about full logical formulas. Let’s consider
how this approach might work in the case of example (17.76). We can introduce
an operator called Believes that takes two FOPC formulas as its arguments: a for-
mula designating a believer, and a formula designating the believed proposition.
Applying this operator would result in the following meaning representation:

Believes(Speaker,∃vISA(v,Eating)
∧Eater(v,Mary)∧Eaten(v,BritishFood)

Under this approach, the contribution of the word believes to this meaning
representation is not a FOPC proposition at all, but rather an operator that is applied
to the believed proposition. Therefore, as we discuss in Ch. 18, these world creating
verbs play quite a different role in the semantic analysis than more ordinary verbs
like eat.

As one might expect, keeping track of who believes what about whom at
any given point in time gets rather complex. As we will see in Ch. 21, this is an
important task in interactive systems that must track users’ beliefs as they change
during the course of a dialogue.

Operators like Believes that apply to logical formulas are known as modal
operators. Correspondingly, a logic augmented with such operators is known as aMODAL OPERATORS

modal logic. Modal logics have found many uses in the representation of common-MODAL LOGIC

sense knowledge in addition to the modeling of belief, among the more prominent
are representations of time and hypothetical worlds.

Not surprisingly, modal operators and modal logics raise a host of complex
theoretical and practical problems that we cannot even begin to do justice to here.
Among the more important issues are the following:

• How inference works in the presence of specific modal operators.
• The kinds of logical formula that particular operators can be applied to.
• How modal operators interact with quantifiers and logical connectives.
• The influence of these operators on the equality of terms across formulas.

The last issue in this list has consequences for modeling agent’s knowledge
and beliefs in dialogue systems and deserves some elaboration here. In standard
FOPC systems, logical terms that are known to be equal to one another can be
freely substituted without having any effect on the truth of sentences they occur in.
Consider the following examples:



DRAFT

38 Chapter 17. Representing Meaning

(17.77) Snow has delayed Flight 1045.
(17.78) John’s sister’s flight serves dinner.

Assuming that these two flights are the same, substituting Flight 1045 for John’s
sister’s flight has no effect on the truth of either sentence.

Now consider, the following variation on the first example:

(17.79) John knows that snow has delayed Flight 1045.
(17.80) John knows that his sister’s flight serves dinner.

Here the substitution does not work. John may well know that Flight 1045 has
been delayed without knowing that his sister’s flight is delayed, simply because he
may not know the number of his sister’s flight. In other words, even if we assume
that these sentences are true, and that John’s sister is on Flight 1045, we can not
say anything about the truth of the following sentence:

(17.81) John knows that snow has delayed his sister’s flight.

Settings like this where a modal operator like Know is involved are called
referentially opaque. In referentially opaque settings, substitution of equal termsREFERENTIALLY

OPAQUE

may or may not succeed. Ordinary settings where such substitutions always work
are said to be referentially transparent.REFERENTIALLY

TRANSPARENT

17.5.6 Pitfalls

As noted in Section 17.4, there are a number of common mistakes in representing
the meaning of natural language utterances, that arise from confusing, or equat-
ing, elements from real languages with elements in FOPC. Consider the following
example, which on the surface looks like a candidate for a standard implication
rule:

(17.82) If you’re interested in baseball, the Rockies are playing tonight.

A straightforward translation of this sentence into FOPC might look something like
this:

HaveInterestIn(Hearer,Baseball)
⇒ Playing(Rockies,Tonight)

This representation is flawed for a large number of reasons. The most obvious
ones arise from the semantics of FOPC implications. In the event that the hearer
is not interested in baseball, this formula becomes meaningless. Specifically, we
can not draw any conclusion about the consequent clause when the antecedent is
false. But of course this is a ridiculous conclusion, we know that the Rockies game
will go forward regardless of whether or not the hearer happens to like baseball.
Exercise 17.10 asks you to come up with a more reasonable FOPC translation of
this example.
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Now consider the following example:

(17.83) One more beer and I’ll fall off this stool.

Again, a simple-minded translation of this sentence might consist of a conjunction
of two clauses: one representing a drinking event and one representing a falling
event. In this case, the surface use of the word and obscures the fact that this
sentence instead has an implication underlying it. The lesson of both of these
examples is that English words like and, or and if are only tenuously related to the
elements of FOPC with the same names.

Along the same lines, it is important to remember the complete lack of sig-
nificance of the names we make use of in representing FOPC formulas. Consider
the following constant:

InexpensiveVegetarianIndianFoodOnTuesdays

Despite its impressive morphology, this term, by itself, has no more meaning than
a constant like X99 would have. See McDermott (1976) for a discourse on the
inherent dangers of such naming schemes.

As we noted at the beginning of this chapter,
Basics and current applications/versions OWL as a kind of description logic

as applied to the Semantic Web. See the Brachman thing.
basically we’re going to arrange the concepts in a domain into a hierarchy.

Then we’re going to relate the elements in the hierarchy via type slot-filler relations
(value/resritictions). Then there’s inheritance.

unary and binary predicates only? I.e. what you get in a network.

17.6 RELATED REPRESENTATIONAL APPROACHES

Over the years, a fair number of representational schemes have been invented to
capture the meaning of linguistic utterances for use in natural language process-
ing systems. Other than First Order Logic, the most widely used schemes have
been semantic networks and frames, which are also known as slot-filler repre-SEMANTIC

NETWORKS

FRAMES sentations. The KL-ONE (Brachman and Schmolze, 1985), and KRL (Bobrow and
Winograd, 1977) systems were influential efforts to represent knowledge for use in
natural language processing systems.

In semantic networks, objects are represented as nodes in a graph, with rela-
tions between objects being represented by named links. In frame-based systems,
objects are represented as feature-structures similar to those discussed in Ch. 16,
which can, of course, also be naturally represented as graphs. In this approach fea-
tures are called slots and the values, or fillers, of these slots can either be atomic
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values or other embedded frames. The following diagram illustrates how example
(17.76) might be captured in a frame-based approach.

I believe Mary ate British food.



BELIEVING

BELIEVER SPEAKER

BELIEVED




EATING

EATER MARY

EATEN BRITISHFOOD







It is now widely accepted that meanings represented in these approaches can
in principle be translated into equivalent statements in FOL with relative ease. The
difficulty is that in many of these approaches the semantics of a statement is defined
procedurally. That is, the meaning arises from whatever the system that interprets
it does with it.

17.6.1 Description Logics

Description Logics can be viewed as an effort to better understand and specify the
semantics of these earlier structured network representations, and to provide
a conceptual framework that is especially well-suited to certain kinds of domain
modeling. Formally, the term Description Logics refers to a family of logical ap-
proaches that correspond to varying subsets of FOL. The various restrictions placed
on the expressiveness of Description Logics serve to guarantee the tractability of
various critical kinds of inference. Our focus here, however, will be on the model-
ing aspects of DLs rather than computational complexity issues.

When using Description Logics to model an application domain, the empha-
sis is on the representation of knowledge about categories, individuals that belong
to those categories, and the relationships that can hold among these individuals.
The set of categories, or concepts, that make up the particular application domain
is called its Terminology. The portion of a knowledge-base that contains the termi-TERMINOLOGY

nology is traditionally called the TBox; this is in contrast to the ABox that containsTBOX

ABOX facts about individuals. The terminology is typically arranged into a hierarchical
organization called an Ontology that captures the subset/superset relations amongONTOLOGY

the categories.
To illustrate this approach, let’s return to our earlier culinary domain, which

included notions like restaurants, cuisines, and patrons, among others. We repre-
sented concepts like these in FOL by using unary predicates such as Restaurant(x);
the DL equivalent simply omits the variable, so the category corresponding to the
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notion of a restaurant is simply written as Restaurant.2 To capture the notion
that a particular domain element, such as Frasca, is a restaurant we simply assert
Restaurant(Frasca) in much the same way we would in FOL. The semantics of
these categories is specified in precisely the same way that was introduced earlier
in Sec. 17.3: a category like Restaurant simply denotes the set of domain elements
that are restaurants.

Having specified the categories of interest in a state of affairs, the next step
is to arrange these categories into a hierarchical structure. There are two ways
to capture the hierarchical relationships present in a terminology: we can directly
assert relations between categories that are related hierarchically, or we can provide
complete definitions for our concepts and then rely on these definitions to infer
hierarchical relationships. The choice between these methods hinges on the use to
which the resulting categories will be put and the feasibility of formulating precise
definitions for many naturally occurring categories. We’ll discuss the first option
here, and the return to the notion of definitions later in this section.

To directly specify a hierarchical structure, we can assert subsumption rela-SUBSUMPTION

tions between the appropriate concepts in a terminology. The subsumption relation
is conventionally written as C 
 D, and is read as C is subsumed by D; that is,
all members of the category C are also members of the category D. Not surpris-
ingly, the formal semantics of this relation is provided by a simple set relation; any
domain element that is in the set denoted by C is also in the set denoted by D.

Continuing with our restaurant theme, adding the following statements to the
TBox asserts that all restaurants are commercial establishments, and moreover that
there are various sub-types of restaurants.

Restaurant 
 CommercialEstablishment

ItalianRestaurant 
 Restaurant

ChineseRestaurant 
 Restaurant

MexicanRestaurant 
 Restaurant

Ontologies such as this are conventionally illustrated using diagrams such as the
one shown in Fig. 17.6 where subsumption relations are denoted by links between
the nodes representing the categories.

Note however that it was precisely the vague nature of network diagrams like
this that motivated the development of Description Logics. For example, from this
diagram we can’t tell whether or not the given set of categories is exhaustive or
disjoint. That is, we can’t tell if these are all the kinds of restaurants that we’ll
be dealing with in our domain, or whether there might be others. We also can’t

2 DL statements are conventionally typeset with a sans serif font. We’ll follow that convention here,
reverting back to our standard mathematical notation when giving FOL equivalents of DL statements.
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Commercial
Establishment

Restaurant

Chinese
Restaurant 

Mexican
Restaurant

Italian
Restaurant

Figure 17.6 A graphical network representation of a set of subsumption relations
in the restaurant domain.

tell if an individual restaurant must fall into only one of these categories, or if
it is possible, for example, for a restaurant to be both Italian and Chinese. The
DL statements given above are more transparent in their meaning; they simply
assert a set of subsumption relations between categories and make no claims about
coverage or mutual exclusion.

If an application requires coverage and disjointness information then it needs
to be made explicitly. The simplest ways to capture this kind of information is
through the use of negation and disjunction operators. For example, the following
assertion would tell us that Chinese restaurants can’t also be Italian restaurants.

ChineseRestaurant 
 not ItalianRestaurant

Specifying that a set of sub-concepts covers a category can be achieved with with
disjunction, as in the following:

Restaurant 
 (or ItalianRestaurant ChineseRestaurant MexicanRestaurant)
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Of course, having a hierarchy such as the one given in Fig. 17.6 tells us next
to nothing about the concepts in it. We certainly don’t know anything about what
makes a restaurant a restaurant, much less Italian, Chinese or expensive. What is
needed are additional assertions about what it means to be a member of any of
these categories. In Description Logics such statements come in the form of rela-
tions between the concepts being described and other concepts in the domain. In
keeping with its origins in structured network representations, relations in Descrip-
tion Logics are typically binary and are often referred to as roles, or role-relations.

To see how such relations work, let’s consider some of the facts about restau-
rants discussed earlier in the chapter. We’ll use the hasCuisine relation to capture
information as to what kinds of food restaurants serve, and the hasPriceRange re-
lation to capture how pricey particular restaurants tend to be. We can use these
relations to say something more concrete about our various classes of restaurants.
Let’s start with our ItalianRestaurant concept. As a first approximation, we might
say something uncontroversial like Italian restaurants serve Italian cuisine. To cap-
ture these notions, let’s first add some new concepts to our terminology to represent
various kinds of cuisine.

MexicanCuisine 
 Cuisine

ItalianCuisine 
 Cuisine

ChineseCuisine 
 Cuisine

VegetarianCuisine 
 Cuisine

ExpensiveRestaurant 
 Restaurant

ModerateRestaurant 
 Restaurant

CheapRestaurant 
 Restaurant

Next let’s revise our earlier version of ItalianRestaurant to capture cuisine
information.

ItalianRestaurant 
 Restaurant�∃hasCuisine.ItalianCuisine

The way to read this expression is that individuals in the category Italian-
Restaurant are subsumed both by the category Restaurant, and by an unnamed
class defined by the existential clause — the set of entities that serve Italian cui-
sine. An equivalent statement in FOL would be:

∀xItalianRestaurant(x) → Restaurant(x)∧ (∃yServes(x,y)∧ ItalianCuisine(y))

This FOL translation should make it clear what the DL assertions given above
do, and do not entail. In particular, they don’t say that domain entities classified
as Italian restaurants can’t engage in other relations like being expensive, or even
serving Chinese cuisine. And critically, they don’t say much about domain entities
that we know do serve Italian cuisine. In fact, inspection of the FOL translation the
makes it clear that we can’t infer that any new entities belong to this category based
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on their characteristics. The best we can do is infer new facts about restaurants that
we’re explicitly told are members of this category

Of course, inferring the category membership of individuals given certain
characteristics is a common and critical reasoning task that we need to support.
This brings us back to the alternative approach to creating hierarchical structures
in a terminology: actually providing a definition of the categories we’re creating
in the form of necessary and sufficient conditions for category membership. In
this case, we might explicitly provide a definition for ItalianRestaurant as being
those restaurants that serve Italian cuisine, and ModerateRestaurant as being those
whose price range is moderate.

ItalianRestaurant ≡ Restaurant�∃hasCuisine.ItalianCuisine

ModerateRestaurant ≡ Restaurant�hasPriceRange.ModeratePrices

While our earlier statements provided necessary conditions for membership
in these categories, these statements provide both necessary and sufficient condi-
tions.

Finally, let’s now consider the superficially similar case of vegetarian restau-
rants. Clearly, vegetarian restaurants are those that serve vegetarian cuisine. But
they don’t merely serve vegetarian fare, that’s all they serve. We can accommodate
this kind of constraint by adding an additional restriction in the form of a universal
quantifier to our earlier description of VegetarianRestaurants, as follows:

VegetarianRestaurant ≡ Restaurant

�∃hasCuisine.VegetarianCuisine

�∀hasCuisine.VegetarianCuisine

Inference

Paralleling the focus of Description Logics on categories, relations and individuals,
is a processing focus on a restricted subset of logical inference. Rather than employ
the full range of reasoning permitted by FOL, DL reasoning systems emphasize the
closely coupled problems of subsumption and instance checking.

Subsumption, as a form of inference, is the task of determining whether a su-SUBSUMPTION

perset/subset relationship exists between two concepts based on the facts asserted
in a terminology. Correspondingly, instance checking asks if an individual canINSTANCE CHECKING

be a member of a particular category given the facts we know about both the in-
dividual and the terminology. The inference mechanisms underlying subsumption
and instance checking go beyond simply checking for explicitly stated subsump-
tion relations in a terminology. They must explicitly reason using the relational
information asserted about the terminology to infer appropriate subsumption and
membership relations.



DRAFT

Section 17.6. Related Representational Approaches 45

Returning to our restaurant domain, let’s add a new kind of restaurant using
the following statement:

OliveGarden 
 ModerateRestaurant�∃hasCuisine.ItalianCuisine

Given this assertion, we might ask whether the OliveGarden chain of restaurants
might be classified as an Italian restaurant, or a vegetarian restaurant. More pre-
cisely, we can pose the following questions to our reasoning system:

OliveGarden 
 ItalianRestaurant

OliveGarden 
 VegetarianRestaurant

The answer to the first question is positive since OliveGarden meets the cri-
teria we specified for the category ItalianRestaurant: it’s a Restaurant since we
explicitly classified it as a ModerateRestaurant, which is a subtype of Restaurant,
and it meets the has.Cuisine class restriction since we’ve asserted that directly.

The answer to the second question is negative. Recall, that our criteria for
vegetarian restaurants contains two requirements: it has to serve vegetarian fare,
and that’s all it can serve. Our current definition for OliveGarden fails on both
counts since we have not asserted any relations that state that OliveGarden serves
vegetarian fare, and the relation we have asserted, hasCuisine.ItalianCuisine, con-
tradicts the second criteria.

A related reasoning task, based on the basic subsumption inference, is to de-
rive the implied hierarchy for a terminology given facts about the categories in
the terminology. This task roughly corresponds to a repeated application of the
subsumption operator to pairs of concepts in the terminology. Given our current
collection of statements, the expanded hierarchy shown in Fig. 17.7 can be in-
ferred. You should convince yourself that this diagram contains all and only the
subsumption links that should be present given our current knowledge.

Note that whereas subsumption is all about concepts and categories, instance
checking is the task of determining whether a particular individual can be classi-
fied as a member of a particular category. This process takes what is known about
a given individual, in the form of relations and explicit categorical statements, and
then compares that information against what is known about the current terminol-
ogy. It then returns a list of the most specific categories to which the individual can
belong.

As an example of a categorization problem consider an establishment that
we’re told is a restaurant and serves Italian cuisine.

Restaurant(Gondolier)

hasCuisine(Gondolier, ItalianCuisine)

Here, we’re being told that the entity denoted by the term Gondolier is a restaurant
and serves Italian food. Given this new information and the contents of our current
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Figure 17.7 A graphical network representation of the complete set of subsump-
tion relations in the restaurant domain given the current set of assertions in the TBox.

TBox, we might reasonably like to ask if this is an Italian restaurant, a vegetarian
restaurant or if it has moderate prices.

Assuming the definitional statements given earlier, we can indeed categorize
the Gondolier as an Italian restaurant. That is, the information we’ve been given
about it meets the necessary and sufficient conditions required for membership in
this category. And as with the OliveGarden category, this individual fails to match
the stated criteria for the VegetarianRestaurant. Finally, the Gondolier might also
turn out to be an moderately priced restaurant, but we can’t tell at this point since
we don’t know anything about its prices. What this means is that given our cur-
rent knowledge the answer to the query ModerateRestaurant(Gondolier) would be
false since it lacks the required hasPriceRange relation.

The implementation of subsumption, instance checking, as well as other
kinds of inferences needed for practical applications, varies depending on the ex-
pressivity of the Description Logic being used. However, for Description Logics
of even modest power, the primary implementation techniques are based on satis-
fiability methods that in turn rely on the underlying model-based semantics intro-
duced earlier in this chapter.

OWL and the Semantic Web

The highest-profile role for Description Logics has been as a part of the develop-
ment of the Semantic Web. The Semantic Web is an effort to provide a way to
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formally specific the semantics of the contents of... A key component of this effort
involves the creation and deployment of ontologies for various application areas of
interest.

The meaning representation language used to represent this knowledge is the
Web Ontology Language (OWL). OWL embodies a Description Logic that cor-WEB ONTOLOGY

LANGUAGE

responds roughly to the one we’ve been describing here. There are now widely
available tools to facilitate the creation of and reasoning with OWL-based knowl-
edge bases().

17.7 ALTERNATIVE APPROACHES TO MEANING

The idea that the translation of linguistic inputs into a formal representation made
up of discrete symbols adequately captures the notion of meaning is, not surpris-
ingly, subject to a considerable amount of debate. The following section give brief,
wholly inadequate, overviews of some of the major concerns in these debates.

17.7.1 Meaning as Action

An approach that holds considerable appeal when we consider the semantics of im-
perative sentences is the notion of meaning as action. Under this view, utterancesMEANING AS ACTION

are viewed as actions, and the meanings of these utterances reside in procedures
that are activated in the hearer as a result of hearing the utterance. This approach
was followed in the creation of the historically important SHRDLU system, and is
summed up well by its creator Terry Winograd (1972).

One of the basic viewpoints underlying the model is that all language
use can be thought of as a way of activating procedures within the
hearer. We can think of an utterance as a program—one that indirectly
causes a set of operations to be carried out within the hearer’s cognitive
system.

A more recent procedural model of semantics is the executing schema or x-
schema model of Bailey et al. (1997), Narayanan (1997a, 1997b), and Chang et al.X-SCHEMA

(1998). The intuition of this model is that various parts of the semantics of events,
including the aspectual factors discussed on page 32, are based on schematized
descriptions of sensory-motor processes like inception, iteration, enabling, com-
pletion, force, and effort. The model represents the aspectual semantics of events
via a kind of probabilistic automaton called a Petri net (Murata, 1989). The nets
used in the model have states like ready, process, finish, suspend, and result.

The meaning representation of an example like Jack is walking to the store
activates the process state of the walking event. An accomplishment event like
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Jack walked to the store activates the result state. An iterative activity like Jack
walked to the store every week is simulated in the model by an iterative activation
of the process and result nodes. This idea of using sensory-motor primitives as a
foundation for semantic description is also based on the work of Regier (1996) on
the role of visual primitives in a computational model of learning the semantics of
spatial prepositions.

17.7.2 Embodiment as the Basis for Meaning

Coming soon...

17.8 SUMMARY

This chapter has introduced the representational approach to meaning. The follow-
ing are some of the highlights of this chapter:

• A major approach to meaning in computational linguistics involves the cre-
ation of formal meaning representations that capture the meaning-related
content of linguistic inputs. These representations are intended to bridge the
gap from language to commonsense knowledge of the world.

• The frameworks that specify the syntax and semantics of these representa-
tions are called meaning representation languages. A wide variety of such
languages are used in natural language processing and artificial intelligence.

• Such representations need to be able to support the practical computational
requirements of semantic processing. Among these are the need to deter-
mine the truth of propositions, to support unambiguous representations,
to represent variables, to support inference, and to be sufficiently expres-
sive.

• Human languages have a wide variety of features that are used to convey
meaning. Among the most important of these is the ability to convey a
predicate-argument structure.

• First Order Predicate Calculus is a well-understood computationally tractable
meaning representation language that offers much of what is needed in a
meaning representation language.

• Important classes of meaning including categories, events, and time can be
captured in FOPC. Propositions corresponding to such concepts as beliefs
and desires require extensions to FOPC including modal operators.

• Semantic networks and frames can be captured within the FOPC framework.
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

NB. Not yet updated.
The earliest computational use of declarative meaning representations in nat-

ural language processing was in the context of question-answering systems (Green
et al., 1961; Raphael, 1968; Lindsey, 1963). These systems employed ad-hoc repre-
sentations for the facts needed to answer questions. Questions were then translated
into a form that could be matched against facts in the knowledge base. Simmons
(1965) provides an overview of these early efforts.

Woods (1967) investigated the use of FOPC-like representations in question
answering as a replacement for the ad-hoc representations in use at the time. Woods
(1973) further developed and extended these ideas in the landmark Lunar system.
Interestingly, the representations used in Lunar had both a truth-conditional and a
procedural semantics. Winograd (1972) employed a similar representation based
on the Micro-Planner language in his SHRDLU system.

During this same period, researchers interested in the cognitive modeling of
language and memory had been working with various forms of associative network
representations. Masterman (1957) was probably the first to make computational
use of a semantic network-like knowledge representation, although semantic net-
works are generally credited to Quillian (1968). A considerable amount of work
in the semantic network framework was carried out during this era (Norman and
Rumelhart, 1975; Schank, 1972; Wilks, 1975b, 1975a; Kintsch, 1974). It was dur-
ing this period that a number of researchers began to incorporate Fillmore’s notion
of case roles (Fillmore, 1968) into their representations. Simmons (1973) was the
earliest adopter of case roles as part of representations for natural language pro-
cessing.

Detailed analyses by Woods (1975) and Brachman (1979) aimed at figuring
out what semantic networks actually mean led to the development of a number of
more sophisticated network-like languages including KRL (Bobrow and Winograd,
1977) and KL-ONE (Brachman and Schmolze, 1985). As these frameworks became
more sophisticated and well-defined it became clear that they were restricted vari-
ants of FOPC coupled with specialized inference procedures. A useful collection of
papers covering much of this work can be found in Brachman and Levesque (1985).
Russell and Norvig (1995) describe a modern perspective on these representational
efforts.

Linguistic efforts to assign semantic structures to natural language sentences
in the generative era began with the work of Katz and Fodor (1963). The lim-
itations of their simple feature-based representations and the natural fit of logic
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to many of linguistic problems of the day quickly led to the adoption of a vari-
ety of predicate-argument structures as preferred semantic representations (Lakoff,
1972; McCawley, 1968). The subsequent introduction by Montague (1973) of
truth-conditional model-theoretic framework into linguistic theory led to a much
tighter integration between theories of formal syntax and a wide range of formal
semantic frameworks. Good introductions to Montague semantics and its role in
linguistic theory can be found in Dowty et al. (1981), Partee (1976).

The representation of events as reified objects is due to Davidson (1967).
The approach presented here, which explicitly reifies event participants, is due to
Parsons (1990). The use of modal operators and in the representation of knowl-
edge and belief is due to Hintikka (1969). Moore (1977) was the first to make
computational use of this approach. Fauconnier (1985) deals with a wide range
of issues relating to beliefs and belief spaces from a cognitive science perspective.
Most current computational approaches to temporal reasoning are based on Allen’s
notion of temporal intervals (Allen, 1984). ter Meulen (1995) provides a modern
treatment of tense and aspect. Davis (1990) describes the use of FOPC to represent
knowledge across a wide range of common sense domains including quantities,
space, time, and beliefs.

A recent comprehensive treatment of logic and language can be found in
van Benthem and ter Meulen (1997). The classic semantics text is Lyons (1977).
McCawley (1993) is an indispensable textbook covering a wide range of topics
concerning logic and language. Chierchia and McConnell-Ginet (1991) also pro-
vides broad coverage of semantic issues from a linguistic perspective. Heim and
Kratzer (1998) is a more recent text written from the perspective of current gener-
ative theory.

EXERCISES

17.1 Choose a recipe from your favorite cookbook and try to make explicit all
the common-sense knowledge that would be needed to follow it.

17.2 Proponents of information retrieval occasionally claim that natural language
texts in their raw form are a perfectly suitable source of knowledge for question
answering. Sketch an argument against this claim.

17.3 Peruse your daily newspaper for three examples of ambiguous sentences.
Describe the various sources of the ambiguities.

17.4 Consider a domain where the word coffee can refer to the following concepts
in a knowledge-based: a caffeinated or decaffeinated beverage, ground coffee used
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to make either kind of beverage, and the beans themselves. Give arguments as to
which of the following uses of coffee are ambiguous and which are vague.

a. I’ve had my coffee for today.

b. Buy some coffee on your way home.

c. Please grind some more coffee.

17.5 Encode in FOPC as much of the knowledge as you can that you came up
with for Exercise 17.1

17.6 The following rule, which we gave as a translation for Example 17.24, is
not a reasonable definition of what it means to be a vegetarian restaurant.

∀xVegetarianRestaurant(x) ⇒ Serves(x,VegetarianFood)

Give a FOPC rule that better defines vegetarian restaurants in terms of what they
serve.

17.7 Give a FOPC translations for the following sentences:

a. Vegetarians do not eat meat.

b. Not all vegetarians eat eggs.

17.8 Give a set of facts and inferences necessary to prove the following asser-
tions:

a. McDonalds is not a vegetarian restaurant.

b. Some vegetarians can eat at McDonalds.

Don’t just place these facts in your knowledge base. Show that they can be
inferred from some more general facts about vegetarians and McDonalds.

17.9 Give FOPC translations for the following sentences that capture the temporal
relationships between the events.

a. When Mary’s flight departed, I ate lunch.

b. When Mary’s flight departed, I had eaten lunch.

17.10 Give a reasonable FOPC translation of the following example.

If you’re interested in baseball, the Rockies are playing tonight.

17.11 On Page 19 we gave the following FOPC translation for Example 17.21.

Have(Speaker,FiveDollars)∧¬Have(Speaker,LotO f Time)

This literal representation would not be particularly useful to a restaurant-oriented
question answering system. Give a deeper FOPC meaning representation for this
example that is closer to what it really means.
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17.12 On Page 19, we gave the following representation as a translation for the
sentence Ay Caramba is near ICSI.

Near(LocationO f (AyCaramba),LocationO f (ICSI))

In our truth-conditional semantics, this formula is either true or false given the
contents of some knowledge-base. Critique this truth-conditional approach with
respect to the meaning of words like near.
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