Speech and Language Processing: An introduction to natural |anguage processing,

conput at i onal

linguistics, and speech recognition. Daniel Jurafsky & Janes H Martin.

Copyright © 2007, Al rights reserved. Draft of July 13, 2007. Do not cite wi thout
per m ssi on.

FEATURES AND
UNIFICATION

CONSTEA

INT-BASED

ORMALISMS

FRIAR FRANCIS: If either of you know any inward impedi-
ment why you should not be conjoined, charge you, on your

souls, to utter it.
William Shakespeardéyluch Ado About Nothing

From a reductionist perspective, the history of the natsc&nces over the last few
hundred years can be seen as an attempt to explain the beb&laoger structures
by the combined action of smaller primitives. In biologye throperties of inheritance
have been explained by the action of genes, and then agajrdlperties of genes
have been explained by the action of DNA. In physics, mati&s veduced to atoms
and then again to subatomic particles. The appeal of rezhisth has not escaped
computational linguistics. In this chapter we introduce itlea that grammatical cat-
egories likeVPto, Sthat Non3sgAuxor 3sgNP as well as the grammatical rules like
S— NP VPthat make use of them, should be thought obbgctsthat can have com-
plex sets ofpropertiesassociated with them. The information in these properses i
represented bgonstraints, and so these kinds of models are often cafledstraint-
based formalisms

Why do we need a more fine-grained way of representing andhglaonstraints on
grammatical categories? One problem arose in Ch. 12, whesaw that naive models
of grammatical phenomena such as agreement and subcatggorican lead to over-
generation problems. For example, in order to avoid ungratizal noun phrases such
asthis flightsand verb phrases likdisappeared a flightve were forced to create a huge
proliferation of primitive grammatical categories suchiNmn3sgVPtoNPmass3sgNP
andNon3sgAux These new categories led, in turn, to an explosion in thebsurof
grammar rules and a corresponding loss of generality in taemgar. A constraint-
based representation scheme will allow us to represengfiai@ed information about
number and person, agreement, subcategorization, as sv&tnaantic categories like
mass/count.

Constraint-based formalisms have other advantages thatilveot cover in this
chapter, such as the ability to model more complex phenoth@mecontext-free gram-
mars, and the ability to efficiently and conveniently congpsémantics for syntactic
representations.

Chapter 16. Features and Unification

Consider briefly how this approach might work in the case afgnatical number.
As we saw in Ch. 12, noun phrases likés flightandthose flightan be distinguished
based on whether they are singular or plural. This distmctian be captured if we
associate a property calledyMBER that can have the value singular or plural, with
appropriate members of tidP category. Given this ability, we can say thlais flight
is a member of th&lP category and, in addition, has the value singular fonii$BER
property. This same property can be used in the same waytioglissh singular and
plural members of th&/P category such aserves lunclandserve lunch

Of course, simply associating these properties with vaneords and phrases does
not solve any of our overgeneration problems. To make theggepties useful, we
need the ability to perform simple operations, such as éguaists, on them. By
pairing such tests with our core grammar rules, we can addusconstraints to help
ensure that only grammatical strings are generated by #mamar. For example, we
might want to ask whether or not a given noun phrase and vadsptave the same
values for their respective number properties. Such agdétstrated by the following
kind of rule.

S — NP VP
Only if the number of the NP is equal to the number of the VP.

The remainder of this chapter provides the details of onegpeiational implemen-
tation of a constraint-based formalism, basedeature structures andunification.
The next section describésature structures, the representation used to capture the
kind of grammatical properties we have in mind. Section 1Beh introduces the
unification operator that is used to implement basic operations over feature-stru
tures. Section 16.3 then covers the integration of thesetsires into a grammatical
formalism. Section 16.4 then introduces the unificatiomatgm and its required data
structures. Next, Section 16.5 describes how featuretstieeand the unification oper-
ator can be integrated into a parser. Finally, Section 18dudses the most significant
extension to this constraint-based formalism, the uggpesandinheritance, as well
as other extensions.

16.1 HEATURE STRUCTURES

FEATURE
STRUCTURES

ATTRIBUTE-VALUE
MATRIX

AVM

One of the simplest ways to encode the kind of propertieswieahave in mind is
through the use offeature structures. These are simply sets of feature-value pairs,
where features are unanalyzable atomic symbols drawn foome $inite set, and values
are either atomic symbols or feature structures. Suchrieatwuctures are traditionally
illustrated with the following kind of matrix-like diagrantalled anattribute-value
matrix or AVM :

FEATURE; VALUE[
FEATURE, VALUE»

FEATURE, VALUEq

Section 16.1.

Feature Structures 3

To be concrete, let us consider the number property disdusseve. To capture
this property, we will use the symbrluUMBER to designate this grammatical attribute,
and the symbolsc andpL (introduced in Ch. 3) to designate the possible values it can
take on in English. A simple feature structure consistinghef single feature would
then be illustrated as follows:

[NUMBER S%

Adding an additional feature-value pair to capture the gnatical notion of person
leads to the following feature structure:

NUMBER SG
PERSON 3

Next we can encode the grammatical category of the constitiirat this structure
corresponds to through the use of ther feature. For example, we can indicate that
these features are associated with a noun phrase by usifgjltveing structure:

CAT NP
NUMBER SG
PERSON 3

This structure can be used to represent3bgNPcategory introduced in Ch. 12 to
capture a restricted subcategory of noun phrases. Thespomding plural version of
this structure would be captured as follows:

CAT NP
NUMBER PL
PERSON 3

Note that the value of theAT and PERSONfeatures remains the same for these last
two structures. This illustrates how the use of featurecttines allows us to both
preserve the core set of grammatical categories and drawalisns among members
of a single category.

As mentioned earlier in the definition of feature structyufeatures are not limited
to atomic symbols as their values; they can also have otla¢urie structures as their
values. This is particularly useful when we wish to bundletds feature-value pairs
together for similar treatment. As an example of this, cdeisthat thevumBER and
PERSONfeatures are often lumped together since grammatical sishjeust agree with
their predicates in both their number and person properfidgs lumping together
can be captured by introducing acREEMENT feature that takes a feature structure
consisting of theN\uMBER and PERSONfeature-value pairs as its value. Introducing
this feature into our third person singular noun phrasedgi¢he following kind of
structure.

CAT NP

NUMBER SG
AGREEMENT
PERSON 3

Chapter 16. Features and Unification

FEATURE PATH

REENTRANT

CAT NP
NUMBER SG
AGREEMENT
PERSON s
Figure 16.1 A directed graph notation for feature structures.

Given this kind of arrangement, we can test for the equafityre values for both the
NUMBER andPERSONfeatures of two constituents by testing for the equalityhefirt
AGREEMENT features.

This ability to use feature structures as values leadsyfdirectly to the notion
of a feature path. A feature path is nothing more than a list of features thioag
feature structure leading to a particular value. For examiplthe last feature structure,
we can say that théAGREEMENT NUMBER) path leads to the valusG, while the
(AGREEMENT PERSON path leads to the value 3. This notion of a path leads nayurall
to an alternative graphical way of illustrating featuraistures, shown in Figure 16.1,
which as we will see in Section 16.4 is suggestive of how thighbe implemented. In
these diagrams, feature structures are depicted as dirgretehs where features appear
as labeled edges and values as nodes.

Although this notion of paths will prove useful in a numbersettings, we intro-
duce it here to help explain an additional important kind exdtfire structure: those
that contain features that actually share some featuretsteias a value. Such feature
structures will be referred to asentrant structures. What we have in mind here is
not the simple idea that two features might have equal vahugsather that they share
precisely the same feature structure (or node in the graptese two cases can be dis-
tinguished clearly if we think in terms of paths through agraln the case of simple
equality, two paths lead to distinct nodes in the graph thahar identical, but distinct
structures. In the case of a reentrant structure, two feataths actually lead to the
same node in the structure.

Figure 16.2 illustrates a simple example of reentrancyhigtructure, théHEAD
SUBJECT AGREEMENT path and théHEAD AGREEMENT) path lead to the same lo-
cation. Shared structures like this will be denoted in outrinaiagrams by adding
numerical indexes that signal the values to be shared. Thexmarsion of the fea-
ture structure from Figure 16.2 would be denoted as follas)g the notation of the
PATR-II system (Shieber, 1986), based on Kay (1979):

Section 16.2.

Unification of Feature Structures 5

CAT ° S
HEAD
AGREEMENT
SUBJEC
AGREEMENT PERSON
3
Figure 16.2 A feature structure with shared values. The location (Valloend by fol-
lowing the (HEAD SUBJECT AGREEMENT path is the same as that found via tf#EAD
AGREEMENT) path.

CAT S

NUMBER SG
AGREEMENT
PERSON 3

HEAD
SUBJECT [AGREEMENT }

As we will see, these simple structures give us the abilitgstpress linguistic
generalizations in surprisingly compact and elegant ways.

16.2 WNIFICATION OF FEATURE STRUCTURES

UNIFICATION

As noted earlier, feature structures would be of little ustheut our being able to
perform reasonably efficient and powerful operations omthé&s we will show, the
two principal operations we need to perform are mergingrtf@mation content of two
structures and rejecting the merger of structures thatre@mpatible. Fortunately, a
single computational technique, calledification, suffices for both of these purposes.
The bulk of this section will illustrate through a series ahmples how unification
instantiates these notions of merger and compatibilityscDssion of the unification
algorithm and its implementation will be deferred to Sectl®.4.

We begin with the following simple application of the unifiwa operator.

NUMBER SG} U [NUMBER SG} = [NUMBER SG

As this equation illustrates, unification is implementedaalinary operator (repre-

Chapter 16. Features and Unification

sented here as) that accepts two feature structures as arguments andseatdeature
structure when it succeeds. In this example, unificationeisid used to perform a
simple equality check. The unification succeeds becauseafiespondingiUMBER
features in each structure agree as to their values. Indks, since the original struc-
tures are identical, the output is the same as the input. dllening similar kind of
check fails since the@UMBER features in the two structures have incompatible values.

{NUMBER SG} u {NUMBER PL} Fails!

This next unification illustrates an important aspect ofribéon of compatibility
in unification.

{NUMBER SG} U {NUMBER []} = {NUMBER SG}

In this situation, these features structures are taken tcobgatible, and are hence
capable of being merged, despite the fact that the giveresdhr the respectiveum-
BER features are different. The [] value in the second strudndiates that the value
has been left unspecified. A feature with such a [] value casulseessfully matched
to any value in a corresponding feature in another structliteerefore, in this case,
the valuesG from the first structure can match the [] value from the secand as is
indicated by the output shown, the result of this type of gaifon is a structure with
the value provided by the more specific, non-null, value.

The next example illustrates another of the merger aspéatsification.

NUMBER SG}U[PERSON 3]= NUMBER SG
PERSON 3

Here the result of the unification is a merger of the originad structures into one
larger structure. This larger structure contains the uwioall the information stored
in each of the original structures. Although this is a simgtample, it is important to
understand why these structures are judged to be compatilele are compatible be-
cause they contain no features that are explicitly incoibfgatThe fact that they each
contain a feature-value pair that the other does not is neason for the unification to
fail.

We will now consider a series of cases involving the unifmatf somewhat more
complex reentrant structures. The following exampleitiates an equality check com-
plicated by the presence of a reentrant structure in thedfigestment.

PERSON 3

NUMBER SG
AGREEMENT []

SUBJECT [AGREEMENT }
U

PERSON 3
SUBJECT |AGREEMENT
NUMBER SG

NUMBER SG
AGREEMENT l 1

PERSON 3

SUBJECT [AGREEMENT }

Section 16.2.

Unification of Feature Structures 7

(16.1)

(16.2)

The important elements in this example are theBJECT features in the two input
structures. The unification of these features succeedsibeche values found in the
first argument by following thBl numerical index, match those that are directly present
in the second argument. Note that, by itself, the value ofabREEMENT feature in
the first argument would have no bearing on the success otatiifnh since the sec-
ond argument lacks anGREEMENT feature at the top level. It only becomes relevant
because the value of tre&sREEMENT feature is shared with theuBJECTfeature.

The following example illustrates the copying capabifite unification.

AGREEMENT

SUBJECT AGREEMENT }

= PERSON 3
SUBJECT |AGREEMENT
NUMBER SG

= | AGREEMENT

PERSON 3
SUBJECT AGREEMENT

NUMBER SG

Here the value found via the second argumefg'SBJECT AGREEMENT feature is
copied over to the corresponding place in the first argumaraddition, theAGREE-
MENT feature of the first argument receives a value as a sidetefftie index linking
it to the end of(SUBJECT AGREEMENT feature.

The next example demonstrates the important differencedsst features that ac-
tually share values versus those that merely have similaesa

AGREEMENT {NUMBER SG}

SUBJECT {AGREEMENT [NUMBER SGH

U

PERSON 3
SUBJECT |AGREEMENT
NUMBER SG

~ | AGREEMENT [NUMBER SG}

NUMBER SG
SUBJECT AGREEMENT
PERSON 3

The values at the end of tfeuBJECT AGREEMENT path and thé AGREEMENT) path
are the same, but not shared, in the first argument. The uidficaf the SUBJECT
features of the two arguments adds #ERsoNinformation from the second argument
to the result. However, since there is no index linking f&REEMENT feature to
the (SUBJECT AGREEMENTY feature, this information is not added to the value of the
AGREEMENT feature.

Finally, consider the following example of a failure to unif

Chapter

16.

Features and Unification

SUBSUMES

(16.3)
(16.4)

(16.5)

(16.6)

AGREEMENT

SUBJECT

U
AGREEMENT

SUBJECT

Falils!

[AGREEMENT }

NUMBER SG
PERSON 3

NUMBER SG
PERSON 3

AGREEMENT [

NUMBER PL
PERSON 3

Proceeding through the features in order, we first find treAGREEMENT features in
these examples successfully match. However, when we motethe suBJECTfea-
tures, we find that the values found at the end of the resgg$iVBJECT AGREEMENT
NUMBER) paths differ, causing a unification failure.
Feature structures are a way of representing partial irddom about some linguis-
tic object or placing informational constraints on what tigect can be. Unification
can be seen as a way of merging the information in each festiuwreture, or describing
objects which satisfy both sets of constraints. Intuigiyehifying two feature struc-
tures produces a new feature structure which is more spgledemore information)
than, or is identical to, either of the input feature struesu We say that a less specific
(more abstract) feature structiggbsumesan equally or more specific one. Subsump-
tionis represented by the operaforA feature structuré subsumes a feature structure

G (F C G) ifand only if:

1. For every feature in F, F(x) C G(x) (whereF(x) means “the value of the
featurex of feature structur&”).

2. For all pathg andqin F such thaf (p) = F(q), itis also the case th&(p) =

G(q).

For example, consider these feature structures:

NUMBER SG}
PERSON 3}

NUMBER SG
PERSON 3

CAT VP
AGREEMENT

SUBJECT

{AGREEMENT }

Section 16.2. Unification of Feature Structures 9

(16.7) [caT VP
AGREEMENT

PERSON 3
SUBJECT AGREEMENT
NUMBER SG

(16.8) [caT VP
AGREEMENT

NUMBER SG

PERSON 3
SUBJECT AGREEMENT

The following subsumption relations hold among them:

16.3C 165
164C 165
16.6C 16.7C 16.8

Subsumption is a partial ordering; there are pairs of feastnuctures that neither
subsume nor are subsumed by each other:

163 16.4
164 163

Since every feature structure is subsumed by the emptytstauf], the relation

semLatTice among feature structures can be defined ssnailattice The semilattice is often rep-
resented pictorially with the most general feature [] at thye and the subsumption
relation represented by lines between feature structheication can be defined in
terms of the subsumption semilattice. Given two featunectiresF andG, F LG is
defined as the most general feature structdirsuch that- C H andG C H. Since
the information ordering defined by unification is a semitatt the unification oper-

monotonic ation ismonotonic (Pereira and Shieber, 1984; Rounds and Kasper, 1986; Mopshie
1988). This means that if some description is true of a feastnucture, unifying it
with another feature structure results in a feature stredtuat still satisfies the orig-
inal description. The unification operation is therefordasrindependent; given a set
of feature structures to unify, we can check them in any oaderget the same result.
Thus in the above example we could instead have chosen t& theaGREEMENT
attribute first and the unification still would have failed.

To summarize, unification is a way of implementing the ins&igin of knowledge
from different constraints. Given two compatible featurastures as input, it produces
the most general feature structure which nonethelessiosraththe information in the
inputs. Given two incompatible feature structures, itSail

10 Chapter 16. Features and Unification

16.3 FEATURESSTRUCTURES IN THEGRAMMAR

Our primary purpose in introducing feature structures amfiaation has been to pro-
vide a way to elegantly express syntactic constraints tloatidvbe difficult to express
using the mechanisms of context-free grammars alone. Odrstep, therefore, is to
specify a way to integrate feature structures and unifinadigerations into the speci-
fication of a grammar. This can be accomplishecabgmentinghe rules of ordinary
context-free grammars with attachments that specify feastructures for the con-
stituents of the rules, along with appropriate unificatipei@tions that express con-
straints on those constituents. From a grammatical poiniesf, these attachments
will be used to accomplish the following goals:

e to associate complex feature structures with both lexteah$ and instances of
grammatical categories

e to guide the composition of feature structures for largangnatical constituents
based on the feature structures of their component parts

o to enforce compatibility constraints between specifiedspafrgrammatical con-
structions

We will use the following notation to denote the grammar aagtations that will
allow us to accomplish all of these goals, based on the PATdgstem described in
Shieber (1986):

Bo — Bi--Pn

{set of constraints
The specified constraints have one of the following forms.

(B feature path = Atomic value
(B feature path = (B; feature path

The notation(3; feature path denotes a feature path through the feature structure as-
sociated with theB; component of the context-free part of the rule. The firstestfl
constraint specifies that the value found at the end of thengpath must unify with
the specified atomic value. The second form specifies thatahes found at the end
of the two given paths must be unifiable.

To illustrate the use of these constraints, let us returheartformal solution to the
number agreement problem proposed at the beginning oftiister.

S — NP VP
Only if the number of the NP is equal to the number of the VP.

Using the new notation, this rule can now be expressed as\fsll

S — NP VP
(NP NUMBER) = (VP NUMBER)

Section 16.3.

Features Structures in the Grammar 11

(16.9)
(16.10)
(16.11)

Note that in cases where there are two or more constituentiseofame syntactic
category in a rule, we will subscript the constituents topkéigem straight, as in
VP — V NP, NP5.

Taking a step back from the notation, it is important to ndigt in this approach
the simple generative nature of context-free rules has hsatamentally changed by
this augmentation. Ordinary context-free rules are basetth® simple notion of con-
catenation; aNP followed by aVP is anS, or generatively, to produce aall we
need to do is concatenate BIP to aVP. In the new scheme, this concatenation must
be accompanied by a successful unification operation. €agd naturally to questions
about the computational complexity of the unification ofieraand its effect on the
generative power of this new grammar. These issues will §mudsed in Ch. 15.

To review, there are two fundamental components to thiscambr.

e The elements of context-free grammar rules will have feahased constraints
associated with them. This reflects a shift from atomic graical categories
to more complex categories with properties.

e The constraints associated with individual rules can refeand manipulate, the
feature structures associated with the parts of the ruléniotvthey are attached.

The following sections present applications of unificat@mmstraints to four in-
teresting linguistic phenomena: agreement, grammatezd$, subcategorization, and
long-distance dependencies.

16.3.1 Agreement

As discussed in Ch. 12, agreement phenomena show up in a nofrdiferent places
in English. This section illustrates how unification can tsedi to capture the two
main types of English agreement phenomena: subject-veeeagent and determiner-
nominal agreement. We will use the following ATIS sentereeexamples throughout
this discussion to illustrate these phenomena.
This flight serves breakfast.
Does this flight serve breakfast?
Do these flights serve breakfast?

Notice that the constraint used to enfosteBJECFVERB agreement given above is
deficient in that it ignores theersoNfeature. The following constraint which makes
use of theAGREEMENT feature takes care of this problem.

S — NP VP
(NP AGREEMENT) = (VP AGREEMENT)

Examples 16.10 and 16.11 illustrate a minor variatiorsoBJECFVERB agree-
ment. In these yes-no-questions, the subdetmust agree with the auxiliary verb,
rather than the main verb of the sentence, which appears andimite form. This
agreement constraint can be handled by the following rule.

S — AuxNP VP
(AUXAGREEMENT) = (NP AGREEMENT)

12

Chapter 16. Features and Unification

Agreement between determiners and nominals in noun phisakeadled in a sim-
ilar fashion. The basic task is to allow the forms given ahdwe block the unwanted
*this flightsand*those flightforms where the determiners and nominals clash in their
NUMBER feature. Again, the logical place to enforce this constrigiin the grammar
rule that brings the parts together.

NP — Det Nominal
(Det AGREEMENT) = (NominalAGREEMENT)
(NP AGREEMENT) = (NominalAGREEMENT)

This rule states that tresREEMENT feature of thédetmust unify with theaAGREE-
MENT feature of theNominal and moreover, that theGREEMENT feature of theNP
is constrained to be the same as that oftleeninal

Having expressed the constraints needed to enforce sugdeiand determiner-
nominal agreement, we must now fill in the rest of the maclyineeded to make these
constraints work. Specifically, we must consider how théower constituents that take
part in these constraints (tihaix VP, NP, Det, andNomina) acquire values for their
various agreement features.

We can begin by noting that our constraints involve bothdakand non-lexical
constituents. The simpler lexical constituemsix and Det, receive values for their
respective agreement features directly from the lexicdn #e following rules.

Aux — do
(AUXAGREEMENT NUMBER) = PL

(AUXAGREEMENT PERSON =3

Aux — does
(AUXAGREEMENT NUMBER) = SG
(AUXAGREEMENT PERSON =3

Determiner — this
(DeterminerAGREEMENT NUMBER) = SG

Determiner— these
(DeterminerAGREEMENT NUMBER) = PL

Returning to our firsSrule, let us first consider theGREEMENT feature for the
VP constituent. The constituent structure for thiBis specified by the following rule.

VP — Verb NP

It seems clear that the agreement constraint for this daesti must be based on
its constituent verb. This verb, as with the previous leixamries, can acquire its
agreement feature values directly from lexicon as in thiefdhg rules.

Verb — serve
(Verb AGREEMENT NUMBER) = PL

Section 16.3.

Features Structures in the Grammar 13

HEAD OF THE PHRASE
HEAD FEATURES

Verb — serves
(Verb AGREEMENT NUMBER) = SG
(Verb AGREEMENT PERSON = 3

All that remainsiis to stipulate that the agreement feattileenparen¥/Pis constrained
to be the same as its verb constituent.

VP — Verb NP
(VP AGREEMENT) = (VerbAGREEMENT)

In other words, non-lexical grammatical constituents cequae values for at least
some of their features from their component constituents.

The same technique works for the remainiB and Nominal categories. The
values for the agreement features for these categoriegaved from the nounglight
andflights

Noun — flight
(NOUNAGREEMENT NUMBER) = SG

Noun — flights
(NOUNAGREEMENT NUMBER) = PL

Similarly, theNominalfeatures are constrained to have the same values as its con-
stituent noun, as follows.

Nominal — Noun
(NominalAGREEMENT) = (NOUNAGREEMENT)

Note that this section has only scratched the surface of tigdidh agreement sys-
tem, and that the agreement system of other languages cam$iderably more com-
plex than English.

16.3.2 Head Features

To account for the way compositional grammatical constitessuch as noun phrases,
nominals, and verb phrases come to have agreement feghegseceding section in-
troduced the notion of copying needed feature structuoes @hildren to their parents.
This use turns out to be a specific instance of a much more glepleenomenon in
constraint-based grammars. Specifically, the featuresést grammatical categories
are copied frononeof the children to the parent. The child that provides théuess is
called thehead of the phrase and the features copied are referred thead features

This idea of heads, firstintroduced in S@@, plays an important role in constraint-
based grammars. Consider the following three rules frontetstesection.

VP — Verb NP
(VP AGREEMENT) = (VerbAGREEMENT)

Chapter 16. Features and Unification

NP — Det Nominal
(Det AGREEMENT) = (NominalAGREEMENT)
(NP AGREEMENT) = (NominalAGREEMENT)

Nominal — Noun
(NominalAGREEMENT) = (NOUNAGREEMENT)

In each of these rules, the constituent providing the ages¢rfeature structure
up to the parent is the head of the phrase. More specificléyverb is the head
of the verb phrase, the nominal is the head of the noun pheagkthe noun is the
head of the nominal. In addition, we can say that the agretfaature structure is a
head feature. We can rewrite our rules to reflect these géregians by placing the
agreement feature structure undersnp feature and then copying that feature upward
as in the following constraints.

(16.12) VP — Verb NP
(VP HEAD) = (VerbHEAD)

(16.13) NP — Det Nominal
(NP HEAD) = (NominalHEAD)
(DetHEAD AGREEMENT) = (NominalHEAD AGREEMENT)

(16.14) Nominal — Noun
(NominalHEAD) = (NOUNHEAD)

Similarly, the lexical rules that introduce these featunest now reflect thisslEAD
notion, as in the following.

Noun — flights
(NOUNHEAD AGREEMENT NUMBER) = PL

Verb — serves
(VerbHEAD AGREEMENT NUMBER) = SG
(VerbHEAD AGREEMENT PERSON = 3

16.3.3 Subcategorization

Recall that subcategorization is the notion that verbs @apitky about the patterns
of arguments they will allow themselves to appear with. In CB, to prevent the

generation of ungrammatical sentences with verbs and \redsps that do not match,
we were forced to split the category of verb into multiple ®altegories. These more

Section 16.3.

Features Structures in the Grammar 15

specific verb categories were then used in the definition @fsghecific verb phrases
that they were allowed to occur with, as in the following rule

Verb-with-S-comp- think
VP — Verb-with-S-comp S

Clearly, this approach introduces exactly the same uratasiproliferation of cat-
egories that we saw with the similar approach to solving thealper problem. The
proper way to avoid this proliferation is to introduce fea&tstructures to distinguish
among the various members of the verb category. This goabeaccomplished by
associating an atomic feature calledBCAT, with an appropriate value, with each of
the verbs in the lexicon. For example, the transitive versiservesould be assigned
the following feature structure in the lexicon.

Verb — serves
(VerbHEAD AGREEMENT NUMBER) = SG
(VerbHEAD SUBCAT) = TRANS

The suBCAT feature is a signal to the rest of the grammar that this veollshonly
appear in verb phrases with a single noun phrase argumeistcdimstraint is enforced
by adding corresponding constraints to all the verb phral&s in the grammar, as in
the following.

VP — Verb
(VP HEAD) = (VerbHEAD)
(VP HEAD SUBCAT) = INTRANS

VP — Verb NP
(VP HEAD) = (VerbHEAD)
(VP HEAD SUBCAT) = TRANS

VP — Verb NP NP
(VP HEAD) = (VerbHEAD)
(VP HEAD SUBCAT) = DITRANS

The first unification constraint in these rules states thavtrb phrase receives its
HEAD features from its verb constituent, while the second cairgtspecifies what the
value of thatsuBCAT feature must be. Any attempt to use a verb with an inapprtgria
verb phrase will fail since the value of tls&/BCAT feature of thevVP will fail to unify
with the atomic symbol given in second constraint. Note éipigroach requires unique
symbols for each of the 50—100 verb phrase frames in English.

This is a somewhat opaque approach since these unanalygzaateT symbols do
not directly encode either the number or type of the argusiat the verb expects to

16 Chapter 16. Features and Unification

take. To see this, note that one can not simply examine asvertity in the lexicon
and know what its subcategorization frame is. Rather, yostmse the value of the
SUBCAT feature indirectly as a pointer to those verb phrase rulésérgrammar that
can accept the verb in question.

A somewhat more elegant solution, which makes better useeahtpressive power
of feature structures, allows the verb entries to direqtlycify the order and category
type of the arguments they require. The following entrydfervess an example of one
such approach, in which the verb’s subcategory featureesgps dist of its objects
and complements.

Verb — serves
(VerbHEAD AGREEMENT NUMBER) = SG
(VerbHEAD SUBCAT FIRST CAT) = NP
(VerbHEAD SUBCAT SECOND = END

This entry uses thelRsST feature to state that the first post-verbal argument must
be anNP; the value of theseconDfeature indicates that this verb expects only one
argument. A verb likdeave Boston in the morningyith two arguments, would have
the following kind of entry.

Verb— leaves
(VerbHEAD AGREEMENT NUMBER) = SG
(VerbHEAD SUBCAT FIRST CAT) = NP
(VerbHEAD SUBCAT SECOND CAT = PP
(VerbHEAD SUBCAT THIRD) = END

This scheme is, of course, a rather baroque way of encodisg & is also possible
to use the idea diypesdefined in Sec. 16.6 to define a list type more cleanly.

The individual verb phrase rules must now check for the presef exactly the
elements specified by their verb, as in the following travsitule.

(16.15) VP — Verb NP
(VP HEAD) = (VerbHEAD)
(VP HEAD SUBCAT FIRST CAT) = (NP CAT)
(VP HEAD SUBCAT SECOND = END

The second constraint in this rule’s constraints statesthigacategory of the first
element of the verb’sUBCAT list must match the category of the constituent immedi-
ately following the verb. The third constraint goes on tdesthat this verb phrase rule
expects only a single argument.

Our previous examples have shown rather simple subcaregion structures for

SUBCATEGORIZATION verbs. In fact, verbs can subcategorize for quite comgpidocategorization frames
(e.g.,NP PP, NP NP, or NP 9 and these frames can be composed of many different
phrasal types. In order to come up with a list of possible atégorization frames for

Section 16.3.

Features Structures in the Grammar 17

English verbs, we first need to have a list of possible phrgsestthat can make up
these frames. Fig. 16.3 shows one short list of possiblesphigpes for making up
subcategorization frames for verbs; this list is modifiezhfrone used to create verb
subcategorization frames in the FrameNet project (Johri€99; Baker et al., 1998),
and includes phrase types for special subjects of verbsHiweandit, as well as for

objects and complements.

Noun Phrase Types
There nonreferential there There is still much to learn
It nonreferential it It was evident that my ideas
NP noun phrase As he was relatingis story
Preposition Phrase Types
PP preposition phrase couch their message terms
PPing gerundive PP censured hinfior not having intervened
PPpart particle turn it off
Verb Phrase Types
VPbrst bare stem VP she coulddiscuss it
VPto to-marked infin. VP Why do you warto know?
VPwh wh-VP it is worth consideringhow to write
VPing gerundive VP | would consideusing it
Complement Clause types
Finite Clause
Sfin finite clause maintainthat the situation was unsatisfactory
Swh wh-clause it tells uswhere we are
Sif whetherl/if clause askwhether Aristophanes is depicting a
Nonfinite Clause
Sing gerundive clause seesome attention being given
Sto to-marked clause knowthemselves to be relatively unhealthy
Sforto for-to clause She was waitindor him to make some reply
Sbrst bare stem clause commandedhat his sermons be published
Other Types

AjP adjective phrase thought itpossible
Quo quotes asked‘'What was it like?”

Figure 16.3 A small set of potential phrase types which can be combinesidate a

set of potential subcategorization frames for verbs. Medifrom the FrameNet tagset

(Johnson, 1999; Baker et al., 1998). The sample sentengeérats are from the British

National Corpus.

To use the phrase types in Fig. 16.3 in a unification gramnzah @hrase type
would have to be described using features. For example ttme ¥Pto, which is
subcategorized for byyantmight be expressed as:

Verb— want
(VerbHEAD SUBCAT FIRST CAT) = VP
(Verb HEAD SUBCAT FIRST FORM = INFINITIVE

Each of the 50 to 100 possible verb subcategorization framgeaglish would be
described as a set drawn from these phrase types. For exanepés an example

18

Chapter 16. Features and Unification

CONTROL

ALTERNATIONS

of the two-complementant We've used this following example to demonstrate two
different notational possibilities. First, lists can b@mesented via an angle brackets
notation(and). Second, instead of using a rewrite-rule annotated with egtiations,
we can represent the lexical entry as a single feature atrict

ORTH WANT
CAT VERB

CAT VP
HEAD SUBCAT < {CAT NP},

)

HEAD [VFORM INFINITIVE

Combining even a limited set of phrase types results in a lagge set of possible
subcategorization frames. Furthermore, each verb alloausyndifferent subcatego-
rization frames. For example, here are just some of the setpogzation patterns for
the verbask with examples from the BNC:

Subcat Example

Quo asked fyo “What was it like?”]

NP asking p a question)]

Swh asked gnwhat trades you're interested in]
Sto ask [sto him to tell you]

PP that means askingp at home]

Vto asked {10 to see a girl called Evelyn]

NP Sif asked fjp him] [sif whether he could make]
NP NP asked fjp myself] [\p a question]

NP Swh asked [jp him] [sywhWhy he took time off]

A number of comprehensive subcategorization-frame tagseist, such as the
COMLEX set (Macleod et al., 1998), which includes subcatizgtion frames for
verbs, adjectives, and nouns, and the ACQUILEX tagset db weibcategorization
frames (Sanfilippo, 1993). Many subcategorization-fraagseéts add other informa-
tion about the complements, such as specifying the ideofithe subject in a lower
verb phrase that has no overt subject; this is cadleatrol information. For example
Temmy promised Ruth to gat least in some dialects) implies that Temmy will do the
going, whileTemmy persuaded Ruth to ijaplies that Ruth will do the going. Some of
the multiple possible subcategorization frames for a varblwe partially predicted by
the semantics of the verb; for example many verbs of trarfiker give, send carry)
predictably take the two subcategorization fratN€&sNPandNP PP

NP NP sent FAA Administrator James Busey a letter
NP PP sent a letter to the chairman of the Armed Services Ctigeni

These relationships between subcategorization framessctasses of verbs are
called argument-structuadternations, and will be discussed in Ch. 19 when we dis-
cuss the semantics of verbal argument structure. Ch. 14intibduce probabilities
for modeling the fact that verbs generally have prefereeses among the different
subcategorization frames they allow.

Section 16.3. Features Structures in the Grammar 19

Subcategorization in Other Parts of Speech

vatence Although the notion of subcategorization valenceas it is often called, was originally
designed for verbs, more recent work has focused on thelfattrtany other kinds of
words exhibit forms of valence-like behavior. Considerfibleowing contrasting uses
of the prepositiongvhile andduring.

(16.16) Keep your seatbelt fastened while are taking off
(16.17) *Keep your seatbelt fastened whilgkeoff

(16.18) Keep your seatbelt fastened duritadgeoff

(16.19) *Keep your seatbelt fastened during are taking off

Despite the apparent similarities between these wordg, tfeke quite different de-
mands on their arguments. Representing these differeadet as Exercise 16.5 for
the reader.

Many adjectives and nouns also have subcategorizatiorefarilere are some
examples using the adjectivapparenf aware andunimportantand the nounss-
sumptiorandquestion

It wasapparent [gsin that the kitchen was the only room. ..]

It wasapparent[pp from the way she rested her hand over his]
aware [sfin he may have caused offense]

it is unimportant [swhethwhether only a little bit is accepted]
theassumption[ssin that wasteful methods have been employed]
the question[syhethwhether the authorities might have decided]

See Macleod et al. (1998) and Johnson (1999) for descriptibsubcategorization
frames for nouns and adjectives.

Verbs express subcategorization constraints on theiestsas well as their com-
plements. For example, we need to represent the lexicattatthe verbseemcan
take aSfin as its subjectThat she was affected seems obvjpusile the verbpaint
cannot. ThesuBJECTfeature can be used to express these constraints.

16.3.4 Long-Distance Dependencies

The model of subcategorization we have developed so famasdmponents. Each
head word has auBCAT feature which contains a list of the complements it expects.
Then phrasal rules like theP rule in (16.16) match up each expected complement
in the SUBCAT list with an actual constituent. This mechanism works fineewthe
complements of a verb are in fact to be found in the verb phrase

Sometimes, however, a constituent subcategorized for &wéhb is not locally
instantiated, but is in dng-distancerelationship with the predicate. Here are some

LONGDISTNCE examples of suclong-distance dependencies

What cities does Continental service?
What flights do you have from Boston to Baltimore?
What time does that flight leave Atlanta?

In the first example, the constituewhat citiesis subcategorized for by the verb
service but because the sentence is an example whanon-subject-question the

20

Chapter 16. Features and Unification

16.4

GAP LIST
FILLER

objectis located at the front of the sentence. Recall fromlQHhhat a (simple) phrase-
structure rule for avh-non-subject-questionis something like the following:

S — Wh-NP Aux NP VP

Now that we have features, we’ll be able to augment this ghsasicture rule to
require theAuxand theNPto agree (since thidPis the subject). But we also need some
way to augment the rule to tell it that thgh-NPshould fill some subcategorization slot
in the VP. The representation of such long-distance dependenceesjiste difficult
problem, because the verb whose subcategorization reggiitas being filled can be
quite distant from the filler. In the following (made-up) semce, for example, the
wh-phrasewhich flightmust fill the subcategorization requirements of the usobk
despite the fact that there are two other verkar(tandhave in between:

Which flight do you want me to have the travel agent book?

Many solutions to representing long-distance dependsrnigi@nification gram-
mars involve keeping a list, often calledgap list, implemented as a featureap,
which is passed up from phrase to phrase in the parse treefillEne(for example
which flightabove) is put on the gap list, and must eventually be unifield thie sub-
categorization frame of some verb. See Sag and Wasow (18B8@pfexplanation of
such a strategy, together with a discussion of the many athveplications that must
be modeled in long-distance dependencies.

IMPLEMENTING UNIFICATION

As discussed, the unification operator takes two featuoetsires as input and returns
a single merged feature structure if successful, or a fagignal if the two inputs are
not compatible. The input feature structures are repredeat directed acyclic graphs
(DAGS), where features are depicted as labels on directgelsednd feature values are
either atomic symbols or DAGs. As we will see, the implemgataof the operator
is a relatively straightforward recursive graph matchitgpeathm, suitably tailored to
accommodate the various requirements of unification. Riguggieaking, the algorithm
loops through the features in one input and attempts to firmr@sponding feature in
the other. If all of the features match, then the unificat®successful. If any single
feature causes a mismatch then the unification fails. Ngrimgly, the recursion is
motivated by the need to correctly match those featuredéhat feature structures as
their values.

One somewhat unusual aspect of the algorithm is that ratlaer¢onstruct a new
output feature structure with the unified information frolirtlae information from the
two arguments, it destructively alters the arguments sbiththe end they point to
exactly the same information. Thus the result of a succkssallto the unification
operator consists of suitably altered versions of the aspim(failed unifications also
result in alterations to the arguments, but more on that lat8ection 16.5.) As is dis-
cussed in the next section, the destructive nature of thmrishm necessitates certain
minor extensions to the simple graph version of featurecsires as DAGs we have
been assuming.

Section 16.4.

Implementing Unification 21

(16.20)

(16.21)

16.4.1 Unification Data Structures

To facilitate the destructive merger aspect of the algorjtive add a small compli-
cation to the DAGs used to represent the input feature sirest feature structures
are represented using DAGs with additional edges, or fi&gscifically, each feature
structure consists of two fields: a content field and a poifieéd. The content field
may be null or contain an ordinary feature structure. Sirlyildhe pointer field may
be null or contain a pointer to another feature structurthdfpointer field of the DAG
is null, then the content field of the DAG contains the acteaitdire structure to be
processed. If, on the other hand, the pointer field is noh-thén the destination of
the pointer represents the actual feature structure todmepsed. The merger aspects
of unification will be achieved by altering the pointer field»AGs during processing.

To make this scheme somewhat more concrete, consider thedad DAG repre-
sentation for the following familiar feature structure.

NUMBER SG
PERSON 3

The extended DAG representation is illustrated with outuakmatrix diagrams by
treating theCONTENT and POINTER fields as ordinary features, as in the following
matrix.

CONTENT SG
NUMBER

POINTER NULL
CONTENT

CONTENT 3
PERSON

POINTER NULL

POINTER NULL

CONTENT
SG

NUMBER

CONTENT

NULL
POINTER

CONTENT

PERSON

POINTER

Figure 16.4 An extended DAG notation for Examples 16.20 and 16.21.

Figure 16.4 shows this extended representation in its grgapform. Note that the
extended representation contains content and pointes liokh for the top-level layer

22

Chapter 16. Features and Unification

of features, as well as for each of the embedded featuretstascall the way down to
the atomic values.

Before going on to the details of the unification algorithre, will illustrate the use
of this extended DAG representation with the following sienexample. The original
extended representation of the arguments to this unificatie shown in Figure 16.5.

(16.22) [NUMBER SG}'—'[PERSON 3]=lNUMBER SG]

PERSON 3

CONTENT

SG
NUMBER /\-‘
CONTENT
POINTER NULL

CONTENT
NULL 3
POINTER
PERSON

POINTER NULL

CONTENT

POINTER ® NULL

Figure 16.5 The original arguments to Example 16.22.

At a high level, we would simply say that the unification résirh the creation of a
new structure containing the union of the information frdva two original arguments.
With the extended notation, we can see how the unificatioodsraplished by making
some additions to the original arguments and changing sditte ointers from one
structure to the other so that in the end they contain the samient. In this example,
this is accomplished by first addingp@ RsoNfeature to the first argument, and assign-
ing it a value by filling itsPoINTER field with a pointer to the appropriate location in
the second argument, as shown in Figure 16.6.

The process is, however, not yet complete. While it is cleamfFigure 16.6
that the first argument now contains all the correct infoiomatthe second one does
not; it lacks aNUMBER feature. We could, of course, addN@MBER feature to this
argument with a pointer to the appropriate place in the fing. oThis change would
result in the two arguments having all the correct informratirom this unification.
Unfortunately, this solution is inadequate since it doelsmeet our requirement that
the two arguments be truly unified. Since the two argumemtaatrcompletely unified
at the top level, future unifications involving one of the @rgents would not show up
in the other. The solution to this problem is to simply set HmNTER field of the

Section 16.4.

Implementing Unification 23

CONTENT
SG

NUMBER

CONTENT
POINTER

NULL

NULL

PERSON

POINTER
NULL
POINTER
CONTENT
3
PERSON
CONTENT

@ NULL

POINTER

POINTE NULL

Figure 16.6 The arguments after assigning the first argument’s PERSONfeature to
the appropriate value in the second argument.

second argument to point at the first one. When this is donédinge change to either
argument will be immediately reflected in both. The resuthig final change is shown
in Figure 16.7.

16.4.2 The Unification Algorithm

The unification algorithm that we have been leading up to @wshin Figure 16.8.
To review, this algorithm accepts two feature structurpsasented using the extended
DAG representation. As can be seen from the code, it mayrretsiits return either
one of these arguments. This is, however, somewhat deeegitive the true effect of
this algorithm is the destructive unification of the two itgu

The first step in this algorithm is to acquire the true corgeftboth of the argu-

24

Chapter 16. Features and Unification

DEREFERENCING

CONTENT
SG
NUMBER
CONTENT
POINTER
NULL
POINTER PERSON NULL
POINTER

POINTER

CONTENT

POINTER
NULL

PERSON

CONTENT

Figure 16.7 The final result of unifying F1 and F2.

ments. Recall that if the pointer field of an extended feastmecture is non-null, then
the real content of that structure is found by following tleéper found in pointer field.
The variable$l-realandf2-realare the result of this pointer following process, which
is often referred to adereferencing

As with all recursive algorithms, the next step is to testtfar various base cases
of the recursion before proceeding on to a recursive cadllinng some part of the
original arguments. In this case, there are three possise bases:

e One or both of the arguments has a null value.
e The arguments are identical.
e The arguments are non-complex and non-identical.

In the case where either of the arguments is null, the poiigtelrfor the null argu-
ment is changed to point to the other argument, which is teamrmed. The result is
that both structures now point at the same value.

If the structures are identical, then the pointer of the fgset to the second and
the second is returned. It is important to understand whs/pibinter change is done
in this case. After all, since the arguments are identielrning either one would
appear to suffice. This might be true for a single unificatiohrecall that we want

Section 16.4. Implementing Unification 25

function UNIFY(f1, f2) returns fstructureor failure

f1-real<— Real contents ofl
f2-real<— Real contents o2

if f1-realis null then
fl1.pointer—f2
return f2
else iff2-realis null then
f2.pointer—f1
return f1
else iff1-real andf2-real are identicathen
fl.pointer—f2
return f2
else ifbothfl-real andf2-real are complex feature structurtrgen
f2.pointer—f1
for each featurein f2-realdo
other-feature— Find or create
a feature corresponding featurein f1-real
if UNIFY (feature.valueother-feature.valuereturns failure then
return failure
return f1
else returnfailure

Figure 16.8 The unification algorithm.

the two arguments to the unification operator to be truly adifiThe pointer change
is necessary since we want the arguments to be truly idérgwahat any subsequent
unification that adds information to one will add it to both.

If neither of the preceding tests is true then there are twasipdities: they are
non-identical atomic values, or they are non-identical plex structures. The former
case signals an incompatibility in the arguments that léhdsalgorithm to return a
failure signal. In the latter case, a recursive call is ndgdensure that the component
parts of these complex structures are compatible. In thiddmentation, the key to the
recursion is a loop over all the features of #ezondargumentf2. This loop attempts
to unify the value of each feature f2 with the corresponding feature fi. In this
loop, if a feature is encountered i that is missing fronfl, a feature is added td
and given the valuaiuLL. Processing then continues as if the feature had been there
to begin with. Ifeveryone of these unifications succeeds, then the pointer fidi2lief
set tofl completing the unification of the structures &tds returned as the value of
the unification.

We should note that an unfortunate aspect of this algoriththat it is capable
of producing feature structures containing cycles. THhisagion can arise when the
algorithm is asked to unify a structure with a second stmactiiat contains the first as

occurcHECKk @ subpart. The way to avoid this situation is to employ whatised anoccur check
(Robinson, 1965). This check analyzes the input DAGs anatmsfailure when one of

26

Chapter 16. Features and Unification

(16.23)

CT sG

%o
PY PTI

NULL

CT

NULL

TR

CT 3
PT cT \}z_
\. NULL 1L ® NULL

NULL

PTN
NULL

Figure 16.9 The initial argument$l andf2 to Example 16.23.

the arguments is contained as a subpart of the other. Iniggathis check is omitted
from most implementations due to its computational cost.

An Example
To illustrate this algorithm, let’s walk through the follavg example.
AGREEMENT {NUMBER SG}

SUBJECT {AGREEMENT }

U
[SUBJECT |:AGREEMENT {PERSON 3}:”

Figure 16.9 shows the extended representations for therangis to this unifica-
tion. Note how the reentrant structure in the first argumeoaptured through the use
of thepTRfield.

These original arguments are neither identical, nor nulf, atomic, so the main
loop is entered. Looping over the featuresfafthe algorithm is led to a recursive
attempt to unify the values of the correspondinggiecTfeatures ofl andf2.

AGREEMENT }U{AGREEMENT [PERSON 3H

These arguments are also non-identical, non-null, andatomic so the loop is
entered again leading to a recursive check of the valueseefdREEMENT features.

Section 16.4.

Implementing Unification 27

/, NULL
CT sG
w_;o
PTI NULL

AGR

%——. 3
;%\n. NULL

Figure 16.10 f1 andf2 after the recursion adds the value of the resRSONfeature.

{NUMBER SG}'—'[PERSON 3]

In looping over the features of the second argument, thetfettthe first argu-
ment lacks @ERSONfeature is discovered. AERSONfeature initialized with avuLL
value is, therefore, added to the first argument. This, iactffchanges the previous
unification to the following.

NUMBER SG LI |PERSON 3}
PERSON NULL|

After creating this newERSONfeature, the next recursive call leads to the unifica-
tion of thenuLL value of the new feature in the first argument with the 3 valube
second argument. This recursive call results in the asstghof the pointer field of
the first argument to the 3 valuef®, as shown in 16.10.

Since there are no further features to check infthargument at any level of re-
cursion, each in turn sets the pointer forfRBargument to point at itél argument and
returns it. The result of all these assignments is showngnrgi16.11.

28

Chapter 16. Features and Unification

NULL
C/Q
cT o s
/—>.<
NUMBER
] PT NULL

AGR

NULL
cT ® §1¥\~. NULL
PTR

SuBJ

o

Figure 16.11 The final structures dfl andf2 at the end.

16.5 RRSING WITH UNIFICATION CONSTRAINTS

We now have all the pieces necessary to integrate featuretstes and unification
into a parser. Fortunately, the order-independent nattixenification allows us to
largely ignore the actual search strategy used in the pasase we have unification
constraints associated with the context-free rules of thmgnar, and feature structures
with the states of the search, any of the standard searctithlgs described in Ch. 13
can be used.

Of course, this leaves a fairly large range of possible imigletation strategies. We
could, for example, simply parse as we did before using timest-free components
of the rules, and then build the feature structures for tsaltiag trees after the fact,
filtering out those parses that contain unification failurkkhough such an approach
would result in only well-formed structures in the end, iildao use the power of
unification to reduce the size of the parser’s search spaiegdearsing.

The next section describes an approach that makes bettef trsepower of uni-
fication by integrating unification constraints directlydarthe Earley parsing process,
allowing ill-formed structures to be eliminated as soontasy/tare proposed. As we
will see, this approach requires only minimal changes tobthsic Earley algorithm.

Section 16.5.

Parsing with Unification Constraints 29

We then move on to briefly consider an approach to unificatemsipg that moves
even further away from standard context-free methods.

16.5.1 Integrating Unification into an Earley Parser

We have two goals in integrating feature structures andaatifin into the Earley al-
gorithm: to use feature structures to provide a richer rggation for the constituents
of the parse, and to block the entry into the chart of ill-fedrconstituents that vio-
late unification constraints. As we will see, these goalstmaccomplished via fairly
minimal changes to the original Earley scheme given on f&ge

The first change involves the various representations ustgbioriginal code. Re-
call that the Earley algorithm operates by using a set of amsetl context-free gram-
mar rules to fill in a data-structure called a chart with a dedtates. At the end of
the parse, the states that make up this chart representsaliope parses of the input.
Therefore, we begin our changes by altering the represensaif both the context-free
grammar rules, and the states in the chart.

The rules are altered so that in addition to their currentmaments, they also in-
clude a feature structure derived from their unificationstoaints. More specifically,
we will use the constraints listed with a rule to build a featstructure, represented as
a DAG, for use with that rule during parsing.

Consider the following context-free rule with unificatioorsstraints.

S — NPVP
(NP HEAD AGREEMENT) = (VP HEAD AGREEMENT)
(SHEAD) = (VP HEAD)

Converting these constraints into a feature structurdtsisuthe following structure:

S [HEAD }

NP |:HEAD [AGREEMENT H

VP |:HEAD {AGREEMENTH

In this derivation, we combined the various constraints msingle structure by first
creating top-level features for each of the parts of the exiriree rule,s, NP, and
VP in this case. We then add further components to this strediyrfollowing the
path equations in the constraints. Note that this is a puretgtional conversion; the
DAGs and the constraint equations contain the same infésmaliowever, tying the
constraints together in a single feature structure puts & form that can be passed
directly to our unification algorithm.

The second change involves the states used to represdat parses in the Earley
chart. The original states contain fields for the contegefule being used, the position
of the dot representing how much of the rule has been conthltte positions of the
beginning and end of the state, and a list of other stategdipatsent the completed
sub-parts of the state. To this set of fields, we simply adddaiitianal field to contain

30

Chapter 16. Features and Unification

the DAG representing the feature structure corresponditiget state. Note that when

a rule is first used by REDICTORtO create a state, the DAG associated with the state
will simply consist of the DAG retrieved from the rule. Forample, when REDICTOR
uses the abovBrule to enter a state into the chart, the DAG given above veélitb
initial DAG. We'll denote states like this as follows, whelPag denotes the feature
structure given above.

S— «NP VP, [0,0],[],Dag

Given these representational additions, we can move ortedraj the algorithm
itself. The most important change concerns the actionstéhkat place when a new
state is created via the extension of an existing state,hwtaikes place in the Qu-
PLETERroutine. Recall that GMPLETERIs called when a completed constituent has
been added to the chart. Its task is to attempt to find, andhéxexisting states in the
chart that are looking for constituents that are compatibta the newly completed
constituent. ©MPLETERIS, therefore, a function that creates new statesdibin-
ing the information from two other states, and as such is a likédge to apply the
unification operation.

To be more specific, GMPLETERadds a new state into the chart by finding an ex-
isting state whosecan be advanced by the newly completed statecén be advanced
when the category of the constituent immediately followilngatches the category of
the newly completed constituent. To accommodate the useatfife structures, we
can alter this scheme by unifying the feature structurecatad with the newly com-
pleted state with the appropriate part of the feature stradbeing advanced. If this
unification succeeds, then the DAG of the new state receieesnified structure and
is entered into the chart. If it fails, then no new state iesd into the chart. The
appropriate alterations todPLETERare shown in Figure 16.12.

Consider this process in the context of parsing the phfése flight where the
Thathas already been seen, as is captured by the following state.

NP — DeteNominal0, 1], [Spet], Dags

Dag: |np HEAD }
DET HEAD {AGREEMENT{NUMBER SG}H
NOMINAL |HEAD [AGREEMENT H

Now consider the later situation where the parser has psedégght and has subse-
quently produced the following state.

Nominal— Noun, [1, 2], [Svour], Dag

Da® | nomiNAL [HEAD }

NOUN lHEAD [AGREEMENT NUMBER SG}H

Section 16.5.

Parsing with Unification Constraints 31

To advance th&lP rule, the parser unifies the feature structure found unaexdm-
INAL feature ofDagp, with the feature structure found under themINAL feature of
theNP's Dag;. As in the original algorithm, a new state is created to re@néthe fact
that an existing state has been advanced. This new stat&si®given the DAG that
resulted from the above unification.

function EARLEY-PARSEwords, grammarreturns chart

ENQUEUE(y — S [0,0], dagy), chart[0])
for i —from 0to LENGTH(wordg do
for eachstatein charfi] do
if INCOMPLETE?(statg and
NEXT-CAT(statg is not a part of speecthnen
PREDICTORState
elseifINCOMPLETE?(statg and
NEXT-CAT(statg is a part of speecthen
SCANNER(statg
else
COMPLETERStatg
end
end
return (chart)

procedure PREDICTOR(A — o B S, [i,], dag))
for each (B — y) in GRAMMAR -RULES-FOR(B, grammayj do
ENQUEUE((B — e, [j,]}, dags), chartj])
end

procedure SCANNER((A — a ¢ B, i, j], daga))
if B C PARTS-OF-SPEECHword[j]) then
ENQUEUE(B — word(j], [j,] +1], dagg), chart[j+1])

procedure COMPLETER(B — y e, [j,K, dags))
foreach(A — a « B, [i,], daga) in charfj] do
if new-dag— UNIFY-STATES(dags, daga, B) # Fails!
ENQUEUE(A — a Be f3, [i,k],new—dag), chart[k])
end

procedure UNIFY-STATES(dagl, dag2 cat)
dagl-cp— CopyDAG(dag))
dag2-cp— CopYDAG(dag?
UNIFY(FoLLow-PATH(cat, dagl-cp, FoLLOW-PATH(cat, dag2-cp)

procedure ENQUEUEstate, chart-entry
if stateis not subsumed by a statedhart-entrythen
PusH(state, chart-entry
end

Figure 16.12 Modifications to the Earley algorithm to include unification

32

Chapter 16. Features and Unification

The final change to the original algorithm concerns the cHeclstates already
contained in the chart. In the original algorithm, the@UEUE function refused to
enter into the chart any state that widentical to one already present in the chart.
“Identical” meant the same rule, with the same start andHipissitions, and the same
position of thes. Itis this check that allows the algorithm to, among othardb, avoid
the infinite recursion problems associated with left-remgrrules.

The problem, of course, is that our states are now more consjgiee they have
complex feature structures associated with them. Statésfipeared identical under
the original criteria might in fact now be different sinceethassociated DAGs may
differ. The obvious solution to this problem is to simply exd the identity check to
include the DAGs associated with the states, but it turngtoattwe can improve on
this solution.

The motivation for the improvement lies in the motivatiom tbe identity check.
Its purpose is to prevent the wasteful addition of a stawtimé chart whose effect on
the parse would be accomplished by an already existing. sRué another way, we
want to prevent the entry into the chart of any state that ddubplicate the work that
will eventually be done by other states. Of course, this aléarly be the case with
identical states, but it turns out it is also the case foestat the chart that ammore
generalthan new states being considered.

Consider the situation where the chart contains the foligveitate, where thBag
places no constraints on thet

NP — «Det NP, [i,i], [],Dag

Such a state simply says that it is expectinget at positioni, and that anyDet will
do.

Now consider the situation where the parser wants to insegvastate into the
chart that is identical to this one, with the exception th&DAG restricts thé®etto be
singular. In this case, although the states in question atraantical, the addition of
the new state to the chart would accomplish nothing and shtbetefore be prevented.

To see this let's consider all the cases. If the new statededdhen a subsequent
singularDetwill match both rules and advance both. Due to the unificadfdfeatures,
both will have DAGs indicating that thelDets are singular, with the net result being
duplicate states in the chart. If on the other hand, a pDedis encountered, the new
state will reject it and not advance, while the old rule willvance, entering a single
new state into the chart. On the other hand, if the new statetiplaced in the chart,
a subsequent plural or singul@et will match the more general state and advance it,
leading to the addition of one new state into the chart. Nbég this leaves us in
exactly the same situation as if the new state had been dritgcethe chart, with the
exception that the duplication is avoided. In sum, nothirgtiwvhile is accomplished
by entering into the chart a state that is more specific thaata already in the chart.

Fortunately, the notion afubsumptiondescribed earlier gives us a formal way to
talk about the generalization and specialization relatenmong feature structures. This
suggests that the proper way to altet @ EUE is to check if a newly created state is
subsumetby any existing states in the chart. If it is, then it will nat &llowed into the
chart. More specifically, a new state that is identical im®pf its rule, start and finish

Section 16.5.

Parsing with Unification Constraints 33

(16.24)

positions, subparts, andposition, to an existing state, will be not be entered int th
chart if its DAG is subsumed by the DAG of an existing stateifi®agoq = Dagnew).
The necessary change to the original EarleyQEEUE procedure is shown in Figure
16.12.

The Need for Copying

The calls to @PYDAG within the UNIFY-STATE procedure require some elaboration.
Recall that one of the strengths of the Earley algorithm @ttie dynamic program-
ming approach in general) is that once states have beeredimgo the chart they may
be used again and again as part of different derivationkjditg ones that in the end
do not lead to successful parses. This ability is the matiaafor the fact that states
already in the chart are not updated to reflect the progretiseafe, but instead are
copied and then updated, leaving the original states irsadhat they can be used
again in further derivations.

The call to ®PYDAG in UNIFY-STATE is required to preserve this behavior be-
cause of the destructive nature of our unification algorittifwe simply unified the
DAGS associated with the existing states, those statesdwmmibltered by the unifi-
cation, and hence would not be available in the same formulesequent uses by the
CompPLETERfunction. Note that this has negative consequences rexgsrdf whether
the unification succeeds or fails, since in either case tiggnaif states are altered.

Let's consider what would happen if the call tm€YDAG was absent in the fol-
lowing example where an early unification attempt fails.

Show me morning flights.

Let's assume that our parser has the following entry for ftramkitive version of the
verbshow as well as the following transitive and ditransitive vetirgse rules.

Verb— show
(VerbHEAD SUBCAT FIRST CAT) = NP
(VerbHEAD SUBCAT SECOND CAT = NP
(VerbHEAD SUBCAT THIRD) = END

VP — Verb NP
(VP HEAD) = (VerbHEAD)
(VP HEAD SUBCAT FIRST CAT) = (NP CAT)
(VP HEAD SUBCAT SECOND = END

VP — Verb NP NP

VP HEAD) = (VerbHEAD)

VP HEAD SUBCAT FIRST CAT) = (NP; CAT)
VP HEAD SUBCAT SECOND CAT = (NP, CAT)
VP HEAD SUBCAT THIRD) = END

(
(
(
(

34

Chapter 16. Features and Unification

When the wordmeis read, the state representing transitive verb phrasebeill
completed since its dot has moved to the endMBLETERWIll, therefore, call LNIFY-
STATES before attempting to enter this complete state into thetcfais will fail since
the SUBCAT structures of these two rules can not be unified. This is, ofsm exactly
what we want since this version showis ditransitive. Unfortunately, because of
the destructive nature of our unification algorithm we haveaaly altered the DAG
attached to the state representsigpw as well as the one attached to ¥ thereby
ruining them for use with the correct verb phrase rule laterihus, to make sure that
states can be used again and again with multiple derivatoopses are made of the
dags associated with states before attempting any undficainvolving them.

All of this copying can be quite expensive. As a result, a nerdf alternative
techniques have been developed that attempt to minimizedisi (Pereira, 1985; Kart-
tunen and Kay, 1985; Tomabechi, 1991; Kogure, 1990). Kiefed. (1999b) describe
a set of related techniques used to speed up a large unifidadiged parsing system.

16.5.2 Unification Parsing

A more radical approach to using unification in parsing cambévated by looking at
an alternative way of denoting our augmented grammar r@essider the following
Srule that we have been using throughout this chapter.

S — NP VP
(NP HEAD AGREEMENT) = (VP HEAD AGREEMENT)
(SHEAD) = (VP HEAD)
An interesting way to alter the context-free part of thiserid to change the way its
grammatical categories are specified. In particular, weptace the categorical infor-
mation about the parts of the rule inside the feature stract@ather than inside the

context-free part of the rule. A typical instantiation ofstapproach would give us the
following rule (Shieber, 1986).

Xo — X1 X2
(XoCAT) =S
(X3 CcAT) =NP
(X2 CcAT) = VP
(

X1 HEAD AGREEMENT) = (X2 HEAD AGREEMENT)
(Xo HEAD) = (X HEAD)

Focusing solely on the context-free component of the riiis, tule now simply
states that theg constituent consists of two components, and thattheonstituent
is immediately to the left of th&, constituent. The information about the actual cat-
egories of these components is placed inside the rule’sreatructure; in this case,
indicating thatXy is anS X; is anNP, andX; is aVP. Altering the Earley algorithm
to deal with this notational change is trivial. Instead aflsag the categories of con-
stituents in the context-free components of the rule, ipbrmeeds to look at theAT
feature in the DAG associated with a rule.

Section 16.5.

Parsing with Unification Constraints 35

Of course, since it is the case that these two rules conteirigaly the same infor-
mation, it isn't clear that there is any benefit to this charigesee the potential benefit
of this change, consider the following rules.

Xo — X1 X2
(Xo CAT) = (X1 CAT)
(Xo CAT) =PP

Xo — Xpand %
(X1 CAT) = (Xz CAT)
(Xo CAT) = (X1 CAT)

The first rule is an attempt to generalize over various rutes we have already
seen, such aSlP — NP PPandVP — VP PP. It simply states that any category can
be followed by a prepositional phrase, and that the regutonstituent has the same
category as the original. Similarly, the second rule is danapt to generalize over
rules such a8 — S and SNP — NP and NR and so ort. It states that any constituent
can be conjoined with a constituent of the same categoryetid ¥ new category of
the same type. What these rules have in common is their usantéxt-free rules that
contain constituents with constrained, but unspecifiethgmaies, something that can
not be accomplished with our old rule format.

Of course, dealing this kind of rule requires some changesitgarsing scheme.
All of the parsing approaches we have considered thus fad@ren by the syntac-
tic category of the various constituents in the input. Mgredsfically, they are based
on simple atomic matches between the categories that haredredicted, and cate-
gories that have been found. Consider, for example, theatiparof the @MPLETER
function shown in Figure 16.12. This function searches tiatdor states that can be
advanced by a newly completed state. It accomplishes thiaditghing the category
of the newly completed state against the category of thetitoest following thee in
the existing state. Clearly this approach will run into tsuwhen there are no such
categories to consult.

The remedy for this problem with @ PLETER is to search the chart for states
whose DAGsunify with the DAG of the newly completed state. This eliminateg an
requirement that states or rules have a category. HEDR.TOR can be changed in
a similar fashion by having it add states to the chart statezsaX, DAG component
can unify with the constituent following theof the predicting state. Exercise 16.6
asks you to make the necessary changes to the pseudo-codeta £6.12 to effect
this style of parsing. Exercise 16.7 asks you to consideresohthe implications of
these alterations, particularly with respect to predittio

1 These rules should not be mistaken for correct, or compéemgunts of the phenomena in question.

36 Chapter 16. Features and Unification

16.6 TYPES ANDINHERITANCE

| am surprised that ancient and modern writers have not ladtied greater im-
portance to the laws of inheritance. . .
Alexis de TocquevilleDemocracy in Americal840

The basic feature structures we have presented so far haverolems that have
led to extensions to the formalism. The first problem is thaté is no way to place
a constraint on what can be the value of a feature. For examwgldave implicitly
assumed that theUMBER attribute can take onlgG andPL as values. But in our
current system, there is nothing, for example, to stopeeR from have the value
3RD or FEMININE as values:

NUMBER FEMININE

This problem has caused many unification-based gramm#éhieafies to add var-
ious mechanisms to try to constrain the possible values e&tufe. Formalisms like
Functional Unification Grammar (FUG) (Kay, 1979, 1984, 1p8bd Lexical Func-
tional Grammar (LFG) (Bresnan, 1982), for example, focuse@vays to keep intran-
sitive verb likesneezdrom unifying with a direct objectNlarin sneezed Toby This

noNe was addressed in FUG by adding a special atmme which is not allowed to unify
with anything, and in LFG by addingoherenceconditions which specified when a
feature should not be filled. Generalized Phrase StrucGiPSG) (Gazdar et al., 1985,
1988) added a class édature co-occurrence restrictions to prevent, for example,
nouns from having some verbal properties.

The second problem with simple feature structures is ttemetls no way to capture
generalizations across them. For example, the many typ&nglish verb phrases
described in the Subcategorization section on page 14 shang features, as do the
many kinds of subcategorization frames for verbs. Syrteaets were looking for ways
to express these generalities.

TYPES A general solution to both of these problems is the ustyés Type systems for
unification grammars have the following characteristics:

1. Each feature structure is labeled by a type.

APPROPRIATENESS 2. Conversely, each type happropriateness conditionsexpressing which fea-
tures are appropriate for it.
TYPE HIERARCHY 3. The types are organized intotygpe hierarchy, in which more specific types

inherit properties of more abstract ones.

4. The unification operation is modified to unify the types @dtlre structures in
addition to unifying the attributes and values.

TYPEDFEATURE In suchtyped feature structure systems, types are a new class of objects, just like
attributes and values were for standard feature structuigses come in two kinds:
simpLETYPES Simple types(also calledatomic types, andcomplex types Let's begin with simple
coupLexTYPes types. A simple type is an atomic symbol lilsg or pl (we will use boldface for
all types), and replaces the simple atomic values used mdatd feature structures.
All types are organized into a multiple-inheritartgpe hierarchy (a partial order or

Section 16.6.

Types and Inheritance 37

SUBTYPE

FAIL TYPE

lattice). Fig. 16.13 shows the type hierarchy for the new tage, which will be the
type of the kind of atomic object that can be the value oharREE feature.

agr

A
1-sg 3-sg 1-pl }—pl

3sg-masc 3sg-fem 3sg-neut

Figure 16.13 A simple type hierarchy for the subtypes of typgr which can be the
value of theaGREE attribute. After Carpenter (1992).

In the hierarchy in Fig. 16.13rd is a subtype of agr, and3-sgis a subtype of
both3rd andsg Types can be unified in the type hierarchy; the unificatioargf two
types is the most-general type that is more specific tharnmtbénput types. Thus:

3rd LI sg= 3sg
1stupl =1pl
1stLlagr = 1st

3rd U 1st=undefined

The unification of two types which do not have a defined uniaundefined, al-
though it is also possible to explicitly represent thas type using the symbolL (Ait-
Kaci, 1984).

The second kind of types are complex types, which specify:

e a set of features that are appropriate for that type
e restrictions on the values of those features (expressedrimstof types)
e equality constraints between the values

Consider a simplified representation of the complex tyee, which just repre-
sents agreement and verb morphological form informatiodefnition ofverb would
define the two appropriate featuresGREE and VFORM, and would also define the
type of the values of the two features. Let's suppose thattheeE feature takes
values of typeagr defined in Fig. 16.13 above, and theorm feature takes values
of typevform (wherevform subsumes the seven subtyffiaite, infinitive , gerund,
base present-participle, past-participle, andpassive-participle Thusverb would
be defined as follows (where the convention is to indicateythe either at the top of
the AVM or just to the lower left of the left bracket):

verb
AGREE agr
VFORM vform

By contrast, the typaoun might be defined with thaGREE feature, but without
thevFoRM feature:

38 Chapter 16. Features and Unification

noun
AGREE agr

The unification operation is augmented for typed featurecsiires just by requiring
that the type of the two structures must unify in additiortte values of the component
features unifying.

verb L [verb = |verb
AGREE 1st AGREE sg@ AGREE 1-sg
VFORM gerund VFORM gerund VFORM gerund

Complex types are also part of the type hierarchy. Subtypesraplex types in-
herit all the features of their parents, together with thest@ints on their values. San-
filippo (1993), for example, uses the type hierarchy to eledbd hierarchical structure
of the lexicon. Fig. 16.14 shows a small part of this hiergrte part that models the
various subcategories of verbs which take sentential comgihts; these are divided
into the transitive ones (which take direct objectssk yourself whether you have be-
come better informédand the intransitive onedAonsieur asked whether | wanted to
ride). The typetrans-comp-catwould introduce the required direct object, constrain-
ing it to be of typenoun-phrase while types likesbase-comp-catvould introduce the
baseform (bare stem) complement and constrain its vforne thé baseform.

comp-cat

trans—-comp—cat sfin-comp-cat swh-comp-cat sbase-comp-cat Sinf-comp-cat intrans—comp-cat

tr-sfin-comp-cat tr-sbase=comp-—cat ntr-swh
tr—-swh-comp-cat intr—sfin-comp-cat

comp-ca intr-sinf=comp-cat
intr-shase-comp-cat

Figure 16.14 Part of the type hierarchy for the verb typerb-cat, showing the subtypes of tleemp-cattype.
These are all subcategories of verbs which take sententighlements. After Sanfilippo (1993).

16.6.1 Advanced: Extensions to Typing

peraults Typed feature structures can be extended by allowing itdrere withdefaults. De-

fault systems have been mainly used in lexical type hierasalf the sort described in

the previous section, in order to encode generalizatiodssabregular exceptions to
them. In early versions of default unification the operati@s order-dependent, based

PRIORTYUNION 0N thepriority union operation (Kaplan, 1987). More recent architectures aderer

independent (Lascarides and Copestake, 1997; Young anddRpli993), related to

Reiter’s default logic (Reiter, 1980).

Many unification-based theories of grammar, including HR®Gllard and Sag,

1987,1994) and LFG (Bresnan, 1982) use an additional mérhdresides inheritance

texcatrule for capturing lexical generalizations: thexical rule. Lexical rules (Jackendoff, 1975)
express lexical generalizations by allowing a reducedcéenore redundancy-free

lexicon to be automatically expanded by the rules. See odad Sag (1994) for

Section 16.7.

Summary 39

PATH INEQUATIONS

NEGATION

SET-VALUED
FEATURES

DISJUNCTION

examples, Carpenter (1991) on complexity issues, and Meara Minnen (1997) on
efficient implementation. Conversely, see Krieger and Nerte (1993) on using the
type hierarchy to replace lexical rules.

Types can also be used to represent constituency. Ruleélik&3) on page 14
used a normal phrase structure rule template and addedktueds via path equations.
Instead, it's possible to represent the whole phrase streictile as a type. In order
to do this, we need a way to represent constituents as feat@me way to do this,
following Sag and Wasow (1999), is to take a tygwase which has a feature called
DTRS (“daughters”), whose value is a list phrases For example the phraddove
New Yorkcould have the following representation, (showing onlythi&s feature):

phrase

CAT VP
CAT PRO

, CATV
ORTH DTRS (

ORTH LOVE|’

DTRS ([

ORTH NEW Y ORK

[CAT NP]>)

16.6.2 Other Extensions to Unification

There are many other extensions to unification besidesdypinludingpath inequa-
tions (Moshier, 1988; Carpenter, 1992; Carpenter and Penn, 188gation(Johnson,
1988, 1990)set-valued featuregPollard and Moshier, 1990), amtisjunction (Kay,
1979; Kasper and Rounds, 1986). In some unification systeesetoperations are in-
corporated into feature structures. Kasper and Rounds$j188&] others, by contrast,
implement them in a separate metalanguage which is usddstribefeature struc-
tures. This idea derives from the work of Pereira and Shié€t#84), and even earlier
work by Kaplan and Bresnan (1982), all of whom distinguishbetiveen a metalan-
guage for describing feature structures and the actualreatructures themselves.
The descriptions may thus use negation and disjunction $oritee a set of feature
structures (i.e., a certain feature must not contain aicertdue, or may contain any of
a set of values) but an actual instance of a feature strutitataneets the description
would not have negated or disjoint values.

The unification grammars as described so far have no mechdnigdisambigua-
tion. Much recent work in unification grammars has focusedhis disambiguation
problem, particular via the use of probabilistic augmeatet. See the History section
for important references.

16.7 SUMMARY

This chapter introduced feature structures and the ungicaiperation which is used
to combine them.

e A feature structure is a set of features-value pairs, whemtufes are unanalyz-
able atomic symbols drawn from some finite set, and valuegittier atomic
symbols or feature structures. They are represented eithettribute-value

40

Chapter 16. Features and Unification

matrices (AVMs) or as directed acyclic graphBAGSs), where features are di-
rected labeled edges and feature values are nodes in the grap

e Unification is the operation for both combining information (merging thfor-
mation content of two feature structures) and comparingrinftion (rejecting
the merger of incompatible features).

e A phrase-structure rule can be augmented with featuretates; and with fea-
ture constraints expressing relations among the featuuetstes of the con-
stituents of the ruleSubcategorizationconstraints can be represented as feature
structures on head verbs (or other predicates). The elesmdrith are subcat-
egorized for by a verb may appear in the verb phrase or maydliead apart
from the verb, as bong-distance dependency

e Feature structures can bged. The resultingyped feature structuresplace
constraints on which type of values a given feature can takd,can also be
organized into &ype hierarchy to capture generalizations across types.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

DEFINITE CLAUSE
GRAMMARS

ATN

The use of features in linguistic theory comes originallynfr phonology. Anderson
(1985) credits Jakobson (1939) with being the first to ustufea (calledistinctive
features) as an ontological type in a theory, drawing on previous wédeatures by
Trubetskoi (1939) and others. The semantic use of featotlEsvied soon after; see
Ch. 19 for the history of componential analysis in semantiesatures in syntax were
well established by the 1950s and were popularized by Chp{i€65).

The unification operationin linguistics was developed peledently by Kay (1979)
(feature structure unification) and Colmerauer (1970, 19#Fm unification) (see
page??). Both were working in machine translation and looking fdoemalism for
combining linguistic information which would be reversbl Colmerauer’s original
Q-system was a bottom-up parser based on a series of reuléewhich contained
logical variables, designed for a English to French machiaeslation system. The
rewrite rules were reversible to allow them to work for botirging and generation.
Colmerauer, Fernand Didier, Robert Pasero, Philippe Rbuasd Jean Trudel de-
signed the Prolog language based on extended Q-systemi$ tinification based on
the resolution principle of Robinson (1965), and implenedrd French analyzer based
on it (Colmerauer and Roussel, 1996). The modern use of ¢aoid term unifica-
tion for natural language viBefinite Clause Grammarswas based on Colmerauer’s
(1975) metamorphosis grammars, and was developed and tgrRedeira and Warren
(1980). Meanwhile Martin Kay and Ron Kaplan had been workirtfp Augmented
Transition Network ATN) grammars. An ATN is a Recursive Transition Network
(RTN) in which the nodes are augmented with feature registkr an ATN analysis
of a passive, the first NP would be assigned to the subjedtezgthen when the pas-
sive verb was encountered, the value would be moved intolifexregister. In order
to make this process reversible, they restricted assigtetiemegisters so that certain
registers could only be filled once, that is, couldn’t be @uéten once written. They

Section 16.7.

Summary 41

thus moved toward the concepts of logical variables witheatizing it. Kay’s orig-
inal unification algorithm was designed for feature strugsurather than terms (Kay,
1979). The integration of unification into an Earley-styfgpeoach given in Section
16.5 is based on Shieber (1985).

See Shieber (1986) for a clear introduction to unificatiord Knight (1989) for a
multidisciplinary survey of unification.

Inheritance and appropriateness conditions were firstga@gfor linguistic knowl-
edge by Bobrow and Webber (1980) in the context of an extansidhe KL-ONE
knowledge representation system (Brachman and Schm@@8) 1Simple inheritance
without appropriateness conditions was taken up by numizesearchers; early users
include Jacobs (1985, 1987). Ait-Kaci (1984) borrowedrib&on of inheritance in
unification from the logic programming community. Typingfefture structures, in-
cluding both inheritance and appropriateness conditiwas,independently proposed
by Calder (1987), Pollard and Sag (1987), and Elhadad (19B()ed feature struc-
tures were formalized by King (1989) and Carpenter (1992)er€ is an extensive
literature on the use of type hierarchies in linguisticstipalarly for capturing lexical
generalizations; besides the papers previously discusisednterested reader should
consult Evans and Gazdar (1996) for a description of the DAriguage, designed
for defining inheritance networks for linguistic knowledggresentation, Fraser and
Hudson (1992) for the use of inheritance in a dependency miarand Daelemans
et al. (1992) for a general overview. Formalisms and systemihe implementation
of constraint-based grammars via typed feature strucincksle the PAGE system us-
ing the TDL language (Krieger and Schafer, 1994), ALE (@atpr and Penn, 1994),
and ConTroll (Gotz et al., 1997).

Efficiency issues in unification parsing are discussed byeKiet al. (1999a), Mal-
ouf et al. (2000), and Munteanu and Penn (2004).

Grammatical theories based on unification include Lexiaaidtional Grammar
(LFG) (Bresnan, 1982), Head-Driven Phrase Structure GranthlPSG) (Pollard and
Sag, 1987, 1994), Construction Grammar (Kay and Fillmo899), and Unification
Categorial Grammar (Uszkoreit, 1986).

Much recent computational work on unification grammars loasised on proba-
bilistic augmentations for disambiguation. Key relevaapers include Abney (1997),
Goodman (1997), Johnson et al. (1999), Riezler et al. (2086nan and Johnson
(2002), Riezler et al. (2002, 2003), Kaplan et al. (2004)y&di and Tsujii (2005),
Toutanova et al. (2005), Ninomiya et al. (2006) and BlunsochBaldwin (2006).

EXERCISES

16.1 Draw the DAGs corresponding to the AVMs given in Exampled166.2.

16.2 Consider the following BERP examples, focusing on theirafggronouns.

42

Chapter 16. Features and Unification

| want to spend lots of money.
Tell me about Chez-Panisse.
I'd like to take her to dinner.
She doesn't like Italian.

Assuming that these pronouns all belong to the cateBawywrite lexical and gram-
matical entries with unification constraints that block thkowing examples.

*Me want to spend lots of money.
*Tell | about Chez-Panisse.

*] would like to take she to dinner.
*Her doesn't like Italian.

16.3 Draw a picture of the subsumption semilattice correspandinthe feature
structures in Examples 16.3 to 16.8. Be sure to include th&t general feature struc-
ture [].

16.4 Consider the following examples.

The sheep are baaaaing.
The sheep is baaaaing.

Create appropriate lexical entries for the wotldg sheep andbaaaaing Show that
your entries permit the correct assignment of a value tontheBER feature for the
subjects of these examples, as well as their various parts.

16.5 Create feature structures expressing the different sutmakes forwhile and
duringshown on page 19.

16.6 Alter the pseudocode shown in Figure 16.12 so that it per§dghma more radical
kind of unification parsing described on page 34.

16.7 Consider the following problematic grammar suggested hgltsin (1985).

S—T
(TF)=a

T — T2 A
(TLF) =(T2 FF)

S— A
A— a

Show the firsiS state entered into the chart using your modifiead:DICTORfrom
the previous exercise, then describe any problematic @hdisplayed byPREDIG
TOR on subsequent iterations. Discuss the cause of the probidrhaw in might be
remedied.

16.8 Using the list approach to representing a verb’s subcaizg@n frame, show
how a grammar could handle any number of verb subcateginizisames with only

Section 16.7.

Summary 43

the following twoVP rules. More specifically, show the constraints that wouldetia
be added to these rules to make this work.

VP — Verb
VP — VP X

The solution to this problem involves thinking about a reowe walk down a verb’s
subcategorization frame. This is a hard problem; you mighsalt Shieber (1986) if
you get stuck.

16.9 Page 39 showed how to use typed feature structure to represestituency.
Use that notation to represent rules 16.13, 16.14, and B8id%n on page 14.

44 Chapter 16. Features and Unification

Abney, S. P. (1997). Stochastic attribute-value gramn@osa- de Tocqueville, A. (1840)Democracy in AmericaDoubleday,

putational Linguistics23(4), 597-618. New York. The 1966 translation by George Lawrence.
Ait-Kaci, H. (1984). A Lattice-Theoretic Approach to Compu- Elhadad, M. (1990). Types in functional unification gramsnar
tation Based on a Calculus of Partially Ordered Typ&$.D. In Proceedings of the 28th ACPittsburgh, PA, pp. 157-164.
thesis, University of Pennsylvania. ACL.
Anderson, S. R. (1985)Phonology in the Twentieth Century Evans, R. and Gazdar, G. (1996). DATR: A language for lexical
Cambridge University Press. knowledge representatiotComputational Linguistics22(2),
Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998). The Berk 167-216.
ley FrameNet project. ICOLING/ACL-98 pp. 86—90. Fraser, N. M. and Hudson, R. A. (1992). Inheritance in word
Blunsom, P. and Baldwin, T. (2006). Multilingual deep letic grammar.Computational Linguistics182), 133-158.

acquisition for hpsgs via supertagging. BMNLP 2006 Gazdar, G., Klein, E., Pullum, G. K., and Sag, I. A. (1985).

Bobrow, R. J. and Webber, B. L. (1980). Knowledge representa g)e(zfr:)errdallzed Phrase Structure GrammaBasil Blackwell,
tion for syntactic/semantic processing. ARAI-8Q Stanford, :
CA, pp. 316-323. Morgan Kaufmann. Gazdar, G., Pullum, G. K., Carpenter, B., Klein, E., Hukari,

Brachman, R. J. and Schmolze, J. G. (1985). An overview of theT' E., and Levine, R. D. (1988). Category structurésmpu-

KL-ONE knowledge representation systenCognitive Sci- tatiginguistics 14(Liggi0.
ence 9(2), 171-216. Geman, S. and Johnson, M. (2002). Dynamic programming for

Bresnan, J. (Ed.). (1982 he Mental Representation of Gram- parsing and estimation of stochastic unification-basedhgra
matical Relations MIT Press. mars.. INGELRBp- 279-286.
Goodman, J. (1997). Probabilistic feature grammarsPrin

Calder, J. (1987). Typed unification for natural language . . . _
processing. In Kahn, G., MacQueen, D., and Plotkin, G. ggf/dmgs of the International Workshop on Parsing Technol

(Eds.), Categories, Polymorphism, and Unificatio@entre)
for Cognitive Science, University of Edinburgh, Edinburgh Gotz, T., Meurers, W. D., and Gerdemann, D. (1997). The Con-
Scotlandt. Troll manual. Tech. rep., Seminar fur Sprachwissenschaft

Carpenter, B. (1991). The generative power of categoraigr Ugggrsicat TUBigg=n.

mars and head-driven phrase structure grammars with lexicdackendoff, R. (1975). Morphological and semantic regfidar

rules. Computational Linguistics17(3), 301-313. in the lexicon.Language51(3), 639-671.
Carpenter, B. (1992)The Logic of Typed Feature Structures Jacobs, P. (1985 Knowledge-Based Approach to Language
Cambridge University Press. Generation Ph.D. thesis, University of California, Berkeley,

CA. Available as University of California at Berkeley Com-

Carpenter, B. and Penn, G. (1994). The Attribute Logic Eagin puter Science Division Tech. rep. #86/254.

Users's Guide Version 2.0.1. Tech. rep., Carnegie MellolR Un
versity. Jacobs, P. (1987). Knowledge-based natural languageagener

tion. Artificial Intelli 33, 325-378.
Chomsky, N. (1965).Aspects of the Theory of SyntaMIT ion. Artiicial Intefigence)
Press. Jakobson, R. (1939). Observations sur le classement

| R ¢ i phonologique des consonnes. In Blancquaert, E. and Pée,
Colmerauer, A. (1970). Les systemes-q ou un formalisme pou W. (Eds.),Proceedings of the Third International Congress

analyser et synthétiser des phrase sur ordinateur. aiteut- of Phonetic ScienceShent, pp. 34-41

lication 43, Département d’informatique de I'Univeesitle .) o
Montréalt. Johnson, C. (1999). Syntactic and semantic principles of

) ; FrameNet annotation, version 1. Tech. rep. TR-99-018,,ICSI
Colmerauer, A. (1975). Les grammaires de métamorphose GIA Berkeley, CA.

Internal publication, Groupe Intelligence artificielleadtiltée . .
des Sciences de Luminy, Université Aix-Marseille II, Frap Johnson, M. (1988) Attribute-Value Logic and the Theory of

Nov 1975. English version, Metamorphosis grammars. In L. Grammar CSLI Lecture Notes. Chicago University Press,

Bolc, (Ed.),Natural Language Communication with Comput- Chicago.

ers, Lecture Notes in Computer Science 8pringer Verlag, Johnson, M. (1990). Expressing disjunctive and negatige fe

Berlin, 1978, pp. 133-189. ture constraints with classical first-order logic.Rroceedings
Colmerauer, A. and Roussel, P. (1996). The birth of Prolag. | ©f the 28th ACLPittsburgh, PA, pp. 173-179. ACL.

Bergin Jr., T. J. and Gibson, Jr., R. G. (Edslistory of Pro- Johnson, M., Geman, S., Canon, S., Chi, Z., and Riezler, S.

gramming Languages — Ipp. 331-352. ACM Press/Addison- (1999). Estimators for stochastic “unification-based”ngra

Wesley, New York. mars. InACL-99 pp. 535-541.

Daelemans, W., Smedt, K. D., and Gazdar, G. (1992). InheriKaplan, R. M., Riezler, S., King, T. H., Maxwell, J. T., Vasse
tance in natural language processi@@mputational Linguis- man, A., and Crouch, R. (2004). Speed and accuracy in shal-
tics, 18(2), 205-218. low and deep stochastic parsing.HL T-NAACL-04

Section 16.7. Summary 45

Kaplan, R. M. (1987). Three seductions of computational psyMeurers, W. D. and Minnen, G. (1997). A computational treat-
cholinguistics. In Whitelock, P., Wood, M. M., Somers, H, L. ment of lexical rules in HPSG as covariation in lexical exgri
Johnson, R., and Bennett, P. (Edd.ipguistic Theory and Computational Linguistic23(4), 543-568.
dcngp“ter Applicationspp. 149-188. Academic Press, LOn- s, v and Tsujii, J. (2005). Probabilistic disambigoat

’ models for wide-coverage hpsg parsing.A@L-05 pp. 83—

Kaplan, R. M. and Bresnan, J. (1982). Lexical-functionalngs 90.
mar: A formal system for grammatical representation. In . . o
Bresnan, J. (Ed.JThe Mental Representation of Grammati- Moshier, M. A. (1988). Extensions to Unification Grammar
cal Relations pp. 173-281. MIT Press. for_the I_Descnpt_lon_ of Programming Languagd?h.D. thesis,

Karttunen, L. and Kay, M. (1985). Structure sharing withain University of Michigan, Ann Arbor, MI.
trees. INACL-85 Chicago, pp. 133-136. ACL. Munteanu, C. and Penn, G. (2004). Optimizing typed feature

Kasper, R. T. and Rounds, W. C. (1986). A logical semantics structure grammar parsi_ng through non-statistical intgxin
for feature structures. IACL-86 New York, pp. 257—266. ACL-04 Barcelona, Spain, pp. 223-230.

ACL. Ninomiya, T., Tsuruoka, Y., Miyao, Y., Taura, K., and Tsuji
Kay, M. (1979). Functional grammar. BLS-79 Berkeley, CA, (2006). Fast and scalable hpsg parsifigaitement automa-
pp. 142-158. tique des langues (TAL36(2).

Kay, M. (1984). Functional unification grammar: A formalism pereira, F. C. N. (1985). A structure-sharing represemntor
for machine translation. ICOLING-84 Stanford, CA, pp. unification-based grammar formalisms. AGL-85 Chicago,
75-78. pp. 137-144.

Kay, M. (1985). Parsing in functional unification gramman. | Pereira, F. C. N. and Shieber, S. M. (1984). The seman-
Dowty, D. R., K_arttunen, L., and ZW'Cl_(y’ A. (E_ds])l_atural tics of grammar formalisms seen as computer languages. In
Language Parsingpp. 251-278. Cambridge University Press. COLING-84 Stanford, CA, pp. 123-129

Kay, P. and Fillmore, C. J. (1999). Grammatical construngio . -
Y () Pereira, F. C. N. and Warren, D. H. D. (1980). Definite clause

and linguistic generalizations: The What's X Doing Y? con- . -
grammars for language analysis— a survey of the formalism

struction.Language 75(1), 1-33. . - " i
. . guage75(1) and a comparison with augmented transition netwopsfi-
Kiefer, B., Krieger, H. U., Carroll, J., and Malouf, R. (1299 cial Intelligence 13(3), 231-278

A bag of useful techniques for efficient and robust parsing. |

ACL-99 pp. 535-541. Pollard, C. and Moshier, M. A. (1990). Unifying partial deipe
Kiefer, B., Krieger, H.-U., Carroll, J., and Malouf, R. (119). tions of sets. In Hanson, P. P. (_Edr)formatio_n, Languagg,

A bag of useful techniques for efficient and robust parsing. | and Cognition pp. 285-322. University of British Columbia

ACL-99 College Park, MD, pp. 473—480. Press, Vancouver.

King, P. (1989).A Logical Formalism for Head-Driven Phrase Pollard, C.and Sag, I. A. (1987pformation-Based Syntax and
Structure GrammarPh.D. thesis, University of Manchestert. Semantics: Volume 1: Fundamentaldniversity of Chicago
Cited in Carpenter (1992)). Press, Chicago.

Knight, K. (1989). Unification: A multidisciplinary survey Pollard, C. and Sag, |. A. (1994} ead-Driven Phrase Struc-
ACM Computing Survey21(1), 93-124. ture Grammar University of Chicago Press, Chicago.

Kogure, K. (1990). Strategic lazy incremental copy graph un Reiter, R. (1980). A logic for default reasonindtificial Intel-
fication. INnCOLING-9Q Helsinki, pp. 223-228. ligence 13, 81-132.

Krieger, H.-U. and Nerbonne, J. (1993). Feature-based-inhe
itance networks for computational lexicons. In Briscoe, T.
de Paiva, V., and Copestake, A. (Ed#heritance, Defaults,
and the Lexiconpp. 90-136. Cambridge University Press.

Krieger, H.-U. and Schafer, U. (1994). TDL — A type de-

scription language for HPSG. Part 1: Overview. Tech. repRiezler, S., Prescher, D., Kuhn, J., and Johnson, M. (2000).
RR-94-37, DFKI, Saarbriicken. Lexicalized stochastic modeling of constraint-based gram

mars using log-linear measures and em trainingA@L-0Q
Hong Kong.

Riezler, S., King, T. H., Crouch, R., and Zaenen, A. (2008- S
tistical sentence condensation using ambiguity packirnd) an
stochastic disambiguation methods for Lexical-Functiona
Grammar. I'HLT-NAACL-03 Edmonton, Canada.

Lascarides, A. and Copestake, A. (1997). Default reprasent
tion in constraint-based framework€8omputational Linguis-
tics, 25(1), 55-106. Riezler, S., King, T. H., Kaplan, R. M., Crouch, R., lll, J.NI.,

Macleod, C., Grishman, R., and Meyers, A. (1998). COMLEX and Johnson, M. (2002). Parsing the wall street journal us-
Syntax Reference Manual Version 3.0. Linguistic Data Con- ing a lexical-functional grammar and discriminative estim

sortium. tion techniques. IMCL-02 Philadelphia, PA.
Malouf, R., Carroll, J., and Copestake, A. (2000). Efficfsa- Robinson, J. A. (1965). A machine-oriented logic based en th
ture structure operations without compilatiohlatural Lan- resolution principleJournal of the Association for Computing

guage Engineerings(1). Machinery 12, 23-41.

46

Chapter

16.

Features and Unification

Rounds, W. C. and Kasper, R. T. (1986). A complete logical
calculus for record structures representing linguistforima-
tion. In Proceedings of the 1st Annual IEEE Symposium on
Logic in Computer Scienc@p. 38—43.

Sag, I. A. and Wasow, T. (Eds.). (1999%yntactic Theory: A
Formal Introduction CSLI Publications, Stanford, CA.

Sanfilippo, A. (1993). LKB encoding of lexical knowledge.
In Briscoe, T., de Paiva, V., and Copestake, A. (Edsher-
itance, Defaults, and the Lexicopp. 190-222. Cambridge
University Press.

Shieber, S. M. (1985). Using restriction to extend parsihg a
gorithms for complex-feature-based formalisms.AGL-85
Chicago, pp. 145-152.

Shieber, S. M. (1986).An Introduction to Unification-Based
Approaches to GrammarCenter for the Study of Language
and Information, Stanford University, Stanford, CA.

Tomabechi, H. (1991). Quasi-destructive graph unification
Proceedings of the 29th ACBerkeley, CA, pp. 315-322.

Toutanova, K., Manning, C. D., Flickinger, D., and Oepen, S.
(2005). Stochastic HPSG Parse Disambiguation using the
Redwoods CorpusResearch on Language & Computation
3(1), 83-105.

Trubetskoi, N. S. (1939)Grundzuige der Phonologi&ol. 7 of
Travaux du cercle linguistique de Pragudvailable in 1969
English translation by Christiane A. M. Baltaxe Rsnciples
of Phonology University of California Press.

Uszkoreit, H. (1986). Categorial unification grammars. In
COLING-86 Bonn, pp. 187-194.

Young, M. and Rounds, W. C. (1993). A logical semantics for
nonmonotonic sorts. IRroceedings of the 31st ACColum-
bus, OH, pp. 209-215. ACL.

