Speech and Language Processing: An introduction to natural |anguage processing,
conputational |inguistics, and speech recognition. Daniel Jurafsky & Janes H. Martin.
Copyright © 2007, Al rights reserved. Draft of July 21, 2007. Do not cite wi thout
per m ssi on.

14 STATISTICAL PARSING

Two roads diverged in a wood, and | —

| took the one less traveled by...
Robert FrostThe Road Not Taken

The characters in Damon Runyon'’s short stories are willinigett “on any proposition
whatever”, as Runyon says about Sky Mastersoiihie Idyll of Miss Sarah Brown
from the probability of getting aces back-to-back to thesddainst a man being able
to throw a peanut from second base to home plate. There isa heme for language
processing: with enough knowledge we can figure the proibabil just about any-
thing. The last two chapters have introduced sophisticaitdkls of syntactic structure
and its parsing. In this chapter we show that it is possibleuitd probabilistic mod-
els of syntactic knowledge and use some of this probalgilisiowledge in efficient
probabilistic parsers.

One crucial use of probabilistic parsing is to solve the fEobofdisambiguation.
Recall from Ch. 13 that sentences on average tend to be vetgdically ambiguous,
due to problems likeoordination ambiguity andattachment ambiguity. The CKY
and Earley parsing algorithms could represent these artieig/in an efficient way,
but were not equipped to resolve them. A probabilistic paoffers a solution to the
problem: compute the probability of each interpretation ehoose the most-probable
interpretation. Thus, due to the prevalence of ambiguitstmodern parsers used for
natural language understanding tasks (thematic roleitahelummarization, question-
answering, machine translation) are of necessity proisébil

Another important use of probabilistic grammars and parieinlanguage mod-
eling for speech recognition. We saw thHdtgram grammars are used in speech rec-
ognizers to predict upcoming words, helping constrain ttauatic model search for
words. Probabilistic versions of more sophisticated gramsnecan provide additional
predictive power to a speech recognizer. Of course humarestbaleal with the same
problems of ambiguity as do speech recognizers, and it ésasting that psycholog-
ical experiments suggest that people use something lilse thmbabilistic grammars
in human language-processing tasks (e.g., human readsmeech understanding).

The most commonly used probabilistic grammar isghababilistic context-free
grammar (PCFG), a probabilistic augmentation of context-free graars in which

Chapter 14. Statistical Parsing

each rule is associated with a probability. We introduce @€ the next section,
showing how they can be trained on a hand-labeled Treebamkrgar, and how they
can be parsed. We present the most basic parsing algorithRCiBGS, which is the
probabilistic version of th€KY algorithm that we saw in Ch. 13.

We then show a number of ways that we can improve on this baselzapility
model (PCFGs trained on Treebank grammars). One methodprbuimng a trained
Treebank grammar is to change the names of the non-termiBglsaking the non-
terminals sometimes more specific and sometimes more dewerean come up with
a grammar with a better probability model that leads to imptbparsing scores. An-
other augmentation of the PCFG works by adding more sophtstil conditioning
factors, extending PCFGs to handle probabilistibcategorizationinformation and
probabilisticlexical dependencies

Finally, we describe the standard PARSEVAL metrics for estihg parsers, and
discuss some psychological results on human parsing.

14.1 PBPROBABILISTIC CONTEXT-FREE GRAMMARS

PCFG
SCFG

(14.1)

The simplest augmentation of the context-free grammarmri®tbbabilistic Context-
Free Grammar (PCFG), also known as thé&tochastic Context-Free Grammar
(SCFG), first proposed by Booth (1969). Recall that a context-fyemmarG is
defined by four parametersl(Z, P, S); a probabilistic context-free grammar augments
each rule irP with a conditional probability. A PCFG is thus defined by thédwing
components:

N aset ofnon-terminal symbols (or variables)
> asetofterminal symbols (disjoint fromN)

R a set ofrules or productions, each of the fordh — (3 [p], whereA is
a non-terminalf is a string of symbols from the infinite set of strings
(ZUN)x*, andp is a number between 0 and 1 expres$nig|A)

S adesignatedtart symbol

That is, a PCFG differs from a standard CFG by augmenting rdehin R with a
conditional probability:

A— B [p]

Herep expresses the probability that the given non-terménaill be expanded to
the sequencP. That is,p is the conditional probability of a given expansipmyiven
the left-hand-side (LHS) non-terminal We can represent this probability as

P(A—B)
oras

P(A— B|A)

Section 14.1.

CONSISTENT

Probabilistic Context-Free Grammars 3
S — NPVP [.80] Det — that[.10] | a[.30] | the[.60]
S — Aux NP VP [.15 Noun — book[.10] | flight[.30]
S— VP [.05] | meal[.15] | money[.05]
NP — Pronoun [.35 | flights[.40] | dinner[.10]
NP — Proper-Noun [.30] Verb — book[.30] | include[.30]
NP — Det Nominal [.20] | prefer,[.40]
NP — Nominal [.15 Pronoun — 1 [.40] | she[.05
Nominal — Noun [.75 | me[.15 | youl[.4(]
Nominal — Nominal Noun [.20] Proper-Noun— Houston[.60]
Nominal — Nominal PP [.05] | TWA[.40]
VP — Verb [.35 Aux — does|.60] | can[4(]
VP — Verb NP [.20] Preposition— from[.30] | to[.30]
VP — Verb NP PP [.10] | on[.20] | near[.15]
VP — Verb PP [.15 | throughl.05]
VP — Verb NP NP [.05]
VP — VP PP [.15
PP — Preposition NP [1.0]
Figure14.1 A PCFG which is a probabilistic augmentation of theminiature English
CFG grammar and lexicon of Fi@? in Ch. 13. These probabilities were made up for
pedagogical purposes and are not based on a corpus (sinceargorpus would have
many more rules, and so the true probabilities of each rulddvoe much smaller).

oras
P(RHSLHYS)

Thus if we consider all the possible expansions of a nonitelhithe sum of their
probabilities must be 1:

Y PA—pB) =1
B

Fig. 14.1 shows a PCFG: a probabilistic augmentation of:thminiature English
CFG grammar and lexicon . Note that the probabilities of filhe expansions of each
non-terminal sum to 1. Also note that these probabilitiesameade up for pedagogical
purposes. In any real grammar there are a great many mosfouleach non-terminal
and hence the probabilities of any particular rule woulditenbe much smaller.

A PCFG is said to beonsistentif the sum of the probabilities of all sentences in
the language equals 1. Certain kinds of recursive rulesecagsammar to be inconsis-
tent by causing infinitely looping derivations for some sees. For example a rule
S — Swith probability 1 would lead to lost probability mass duederivations that
never terminate. See Booth and Thompson (1973) for morésletaconsistent and
inconsistent grammars.

How are PCFGs used? A PCFG can be used to estimate a numbefafareb-
abilities concerning a sentence and its parse tree(sydirg the probability of a par-

Chapter 14. Statistical Parsing

(14.2)

(14.3)

(14.4)

YIELD

(14.5)

ticular parse tree (useful in disambiguation) and the podiyaof a sentence or a piece
of a sentence (useful in language modeling). Let's see himmwitbrks.

14.1.1 PCFGs for Disambiguation

A PCFG assigns a probability to each parse Tr€ee., eactderivation) of a sentence
S. This attribute is useful imisambiguation. For example, consider the two parses
of the sentence “Book the dinner flights” shown in Fig. 14.2heTBensible parse on
the left means “Book flights that serve dinner”. The nonsmigparse on the right,
however, would have to mean something like “Book flights onabof ‘the dinner’?”,
the way that a structurally similar sentence like “Can yoolbdohn flights?” means
something like “Can you book flights on behalf of John?”.

The probability of a particular pardeis defined as the product of the probabilities
of all then rules used to expand each of theon-terminal nodes in the parse tfeg
(where each rulecan be expressed 881§ — RHS):

P(T,S) = IﬂlP(RH S|LHS)

The resulting probability?(T, S) is both the joint probability of the parse and the
sentence, and also the probability of the pd?6€). How can this be true? First, by
the definition of joint probability:

P(T,S) = P(T)P(ST)
But since a parse tree includes all the words of the sent&i8&gT) is 1. Thus:
P(T,S) =P(T)P(ST) = P(T)

The probability of each of the trees in Fig. 14.2 can be coexbloty multiplying
together the probabilities of each of the rules used in thivatgon. For example, the
probability of the left tree in Figure 14.2a (calllit r;) and the right tree (Figure 14.2b
or Tright) can be computed as follows:

P(Tieft) = .05%.20%.20%.20%.75%.30% .60 .10 .40= 2.2 x 106
P(Tright) = .05%.10%.20%.15%.75%.75%.30% .60+ .10%.40= 6.1x 107

We can see that the left (transitive) tree in Fig. 14.2(ajpvasich higher probability
than the ditransitive tree on the right. Thus this parse daokrectly be chosen by a
disambiguation algorithm which selects the parse with ighést PCFG probability.

Let’s formalize this intuition that picking the parse withet highest probability is
the correct way to do disambiguation. Consider all the fdsgarse trees for a given
sentencé&. The string of wordsSSis called theyield of any parse tree ové&: Thus out
of all parse trees with a yield &, the disambiguation algorithm picks the parse tree
which is most probable gives

T(S = argmax P(T|9
Tst.s=yield(T)

Section 14.1. Probabilistic Context-Free Grammars 5
S S
| |
VP VP
Verb NP /’\
|) Verb NP NP
Book pet Nominal |

(14.6)

(14.7)

(14.8)

, Book Det Nominal Nominal
the Nominal Noun | | |

| | the Noun Noun
Noun flight

|

| dinner ﬂiéht
dinner

Rules P Rules P
S — VP .05 S — VP .05
VP — Verb NP .20 VP — Verb NP NP .10
NP — DetNominal .20 NP — Det Nominal .20
Nominal — Nominal Noun .20 NP — Nominal .15
Nominal — Noun .75 Nominal — Noun .75
Nominal — Noun .75
Verb — book .30 Verb — book .30
Det — the .60 Det — the .60
Noun — dinner .10 Noun — dinner .10
Noun — flights .40 Noun — flights 40

Figure 14.2 Two parse trees for an ambiguous sentence, The transitige (f@) cor-
responds to the sensible meaning “Book flights that serveedinwhile the ditransitive
parse (b) to the nonsensical meaning “Book flights on beliathe dinner™.

By definition, the probability?(T|S) can be rewritten aB(T, S) /P(S), thus leading to:

T(S = argmax P(T.S)

Tst.s=yield(T)

Since we are maximizing over all parse trees for the sameseaf(S) will be a
constant for each tree, so we can eliminate it:

T(S= argmax P(T,S
Tst.s=yieldT)

Furthermore, since we showed above tRéE,S) = P(T), the final equation for
choosing the most likely parse neatly simplifies to choogregparse with the highest
probability:

T(S= argmax P(T)
Tst.s=yieldT)

Chapter 14. Statistical Parsing

(14.9)

(14.10)

(14.11)

(14.12)

(14.13)

14.1.2 PCFGs for Language Modeling

A second attribute of a PCFG is that it assigns a probabdith¢ string of words con-
stituting a sentence. This is importantamguage modelingwhether for use in speech
recognition, machine translation, spell-correction, raegtative communication, or
other applications. The probability of an unambiguous esece isP(T,S) = P(T)
or just the probability of the single parse tree for that sené. The probability of an
ambiguous sentence is the sum of the probabilities of alptirse trees for the sen-
tence:

P = P(T.9
Tst.s=yleld(T)
= P(T)
Tst.s=yield(T)

An additional feature of PCFGs that is useful for languageefiag is their ability
to assign a probability to substrings of a sentence. For pl@msuppose we want to
know the probability of the next wond; in a sentence given all the words we've seen
so farws, ...,w;_1. The general formula for this is:

P(Wl,Wz, ...,Wi,17Wi,...)
P(Wl,Wz,...,Wifl,...)

P(wi|wi, Wa, ..., Wi_1) =

We saw in Ch. 4 a simple approximation of this probabilityngdN-grams, con-
ditioning on only the last word or two instead of the entir@iext; thus thebigram
approximation would give us:

P(wi_1,wW;)
P(wi|wg,Wo, ... Wi_1) % —————=
(Wi [wig, W, ..., Wi 1) W 1)
But the fact that thé&-gram model can only make use of a couple words of context
means it is ignoring potentially useful prediction cues.n€ider predicting the word
afterin the following sentence from Chelba and Jelinek (2000):

the contract ended with a loss of 7 cents after trading as tovaents

A trigram grammar must predietfter from the words7 cents while it seems clear
that the verbendedand the subjeatontractwould be useful predictors that a PCFG-
based parser could help us make use of. Indeed, it turns auatRCFGs allow us
to condition on the entire previous contewt, w,,...,w;_1 shown in Equation (14.11).
We'll see the details of ways to use PCFGs and augmentatid?€BGs as language
models in Sec. 14.9.

In summary, this section and the previous one have showrPBBGs can be ap-
plied both to disambiguation in syntactic parsing and todyarediction in language
modeling. Both of these applications require that we be mlbdempute the probability
of parse tred for a given sentenc® The next few sections introduce some algorithms
for computing this probability.

Section 14.2.

Probabilistic CKY Parsing of PCFGs 7

14.2 PBFROBABILISTIC CKY PARSING OFPCFGs

(14.14)

PROBABILISTIC CKY

(14.15)

(14.16)

The parsing problem for PCFGs is to produce the most-likelgs@T for a given
sentencs, i.e.,
T(S9= argmax P(T)
Tst.s=yield(T)

The algorithms for computing the most-likely parse are sargxtensions of the
standard algorithms for parsing; there are probabilistisions of both the CKY and
Earley algorithms of Ch. 13. Most modern probabilistic passare based on tipeob-
abilistic CKY (Cocke-Kasami-Younger) algorithm, first described by Ney (1991).

As with the CKY algorithm, we will assume for the probabikis€KY algorithm
thatthe PCFG is in Chomsky normal form. Recall from pagéat grammars in CNF
are restricted to rules of the forfa — B C, or A — w. That s, the right-hand side of
each rule must expand to either two non-terminals or to destegminal.

For the CKY algorithm, we represented each sentence asdadices between
the words. Thus an example sentence like

Book the flight through Houston.
would assume the following indices between each word:
© Book O the[flight [0 through0 Houston[

Using these indices, each constituent in the CKY parse sremc¢oded in a two-
dimensional matrix. Specifically, for a sentence of lengéimd a grammar that contains
V non-terminals, we use the upper-triangular portion ofraf 1) x (n+ 1) matrix. For
CKY, each celktabl€li, j] contained a list of constituents that could span the sequenc
of words fromi to j. For probabilistic CKY, it's slightly simpler to think of #hcon-
stituents in each cell as constituting a third dimension akimum lengthV. This
third dimension corresponds to each nonterminal that cgridmed in this cell, and the
value of the cell is then a probability for that nonterminafistituent rather than a list
of constituents. In summary, each dglij,A] in this (n+1) x (n+1) x V matrix is the
probability of a constituem that spans positiorighroughj of the input.

Fig. 14.3 gives pseudocode for this probabilistic CKY aiton, extending the
basic CKY algorithm from Fig??.

Like the CKY algorithm, the probabilistic CKY algorithm ab@wvn in Fig. 14.3
requires a grammar in Chomsky Normal Form. Converting agiodistic grammar to
CNF requires that we also modify the probabilities so thafgiobability of each parse
remains the same under the new CNF grammar. Exercise 143%asko modify the
algorithm for conversion to CNF in Ch. 13 so that it correttindles rule probabilities.

In practice, we more often use a generalized CKY algorithniciwhandles unit
productions directly rather than converting them to CNFedldhat Exercis@? asked
you to make this change in CKY; Exercise 14.3 asks you to exthis change to
probabilistic CKY.

Let's see an example of the probabilistic CKY chart, using fbllowing mini-
grammar which is already in CNF:

Chapter 14. Statistical Parsing

(14.17)

function PROBABILISTIC-CKY(words,grammayreturns most probable parse
and its probability
for j«from 1to LENGTH(wordg do
forall { A| A — wordgj] € grammar}
tabldj—1,j,Al — P(A— wordgj])
for i—from j —2downto O do
for k—i+1to j—1do
forall { A| A — BC € grammar
andtabl€fi,k,B] > Oandtablek, j,C] > 0}
if (tabldi j,A] < P(A — BC) x tabldi k,B] x tablgk,,C]) then

tabldi,j,A] —P(A — BC) x tabldi k,B] x tabldk,j,C]
bacKi,j,A] —{k,B,C}

return BUILD _TREE(bacK1, LENGTHwordg, §), tablg1l, LENGTH(wordg, §

Figure 14.3 The probabilistic CKY algorithm for finding the maximum puadiility
parse of a string ohumwordswords given a PCFG grammar wittumrules rules in
Chomsky Normal Formbackis an array of back-pointers used to recover the best parse.

Thebuild_treefunction is left as an exercise to the reader.

S - NPVP .80 | Det — the .50
NP — DetN .30 | Det — a .40
VP — VNP .20 N — meal .01
V — includes .05 N — flight .02

Given this grammar, Fig. 14.4 shows the first steps in theaisibistic CKY parse
of this sentence:

The flight includes a meal

14.3 LEARNING PCFG RJLE PROBABILITIES

TREEBANK

(14.18)

Where do PCFG rule probabilities come from? There are twoswayearn probabil-
ities for the rules of a grammar. The simplest way is to useeebank, a corpus of
already-parsed sentences. Recall that we introduced ihZthe idea of treebanks and
the commonly-useBenn Treebank(Marcus et al., 1993), a collection of parse trees in
English, Chinese, and other languages distributed by thguistic Data Consortium.
Given a treebank, the probability of each expansion of ateominal can be computed
by counting the number of times that expansion occurs andribemalizing.

Counta —B) Counfa — B)

P(ar— Bla) = yyCounfa —y) Coun{a)

If we don’t have a treebank, but we do have a (non-probaisiliparser, we can
generate the counts we need for computing PCFG rule prdtiediy first parsing a
corpus of sentences with the parser. If sentences were ugaous, it would be as

Section 14.3.

Learning PCFG Rule Probabilities 9

INSIDE-OUTSIDE

EXPECTATION
E-STEP
MAXIMIZATION
M-STEP

Det: .40 |NP:.30 *.40 *.02
=.0024
[0,1] [0,2] [0,3] [0,4] [0,5]
N: .02
[1,2] [1,3] [1,4] [1,5]
V: .05
[2,3] [2,4] [3,5]
[3,4] [3,5]
[4,5]
The flight includes a meal
Figure 14.4 The beginning of the probabilistic CKY matrix. Filling oute rest of the
chart is left as Exercise 14.4 for the reader.

simple as this: parse the corpus, increment a counter faoy eute in the parse, and
then normalize to get probabilities.

But wait! Since most sentences are ambiguous, i.e. havepteyttarses, we don't
know which parse to count the rules in. Instead, we need tp keseparate count for
each parse of a sentence and weight each of these partiakdnuthe probability of
the parse it appears in. But to get these parse probabitlitieeight the rules we need
to already have a probabilistic parser.

The intuition for solving this chicken-and-egg problemdsricrementally improve
our estimates by beginning with a parser with equal rule @bdhies, parsing the sen-
tence, compute a probability for each parse, use theselpifitiea to weight the counts,
then reestimate the rule probabilities, and so on, untilpyababilities converge. The
standard algorithm for computing this is called thside-outsidealgorithm, and was
proposed by Baker (1979) as a generalization of the fonkakward algorithm of
Ch. 6. Like forward-backward, inside-outside is a speaakcof the EM (expectation-
maximization) algorithm, and hence has two steps: ekgectationstep, orE-step,
and themaximization step, orM-step. See Lari and Young (1990) or Manning and
Schutze (1999) for a complete description of the algorithm

This use of the inside-outside algorithm to estimate the prbbabilities for a
grammar is actually a kind of limited use of inside-outsidehe inside-outside al-
gorithm can actually be used not only to set the rule proliggsi] but even to induce

10 Chapter 14. Statistical Parsing

the grammar rules themselves. It turns out, however, ttaahgrar induction is so dif-
ficult that inside-outside by itself is not a very succesgfaimmar inducer; see the end
notes for pointers to other grammar induction algorithms.

14.4 PFROBLEMS WITHPCF&

While probabilistic context-free grammars are a naturtdiesion to context-free gram-
mars, they have two main problems as probability estimators

poor independence assumptionsCFG rules impose an independence assumption
on probabilities, resulting in poor modeling of structudelpendencies across
the parse tree.

lack of lexical conditioning: CFG rules don’t model syntactic facts about specific
words, leading to problems with subcategorization amligsii preposition at-
tachment, and coordinate structure ambiguities.

Because of these problems, most current probabilistidrmmammodels use some
augmented version of PCFGs, or modify the Treebank-basedrgar in some way.
In the next few sections after discussing the problems inerdetail we will introduce
some of these augmentations.

14.4.1 Independence assumptions miss structural dependzes be-
tween rules

Let's look at these problems in more detail. Recall that infiGGhe expansion of a
non-terminal is independent of the context, i.e., of theottearby non-terminals in the
parse tree. Similarly, in a PCFG, the probability of a paific rule likeNP — Det N

is also independent of the rest of the tree. By definition pitedability of a group of
independent events is the product of their probabilitidsese two facts explain why
in a PCFG we compute the probability of a tree by just muliipdythe probabilities of
each non-terminal expansion.

Unfortunately this CFG independence assumption resuli@ar probability esti-
mates. This is because in English the choice of how a nodendspzan after all be
dependent on the location of the node in the parse tree. Bonghe, in English it turns
out that NPs that are syntacBabjectsare far more likely to be pronouns, while NPs
that are syntactiobjectsare far more likely to be non-pronominal (e.g., a proper noun
or adeterminer noun sequence), as shown by these stdiistitBs in the Switchboard
corpus (Francis et al., 1999:

1 Distribution of subjects from 31,021 declarative sentenchstribution of objects from 7,489 sentences.
This tendency is caused by the use of subject position tizeetiletopic or old information in a sentence
(Givon, 1990). Pronouns are a way to talk about old inforamatwhile non-pronominal (“lexical”) noun-
phrases are often used to introduce new referents. Welhtalre about new and old information in Ch. 21.

Section 14.4.

Problems with PCFGs 11

PREPOSITIONAL
ATTACHMENT

(14.19)

VP ATTACHMENT
NP ATTACHMENT

|Pr0noun Non-Pronoun
Subject 91% 9%
Object | 34% 66%

Unfortunately there is no way to represent this contextifidrénce in the proba-
bilities in a PCFG. Consider two expansions of the non-teadMP as a pronoun or
as a determiner+noun. How shall we set the probabiliticbegéd two rules? If we set
their probabilities to their overall probability in the Salboard corpus, the two rules
have about equal probability.

NP — DT NN .28
NP — PRP .25

Because PCFGs don't allow a rule probability to be condéwon surrounding
context, this equal probability is all we get; there is no waygapture the fact that in
subject position, the probability fatP — PRPshould go up to .91, while in object
position, the probability foNP — DT NN should go up to .66.

These dependencies could be captured if the probabilitxmdrding an NP as a
pronoun (e.g.NP — PRP) versus a lexical NP (e.gNP — DT NN) wereconditioned
on whether the NP was a subject or an object. Sec. 14.5 witldntce the technique of
parent annotation for adding this kind of conditioning.

14.4.2 Lack of sensitivity to lexical dependencies

A second class of problems with PCFGs is their lack of seitgitio the words in the
parse tree. Words do play a role in PCFGs, since the parsalpgiity includes the
probability of a word given a part-of-speech (i.e., fromesilikeV — sleep NN —
book etc).

But it turns out that lexical information is useful in othdagpes in the grammar,
such as in resolvingrepositional phrase attachment(PP) ambiguities. Since prepo-
sitional phrases in English can modify a noun phrase or a plrase, when a parser
finds a prepositional phrase, it must decide wherattach it into the tree. Consider
the following examples:

Workers dumped sacks into a bin.

Fig. 14.5 shows two possible parse trees for this senteheegrie on the left is
the correct parse; Fig. 14.6 shows another perspectiveepréposition attachment
problem, demonstrating that resolving the ambiguity in. Bi4.5 is equivalent to de-
ciding whether to attach the prepositional phrase into &s¢ of the tree at the NP or
VP nodes; we say that the correct parse requitiesattachment while the incorrect
parse impliedNP attachment

Why doesn’t a PCFG already deal with PP attachment ambég@itNote that the
two parse trees in Fig. 14.5 have almost the exact same thigdiffer only in that
the left-hand parse has has this rule:

VP — VBDNP PP

12 Chapter 14. Statistical Parsing

S

T

NP VP NP vpP
|

|
NNS NNS vBD NP

wn

| VBD NP PP | |
workers | | N WOrkers 4, mped NP/\PP
dumped NNS P NP | o~
| NNS P NP

(-
sacksinto DT NN | | o~
| b|' sacksinto DT NN
a bin |
a bin

Figure 14.5 Two possible parse trees fopaepositional phrase attachment ambiguity The left parse is the
sensible one, in which ‘into a bin’ describes the resultiocation of the sacks. In the right incorrect parse,| the
sacks to be dumped are the ones which are already ‘into atfatever that could mean.

S
A

NP VP<— = - Y -
A _ R

NNS VBD NP<- -~ PP

workers NNS P NP
PN
dumped intoDT N‘N
sacks ‘a bin

Figure 14.6 Another view of the preposition attachment problem; sha&lPP on the right attach to the YP
or NP nodes of the partial parse tree on the left?

while the right-hand parse has these:

VP — VBDNP
NP — NPPP

Depending on how these probabilities are set, a PCFGabhilhys either prefer NP
attachment or VP attachment. As it happens, NP attachmsligigly more common
in English, and so if we trained these rule probabilities @ogpus, we might always
prefer NP attachment, causing us to misparse this sentence.

But suppose we set the probabilities to prefer the VP attacitifior this sentence.
Now we would misparse the following sentence which requifBsattachment:

(14.20) fishermen caught tons of herring

Section 14.5.

Improving PCFGs by Splitting and Merging Nontinals 13

LEXICAL
DEPENDENCY

What is the information in the input sentence which lets usvkthat (14.20) re-
quires NP attachment while (14.19) requires VP attachment?

It should be clear that these preferences come from theidsrdf the verbs, nouns
and prepositions. It seems that the affinity between thedwnpedind the preposition
into is greater than the affinity between the naatksand the prepositiomto, thus
leading to VP attachment. On the other hand in (14.20) , theitgfbetweentonsand
of is greater than that betweeaughtandof, leading to NP attachment.

Thus in order to get the correct parse for these kinds of elesnwe need a model
which somehow augments the PCFG probabilities to deal witisdlexical depen-
dencystatistics for different verbs and prepositions.

Coordination ambiguities are another case where lexiqga¢@encies are the key
to choosing the proper parse. Fig. 14.7 shows an example@alfms (1999), with
two parses for the phrasipgs in houses and catBecausalogsis semantically a
better conjunct focatsthanhousegand because dogs can't fit inside cats) the parse
[dogs in [yp houses and cats]k intuitively unnatural and should be dispreferred. The
two parses in Fig. 14.7, however, have exactly the same P@QIES and thus a PCFG
will assign them the same probability.

(@) NP (b) NP
/’\
NP Conj NP NP/\ PP
/\
NADP a‘md l\‘loun l\‘loun Prep NP
No‘un PQ\NP (‘:ats ‘dogs | in NP Conj NP
dogs i‘n NLun N‘oun ‘and l‘\loun
hOl‘JseS h(‘)uses ‘ cats
Figure 14.7 Aninstance of coordination ambiguity. Although the lefusture is intu-
itively the correct one, a PCFG will assign them identicgltgbabilities since both strucH
ture use the exact same rules. After Collins (1999).

In summary, we have shown in this section and the previoustaterobabilistic
context-free grammars are incapable of modeling impostrattural andlexical de-
pendencies. In the next two sections we sketch current dstioo augmenting PCFGs
to deal with both these issues.

14.5 IMPROVING PCFGs BY SPLITTING AND MERGING NONTER-

MINALS

Let’s start with the first of the two problems with PCFGs menéd above: their in-
ability to model structural dependencies, like the fact ti@s in subject position tend
to be pronouns, where NPs in object position tend to havéefkiltal (non-pronominal)

14

Chapter 14. Statistical Parsing

SPLIT

PARENT ANNOTATION

form. How could we augment a PCFG to correctly model this¥a®he idea would
be tosplit the NP non-terminal into two versions: one for subjects, famebjects.
Having two nodes (e.gNPsypjectand NFypjecy) would allow us to correctly model
their different distributional properties, since we wohlale different probabilities for
the ruleNPgpject — PRPand the ruleNPypject — PRP.

One way to implement this intuition of splits is to garent annotation (Johnson,
1998), in which we annotate each node with its parent in thegtaee. Thus a node NP
which is the subject of the sentence, and hence has pareou®] e annotated NP"S,
while a direct object NP, whose parent is VP, would be anedt&iP"VP. Fig. 14.8
shows an example of a tree produced by a grammar that paneotades the phrasal
non-terminals (like NP and VP).

a) S b) S
/\
NP VP NP"S VP'S
| /\ | /\A
PRP VBD NP PRP VBD NP'VP
| need DT NN | need DT NN
I |
a flight a flight
Figure 14.8 A standard PCFG parse tree (a) and one whichpaasnt annotation on
the nodes which aren’t preterminal (b). All the non-terrhimades (except the preterminal
part-of-speech nodes) in parse (b) have been annotatedheittientity of their parent.

In addition to splitting these phrasal nodes, we can alsaorga PCFG by split-
ting the preterminal part-of-speech nodes (Klein and Magn2003b). For example,
different kinds of adverbs (RB) tend to occur in differenthtgctic positions: the most
common adverbs with ADVP parents aso andnow, with VP parents ar@’t and
not, and with NP parentsnly andjust Thus adding tags like RB"ADVP, RB"VP, and
RB"NP can be useful in improving PCFG modeling.

Similarly, the Penn Treebank tag IN is used to mark a wideetarof parts-of-
speech, including subordinating conjunctioméile, as if), complementizerstiiat,
for), and prepositionsof, in, from). Some of these differences can be captured by
parent annotation (subordinating conjunctions occur ugd@repositions under PP),
while others require specifically splitting the pre-teralinodes. Fig. 14.9 shows an
example from Klein and Manning (2003b), where even a parenbtated grammar
incorrectly parseworksas a noun ito see if advertising workssplitting preterminals
to allowif to prefer a sentential complement results in the corredtalgrarse.

In order to deal with cases where parent annotation is icseffi, we can also
hand-write rules that specify a particular node split basedther features of the tree.
For example to distinguish between complementizer IN armbilinating conjunc-
tion IN, both of which can have the same parent, we could wulkes conditioned on
other aspects of the tree such as the lexical identity (tkenbethatis likely to be a
complementizeasa subordinating conjunction).

Section 14.6. Probabilistic Lexicalized CFGs 15

VP'S VP'S
TO VPVP . .
| TOVP VP'VP
to VB PPVP |

to
NN VBVP SBAR"VP

S€€ N NP"PP |
see
i|f NmNs IN"SBAR S"SBAR
| | |
advertising works if NP"S VP'S

| |
NN'NP VBZ'VP

advertising works

o
T

Figure 14.9 An incorrect parse even with a parent annotated parse. (B¢ correct parse (right), was p
duced by a grammar in which the pre-terminal nodes have bglén allowing the probabilistic grammar to
capture the fact that prefers sentential complements; adapted from Klein andrifgn(2003b).

Node-splitting is not without problems; it increases theesif the grammar, and
hence reduces the amount of training data available for gaahmar rule, leading to
overfitting. Thus it is important to split to just the corrdevel of granularity for a
particular training set. While early models involved hamdtten rules to try to find an
optimal number of rules (Klein and Manning, 2003b), moderdeis automatically

sruTanomeree search for the optimal splits. Theplit and merge algorithm of Petrov et al. (2006),
for example starts with a simple X-bar grammar, and thenradtely splits the non-
terminals, and merges together non-terminals, findingéhefsannotated nodes which
maximizes the likelihood of the training set treebank. Ashaf time of this writing,
the performance of the Petrov et al. (2006) algorithm as #s¢ &f any known parsing
algorithm on the Penn Treebank.

14.6 PFROBABILISTIC LEXICALIZED CFGs

The previous section showed that a simple probabilistic Ggbrithm for parsing
raw PCFGs can achieve extremely high parsing accuracy irids@mar rule symbols
are redesigned via automatic splits and merges.

In this section, we discuss an alternative family of modelsfich instead of mod-
ifying the grammar rules, we modify the probabilistic mod&the parser to allow for
lexicalizedrules. The resulting family of lexicalized parsers inclsdiee well-known

COLLINS PARSER Collins parser (Collins, 1999) andCharniak parser (Charniak, 1997), both of which
cHarniakPaRSER are publicly available and widely used throughout natuaafluage processing.

We saw in Sec?? in Ch. 12 that syntactic constituents could be associatéld wi

LEXICALZED a lexicalhead and we defined Eexicalized grammarin which each non-terminal in

16 Chapter 14. Statistical Parsing

the tree is annotated with its lexical head, where a ruleMlike— VBD NP PPwould
be extended as:

(14.21) VP(dumped)— VBD(dumped) NP(sacks) PP(into)

In the standard type of lexicalized grammar we actually makKerther extension,

weaotac which is to associate theead tag the part-of-speech tags of the headwords, with
the nonterminal symbols as well. Each rule is thus lexiealiby both the headword
and the head tag of each constituent resulting in a formagkicalized rules like:

(14.22) VP(dumped,VBD)-~ VBD(dumped,VBD) NP(sacks,NNS) PP(into,IN)
We show a lexicalized parse tree with head tags in Fig. 14xt@nded from Fig??.

TOP

|
S(dumped,VBD)

NP(workers,NNS) VP(dumped,VBD)

|
NNS(workers,NNS)

workers
VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)
| |
dumped NNS(sacks,NNS) _
P(into,P) NP(bin,NN)
sacks N
N0 DT(a,DT) NN(bin,NN)
| |
a bin
Internal Rules Lexical Rules
TOP — S(dumped,VBD) NNS(workers,NNS) — workers
S(dumped,VBD) — NP(workers,NNS) VP(dumped,VBD) VBD(dumped,VBD) — dumped
NP(workers,NNS) — NNS(workers,NNS) NNS(sacks,NNS) — sacks
VP(dumped,VBD) — VBD(dumped, VBD) NP(sacks,NNS) PP(into|M(into,P) — into
PP(into,P) — P(into,P) NP (bin,NN) DT(a,DT) — a
NP (bin,NN) — DT(a,DT) NN(bin,NN) NN(bin,NN) — bin

Figure 14.10 A lexicalized tree, including head tags, for a WSJ senteadapted from Collins (1999). Below
we show the PCFG rules that would be needed for this parseititeenal rules on the left, and lexical rules jon
the right.

In order to generate such a lexicalized tree, each PCFG rnut Ibe augmented to
identify one right-hand side constituent to be the head dimrg The headword for a

Section 14.6.

Probabilistic Lexicalized CFGs 17

LEXICAL RULES
INTERNAL RULES

(14.23)

(14.24)

node is then set to the headword of its head daughter, ancetitbthg to the part-of-
speech tag of the headword. Recall that we gave inTH@ set of hand-written rules
for identifying the heads of particular constituents.

A natural way to think of a lexicalized grammar is like paranhotation, i.e. as a
simple context-free grammar with many copies of each rule,ampy for each possible
headword/head tag for each constituent. Thinking of a dritistic lexicalized CFG in
this way would lead to the set of simple PCFG rules shown bélevtree in Fig. 14.10.

Note that Fig. 14.10 shows two kinds of ruldsxical rules, which express the
expansion of a preterminal to a word, amdernal rules, which express the other
rule expansions. We need to distinguish these kinds of inleslexicalized gram-
mar because they are associated with very different kingsalfabilities. The lexical
rules are deterministic, i.e., have probability 1.0, siadexicalized preterminal like
NN(bin,NN) can only expand to the wotan. But for the internal rules we will need
to estimate probabilities.

Suppose we were to treat a probabilistic lexicalized CF& dikeally big CFG that
just happened to have lots of very complex non-terminalsatichate the probabilities
for each rule from maximum likelihood estimates. Thus, gdiy. 14.18, the MLE
estimate for the probability for the rulé(VP(dumped,VBD)» VBD(dumped, VBD)
NP(sacks,NNS) PP(into,P)ould be:

P(VP(dumpedV BD) — VBD(dumpedV BD)NP(sacksNNSPP(into, P))
_ CountVP(dumpeqV BD) — VBD(dumpedV BD)NP(sacksNNSPP(into, P))
N CountVP(dumpedV BD))

But there’s no way we can get good estimates of counts likeetho (14.23), be-
cause they are so specific: we're very unlikely to see mangyen any) instances of
a sentence with a verb phrase headediypedhat has one NP argument headed by
sacksand a PP argument headedihyo. In other words, counts of fully lexicalized
PCFG rules like this will be far too sparse and most rule podtigs will come out
zero.

The idea of lexicalized parsing is to make some further ietielence assumptions
to break down each rule, so that we would estimate the prttyabi

P(VP(dumpedVvBD) — VBD(dumpedVBD) NP(sacksNNS PP(into,P))

as the product of smaller independent probability estimitewhich we could acquire
reasonable counts. The next section summarizes one subbdnéie Collins parsing
method.

14.6.1 The Collins Parser

Modern statistical parsers differ in exactly which indegience assumptions they make.
In this section we describe a simplified version of Collind899) Model 1, but there
are a number of other parsers that are worth knowing aboettheesummary at the
end of the chapter.

18 Chapter 14. Statistical Parsing

The first intuition of the Collins parser is to think of thelitghand side of every (in-
ternal) CFG rule as consisting of a head non-terminal, teggatith the non-terminals
to the left of the head, and the non-terminals to the rightefliead. In the abstract,
we think about these rules as follows:

(14.25) LHS— LyLh-1...L1HR;...R 1R,

Since this is a lexicalized grammar, each of the symbolslliker R3 orH or LHS
is actually a complex symbol representing the category tnigiad and head tag, like
VP(dumped,VP)r NP(sacks,NNS)

Now instead of computing a single MLE probability for thideuwe are going to
break down this rule via a neat generative story, a slighpkfitation of what is called
Collins Model 1. This new generative story is that given tbi#-hand side, we first
generate the head of the rule, and then generate the depenfidre head, one by one,
from the inside out. Each of these generation steps will itaw@vn probability.

We are also going to add a spec#&loP non-terminal at the left and right edges
of the rule; this non-terminal will allow the model to know @into stop generating
dependents on a given side. We’'ll generate dependents teftkile of the head until
we've generated ToPon the left side of the head, at which point we move to the right
side of the head and start generating dependents therevengieneratessTOP. So it's
as if we are generating a rule augmented as follows:

(14.26) P(VP(dumpedvBD) — STOPVBD(dumpedVBD) NP(sacksNNS PP(into,P) STOP

Let's see the generative story for this augmented rule. &\gding to make use of
three kinds of probabilities?y for generating head®,_ for generating dependents on
the left, andPg for generating dependents on the right.

First generate the head VBD(dumped,VBD) with proba- VP(dumped,VBD)
bility |

P(HLHS) = P(vBD(dumped,VBD) VP(dumped,VBD)) VBD(dumped,VBD)
Then generate the left dependent (which is STOP, since VP(dumped,VBD)

there isn’t one) with probability

P(STOR VP(dumped,VBD) VBD(dumped,VBD) STOP VBD(dumped,VBD)

. . VP(dumped,VBD)
Then generate the right dependent NP(sacks,NNS) with

probability
Pr(NP(sacks,NNE VP(dumped,VBD),

VBD(dumped,VBD
(P 2 STOP VBD(dumped,VBD) NP(sacks,NNS)

VP(dumped,VBD)
Then generate the right dependent PP(into,P) with proba-
bility
P (PP(into,P) VP(dumped,VBD), VBD(dumped,VBD))
STOP VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)

Section 14.6. Probabilistic Lexicalized CFGs 19

VP(dumped,VBD)
Finally generate the right dependent STOP with probabil-
ity
P (STOP| VP(dumped,VBD), VBD(dumped,VBD))
STOP VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)

In summary, the probability of this rule:

(14.27) P(VP(dumpedVBD) — VBD(dumpedVBD) NP(sacksNNSPP(into,P))
is estimated as:

(14.28) P4 (VBDVRdumped x P (STORVPVBD,dumped
x Pr(NP(sacksNNS|VPVBD,dumped
x Pr(PP(into,P)|VPVBD,dumped

x Pr(STORVPVBD,dumped

Each of these probabilities can be estimated from much smafhounts of data
than the full probability in (14.27). For example, the maximlikelihood estimate for
the component probabilityr(NP(sacksNNS|V PV BD,dumped is:

Pr(NP(sacksNNS|VPVBD,dumped =
Coun{ VP(dumpedVBD) with NNSsacksas a daughter somewhere on the right
Count VP(dumpedVBD))

(14.29)

These counts are much less subject to sparsity problemsdimaplex counts like those
in (14.27).

More generally, if we usé to mean a headword together with its thgp mean a
word+tag on the left andto mean mean a word+tag on the right, the probability of an
entire rule can be expressed as:

1. Generate the head of the phraéw, ht) with probabilityPy (H (hw; ht) |P, hw; ht)
2. Generate modifiers to the left of the head with total prdigab

n+1

rl PL(Li(Iwi, Iti)[P,H, hw ht)

such that 1 (Iwny1,lthy1) =STOR and we stop generating once we've gen-
erated ssTOPtoken.

3. Generate modifiers to the right of the head with total pbdkg:

n+1

Pe(Ri(rw;,rti)|P,H, hw ht
il:l (Ri())

ST

20

Chapter 14. Statistical Parsing

DISTANCE

(14.30)
(14.31)

(14.32)
(14.33)

such thatR+1(rwny1,rtnr1) = STOR and we stop generating once we've
generated sTOPtoken.

14.6.2 Advanced: Further Details of the Collins Parser

The actual Collins parser models are more complex (in a eoaplays) than the
simple model presented in the previous section. Collins éllddncludes alistance
feature. Thus instead of computifRgandPr as follows:

PL(Li(Iwi, Iti) P, H, hw ht)
Pr(R; (rwi, rti)[P,H, hw ht)
Collins Model 1 conditions also on a distance feature:

PL(Li (Iwi, It))|P,H, hw ht, distance (i — 1))
Pr(Ri(rwi,rt;)|P,H, hw ht, distance(i — 1))

The distance measure is a function of the sequence of vi@idsithe previous modi-
fiers (i.e. the words which are the yield of each modifier nenminal we have already
generated on the left). Fig. 14.11, adapted from Collin®8&hows the computation
of the probabilityP(Ry(rhy, rt2) |P,H, hw; ht, distance(1)):

P(hw,ht)
H(hw,ht) R1(rw,rts) Ro(rwa,Ity)
..h... | — distance— |

Figure 14.11 The next «child R, is generated with probability
P(Ro(rha,rt2)|P,H, hw ht,distance(1)). The distance is the yield of the previous
dependent nontermin&,;. Had there been another intervening dependent, its yielddvg
have been included as well. Adapted from Collins (2003).

The simplest version of this distance measure is just a ofl®o binary features
based on the surface string below these previous deperdend) is the string of
length zero? (i.e. were were no previous words generat@)eogs the string contain
averb?

Collins Model 2 adds more sophisticated features, condiipon subcategoriza-
tion frames for each verb, and distinguishing arguments fadjuncts.

Finally, smoothing is as important for statistical parses st was foN-gram mod-
els. This is particularly true for lexicalized parsers,cgir{even using the Collins or
other methods of independence assumptions) the lexidalides will otherwise con-
dition on many lexical items that may never occur in training

Section 14.7.

Evaluating Parsers 21

Consider the probabilitfr(Ri (rw;, rt;)|P,hw ht). What do we do if a particular
right-hand side constituent never occurs with this head® Qallins model addresses
this problem by interpolating three backed-off modelslyfigxicalized (conditioning
on the headword), backing off to just the head tag, and alegeinlexicalized:

Backoff Level Pr(Ri(rwi,rtjl...) Example

1 Pr(Ri (rwi,rtj)|P,hw ht) Pr(NP(sacks,NNSYP, VBD, dumped)
2 Pr(Ri (rwi, rtj)|P, ht) Pr(NP(sacksNNS|V PV BD)

3 Pr(Ri (rwi, rtj)|P) Pr(NP(sacksNNS |V P)

Similar backoff models are built also fé% andPy. Although we've used the
word ‘backoff’, in fact these are not backoff models but ipated models. The
three models above are linearly interpolated, whares,, ande; are the maximum
likelihood estimates of the three backoff models above:

PR() =M\€1+ (1 —)\1)()\2624- (1— A2)es3)

The values ohjand\; are set to implement Witten-Bell discounting (?) following
Bikel et al. (1997).

Unknown words are dealt with in the Collins model by replgcany unknown
word in the test set, and any word occurring less than 6 tim#éssi training set, with a
specialuNkKNOWN word token. Unknown words in the test set are assigned agpart-
speech tag in a preprocessing step by the Ratnaparkhi (1829g¢r; all other words
are tagged as part of the parsing process.

The parsing algorithm for the Collins model is an extensibprobabilistic CKY;
see Collins (2003). Extending the CKY algorithm to handlsib&exicalized probabil-
ities is left as an exercise for the reader.

14.7 BVALUATING PARSERS

The standard techniques for evaluating parsers and grasramaucalled the PARSE-
VAL measures, and were proposed by Black et al. (1991) baséueosame ideas from
signal-detection theory that we saw in earlier chapterse intuition of the PARSE-
VAL metric is to measure how much tleenstituentsin the hypothesis parse tree look
like the constituents in a hand-labeled gold referencesp®@BRSEVAL thus assumes
we have a human-labeled “gold standard” parse tree for ezmtiersce in the test set;
we generally draw these gold standard parses from a tredikartke Penn Treebank.

Given these gold standard reference parses for a test segraagpnstituent in a
hypothesis pars€;, of a sentencs is labeled “correct” if there is a constituent in the
reference pargg; with the same starting point, ending point, and non-terhsyabol.

We can then measure the precision and recall just as we dichforking in the
previous chapter.

of correct constituents in hypothesis parss of

labeled recall:= oot constituents in reference parse of

of correct constituents in hypothesis parss of
of total constituents in hypothesis parsesof

labeled precision:=

22

Chapter 14. Statistical Parsing

(14.34)

EVALB

As with other uses of precision and recall, instead of répgthem separately, we
often report a single number, tRescoreg which is the harmonic mean of precision and
recall:

2PR

F:—
P+R

We additionally use a new metric, crossing brackets, fohesantencs:

cross-brackets:the number of constituents for which the reference parse faack-
eting such as ((A B) C) but the hypothesis parse has a bragkstich as (A (B

C)).

As of the time of this writing, the performance of modern gassthat are trained
and tested on the Wall Street Journal treebank is somewghaéhthan 90% recall,
90% precision, and about 1% cross-bracketed constituentsemtence.

For comparing parsers which use different grammars, theSEARL metric in-
cludes a canonicalization algorithm for removing inforioatlikely to be grammar-
specific (auxiliaries, pre-infinitival “to”, etc.) and foomputing a simplified score. The
interested reader should see Black et al. (1991). The cealgmiblicly-available im-
plementation of the PARSEVAL metrics is callestal b (Sekine and Collins, 1997).

You might wonder why we don't evaluate parsers by measuriwg manysen-
tencesare parsed correctly, instead of measungstituentaccuracy. The reason we
use constituents is that measuring constituents gives uera fine-grained metric.
This is especially true for long sentences, where most padsm’t get a perfect parse.
If we just measured sentence accuracy, we wouldn’t be aldéstimguish between a
parse that got most of the constituents wrong, and one tisaigjpt one constituent
wrong.

Nonetheless, constituents are not always an optimal dofoajparser evaluation.
For example, using the PARSEVAL metrics requires that ousgraproduce trees in
the exact same format as the gold standard. That means thatvifant to evaluate a
parser which produces different styles of parses (depeydearses, or LFG feature-
structures, etc.) against say the Penn Treebank (or againgher parser which pro-
duces Treebank format), we need to map the output parse3rieébank format. A
related problem is that constituency may not be the levelave the most about. We
might be more interested in how well the parser does at retaygrammatical depen-
dencies (subject, object, etc), which could give us a beteric for how useful the
parses would be to semantic understanding. For these megp@scan use alternative
evaluation metrics based on measuring the precision aradl ifdabeled dependen-
cies, where the labels indicate the grammatical relatibmnsg (1995; Carroll et al.,
1998; Collins et al., 1999). Kaplan et al. (2004), for exammlompared the Collins
(1999) parser with the Xerox XLE parser (Riezler et al., 20@&ich produces much
richer semantic representations, by converting both peess to a dependency repre-
sentation.

Section 14.8. Advanced: Discriminative Reranking 23

14.8 ADVANCED: DISCRIMINATIVE RERANKING

The models we have seen of parsing so far, the PCFG parsehai@btlins lexical-
ized parser, are generative parsers. By this we mean tharohabilistic model im-
plemented in these parsers gives us the probability of géingra particular sentence
by assigning a probability to each choice the parser coukenrathis generation pro-
cedure.

Generative models have some significant advantages; thegaaly to train using
maximum likelihood and they give us an explicit model of hoiffedent sources of
evidence are combined. But generative parsing models ag&e ihhard to incorporate
arbitrary kinds of information into the probability mod@lhis is because the probabil-
ity is based on the generative derivation of a sentencediffisult to add features that
are not local to a particular PCFG rule.

Consider for example how to represent global facts aboet steucture. Parse
trees in English tend to be right-branching; we’d therefidee our model to assign
a higher probability to a tree which is more right-branchiaty else being equal. It
is also the case that heavy constituents (those with a largéer of words) tend to
appear later in the sentence. Or we might want to conditiarpatse probabilities on
global facts like the identity of the speaker (perhaps sopealsers are more likely to
use complex relative clauses, or use the passive). Or wetmight to condition on
complex discourse factors across sentences. None of tivede &f global factors is
trivial to incorporate into the generative models we hawerb@nsidering. A simplistic
model that for example makes each non-terminal dependémwinight-branching the
tree is in the parse so far, or makes each NP non-terminaitigserts the number of
relative clauses the speaker or writer used in previougseas, would result in counts
that are far too sparse.

We discussed this problem in Ch. 6, where the need for thesks kif global fea-
tures motivated the use of log-linear (MEMM) models for P@8ding instead of
HMMs in chapter 6. For parsing, there are two broad classdssofiminative models:
dynamic programming approaches and two-stage models sihgahat useliscrimi-

DISCRIMINATIVE - native reranking. We'll discuss discriminative reranking in the rest of thétion; see
the end of the chapter for pointers to discriminative dyrgondgramming approaches.

In the first stage of a discriminative reranking system, wertan a normal statis-
tical parser of the type we've described so far. But instdgdst producing the single
best parse, we modify the parser to produce a ranked listreaepdogether with their

Nsestust probabilities. We call this ranked list &f parses théN-best list (the N-best list was
first introduced in Ch. 9 when discussing multiple-pass daapmodels for speech
recognition). There are various ways to modify statistfaisers to produce a-best
list of parses; see the end of the chapter for pointers tatéraiure. For each sentence
in the training set and the test set, we run tRidest parser and produce a sethbf
parse/probability pairs.

The second stage of a discriminative reranking model is ssiflar which takes
each of these sentences with thNimparse/probability pairs as input, extracts some
large set of features and chooses the single best parselfedvaliest list. We can use
any type of classifier for the reranking, such as the logdirgassifiers introduced in

24

Chapter 14. Statistical Parsing

ORACLE ACCURACY

Ch. 6.

A wide variety of features can be used for reranking. One irigm feature to
include is the parse probability assigned by the first-stagtstical parser. Other fea-
tures might include each of the CFG rules in the tree, the mumbparallel conjuncts,
how heavy each constituent is, measures of how right-biagthe parse tree is, how
many times various tree fragments occur, bigrams of adfameniterminals in the tree,
and so on.

The two-stage architecture has a weakness: the accuracygfridte complete ar-
chitecture can never be better than the accuracy rate oftstephrse in the first-stage
N-bestlist. This is because the reranking approach is mehelgsing one of thBl-best
parses; even if we picked the very best parse in the list, wi gat 100% accuracy if
the correct parse isn'tin the list! Therefore it is impottenconsider the ceilingracle
accuracy(often measured in F-score) of thiebest list. The oracle accuracy (F-score)
of a particularN-best list is the accuracy (F-score) we get if we chose thseptrat
had the highest accuracy. We call this@acle accuracy because it relies on perfect
knowledge (as if from an oracle) of which parse to pfoRf course it only makes sense
to implement discriminative reranking if thé-best F-score is higher than the 1-best
F-score. Luckily this is often the case; for example the Gladr(2000) parser has an
F-score of 0.897 on section 23 of the Penn Treebank, but tlaentk and Johnson
(2005) algorithm for producing the 50-best parses has a rigtter oracle F-score of
0.968.

14.9 ADVANCED: PARSER-BASED LANGUAGE MODELING

We said earlier that statistical parsers can take advam@igager-distance informa-
tion thanN-grams, which suggests that they might do a better job aulagg model-
ing/word prediction. It turns out that if we have a very laegeount of training data, a
4-gram or 5-gram grammar is nonetheless still the best wap tanguage modeling.
But in situations where there is not enough data for such mgeels, parser-based
language models are beginning to be developed which havehagcuracyN-gram
models.

Two common applications for language modeling are speesdgretion and ma-
chine translation. The simplest way to use a statisticadgraior language modeling
for either of these applications is via a two-stage algaritif the type discussed in the
previous section and in Se2?. In the first stage, we run a normal speech recognition
decoder, or machine translation decoder, using a naxsgagam grammar. But instead
of just producing the single best transcription or tramnstasentence, we modify the
decoder to produce a rankétbest list of transcriptions/translations sentencesh eac
one together with its probability (or, alternatively, dtilee).

Then in the second stage, we run our statistical parser aighasparse probability
to each sentence in thé-best list or lattice. We then rerank the sentences based on
this parse probability and choose the single best senteHhais. algorithm can work
better than using a simple trigram grammar. For examplehenask of recognizing

2 We introduced this same oracle idea in Ch. 9 when we talkedtahelattice error rate .

Section 14.10.

Human Parsing 25

spoken sentences from the Wall Street Journal using thisstage architecture, the
probabilities assigned by the Charniak (2001) parser ingddhe word error rate by
about 2 percent absolute, over a simple trigram grammar atedwn 40 million words

(Hall and Johnson, 2003). We can either use the parse piiiezbassigned by the
parser as-is, or we can linearly combine it with the origidagram probability.

An alternative to the two-pass architecture, at least feesp recognition, is to
modify the parser to run strictly left-to-right, so thatércincrementally give the proba-
bility of the next word in the sentence. This would allow tteger to be fit directly into
the first-pass decoding pass and obviate the second-pagstakr. While a number
of such left-to-right parser-based language modelingrélguos exist (Stolcke, 1995;
Jurafsky et al., 1995; Roark, 2001; Xu et al., 2002), it is faisay that it is still early
days for the field of parser-based statistical language mode

14.10 HUMAN PARSING

SENTENCE
PROCESSING

READING TIME

(14.35)

GARDEN-PATH

Are the kinds of probabilistic parsing models we have besaudising also used by
humans when they are parsing? This question lies in a fielddchlman sentence
processin@® Recent studies suggest that there are at least two waysiéh whmans
apply probabilistic parsing algorithms, although therstill disagreement on the de-
tails.

One family of studies has shown that when humans read, trcpability of a
word seems to influence threading time; more predictable words are read more
quickly. One way of defining predictability is from simplegoam measures. For
example, Scott and Shillcock (2003) had participants reatemces while monitoring
their gaze with areye-tracker. They constructed the sentences so that some would
have a verb-noun pair with a high bigram probability (suclt{las35a)) and others a
verb-noun pair with a low bigram probability (such as (1485

a) HIGH PROB: One way toavoid confusionis to make the changes during
vacation;

b) LOW PROB: One way toavoid discoveryis to make the changes during
vacation

They found that the higher the bigram predictability of a dyghe shorter the time
that participants looked at the word (timitial-fixation duration).

While this result only provides evidence fdrgram probabilities, more recent ex-
periments have suggested that the probability of an upapmard given the syntactic
parse of the preceding sentence prefix also predicts wodingdme Hale (2006),
Levy (2007).

The second family of studies has examined how humans digpats sentences
which have multiple possible parses, suggesting that harpeafer whichever parse
is more probable. These studies often rely on a specific ofafsnporarily ambigu-
ous sentences callgérden-pathsentences. These sentences, first described by Bever
(1970), are sentences which are cleverly constructed te thage properties that com-
bine to make them very difficult for people to parse:

26

Chapter 14. Statistical Parsing

(14.36)

(14.37)

(14.38)

1. They argemporarily ambiguous: The sentence is unambiguous, but its initial
portion is ambiguous.

2. One of the two or more parses in the initial portion is soavepreferable to the
human parsing mechanism.

3. But the dispreferred parse is the correct one for the seate

The result of these three properties is that people are ‘techdhe garden path”
toward the incorrect parse, and then are confused when ¢ladiye it's the wrong one.
Sometimes this confusion is quite conscious, as in Beveaeple (14.36); in fact this
sentence is so hard to parse that readers often need to be gfeworrect structure. In
the correct structunacedis part of a reduced relative clause modifyifige horseand
means “The horse [which was raced past the barn] fell”; tinicture is also presentin
the sentence “Students taught by the Berlitz method do wansa they get to France”.

The horse raced past the barn fell.

@ s (b) S
’\ F\
NP VP NP VP
/\
NP VP
PP PP
NP ? NP
™~ | ™~
D‘et l‘\l \‘/ I‘:’ D‘et ‘N Vv D‘et ‘N ‘V ‘P I‘Det ‘N \%

The horse raced past the barn fell The horse raced past the fe#r

In Marti Hearst's example (14.37), subjects often mispdingeverbhousesas a
noun (analyzinghe complex housess a noun phrase, rather than a noun phrase and
a verb). Other times the confusion caused by a garden-patérss is so subtle that
it can only be measured by a slight increase in reading tinneisTh example (14.38)
readers often mis-pargbe solutionas the direct object dorgot rather than as the
subject of an embedded sentence. This mis-parse is suhtleisaonly noticeable
because experimental participants take longer to read trd was than in control
sentences. This “mini-garden-path” effect at the wavats suggests that subjects had
chosen the direct object parse and had to re-analyze oarggaitheir parse now that
they realize they are in a sentential complement.

The complex houses married and single students and theiidam

(@ S (b) S
/ /\
NP NP VP

|
Det Adj N Det N \‘/

. | .

The complex houses The complex houses

The student forgot the solution was in the back of the book.

Section 14.11.

Summary 27

(a) S (b) S

N Do K

-
|
v Det T/ Det v Det v

The students forgot the solutlon was The students forgot sthlation was

While many factors seem to play a role in these preferencesarticular (incor-
rect) parse, at least one factor seems to be syntactic plitleabespecially lexicalized
(subcategorization) probabilities. For example, the phility of the verbforgot tak-
ing a direct objectVP — V NP) is higher than the probability of it taking a sentential
complementYP — V 9; this difference causes readers to expect a direct objest a
forgetand be surprised (longer reading times) when they encoargentential com-
plement. By contrast, a verb which prefers a sentential éem@nt (likehopg didn’t
cause extra reading timewas

Similarly, the garden path in (14.37) may be caused by thetatP(housefNoun) >
P(housed/erb) andP(complexAd jective > P(complexNoun), and the garden path
in (14.36) at least partially by the low probability of thedteced relative clause con-
struction.

Besides grammatical knowledge, human parsing is affecteddny other factors
which we will describe later, including resource constiaifsuch as memory limita-
tions, to be discussed in Ch. 15), thematic structure (ssevh&ther a verb expects se-
manticagentor patients to be discussed in Ch. 19) and discourse constraints (Gh. 21

14.11 SUMMARY

This chapter has sketched the basicprababilistic parsing, concentrating gorob-
abilistic context-free grammars and probabilistic lexicalized context-free gram-
mars.

e Probabilistic grammars assign a probability to a sentemcgtring of words,
while attempting to capture more sophisticated syntadfiormation than the
N-gram grammars of Ch. 4.

e A probabilistic context-free grammar (PCFG) is a context-free
grammar in which every rule is annotated with the probabditchoosing that
rule. Each PCFG rule is treated as if it weanditionally independent thus the
probability of a sentence is computed myltiplying the probabilities of each
rule in the parse of the sentence.

e The probabilistic CKY Cocke-Kasami-Younge) algorithm is a probabilistic
version of the CKY parsing algorithm. There are also proligthu versions of
other parsers like the Earley algorithm.

e PCFG probabilities can be learning by counting ipaaised corpus or by pars-
ing a corpus. Thénside-Outsidealgorithm is a way of dealing with the fact that

28

Chapter 14. Statistical Parsing

the sentences being parsed are ambiguous.

o Raw PCFGs suffer from poor independence assumptions betwkss and lack
of sensitivity to lexical dependencies.

e One way to deal with this problem is to split and merge nomieals (automat-
ically or by hand).

e Probabilistic lexicalized CFGs are another solution to this problem in which
the basic PCFG model is augmented withegical head for each rule. The
probability of a rule can then be conditioned on the lexiedhor nearby heads.

e Parsers for lexicalized PCFGs (like the Charniak and Coltiarsers) are based
on extensions to probabilistic CKY parsing.

e Parsers are evaluated using three mettatseled recall labeled precision and
cross-brackets

e There is evidence based garden-path sentencesind other on-line sentence-
processing experiments that the human parser uses sonmedfipdobabilistic
information about grammar.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Many of the formal properties of probabilistic contextdigrammars were first worked
out by Booth (1969) and Salomaa (1969). Baker (1979) praptee Inside-Outside
algorithm for unsupervised training of PCFG probabilitisd used a CKY-style pars-
ing algorithm to compute inside probabilities. Jelinek aafferty (1991) extended the
CKY algorithm to compute probabilities for prefixes. Staoid995) drew on both of
these algorithms in adapting the Earley algorithm to ush REFGs.

A number of researchers starting in the early 1990s workeadaling lexical de-
pendencies to PCFGs, and on making PCFG rule probabilites sensitive to sur-
rounding syntactic structure. For example Schabes et @88)land Schabes (1990)
presented early work on the use of heads. Many papers on ¢heflisxical depen-
dencies were first presented at the DARPA Speech and Natangluage Workshop in
June, 1990. A paper by Hindle and Rooth (1990) applied Iéxiependencies to the
problem of attaching prepositional phrases; in the questission to a later paper Ken
Church suggested applying this method to full parsing (May&990). Early work on
such probabilistic CFG parsing augmented with probatilg#pendency information
includes Magerman and Marcus (1991), Black et al. (1992 @993), and Jelinek
et al. (1994), in addition to Collins (1996), Charniak (19%nd Collins (1999) dis-
cussed above. Other recent PCFG parsing models include &thei Manning (2003a)
and Petrov et al. (2006). .

This early lexical probabilistic work led initially to worfocused on solving spe-
cific parsing problems like preposition-phrase attachmesing methods including
Transformation Based Learning (TBL) (Brill and Resnik, 439Maximum Entropy
(Ratnaparkhi et al., 1994), Memory-Based Learning (Zasrel Daelemans, 1997),
log-linear models (Franz, 1997), decision trees using séimdistance between heads

Section 14.11.

Summary 29

SUPERTAGGING

NON-PROJECTIVE
DEPENDENCIES

(computed from WordNet) (Stetina and Nagao, 1997), and @upg¢Abney et al.,
1999).

Another direction extended the lexical probabilistic [ragswork to build proba-
bilistic formulations of grammar other than PCFGs, suchrabgbilistic TAG gram-
mar (Resnik, 1992; Schabes, 1992), based on the TAG grantlisatsssed in Ch. 12,
probabilistic LR parsing (Briscoe and Carroll, 1993), amdlabilistic link grammar
(Lafferty et al., 1992). An approach to probabilistic pagscalledsupertaggingex-
tends the part-of-speech tagging metaphor to parsing Inguwsry complex tags that
are in fact fragments of lexicalized parse trees (BangaarkJoshi, 1999; Joshi and
Srinivas, 1994), based on the lexicalized TAG grammars bbBes et al. (1988). For
example the noupurchasevould have a different tag as the first noun in a noun com-
pound (where it might be on the left of a small tree dominatgdNbminal) than as
the second noun (where it might be on the right). Supertagigas also been applied
to CCG parsing and HPSG parsing (Clark and Curran, 2004asUMaki et al., 2007;
Blunsom and Baldwin, 2006). Non-supertagging statistizakers for CCG include
Clark and Curran (2004b).

Goodman (1997), Abney (1997), and Johnson et al. (1999) garhg discussions
of probabilistic treatments of feature-based grammarbkeftecent work on building
statistical models of feature-based grammar formaliskesHiPSG and LFG includes
Riezler et al. (2002), Kaplan et al. (2004), and Toutanow.€2005).

We mentioned earlier that discriminative approaches tsipgrfall into the two
broad categories of dynamic programming methods and distative reranking meth-
ods. Recall that discriminative reranking approachesiredi+best parses. Parsers
based on A* search can easily be modified to gené¥alest lists just by continuing
the search past the first-best parse (Roark, 2001). Dynamgramming algorithms
like the ones described in this chapter can be modified byimditing the dynamic
programming and using heavy pruning (Collins, 2000; Csltimd Koo, 2005; Bikel,
2004), or via new algorithms (Jiménez and Marzal, 2000¢&ziland Jurafsky, 2002;
Charniak and Johnson, 2005; Huang and Chiang, 2005), soapteatifrom speech
recognition algorithms such as Schwartz and Chow (199@)%se.??).

By contrast, in dynamic programming methods, instead opuatting and then
reranking arN-best list, the parses are represented compactly in a eimartpg-linear
and other methods are applied for decoding directly fromdhart. Such modern
methods include Johnson (2001), Clark and Curran (2004kd) Taskar et al. (2004).
Other reranking developments include changing the opétita criterion (Titov and
Henderson, 2006).

Another important recent area of research is dependenesjngaralgorithms in-
clude Eisner’s bilexical algorithm (Eisner, 1996b, 1998@)0), maximum spanning
tree approaches (using on-line learning) (Ryan McDonald Rereira, 2005; Mc-
Donald et al., 2005), and approaches based on buildingifitasdor parser actions
(Kudo and Matsumoto, 2002; Yamada and Matsumoto, 2003gNival., 2006; Titov
and Henderson, 2007). A distinction is usually made betwwejective andnon-
projective dependenciesNon-projective dependencies are those in which the depen-
dency lines cross; this is not very common in English, butdsy\common in many
languages with more free word order. Non-projective depang algorithms include
McDonald et al. (2005) and Nivre (2007). The Klein-Manniragger combines depen-

30

Chapter 14. Statistical Parsing

dency and constituency information (Klein and Manning, 260

Manning and Schitze (1999) has an extensive coverage babilistic parsing.
Collins’ (1999) dissertation includes a very readable syrf the field and introduc-
tion to his parser.

The field of grammar induction is closely related to statetparsing, and a parser
is often used as part of a grammar induction algorithm. Onthekarliest statistical
works in grammar induction was Horning (1969), who showed #1CFGs could be
induced without negative evidence. Early modern probstiigrammar work showed
that simply using EM was insufficient (Lari and Young, 199@r@ll and Charniak,
1992). Recent probabilistic work such as Yuret (1998), iC(2001), Klein and Man-
ning (2002), and Klein and Manning (2004), are summarizé<lén (2005) and Adri-
aans and van Zaanen (2004). Work since that summary inclonth and Eisner
(2005), Haghighi and Klein (2006), and Smith and Eisner {200

EXERCISES

14.1 Implement the CKY algorithm.

14.2 Modify the algorithm for conversion to CNF from Ch. 13 to caxtly handle
rule probabilities. Make sure that the resulting CNF assitpe same total probability
to each parse tree.

14.3 Recall that Exercis@? asked you to update the CKY algorithm to handles unit
productions directly rather than converting them to CNReBd this change to proba-
bilistic CKY.

14.4 Fill out the rest of the probabilistic CKY chart in Fig. 14.4.

14.5 Sketch out how the CKY algorithm would have to be augmentétatalle lexi-
calized probabilities.

14.6 Implement your lexicalized extension of the CKY algorithm.

14.7 Implement the PARSEVAL metrics described in Sec. 14.7. Nitkter use a
treebank or create your own hand-checked parsed testsetuddoyour CFG (or other)
parser and grammar and parse the testset and compute ledxed#idiabeled precision,
and cross-brackets.

Section 14.11. Summary 31

Abney, S. P. (1997). Stochastic attribute-value gramn@osa- Carroll, J., Briscoe, T., and Sanfilippo, A. (1998). Parsex-e
putational Linguistics23(4), 597-618. uation: a survey and a new proposal. LIREC-98 Granada,
Abney, S. P., Schapire, R. E., and Singer, Y. (1999). Bogstin SPain, pp. 447-454.
applied to tagging and PP attachment. BRMINLP/VLC-99 Charniak, E. and Johnson, M. (2005). Coarse-to-fifgest
College Park, MD, pp. 38—45. parsing and MaxEnt discriminative reranking. ACL-05
Adriaans, P. and van Zaanen, M. (2004). Computational gram-Ann Arbor.
mar induction for linguistsGrammars; special issue with the Charniak, E. (1997). Statistical parsing with a contegefr
theme “Grammar Induction,’7, 57—68. grammar and word statistics. HWAAI-97, Menlo Park, pp.
Baker, J. K. (1979). Trainable grammars for speech recogni- 598-603. AAAI Press.
tion. In Klatt, D. H. and Wolf, J. J. (Eds.speech Communi- Charniak, E. (2000). A maximum-entropy-inspired parser. |
cation Papers for the 97th Meeting of the Acoustical Society proceedings of the 1st Annual Meeting of the North Amer-
of America pp. 547-550. ican Chapter of the ACL (NAACL'0pBeattle, Washington,
Bangalore, S. and Joshi, A. K. (1999). Supertagging: An ap- pp. 132-139.
proach to almost parsingComputational Linguistics25(2), Charniak, E. (2001). Immediate-head parsing for language
237-265. models. INACL-01, Toulouse, France.
Bever, T. G. (1970). The cognitive basis for linguistic st'u Chelba, C. and Jelinek, F. (2000). Structured language fode
tures. In Hayes, J. R. (Ediognition and the Development jng. Computer Speech and Languadé, 283-332.

9f Languagepp- 279_352_' W_”ey' .) Clark, A. (2001). The unsupervised induction of stochas-
Bikel, D. M. (2004). Intricacies of Collins’ parsing model. {ic context-free grammars using distributional clustgririn

Computational Linguistics30(4), 479-511. CoNLL-01
Bikel, D. M., Miller, S., Schwartz, R., and Weischedel, R. c|ark s, and Curran, J. R. (2004a). The importance of su-

(1997). Nymble: a high-performance learning name-finder. pertagging for wide-coverage CCG parsing.OLING-04
In Proceedings of ANLP-9Pp. 194-201. pp. 282-288.

Black, E.,_Abney, S'_P" FIickinger,_D., Gdani‘ec, C., Grisimn Clark, S. and Curran, J. R. (2004b). Parsing the WSJ using
R., Harrison, P., Hindle, D., Ingria, R., Jelinek, F., Klasa CCG and Log-Linear Models. IACL-04 pp. 104-111.

J. L., Liberman, M. Y., Marcus, M. P., Roukos, S., Santorini, . L .
Collins, M. and Koo, T. (2005). Discriminative rerankingr fo

B., and Strzalkowski, T. (1991). A procedure for quantita-) . NI
tively comparing the syntactic coverage of English granemar natural language parsingcomputational Linguistics31(1),

In Proceedings DARPA Speech and Natural Language Work- 5-69.
shop Pacific Grove, CA, pp. 306-311. Morgan Kaufmann. Collins, M. (1996). A new statistical parser based on bigram
Black, E., Jelinek, F., Lafferty, J. D., Magerman, D. M., \der, lexical dependencies. IRCL-96 Santa Cruz, California, pp.
R. L., and Roukos, S. (1992). Towards history-based gram-184‘191- ACL.
mars: Using richer models for probabilistic parsing.PAro- Collins, M. (1999).Head-driven Statistical Models for Natural
ceedings DARPA Speech and Natural Language Workshop Language ParsingPh.D. thesis, University of Pennsylvania,
Harriman, NY, pp. 134-139. Morgan Kaufmann. Philadelphia.
Blunsom, P. and Baldwin, T. (2006). Multilingual deep l&alic Collins, M. (2000). Discriminative reranking for naturan-
acquisition for hpsgs via supertagging. BEMNLP 2006 guage parsing. I[ICML 200Q Stanford, CA, pp. 175-182.
Bod, R. (1993). Using an annotated corpus as a stochastic gra Collins, M. (2003). Head-driven statistical models for urat
mar. INEACL-93 pp. 37-44. ral language parsingComputational Linguistic29(4), 589—
Booth, T. L. (1969). Probabilistic representation of fottaa- 637.
guages. INEEE Conference Record of the 1969 Tenth AnnualCollins, M., Haji¢, J., Ramshaw, L. A., and Tillmann, C. @89.
Symposium on Switching and Automata Theppy 74-81. A statistical parser for Czech. BCL-99 College Park, MA,
Booth, T. L. and Thompson, R. A. (1973). Applying proba- pp. 505-512. ACL.
bility measures to abstract languagéBEE Transactions on Ejsner, J. (1996a). An empirical comparison of probability

ComputersC-225), 442-450. models for dependency grammar. Tech. rep. IRCS-96-11, In-
Brill, E. and Resnik, P. (1994). A rule-based approach tppre stitute for Research in Cognitive Science, Univ. of Pervesyl

sitional phrase attachment disambiguation. CAOLING-94 nia.

Kyoto, pp. 1198-1204. Eisner, J. (1996b). Three new probabilistic models for depe

Briscoe, T. and Carroll, J. (1993). Generalized ProbdtuillsR dency parsing: An exploration. IBOLING-96 Copenhagen,
parsing of natural language (corpora) with unificationdashs pp. 340-345.
grammars Computational Linguistics1(1), 25-59. Eisner, J. (2000). Bilexical grammars and their cubic-tjraes-
Carroll, G. and Charniak, E. (1992). Two experiments ormiear ing algorithms. In Bunt, H. and Nijholt, A. (Eds Advances
ing probabilistic dependency grammars from corpora. Tech. in Probabilistic and Other Parsing Technologjgsp. 29-62.
rep. CS-92-16, Brown University. Kluwer.

32 Chapter 14. Statistical Parsing

Francis, H. S., Gregory, M. L., and Michaelis, L. A. (1999)eA Jurafsky, D., Wooters, C., Tajchman, G., Segal, J., Stoléke

lexical subjects deviant?. BLS-99 University of Chicago. Fosler, E., and Morgan, N. (1995). Using a stochastic céntex
Franz, A. (1997). Independence assumptions considerea- har free grammar as a language model for speech recognition. In
ful. In ACL/EACL-97 Madrid, Spain, pp. 182-189. ACL. IEEE ICASSP-9pp. 189-192. [EEE.

Kaplan, R. M., Riezler, S., King, T. H., Maxwell, J. T., Vasse
man, A., and Crouch, R. (2004). Speed and accuracy in shal-
low and deep stochastic parsing.HhL. T-NAACL-04

Klein, D. (2005). The unsupervised learning of Natural Lan-

Gildea, D. and Jurafsky, D. (2002). Automatic labeling of se
mantic roles.Computational Linguistic28(3), 245-288.

Givon, T. (1990) Syntax: A functional typological introduction

John Benjamins, Amsterdam. guage StructurePh.D. thesis, Stanford University.

Goodman, J. (1997). Pro_babilistic feature grammarsPrm Klein, D. and Manning, C. D. (2001). Parsing and hypergraphs
ceedings of the International Workshop on Parsing Technol- In The Seventh Internation Workshop on Parsing Technolo-

ogy. :
gies
Haghighi, A. and Klein, D. (2006). Prototype-driven gramima Kiein, D. and Manning, C. D. (2002). A generative constitsen
induction. INCOLING/ACL 2006pp. 881-888. context model for improved grammar induction. AGL-02
Hale, J. (2006). Uncertainty about the rest of the sente@og: Klein, D. and Manning, C. D. (2003a). A* parsing: Fast exact
nitive Science30(4), 609-642. Viterbi parse selection. IHLT-NAACL-03

Hall, K. and Johnson, M. (2003). Language modeling usinglein, D. and Manning, C. D. (2003b). Accurate unlexicatize
efficient best-first bottom-up parsing. IBEE ASRU-03pp. parsing. INHLT-NAACL-03
507-512. Klein, D. and Manning, C. D. (2003c). Fast exact inference
Hindle, D. and Rooth, M. (1990). Structural ambiguity and with a factored model for natural language parsing. In Bgcke
lexical relations. IrProceedings DARPA Speech and Natural S., Thrun, S., and Obermayer, K. (Ed#\jivances in Neural
Language WorkshopHidden Valley, PA, pp. 257-262. Mor- Information Processing Systems. MiT Press.
gan Kaufmann. Klein, D. and Manning, C. D. (2004). Corpus-based induc-
Hindle, D. and Rooth, M. (1991). Structural ambiguity anctle tion of syntactic structure: Models of dependency and con-
ical relations. InProceedings of the 29th ACBerkeley, CA, stituency. INACL-04
pp. 229-236. ACL. Kudo, T. and Matsumoto, Y. (2002). Japanese dependency anal
Horning, J. J. (1969)A study of grammatical inferenc®h.D. YSIS using cascaded chunking. @oNLL-02 pp. 63-69.
thesis, Stanford University. Lafferty, J. D., Sleator, D., and Temperley, D. (1992). Gram
matical trigrams: A probabilistic model of link grammar. In
Proceedings of the 1992 AAAI Fall Symposium on Probabilis-
tic Approaches to Natural Language
Lari, K. and Young, S. J. (1990). The estimation of stochas-
tic context-free grammars using the Inside-Outside algiri

Huang, L. and Chiang, D. (2005). Better k-best parsing. In
IWPT-03 pp. 53-64.

Jelinek, F. and Lafferty, J. D. (1991). Computation of thelya-
bility of initial substring generation by stochastic cortéree
grammars.Computational Linguisticsl7(3), 315-323. Computer Speech and Language35-56.

Jelinek, F., Lafferty, J. D., Magerman, D. M., Mercer, R. L., | oy R. (2007). Expectation-based syntactic comprelbensi
Ratnaparkhi, A., and Roukos, S. (1994). Decision tree pars-|, press, Cogpnition.
ing using a hidden derivation model. ARPA Human Lan-
guage Technologies Workshdfainsboro, N.J., pp. 272-277.
Morgan Kaufmann.

Jiménez, V. M. and Marzal, A. (2000). Computation of the

Lin, D. (1995). A dependency-based method for evaluating
broad-coverage parsers. IBCAI-95 Montreal, pp. 1420-
1425.

best parse trees for weighted and stochastic context-feee: Magerman, D. M. and Marcus, M. P. (1991). Pearl: A proba-
p 9 &89 pilistic chart parser. IProceedings of the 6th Conference of

mars. InAdvances in Pattern Recognition: Proceedings of L)
. : the E Chapter of the A tion for C tational
the Joint IAPR International Workshops, SSPR 2000 and SPRLir?guiusrt(i)fseaBr;rlin ageerl;n(;nye ssociation for L-omputationa

200Q Alicante, Spain, pp. 183-192. Springer.
o Manning, C. D. and Schiitze, H. (199%oundations of Statis-
Johnson, M. (1998). PCFG models of linguistic tree represen o Natural Language Processin/IT Press.
tations. Computational Linguistics24(4), 613-632. . .
Marcus, M. P. (1990). Summary of session 9: Automatic
Johnson, M. (2001). Joint and conditional estimation ofta acquisition of linguistic structure. lProceedings DARPA
and parsing models. IACL-01 pp. 314-321. Speech and Natural Language Workshbifdden Valley, PA,
Johnson, M., Geman, S., Canon, S., Chi, Z., and Riezler, S.pp. 249-250. Morgan Kaufmann.
(1999). Estimators for stochastic “unification-based”ngra Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993
mars. INACL-99 pp. 535-541. Building a large annotated corpus of English: The Penn tree-
Joshi, A. K. and Srinivas, B. (1994). Disambiguation of supe bank.Computational Linguistics19(2), 313-330.
parts of speech (or supertags): Almost parsingCOLING- Matsuzaki, T., Miyao, Y., and ichi Tsuijii, J. (2007). Efficie
94, Kyoto, pp. 154-160. hpsg parsing with supertagging and cfg-filteringlJ&AI-07.

Section 14.11. Summary 33

McDonald, R., Pereira, F. C. N., Ribarov, K., and Haji¢, J.Sekine, S. and Collins, M. (1997). The evalb softwdret p:
(2005). Non-projective dependency parsing using spanning/ / cs. nyu. edu/ cs/ pr oj ect s/ pr ot eus/ eval b.

tree algorithms. IHLT-EMNLP-05 Smith, D. A. and Eisner, J. (2007). Bootstrapping featizlk-r
Ney, H. (1991). Dynamic programming parsing for contegefr dependency parsers with entropic priors. BMNLP 2007

grammars in continuous speech recognitiéBEE Transac- Prague, pp. 667-677.

tions on Signal Processing9(2), 336-340. Smith, N. A. and Eisner, J. (2005). Guiding unsupervisedgra
Nivre, J. (2007). Incremental non-projective dependerargp mar induction using contrastive estimation. I[BCAI Work-

ing. InNAACL-HLT 07 shop on Grammatical Inference Applicatioridinburgh, pp.

Nivre, J., Hall, J., and Nilsson, J. (2006). Maltparser: Aada 73-82.
driven parser-generator for dependency parsingREC-06 Stetina, J. and Nagao, M. (1997). Corpus based PP attachment
pp. 2216-2219. ambiguity resolution with a semantic dictionary. In Zhou, J
Petrov, S., Barrett, L., Thibaux, R., and Klein, D. (200&3akn- and Church, K. W. (Eds.)?_foceedipgs of the Fifth Workshop
ing accurate, compact, and interpretable tree annotation. On Very Large CorporaBeijing, China, pp. 66-80. ACL.
COLING/ACL 2006Sydney, Australia, pp. 433-440. ACL. Stolcke, A. (1995). An efficient probabilistic context-érpars-

Ratnaparkhi, A. (1996). A maximum entropy part-of-speech iNg algorithim that computes prefix probabilitie€omputa-
tagger. InProceedings of the Conference on Empirical Meth- tional Linguistics 21(2), 165-202.
ods in Natural Language Processingniversity of Pennsyl- Taskar, B., Klein, D., Collins, M., Koller, D., and Manning,
vania, pp. 133-142. ACL. C. D. (2004). Max-margin parsing. BEMNLP 2004

Ratnaparkhi, A., Reynar, J., and Roukos, S. (1994). A MaxiTitov, |. and Henderson, J. (2006). Loss minimization insgar
mum Entropy model for prepositional phrase attachment. In reranking. INEMNLP 2006
ARPA Human Language Technologies Workstfdainsboro, Titov, I. and Henderson, J. (2007). A latent variable model f
N.J., pp. 250-255. generative dependency parsing.\dPT-07

Resnik, P. (1992). Probabilistic tree-adjoining grammgamaa Toutanova, K., Manning, C. D., Flickinger, D., and Oepen, S.
framework for statistical natural language processingrin (2005). 'Stochastic HPSG Parse Disarﬁbig’uation using’ the

ceedings of the 14th International Conference on Computa- .
Redwoods CorpusResearch on Language & Computation
tional Linguistics Nantes, France, pp. 418-424. 3(1), 83-105 P guag puta

Riezler, S., King, T. H., Kaplan, R. M., Crouch, R., lll, J.AT., Xu, P., Chelba, C., and Jelinek, F. (2002). A study on richer

gnd Johr_]son, M. .(2002)' Parsing the \.Na". st_reeF Journgl O syntactic dependencies for structured language modelimg.
ing a lexical-functional grammar and discriminative estim ACL-02 pp. 191-198

tion techniques. IMCL-02 Philadelphia, PA. W8 o H. and Mat o, Y. (2003). Statistical depeng
I . amada, H. and Matsumoto, Y. . Statistical depengenc
Roark, B (2001). Prqbablllsgc tqp-‘down PRSIy and layg analysis with support vector machines. In Noord, G. V. (Ed.)
modeling. Computational Linguistic27(2), 249-276. IWPT-03 pp. 195-206.
Ryan McDonald, K. C. and Pereira, F. C. N. (2005). Online.
large-margin training of dependency parsersAGL-05 Ann
Arbor, pp. 91-98.

Salomaa, A. (1969). Probabilistic and weighted grammiars.
formation and Contrqgl15, 529-544.

Schabes, Y. (1990)Mathematical and Computational Aspects
of Lexicalized GrammarsPh.D. thesis, University of Penn-
sylvania, Philadelphia, PAT.

Schabes, Y. (1992). Stochastic lexicalized tree-adjgigiram-
mars. InProceedings of the 14th International Conference on
Computational LinguisticiNantes, France, pp. 426—433.

Schabes, VY., Abeillé, A., and Joshi, A. K. (1988). Parsingts-
gies with ‘lexicalized’ grammars: Applications to Tree Ad-
joining Grammars. IlCOLING-88 Budapest, pp. 578-583.

Schwartz, R. and Chow, Y.-L. (1990). The N-best algorithm:
An efficient and exact procedure for finding the N most likely
sentence hypotheses. IBEE ICASSP-90Vol. 1, pp. 81-84.
IEEE.

Scott, M. and Shillcock, R. (2003). Eye movements reveal the

on-line computation of lexical probabilities during reagli
Psychological Sciencd4(6), 648—652.

Yuret, D. (1998).Discovery of Linguistic Relations Using Lex-
ical Attraction Ph.D. thesis, MIT.

Zavrel, J. and Daelemans, W. (1997). Memory-based learning
Using similarity for smoothing. IMPACL/EACL-97 Madrid,
Spain, pp. 436-443. ACL.

