
DRAFT

Speech and Language Processing: An introduction to natural language processing,
computational linguistics, and speech recognition. Daniel Jurafsky & James H. Martin.
Copyright c© 2007, All rights reserved. Draft of July 21, 2007. Do not cite without
permission.

14 STATISTICAL PARSING

Two roads diverged in a wood, and I –
I took the one less traveled by...

Robert Frost,The Road Not Taken

The characters in Damon Runyon’s short stories are willing to bet “on any proposition
whatever”, as Runyon says about Sky Masterson inThe Idyll of Miss Sarah Brown;
from the probability of getting aces back-to-back to the odds against a man being able
to throw a peanut from second base to home plate. There is a moral here for language
processing: with enough knowledge we can figure the probability of just about any-
thing. The last two chapters have introduced sophisticatedmodels of syntactic structure
and its parsing. In this chapter we show that it is possible tobuild probabilistic mod-
els of syntactic knowledge and use some of this probabilistic knowledge in efficient
probabilistic parsers.

One crucial use of probabilistic parsing is to solve the problem ofdisambiguation.
Recall from Ch. 13 that sentences on average tend to be very syntactically ambiguous,
due to problems likecoordination ambiguity andattachment ambiguity. The CKY
and Earley parsing algorithms could represent these ambiguities in an efficient way,
but were not equipped to resolve them. A probabilistic parser offers a solution to the
problem: compute the probability of each interpretation, and choose the most-probable
interpretation. Thus, due to the prevalence of ambiguity, most modern parsers used for
natural language understanding tasks (thematic role labeling, summarization, question-
answering, machine translation) are of necessity probabilistic.

Another important use of probabilistic grammars and parsers is in language mod-
eling for speech recognition. We saw thatN-gram grammars are used in speech rec-
ognizers to predict upcoming words, helping constrain the acoustic model search for
words. Probabilistic versions of more sophisticated grammars can provide additional
predictive power to a speech recognizer. Of course humans have to deal with the same
problems of ambiguity as do speech recognizers, and it is interesting that psycholog-
ical experiments suggest that people use something like these probabilistic grammars
in human language-processing tasks (e.g., human reading orspeech understanding).

The most commonly used probabilistic grammar is theprobabilistic context-free
grammar (PCFG), a probabilistic augmentation of context-free grammars in which

DRAFT

2 Chapter 14. Statistical Parsing

each rule is associated with a probability. We introduce PCFGs in the next section,
showing how they can be trained on a hand-labeled Treebank grammar, and how they
can be parsed. We present the most basic parsing algorithm for PCFGs, which is the
probabilistic version of theCKY algorithm that we saw in Ch. 13.

We then show a number of ways that we can improve on this basic probability
model (PCFGs trained on Treebank grammars). One method of improving a trained
Treebank grammar is to change the names of the non-terminals. By making the non-
terminals sometimes more specific and sometimes more general, we can come up with
a grammar with a better probability model that leads to improved parsing scores. An-
other augmentation of the PCFG works by adding more sophisticated conditioning
factors, extending PCFGs to handle probabilisticsubcategorizationinformation and
probabilisticlexical dependencies.

Finally, we describe the standard PARSEVAL metrics for evaluating parsers, and
discuss some psychological results on human parsing.

14.1 PROBABILISTIC CONTEXT-FREE GRAMMARS

The simplest augmentation of the context-free grammar is the Probabilistic Context-
Free Grammar (PCFG), also known as theStochastic Context-Free GrammarPCFG

(SCFG), first proposed by Booth (1969). Recall that a context-freegrammarG isSCFG

defined by four parameters (N, Σ, P, S); a probabilistic context-free grammar augments
each rule inP with a conditional probability. A PCFG is thus defined by the following
components:

N a set ofnon-terminal symbols(or variables)

Σ a set ofterminal symbols (disjoint fromN)

R a set ofrules or productions, each of the formA→ β [p], whereA is
a non-terminal,β is a string of symbols from the infinite set of strings
(Σ∪N)∗, andp is a number between 0 and 1 expressingP(β|A)

S a designatedstart symbol

That is, a PCFG differs from a standard CFG by augmenting eachrule in R with a
conditional probability:

A→ β [p](14.1)

Herep expresses the probability that the given non-terminalA will be expanded to
the sequenceβ. That is,p is the conditional probability of a given expansionβ given
the left-hand-side (LHS) non-terminalA. We can represent this probability as

P(A→ β)

or as

P(A→ β|A)

DRAFT
Section 14.1. Probabilistic Context-Free Grammars 3

S→ NP VP [.80] Det → that [.10] | a [.30] | the[.60]
S→ Aux NP VP [.15] Noun→ book[.10] | flight [.30]
S→ VP [.05] | meal[.15] | money[.05]
NP → Pronoun [.35] | flights[.40] | dinner[.10]
NP → Proper-Noun [.30] Verb→ book[.30] | include[.30]
NP → Det Nominal [.20] | prefer; [.40]
NP → Nominal [.15] Pronoun→ I [.40] | she[.05]
Nominal→ Noun [.75] | me[.15] | you[.40]
Nominal→ Nominal Noun [.20] Proper-Noun→ Houston[.60]
Nominal→ Nominal PP [.05] | TWA[.40]
VP → Verb [.35] Aux→ does[.60] | can[40]
VP → Verb NP [.20] Preposition→ from [.30] | to [.30]
VP → Verb NP PP [.10] | on [.20] | near[.15]
VP → Verb PP [.15] | through[.05]
VP → Verb NP NP [.05]
VP → VP PP [.15]
PP → Preposition NP [1.0]

Figure 14.1 A PCFG which is a probabilistic augmentation of theL1 miniature English
CFG grammar and lexicon of Fig.?? in Ch. 13. These probabilities were made up for
pedagogical purposes and are not based on a corpus (since anyreal corpus would have
many more rules, and so the true probabilities of each rule would be much smaller).

or as

P(RHS|LHS)

Thus if we consider all the possible expansions of a non-terminal, the sum of their
probabilities must be 1:

∑
β

P(A→ β) = 1

Fig. 14.1 shows a PCFG: a probabilistic augmentation of theL1 miniature English
CFG grammar and lexicon . Note that the probabilities of all of the expansions of each
non-terminal sum to 1. Also note that these probabilities were made up for pedagogical
purposes. In any real grammar there are a great many more rules for each non-terminal
and hence the probabilities of any particular rule would tend to be much smaller.

A PCFG is said to beconsistentif the sum of the probabilities of all sentences inCONSISTENT

the language equals 1. Certain kinds of recursive rules cause a grammar to be inconsis-
tent by causing infinitely looping derivations for some sentences. For example a rule
S→ S with probability 1 would lead to lost probability mass due toderivations that
never terminate. See Booth and Thompson (1973) for more details on consistent and
inconsistent grammars.

How are PCFGs used? A PCFG can be used to estimate a number of useful prob-
abilities concerning a sentence and its parse tree(s), including the probability of a par-

DRAFT

4 Chapter 14. Statistical Parsing

ticular parse tree (useful in disambiguation) and the probability of a sentence or a piece
of a sentence (useful in language modeling). Let’s see how this works.

14.1.1 PCFGs for Disambiguation

A PCFG assigns a probability to each parse treeT (i.e., eachderivation) of a sentence
S. This attribute is useful indisambiguation. For example, consider the two parses
of the sentence “Book the dinner flights” shown in Fig. 14.2. The sensible parse on
the left means “Book flights that serve dinner”. The nonsensical parse on the right,
however, would have to mean something like “Book flights on behalf of ‘the dinner’?”,
the way that a structurally similar sentence like “Can you book John flights?” means
something like “Can you book flights on behalf of John?”.

The probability of a particular parseT is defined as the product of the probabilities
of all then rules used to expand each of then non-terminal nodes in the parse treeT,
(where each rulei can be expressed asLHSi →RHSi):

P(T,S) =
n

∏
i=1

P(RHSi|LHSi)(14.2)

The resulting probabilityP(T,S) is both the joint probability of the parse and the
sentence, and also the probability of the parseP(T). How can this be true? First, by
the definition of joint probability:

P(T,S) = P(T)P(S|T)(14.3)

But since a parse tree includes all the words of the sentence,P(S|T) is 1. Thus:

P(T,S) = P(T)P(S|T) = P(T)(14.4)

The probability of each of the trees in Fig. 14.2 can be computed by multiplying
together the probabilities of each of the rules used in the derivation. For example, the
probability of the left tree in Figure 14.2a (call itTle f t) and the right tree (Figure 14.2b
or Tright) can be computed as follows:

P(Tle f t) = .05∗ .20∗ .20∗ .20∗ .75∗ .30∗ .60∗ .10∗ .40= 2.2×10−6

P(Tright) = .05∗ .10∗ .20∗ .15∗ .75∗ .75∗ .30∗ .60∗ .10∗ .40= 6.1×10−7

We can see that the left (transitive) tree in Fig. 14.2(a) hasa much higher probability
than the ditransitive tree on the right. Thus this parse would correctly be chosen by a
disambiguation algorithm which selects the parse with the highest PCFG probability.

Let’s formalize this intuition that picking the parse with the highest probability is
the correct way to do disambiguation. Consider all the possible parse trees for a given
sentenceS. The string of wordsS is called theyield of any parse tree overS. Thus outYIELD

of all parse trees with a yield ofS, the disambiguation algorithm picks the parse tree
which is most probable givenS:

T̂(S) = argmax
Ts.t.S=yield(T)

P(T|S)(14.5)

DRAFT
Section 14.1. Probabilistic Context-Free Grammars 5

S

VP

Verb

Book

NP

Det

the

Nominal

Nominal

Noun

dinner

Noun

flight

S

VP

Verb

Book

NP

Det

the

Nominal

Noun

dinner

NP

Nominal

Noun

flight

Rules P Rules P
S → VP .05 S → VP .05
VP → Verb NP .20 VP → Verb NP NP .10
NP → Det Nominal .20 NP → Det Nominal .20
Nominal → Nominal Noun .20 NP → Nominal .15
Nominal → Noun .75 Nominal → Noun .75

Nominal → Noun .75
Verb → book .30 Verb → book .30
Det → the .60 Det → the .60
Noun → dinner .10 Noun → dinner .10
Noun → flights .40 Noun → flights .40

Figure 14.2 Two parse trees for an ambiguous sentence, The transitive parse (a) cor-
responds to the sensible meaning “Book flights that serve dinner”, while the ditransitive
parse (b) to the nonsensical meaning “Book flights on behalf of ‘the dinner’”.

By definition, the probabilityP(T|S) can be rewritten asP(T,S)/P(S), thus leading to:

T̂(S) = argmax
Ts.t.S=yield(T)

P(T,S)

P(S)
(14.6)

Since we are maximizing over all parse trees for the same sentence,P(S) will be a
constant for each tree, so we can eliminate it:

T̂(S) = argmax
Ts.t.S=yield(T)

P(T,S)(14.7)

Furthermore, since we showed above thatP(T,S) = P(T), the final equation for
choosing the most likely parse neatly simplifies to choosingthe parse with the highest
probability:

T̂(S) = argmax
Ts.t.S=yield(T)

P(T)(14.8)

DRAFT

6 Chapter 14. Statistical Parsing

14.1.2 PCFGs for Language Modeling

A second attribute of a PCFG is that it assigns a probability to the string of words con-
stituting a sentence. This is important inlanguage modeling, whether for use in speech
recognition, machine translation, spell-correction, augmentative communication, or
other applications. The probability of an unambiguous sentence isP(T,S) = P(T)
or just the probability of the single parse tree for that sentence. The probability of an
ambiguous sentence is the sum of the probabilities of all theparse trees for the sen-
tence:

P(S) = ∑
Ts.t.S=yield(T)

P(T,S)(14.9)

= ∑
Ts.t.S=yield(T)

P(T)(14.10)

An additional feature of PCFGs that is useful for language modeling is their ability
to assign a probability to substrings of a sentence. For example, suppose we want to
know the probability of the next wordwi in a sentence given all the words we’ve seen
so farw1, ...,wi−1. The general formula for this is:

P(wi |w1,w2, ...,wi−1) =
P(w1,w2, ...,wi−1,wi , ...)

P(w1,w2, ...,wi−1, ...)
(14.11)

We saw in Ch. 4 a simple approximation of this probability using N-grams, con-
ditioning on only the last word or two instead of the entire context; thus thebigram
approximation would give us:

P(wi |w1,w2, ...,wi−1)≈
P(wi−1,wi)

P(wi−1)
(14.12)

But the fact that theN-gram model can only make use of a couple words of context
means it is ignoring potentially useful prediction cues. Consider predicting the word
after in the following sentence from Chelba and Jelinek (2000):

(14.13) the contract ended with a loss of 7 cents after trading as low as 9 cents

A trigram grammar must predictafter from the words7 cents, while it seems clear
that the verbendedand the subjectcontractwould be useful predictors that a PCFG-
based parser could help us make use of. Indeed, it turns out that a PCFGs allow us
to condition on the entire previous contextw1,w2, ...,wi−1 shown in Equation (14.11).
We’ll see the details of ways to use PCFGs and augmentations of PCFGs as language
models in Sec. 14.9.

In summary, this section and the previous one have shown thatPCFGs can be ap-
plied both to disambiguation in syntactic parsing and to word prediction in language
modeling. Both of these applications require that we be ableto compute the probability
of parse treeT for a given sentenceS. The next few sections introduce some algorithms
for computing this probability.

DRAFT

Section 14.2. Probabilistic CKY Parsing of PCFGs 7

14.2 PROBABILISTIC CKY PARSING OFPCFGS

The parsing problem for PCFGs is to produce the most-likely parseT̂ for a given
sentenceS, i.e.,

T̂(S) = argmax
Ts.t.S=yield(T)

P(T)(14.14)

The algorithms for computing the most-likely parse are simple extensions of the
standard algorithms for parsing; there are probabilistic versions of both the CKY and
Earley algorithms of Ch. 13. Most modern probabilistic parsers are based on theprob-
abilistic CKY (Cocke-Kasami-Younger) algorithm, first described by Ney (1991).PROBABILISTIC CKY

As with the CKY algorithm, we will assume for the probabilistic CKY algorithm
that the PCFG is in Chomsky normal form. Recall from page?? that grammars in CNF
are restricted to rules of the formA → B C, or A → w. That is, the right-hand side of
each rule must expand to either two non-terminals or to a single terminal.

For the CKY algorithm, we represented each sentence as having indices between
the words. Thus an example sentence like

(14.15) Book the flight through Houston.

would assume the following indices between each word:

(14.16) 0© Book① the② flight ③ through④ Houston⑤

Using these indices, each constituent in the CKY parse tree is encoded in a two-
dimensional matrix. Specifically, for a sentence of lengthnand a grammar that contains
V non-terminals, we use the upper-triangular portion of an(n+1)×(n+1) matrix. For
CKY, each celltable[i, j] contained a list of constituents that could span the sequence
of words fromi to j. For probabilistic CKY, it’s slightly simpler to think of the con-
stituents in each cell as constituting a third dimension of maximum lengthV. This
third dimension corresponds to each nonterminal that can beplaced in this cell, and the
value of the cell is then a probability for that nonterminal/constituent rather than a list
of constituents. In summary, each cell[i, j,A] in this (n+1)× (n+1)×V matrix is the
probability of a constituentA that spans positionsi through j of the input.

Fig. 14.3 gives pseudocode for this probabilistic CKY algorithm, extending the
basic CKY algorithm from Fig.??.

Like the CKY algorithm, the probabilistic CKY algorithm as shown in Fig. 14.3
requires a grammar in Chomsky Normal Form. Converting a probabilistic grammar to
CNF requires that we also modify the probabilities so that the probability of each parse
remains the same under the new CNF grammar. Exercise 14.2 asks you to modify the
algorithm for conversion to CNF in Ch. 13 so that it correctlyhandles rule probabilities.

In practice, we more often use a generalized CKY algorithm which handles unit
productions directly rather than converting them to CNF. Recall that Exercise??asked
you to make this change in CKY; Exercise 14.3 asks you to extend this change to
probabilistic CKY.

Let’s see an example of the probabilistic CKY chart, using the following mini-
grammar which is already in CNF:

DRAFT

8 Chapter 14. Statistical Parsing

function PROBABILISTIC-CKY(words,grammar) returns most probable parse
and its probability

for j← from 1 to LENGTH(words) do
for all { A | A → words[j] ∈ grammar}

table[j−1, j ,A]←P(A→ words[j])
for i← from j−2 downto 0 do

for k← i +1 to j−1 do
for all { A | A → BC ∈ grammar,

and table[i,k,B] > 0 and table[k, j ,C] > 0 }
if (table[i,j,A] < P(A → BC) × table[i,k,B] × table[k,j,C]) then

table[i,j,A]←P(A → BC) × table[i,k,B] × table[k,j,C]
back[i,j,A]←{k,B,C}

return BUILD TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]

Figure 14.3 The probabilistic CKY algorithm for finding the maximum probability
parse of a string ofnumwords words given a PCFG grammar withnum rules rules in
Chomsky Normal Form.back is an array of back-pointers used to recover the best parse.
Thebuild tree function is left as an exercise to the reader.

S → NP VP .80 Det → the .50
NP → Det N .30 Det → a .40
VP → V NP .20 N → meal .01

V → includes .05 N → f light .02

Given this grammar, Fig. 14.4 shows the first steps in the probabilistic CKY parse
of this sentence:

(14.17) The flight includes a meal

14.3 LEARNING PCFG RULE PROBABILITIES

Where do PCFG rule probabilities come from? There are two ways to learn probabil-
ities for the rules of a grammar. The simplest way is to use atreebank, a corpus ofTREEBANK

already-parsed sentences. Recall that we introduced in Ch.12 the idea of treebanks and
the commonly-usedPenn Treebank(Marcus et al., 1993), a collection of parse trees in
English, Chinese, and other languages distributed by the Linguistic Data Consortium.
Given a treebank, the probability of each expansion of a non-terminal can be computed
by counting the number of times that expansion occurs and then normalizing.

P(α→ β|α) =
Count(α→ β)

∑γ Count(α→ γ)
=

Count(α→ β)

Count(α)
(14.18)

If we don’t have a treebank, but we do have a (non-probabilistic) parser, we can
generate the counts we need for computing PCFG rule probabilities by first parsing a
corpus of sentences with the parser. If sentences were unambiguous, it would be as

DRAFT

Section 14.3. Learning PCFG Rule Probabilities 9

The flight

[0,1] [0,2] [0,3]

[1,2] [1,3]

[2,3]

Det: .40

includes a meal

[3,4]

[4,5]

N: .02

V: .05

NP: .30 *.40 *.02

= .0024

[0,4]

[1,4]

[2,4]

[3,5]

[3,5]

[1,5]

[0,5]

Figure 14.4 The beginning of the probabilistic CKY matrix. Filling out the rest of the
chart is left as Exercise 14.4 for the reader.

simple as this: parse the corpus, increment a counter for every rule in the parse, and
then normalize to get probabilities.

But wait! Since most sentences are ambiguous, i.e. have multiple parses, we don’t
know which parse to count the rules in. Instead, we need to keep a separate count for
each parse of a sentence and weight each of these partial counts by the probability of
the parse it appears in. But to get these parse probabilitiesto weight the rules we need
to already have a probabilistic parser.

The intuition for solving this chicken-and-egg problem is to incrementally improve
our estimates by beginning with a parser with equal rule probabilities, parsing the sen-
tence, compute a probability for each parse, use these probabilities to weight the counts,
then reestimate the rule probabilities, and so on, until ourprobabilities converge. The
standard algorithm for computing this is called theinside-outsidealgorithm, and wasINSIDEOUTSIDE

proposed by Baker (1979) as a generalization of the forward-backward algorithm of
Ch. 6. Like forward-backward, inside-outside is a special case of the EM (expectation-
maximization) algorithm, and hence has two steps: theexpectationstep, orE-step,EXPECTATION

ESTEP and themaximization step, orM-step. See Lari and Young (1990) or Manning and
MAXIMIZATION

MSTEP

Schütze (1999) for a complete description of the algorithm.
This use of the inside-outside algorithm to estimate the rule probabilities for a

grammar is actually a kind of limited use of inside-outside.The inside-outside al-
gorithm can actually be used not only to set the rule probabilities, but even to induce

DRAFT

10 Chapter 14. Statistical Parsing

the grammar rules themselves. It turns out, however, that grammar induction is so dif-
ficult that inside-outside by itself is not a very successfulgrammar inducer; see the end
notes for pointers to other grammar induction algorithms.

14.4 PROBLEMS WITH PCFGS

While probabilistic context-free grammars are a natural extension to context-free gram-
mars, they have two main problems as probability estimators:

poor independence assumptions:CFG rules impose an independence assumption
on probabilities, resulting in poor modeling of structuraldependencies across
the parse tree.

lack of lexical conditioning: CFG rules don’t model syntactic facts about specific
words, leading to problems with subcategorization ambiguities, preposition at-
tachment, and coordinate structure ambiguities.

Because of these problems, most current probabilistic parsing models use some
augmented version of PCFGs, or modify the Treebank-based grammar in some way.
In the next few sections after discussing the problems in more detail we will introduce
some of these augmentations.

14.4.1 Independence assumptions miss structural dependencies be-
tween rules

Let’s look at these problems in more detail. Recall that in a CFG the expansion of a
non-terminal is independent of the context, i.e., of the other nearby non-terminals in the
parse tree. Similarly, in a PCFG, the probability of a particular rule likeNP→ Det N
is also independent of the rest of the tree. By definition, theprobability of a group of
independent events is the product of their probabilities. These two facts explain why
in a PCFG we compute the probability of a tree by just multiplying the probabilities of
each non-terminal expansion.

Unfortunately this CFG independence assumption results inpoor probability esti-
mates. This is because in English the choice of how a node expands can after all be
dependent on the location of the node in the parse tree. For example, in English it turns
out that NPs that are syntacticsubjectsare far more likely to be pronouns, while NPs
that are syntacticobjectsare far more likely to be non-pronominal (e.g., a proper noun
or a determiner noun sequence), as shown by these statisticsfor NPs in the Switchboard
corpus (Francis et al., 1999):1

1 Distribution of subjects from 31,021 declarative sentences; distribution of objects from 7,489 sentences.
This tendency is caused by the use of subject position to realize thetopic or old information in a sentence
(Givón, 1990). Pronouns are a way to talk about old information, while non-pronominal (“lexical”) noun-
phrases are often used to introduce new referents. We’ll talk more about new and old information in Ch. 21.

DRAFT
Section 14.4. Problems with PCFGs 11

Pronoun Non-Pronoun
Subject 91% 9%
Object 34% 66%

Unfortunately there is no way to represent this contextual difference in the proba-
bilities in a PCFG. Consider two expansions of the non-terminal NP as a pronoun or
as a determiner+noun. How shall we set the probabilities of these two rules? If we set
their probabilities to their overall probability in the Switchboard corpus, the two rules
have about equal probability.

NP → DT NN .28

NP → PRP .25

Because PCFGs don’t allow a rule probability to be conditioned on surrounding
context, this equal probability is all we get; there is no wayto capture the fact that in
subject position, the probability forNP→ PRPshould go up to .91, while in object
position, the probability forNP→DT NN should go up to .66.

These dependencies could be captured if the probability of expanding an NP as a
pronoun (e.g.,NP→ PRP) versus a lexical NP (e.g.,NP→ DT NN) wereconditioned
on whether the NP was a subject or an object. Sec. 14.5 will introduce the technique of
parent annotation for adding this kind of conditioning.

14.4.2 Lack of sensitivity to lexical dependencies

A second class of problems with PCFGs is their lack of sensitivity to the words in the
parse tree. Words do play a role in PCFGs, since the parse probability includes the
probability of a word given a part-of-speech (i.e., from rules likeV→ sleep, NN→
book, etc).

But it turns out that lexical information is useful in other places in the grammar,
such as in resolvingprepositional phrase attachment(PP) ambiguities. Since prepo-

PREPOSITIONAL
PHRASE

ATTACHMENT

sitional phrases in English can modify a noun phrase or a verbphrase, when a parser
finds a prepositional phrase, it must decide where toattach it into the tree. Consider
the following examples:

(14.19) Workers dumped sacks into a bin.

Fig. 14.5 shows two possible parse trees for this sentence; the one on the left is
the correct parse; Fig. 14.6 shows another perspective on the preposition attachment
problem, demonstrating that resolving the ambiguity in Fig. 14.5 is equivalent to de-
ciding whether to attach the prepositional phrase into the rest of the tree at the NP or
VP nodes; we say that the correct parse requiresVP attachment while the incorrectVP ATTACHMENT

parse impliesNP attachment.NP ATTACHMENT

Why doesn’t a PCFG already deal with PP attachment ambiguities? Note that the
two parse trees in Fig. 14.5 have almost the exact same rules;they differ only in that
the left-hand parse has has this rule:

VP → VBD NP PP

DRAFT

12 Chapter 14. Statistical Parsing

S

NP

NNS

workers

VP

VBD

dumped

NP

NNS

sacks

PP

P

into

NP

DT

a

NN

bin

S

NP

NNS

workers

VP

VBD

dumped

NP

NP

NNS

sacks

PP

P

into

NP

DT

a

NN

bin

Figure 14.5 Two possible parse trees for aprepositional phrase attachment ambiguity. The left parse is the
sensible one, in which ‘into a bin’ describes the resulting location of the sacks. In the right incorrect parse, the
sacks to be dumped are the ones which are already ‘into a bin’,whatever that could mean.

S

NP VP

NNS VBD NP PP

workers NNS P NP

dumped intoDT NN

sacks a bin

Figure 14.6 Another view of the preposition attachment problem; shouldthe PP on the right attach to the VP
or NP nodes of the partial parse tree on the left?

while the right-hand parse has these:

VP → VBD NP

NP → NP PP

Depending on how these probabilities are set, a PCFG willalways either prefer NP
attachment or VP attachment. As it happens, NP attachment isslightly more common
in English, and so if we trained these rule probabilities on acorpus, we might always
prefer NP attachment, causing us to misparse this sentence.

But suppose we set the probabilities to prefer the VP attachment for this sentence.
Now we would misparse the following sentence which requiresNP attachment:

(14.20) fishermen caught tons of herring

DRAFT

Section 14.5. Improving PCFGs by Splitting and Merging Nonterminals 13

What is the information in the input sentence which lets us know that (14.20) re-
quires NP attachment while (14.19) requires VP attachment?

It should be clear that these preferences come from the identities of the verbs, nouns
and prepositions. It seems that the affinity between the verbdumpedand the preposition
into is greater than the affinity between the nounsacksand the prepositioninto, thus
leading to VP attachment. On the other hand in (14.20) , the affinity betweentonsand
of is greater than that betweencaughtandof, leading to NP attachment.

Thus in order to get the correct parse for these kinds of examples, we need a model
which somehow augments the PCFG probabilities to deal with theselexical depen-
dencystatistics for different verbs and prepositions.LEXICAL

DEPENDENCY

Coordination ambiguities are another case where lexical dependencies are the key
to choosing the proper parse. Fig. 14.7 shows an example fromCollins (1999), with
two parses for the phrasedogs in houses and cats. Becausedogsis semantically a
better conjunct forcats thanhouses(and because dogs can’t fit inside cats) the parse
[dogs in [NP houses and cats]]is intuitively unnatural and should be dispreferred. The
two parses in Fig. 14.7, however, have exactly the same PCFG rules and thus a PCFG
will assign them the same probability.

(a) NP (b) NP

NP Conj NP NP PP

NP PP and Noun Noun Prep NP

Noun Prep NP cats dogs in NP Conj NP

dogs in Noun Noun and Noun

houses houses cats

Figure 14.7 An instance of coordination ambiguity. Although the left structure is intu-
itively the correct one, a PCFG will assign them identicallyprobabilities since both struc-
ture use the exact same rules. After Collins (1999).

In summary, we have shown in this section and the previous onethat probabilistic
context-free grammars are incapable of modeling importantstructural andlexical de-
pendencies. In the next two sections we sketch current methods for augmenting PCFGs
to deal with both these issues.

14.5 IMPROVING PCFGS BY SPLITTING AND MERGING NONTER-
MINALS

Let’s start with the first of the two problems with PCFGs mentioned above: their in-
ability to model structural dependencies, like the fact that NPs in subject position tend
to be pronouns, where NPs in object position tend to have fulllexical (non-pronominal)

DRAFT

14 Chapter 14. Statistical Parsing

form. How could we augment a PCFG to correctly model this fact? One idea would
be tosplit the NP non-terminal into two versions: one for subjects, onefor objects.SPLIT

Having two nodes (e.g.,NPsubjectandNPobject) would allow us to correctly model
their different distributional properties, since we wouldhave different probabilities for
the ruleNPsubject→ PRPand the ruleNPobject → PRP.

One way to implement this intuition of splits is to doparent annotation (Johnson,PARENT ANNOTATION

1998), in which we annotate each node with its parent in the parse tree. Thus a node NP
which is the subject of the sentence, and hence has parent S, would be annotated NPˆS,
while a direct object NP, whose parent is VP, would be annotated NPˆVP. Fig. 14.8
shows an example of a tree produced by a grammar that parent annotates the phrasal
non-terminals (like NP and VP).

a) S

NP

PRP

I

VP

VBD

need

NP

DT

a

NN

flight

b) S

NPˆS

PRP

I

VPˆS

VBD

need

NPˆVP

DT

a

NN

flight

Figure 14.8 A standard PCFG parse tree (a) and one which hasparent annotation on
the nodes which aren’t preterminal (b). All the non-terminal nodes (except the preterminal
part-of-speech nodes) in parse (b) have been annotated withthe identity of their parent.

In addition to splitting these phrasal nodes, we can also improve a PCFG by split-
ting the preterminal part-of-speech nodes (Klein and Manning, 2003b). For example,
different kinds of adverbs (RB) tend to occur in different syntactic positions: the most
common adverbs with ADVP parents arealso andnow, with VP parents aren’t and
not, and with NP parentsonly andjust. Thus adding tags like RBˆADVP, RBˆVP, and
RBˆNP can be useful in improving PCFG modeling.

Similarly, the Penn Treebank tag IN is used to mark a wide variety of parts-of-
speech, including subordinating conjunctions (while, as, if), complementizers (that,
for), and prepositions (of, in, from). Some of these differences can be captured by
parent annotation (subordinating conjunctions occur under S, prepositions under PP),
while others require specifically splitting the pre-terminal nodes. Fig. 14.9 shows an
example from Klein and Manning (2003b), where even a parent annotated grammar
incorrectly parsesworksas a noun into see if advertising works. Splitting preterminals
to allow if to prefer a sentential complement results in the correct verbal parse.

In order to deal with cases where parent annotation is insufficient, we can also
hand-write rules that specify a particular node split basedon other features of the tree.
For example to distinguish between complementizer IN and subordinating conjunc-
tion IN, both of which can have the same parent, we could writerules conditioned on
other aspects of the tree such as the lexical identity (the lexemethat is likely to be a
complementizer,asa subordinating conjunction).

DRAFT
Section 14.6. Probabilistic Lexicalized CFGs 15

VPˆS

TO

to

VPˆVP

VB

see

PPˆVP

IN

if

NPˆPP

NN

advertising

NNS

works

VPˆS

TOˆVP

to

VPˆVP

VBˆVP

see

SBARˆVP

INˆSBAR

if

SˆSBAR

NPˆS

NNˆNP

advertising

VPˆS

VBZˆVP

works

Figure 14.9 An incorrect parse even with a parent annotated parse (left). The correct parse (right), was pro-
duced by a grammar in which the pre-terminal nodes have been split, allowing the probabilistic grammar to
capture the fact thatif prefers sentential complements; adapted from Klein and Manning (2003b).

Node-splitting is not without problems; it increases the size of the grammar, and
hence reduces the amount of training data available for eachgrammar rule, leading to
overfitting. Thus it is important to split to just the correctlevel of granularity for a
particular training set. While early models involved hand-written rules to try to find an
optimal number of rules (Klein and Manning, 2003b), modern models automatically
search for the optimal splits. Thesplit and mergealgorithm of Petrov et al. (2006),SPLIT AND MERGE

for example starts with a simple X-bar grammar, and then alternately splits the non-
terminals, and merges together non-terminals, finding the set of annotated nodes which
maximizes the likelihood of the training set treebank. As ofthe time of this writing,
the performance of the Petrov et al. (2006) algorithm as the best of any known parsing
algorithm on the Penn Treebank.

14.6 PROBABILISTIC LEXICALIZED CFGS

The previous section showed that a simple probabilistic CKYalgorithm for parsing
raw PCFGs can achieve extremely high parsing accuracy if thegrammar rule symbols
are redesigned via automatic splits and merges.

In this section, we discuss an alternative family of models in which instead of mod-
ifying the grammar rules, we modify the probabilistic modelof the parser to allow for
lexicalizedrules. The resulting family of lexicalized parsers includes the well-known
Collins parser (Collins, 1999) andCharniak parser (Charniak, 1997), both of whichCOLLINS PARSER

CHARNIAK PARSER are publicly available and widely used throughout natural language processing.
We saw in Sec.?? in Ch. 12 that syntactic constituents could be associated with

a lexicalhead, and we defined alexicalized grammar in which each non-terminal inLEXICALIZED
GRAMMAR

DRAFT

16 Chapter 14. Statistical Parsing

the tree is annotated with its lexical head, where a rule likeVP→VBD NP PPwould
be extended as:

VP(dumped)→ VBD(dumped) NP(sacks) PP(into)(14.21)

In the standard type of lexicalized grammar we actually makea further extension,
which is to associate thehead tag, the part-of-speech tags of the headwords, withHEAD TAG

the nonterminal symbols as well. Each rule is thus lexicalized by both the headword
and the head tag of each constituent resulting in a format forlexicalized rules like:

VP(dumped,VBD)→ VBD(dumped,VBD) NP(sacks,NNS) PP(into,IN)(14.22)

We show a lexicalized parse tree with head tags in Fig. 14.10,extended from Fig.??.

TOP

S(dumped,VBD)

NP(workers,NNS)

NNS(workers,NNS)

workers

VP(dumped,VBD)

VBD(dumped,VBD)

dumped

NP(sacks,NNS)

NNS(sacks,NNS)

sacks

PP(into,P)

P(into,P)

into

NP(bin,NN)

DT(a,DT)

a

NN(bin,NN)

bin

Internal Rules Lexical Rules
TOP → S(dumped,VBD) NNS(workers,NNS) → workers
S(dumped,VBD) → NP(workers,NNS) VP(dumped,VBD) VBD(dumped,VBD) → dumped
NP(workers,NNS)→ NNS(workers,NNS) NNS(sacks,NNS) → sacks
VP(dumped,VBD)→ VBD(dumped, VBD) NP(sacks,NNS) PP(into,P)P(into,P) → into
PP(into,P) → P(into,P) NP(bin,NN) DT(a,DT) → a
NP(bin,NN) → DT(a,DT) NN(bin,NN) NN(bin,NN) → bin

Figure 14.10 A lexicalized tree, including head tags, for a WSJ sentence,adapted from Collins (1999). Below
we show the PCFG rules that would be needed for this parse tree, internal rules on the left, and lexical rules on
the right.

In order to generate such a lexicalized tree, each PCFG rule must be augmented to
identify one right-hand side constituent to be the head daughter. The headword for a

DRAFT
Section 14.6. Probabilistic Lexicalized CFGs 17

node is then set to the headword of its head daughter, and the head tag to the part-of-
speech tag of the headword. Recall that we gave in Fig.?? a set of hand-written rules
for identifying the heads of particular constituents.

A natural way to think of a lexicalized grammar is like parentannotation, i.e. as a
simple context-free grammar with many copies of each rule, one copy for each possible
headword/head tag for each constituent. Thinking of a probabilistic lexicalized CFG in
this way would lead to the set of simple PCFG rules shown belowthe tree in Fig. 14.10.

Note that Fig. 14.10 shows two kinds of rules:lexical rules, which express theLEXICAL RULES

expansion of a preterminal to a word, andinternal rules, which express the otherINTERNAL RULES

rule expansions. We need to distinguish these kinds of rulesin a lexicalized gram-
mar because they are associated with very different kinds ofprobabilities. The lexical
rules are deterministic, i.e., have probability 1.0, sincea lexicalized preterminal like
NN(bin,NN) can only expand to the wordbin. But for the internal rules we will need
to estimate probabilities.

Suppose we were to treat a probabilistic lexicalized CFG like a really big CFG that
just happened to have lots of very complex non-terminals andestimate the probabilities
for each rule from maximum likelihood estimates. Thus, using Eq. 14.18, the MLE
estimate for the probability for the ruleP(VP(dumped,VBD)→ VBD(dumped, VBD)
NP(sacks,NNS) PP(into,P))would be:

P(VP(dumped,VBD)→VBD(dumped,VBD)NP(sacks,NNS)PP(into,P))

=
Count(VP(dumped,VBD)→VBD(dumped,VBD)NP(sacks,NNS)PP(into,P))

Count(VP(dumped,VBD))
(14.23)

But there’s no way we can get good estimates of counts like those in (14.23), be-
cause they are so specific: we’re very unlikely to see many (oreven any) instances of
a sentence with a verb phrase headed bydumpedthat has one NP argument headed by
sacksand a PP argument headed byinto. In other words, counts of fully lexicalized
PCFG rules like this will be far too sparse and most rule probabilities will come out
zero.

The idea of lexicalized parsing is to make some further independence assumptions
to break down each rule, so that we would estimate the probability

P(VP(dumped,VBD)→VBD(dumped,VBD) NP(sacks,NNS) PP(into,P))(14.24)

as the product of smaller independent probability estimates for which we could acquire
reasonable counts. The next section summarizes one such method, the Collins parsing
method.

14.6.1 The Collins Parser

Modern statistical parsers differ in exactly which independence assumptions they make.
In this section we describe a simplified version of Collins’s(1999) Model 1, but there
are a number of other parsers that are worth knowing about; see the summary at the
end of the chapter.

DRAFT

18 Chapter 14. Statistical Parsing

The first intuition of the Collins parser is to think of the right-hand side of every (in-
ternal) CFG rule as consisting of a head non-terminal, together with the non-terminals
to the left of the head, and the non-terminals to the right of the head. In the abstract,
we think about these rules as follows:

LHS→ LnLn−1 ...L1 H R1 ...Rn−1Rn(14.25)

Since this is a lexicalized grammar, each of the symbols likeL1 or R3 or H or LHS
is actually a complex symbol representing the category and its head and head tag, like
VP(dumped,VP)or NP(sacks,NNS).

Now instead of computing a single MLE probability for this rule, we are going to
break down this rule via a neat generative story, a slight simplification of what is called
Collins Model 1. This new generative story is that given the left-hand side, we first
generate the head of the rule, and then generate the dependents of the head, one by one,
from the inside out. Each of these generation steps will haveits own probability.

We are also going to add a specialSTOP non-terminal at the left and right edges
of the rule; this non-terminal will allow the model to know when to stop generating
dependents on a given side. We’ll generate dependents on theleft side of the head until
we’ve generatedSTOPon the left side of the head, at which point we move to the right
side of the head and start generating dependents there untilwe generateSTOP. So it’s
as if we are generating a rule augmented as follows:

P(VP(dumped,VBD)→ STOPVBD(dumped,VBD) NP(sacks,NNS) PP(into,P) STOP(14.26)

Let’s see the generative story for this augmented rule. We’re going to make use of
three kinds of probabilities:PH for generating heads,PL for generating dependents on
the left, andPR for generating dependents on the right.

First generate the head VBD(dumped,VBD) with proba-
bility
P(H|LHS) = P(VBD(dumped,VBD)| VP(dumped,VBD))

VP(dumped,VBD)

VBD(dumped,VBD)

Then generate the left dependent (which is STOP, since
there isn’t one) with probability
P(STOP| VP(dumped,VBD) VBD(dumped,VBD)

VP(dumped,VBD)

STOP VBD(dumped,VBD)

Then generate the right dependent NP(sacks,NNS) with
probability
Pr (NP(sacks,NNS| VP(dumped,VBD),
VBD(dumped,VBD))

VP(dumped,VBD)

STOP VBD(dumped,VBD) NP(sacks,NNS)

Then generate the right dependent PP(into,P) with proba-
bility
Pr (PP(into,P)| VP(dumped,VBD), VBD(dumped,VBD))

VP(dumped,VBD)

STOP VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)

DRAFT
Section 14.6. Probabilistic Lexicalized CFGs 19

Finally generate the right dependent STOP with probabil-
ity
Pr (STOP| VP(dumped,VBD), VBD(dumped,VBD))

VP(dumped,VBD)

STOP VBD(dumped,VBD) NP(sacks,NNS) PP(into,P) STOP

In summary, the probability of this rule:

P(VP(dumped,VBD)→VBD(dumped,VBD) NP(sacks,NNS)PP(into,P))(14.27)

is estimated as:

PH(VBD|VP,dumped) × PL(STOP|VP,VBD,dumped)(14.28)

× PR(NP(sacks,NNS)|VP,VBD,dumped)

× PR(PP(into,P)|VP,VBD,dumped)

× PR(STOP|VP,VBD,dumped)

Each of these probabilities can be estimated from much smaller amounts of data
than the full probability in (14.27). For example, the maximum likelihood estimate for
the component probabilityPR(NP(sacks,NNS)|V P,VBD,dumped) is:

PR(NP(sacks,NNS)|VP,VBD,dumped) =

Count(VP(dumped,VBD) with NNS(sacks)as a daughter somewhere on the right)

Count(VP(dumped,VBD))
(14.29)

These counts are much less subject to sparsity problems thancomplex counts like those
in (14.27).

More generally, if we useh to mean a headword together with its tag,l to mean a
word+tag on the left andr to mean mean a word+tag on the right, the probability of an
entire rule can be expressed as:

1. Generate the head of the phraseH(hw,ht) with probabilityPH(H(hw,ht)|P,hw,ht)

2. Generate modifiers to the left of the head with total probability:

n+1

∏
i=1

PL(Li(lwi , lt i)|P,H,hw,ht)

such thatLn+1(lwn+1, ltn+1) =STOP, and we stop generating once we’ve gen-
erated aSTOPtoken.

3. Generate modifiers to the right of the head with total probability:

n+1

∏
i=1

PP(Ri(rwi , rt i)|P,H,hw,ht)

DRAFT

20 Chapter 14. Statistical Parsing

such thatRn+1(rwn+1, rtn+1) = STOP, and we stop generating once we’ve
generated aSTOPtoken.

14.6.2 Advanced: Further Details of the Collins Parser

The actual Collins parser models are more complex (in a couple of ways) than the
simple model presented in the previous section. Collins Model 1 includes adistanceDISTANCE

feature. Thus instead of computingPL andPR as follows:

PL(Li(lwi , lt i)|P,H,hw,ht)(14.30)

PR(Ri(rwi , rt i)|P,H,hw,ht)(14.31)

Collins Model 1 conditions also on a distance feature:

PL(Li(lwi , lt i)|P,H,hw,ht,distanceL(i−1))(14.32)

PR(Ri(rwi , rt i)|P,H,hw,ht,distanceR(i−1))(14.33)

The distance measure is a function of the sequence of wordsbelowthe previous modi-
fiers (i.e. the words which are the yield of each modifier non-terminal we have already
generated on the left). Fig. 14.11, adapted from Collins (2003) shows the computation
of the probabilityP(R2(rh2, rt2)|P,H,hw,ht,distanceR(1)):

P(hw,ht)

H(hw,ht)

...h...

R1(rw1,rt1)

| ← distance→ |

R2(rw2,rt2)

Figure 14.11 The next child R2 is generated with probability
P(R2(rh2, rt2)|P,H,hw,ht,distanceR(1)). The distance is the yield of the previous
dependent nonterminalR1. Had there been another intervening dependent, its yield would
have been included as well. Adapted from Collins (2003).

The simplest version of this distance measure is just a tupleof two binary features
based on the surface string below these previous dependencies: (1) is the string of
length zero? (i.e. were were no previous words generated?) (2) does the string contain
a verb?

Collins Model 2 adds more sophisticated features, conditioning on subcategoriza-
tion frames for each verb, and distinguishing arguments from adjuncts.

Finally, smoothing is as important for statistical parsersas it was forN-gram mod-
els. This is particularly true for lexicalized parsers, since (even using the Collins or
other methods of independence assumptions) the lexicalized rules will otherwise con-
dition on many lexical items that may never occur in training.

DRAFT

Section 14.7. Evaluating Parsers 21

Consider the probabilityPR(Ri(rwi , rt i)|P,hw,ht). What do we do if a particular
right-hand side constituent never occurs with this head? The Collins model addresses
this problem by interpolating three backed-off models: fully lexicalized (conditioning
on the headword), backing off to just the head tag, and altogether unlexicalized:

Backoff Level PR(Ri(rwi , rt i |...) Example
1 PR(Ri(rwi , rt i)|P,hw,ht) PR(NP(sacks,NNS)|VP, VBD, dumped)
2 PR(Ri(rwi , rt i)|P,ht) PR(NP(sacks,NNS)|V P,VBD)
3 PR(Ri(rwi , rt i)|P) PR(NP(sacks,NNS)|V P)

Similar backoff models are built also forPL and PH . Although we’ve used the
word ‘backoff’, in fact these are not backoff models but interpolated models. The
three models above are linearly interpolated, wheree1, e2, ande3 are the maximum
likelihood estimates of the three backoff models above:

PR(...) = λ1e1 +(1−λ1)(λ2e2 +(1−λ2)e3)

The values ofλ1andλ2 are set to implement Witten-Bell discounting (?) following
Bikel et al. (1997).

Unknown words are dealt with in the Collins model by replacing any unknown
word in the test set, and any word occurring less than 6 times in the training set, with a
specialUNKNOWN word token. Unknown words in the test set are assigned a part-of-
speech tag in a preprocessing step by the Ratnaparkhi (1996)tagger; all other words
are tagged as part of the parsing process.

The parsing algorithm for the Collins model is an extension of probabilistic CKY;
see Collins (2003). Extending the CKY algorithm to handle basic lexicalized probabil-
ities is left as an exercise for the reader.

14.7 EVALUATING PARSERS

The standard techniques for evaluating parsers and grammars are called the PARSE-
VAL measures, and were proposed by Black et al. (1991) based on the same ideas from
signal-detection theory that we saw in earlier chapters. The intuition of the PARSE-
VAL metric is to measure how much theconstituentsin the hypothesis parse tree look
like the constituents in a hand-labeled gold reference parse. PARSEVAL thus assumes
we have a human-labeled “gold standard” parse tree for each sentence in the test set;
we generally draw these gold standard parses from a treebanklike the Penn Treebank.

Given these gold standard reference parses for a test set, a given constituent in a
hypothesis parseCh of a sentences is labeled “correct” if there is a constituent in the
reference parseCr with the same starting point, ending point, and non-terminal symbol.

We can then measure the precision and recall just as we did forchunking in the
previous chapter.

labeled recall:= # of correct constituents in hypothesis parse ofs
of correct constituents in reference parse ofs

labeled precision:= # of correct constituents in hypothesis parse ofs
of total constituents in hypothesis parse ofs

DRAFT

22 Chapter 14. Statistical Parsing

As with other uses of precision and recall, instead of reporting them separately, we
often report a single number, theF-score, which is the harmonic mean of precision and
recall:

F =
2PR
P+R

(14.34)

We additionally use a new metric, crossing brackets, for each sentences:

cross-brackets:the number of constituents for which the reference parse hasa brack-
eting such as ((A B) C) but the hypothesis parse has a bracketing such as (A (B
C)).

As of the time of this writing, the performance of modern parsers that are trained
and tested on the Wall Street Journal treebank is somewhat higher than 90% recall,
90% precision, and about 1% cross-bracketed constituents per sentence.

For comparing parsers which use different grammars, the PARSEVAL metric in-
cludes a canonicalization algorithm for removing information likely to be grammar-
specific (auxiliaries, pre-infinitival “to”, etc.) and for computing a simplified score. The
interested reader should see Black et al. (1991). The canonical publicly-available im-
plementation of the PARSEVAL metrics is calledevalb (Sekine and Collins, 1997).EVALB

You might wonder why we don’t evaluate parsers by measuring how manysen-
tencesare parsed correctly, instead of measuringconstituentaccuracy. The reason we
use constituents is that measuring constituents gives us a more fine-grained metric.
This is especially true for long sentences, where most parsers don’t get a perfect parse.
If we just measured sentence accuracy, we wouldn’t be able todistinguish between a
parse that got most of the constituents wrong, and one that just got one constituent
wrong.

Nonetheless, constituents are not always an optimal domainfor parser evaluation.
For example, using the PARSEVAL metrics requires that our parser produce trees in
the exact same format as the gold standard. That means that ifwe want to evaluate a
parser which produces different styles of parses (dependency parses, or LFG feature-
structures, etc.) against say the Penn Treebank (or againstanother parser which pro-
duces Treebank format), we need to map the output parses intoTreebank format. A
related problem is that constituency may not be the level we care the most about. We
might be more interested in how well the parser does at recovering grammatical depen-
dencies (subject, object, etc), which could give us a bettermetric for how useful the
parses would be to semantic understanding. For these purposes we can use alternative
evaluation metrics based on measuring the precision and recall of labeled dependen-
cies, where the labels indicate the grammatical relations (Lin, 1995; Carroll et al.,
1998; Collins et al., 1999). Kaplan et al. (2004), for example, compared the Collins
(1999) parser with the Xerox XLE parser (Riezler et al., 2002), which produces much
richer semantic representations, by converting both parsetrees to a dependency repre-
sentation.

DRAFT

Section 14.8. Advanced: Discriminative Reranking 23

14.8 ADVANCED: DISCRIMINATIVE RERANKING

The models we have seen of parsing so far, the PCFG parser and the Collins lexical-
ized parser, are generative parsers. By this we mean that theprobabilistic model im-
plemented in these parsers gives us the probability of generating a particular sentence
by assigning a probability to each choice the parser could make in this generation pro-
cedure.

Generative models have some significant advantages; they are easy to train using
maximum likelihood and they give us an explicit model of how different sources of
evidence are combined. But generative parsing models also make it hard to incorporate
arbitrary kinds of information into the probability model.This is because the probabil-
ity is based on the generative derivation of a sentence; it isdifficult to add features that
are not local to a particular PCFG rule.

Consider for example how to represent global facts about tree structure. Parse
trees in English tend to be right-branching; we’d thereforelike our model to assign
a higher probability to a tree which is more right-branching, all else being equal. It
is also the case that heavy constituents (those with a large number of words) tend to
appear later in the sentence. Or we might want to condition our parse probabilities on
global facts like the identity of the speaker (perhaps some speakers are more likely to
use complex relative clauses, or use the passive). Or we might want to condition on
complex discourse factors across sentences. None of these kinds of global factors is
trivial to incorporate into the generative models we have been considering. A simplistic
model that for example makes each non-terminal dependent onhow right-branching the
tree is in the parse so far, or makes each NP non-terminal sensitive to the number of
relative clauses the speaker or writer used in previous sentences, would result in counts
that are far too sparse.

We discussed this problem in Ch. 6, where the need for these kinds of global fea-
tures motivated the use of log-linear (MEMM) models for POS tagging instead of
HMMs in chapter 6. For parsing, there are two broad classes ofdiscriminative models:
dynamic programming approaches and two-stage models of parsing that usediscrimi-
native reranking. We’ll discuss discriminative reranking in the rest of thissection; seeDISCRIMINATIVE

RERANKING

the end of the chapter for pointers to discriminative dynamic programming approaches.
In the first stage of a discriminative reranking system, we can run a normal statis-

tical parser of the type we’ve described so far. But instead of just producing the single
best parse, we modify the parser to produce a ranked list of parses together with their
probabilities. We call this ranked list ofN parses theN-best list (theN-best list wasNBEST LIST

first introduced in Ch. 9 when discussing multiple-pass decoding models for speech
recognition). There are various ways to modify statisticalparsers to produce anN-best
list of parses; see the end of the chapter for pointers to the literature. For each sentence
in the training set and the test set, we run thisN-best parser and produce a set ofN
parse/probability pairs.

The second stage of a discriminative reranking model is a classifier which takes
each of these sentences with theirN parse/probability pairs as input, extracts some
large set of features and chooses the single best parse from theN-best list. We can use
any type of classifier for the reranking, such as the log-linear classifiers introduced in

DRAFT

24 Chapter 14. Statistical Parsing

Ch. 6.
A wide variety of features can be used for reranking. One important feature to

include is the parse probability assigned by the first-stagestatistical parser. Other fea-
tures might include each of the CFG rules in the tree, the number of parallel conjuncts,
how heavy each constituent is, measures of how right-branching the parse tree is, how
many times various tree fragments occur, bigrams of adjacent non-terminals in the tree,
and so on.

The two-stage architecture has a weakness: the accuracy rate of the complete ar-
chitecture can never be better than the accuracy rate of the best parse in the first-stage
N-best list. This is because the reranking approach is merelychoosing one of theN-best
parses; even if we picked the very best parse in the list, we can’t get 100% accuracy if
the correct parse isn’t in the list! Therefore it is important to consider the ceilingoracle
accuracy(often measured in F-score) of theN-best list. The oracle accuracy (F-score)ORACLE ACCURACY

of a particularN-best list is the accuracy (F-score) we get if we chose the parse that
had the highest accuracy. We call this anoracle accuracy because it relies on perfect
knowledge (as if from an oracle) of which parse to pick.2 Of course it only makes sense
to implement discriminative reranking if theN-best F-score is higher than the 1-best
F-score. Luckily this is often the case; for example the Charniak (2000) parser has an
F-score of 0.897 on section 23 of the Penn Treebank, but the Charniak and Johnson
(2005) algorithm for producing the 50-best parses has a muchhigher oracle F-score of
0.968.

14.9 ADVANCED: PARSER-BASED LANGUAGE MODELING

We said earlier that statistical parsers can take advantageof longer-distance informa-
tion thanN-grams, which suggests that they might do a better job at language model-
ing/word prediction. It turns out that if we have a very largeamount of training data, a
4-gram or 5-gram grammar is nonetheless still the best way todo language modeling.
But in situations where there is not enough data for such hugemodels, parser-based
language models are beginning to be developed which have higher accuracyN-gram
models.

Two common applications for language modeling are speech recognition and ma-
chine translation. The simplest way to use a statistical parser for language modeling
for either of these applications is via a two-stage algorithm of the type discussed in the
previous section and in Sec.??. In the first stage, we run a normal speech recognition
decoder, or machine translation decoder, using a normalN-gram grammar. But instead
of just producing the single best transcription or translation sentence, we modify the
decoder to produce a rankedN-best list of transcriptions/translations sentences, each
one together with its probability (or, alternatively, a lattice).

Then in the second stage, we run our statistical parser and assign a parse probability
to each sentence in theN-best list or lattice. We then rerank the sentences based on
this parse probability and choose the single best sentence.This algorithm can work
better than using a simple trigram grammar. For example, on the task of recognizing

2 We introduced this same oracle idea in Ch. 9 when we talked about thelattice error rate .

DRAFT

Section 14.10. Human Parsing 25

spoken sentences from the Wall Street Journal using this two-stage architecture, the
probabilities assigned by the Charniak (2001) parser improved the word error rate by
about 2 percent absolute, over a simple trigram grammar computed on 40 million words
(Hall and Johnson, 2003). We can either use the parse probabilities assigned by the
parser as-is, or we can linearly combine it with the originalN-gram probability.

An alternative to the two-pass architecture, at least for speech recognition, is to
modify the parser to run strictly left-to-right, so that it can incrementally give the proba-
bility of the next word in the sentence. This would allow the parser to be fit directly into
the first-pass decoding pass and obviate the second-pass altogether. While a number
of such left-to-right parser-based language modeling algorithms exist (Stolcke, 1995;
Jurafsky et al., 1995; Roark, 2001; Xu et al., 2002), it is fair to say that it is still early
days for the field of parser-based statistical language models.

14.10 HUMAN PARSING

Are the kinds of probabilistic parsing models we have been discussing also used by
humans when they are parsing? This question lies in a field called human sentence
processing? Recent studies suggest that there are at least two ways in which humansSENTENCE

PROCESSING

apply probabilistic parsing algorithms, although there isstill disagreement on the de-
tails.

One family of studies has shown that when humans read, the predictability of a
word seems to influence thereading time; more predictable words are read moreREADING TIME

quickly. One way of defining predictability is from simple bigram measures. For
example, Scott and Shillcock (2003) had participants read sentences while monitoring
their gaze with aneye-tracker. They constructed the sentences so that some would
have a verb-noun pair with a high bigram probability (such as(14.35a)) and others a
verb-noun pair with a low bigram probability (such as (14.35b)).

(14.35) a) HIGH PROB: One way toavoid confusionis to make the changes during
vacation;

b) LOW PROB: One way toavoid discoveryis to make the changes during
vacation

They found that the higher the bigram predictability of a word, the shorter the time
that participants looked at the word (theinitial-fixation duration).

While this result only provides evidence forN-gram probabilities, more recent ex-
periments have suggested that the probability of an upcoming word given the syntactic
parse of the preceding sentence prefix also predicts word reading time Hale (2006),
Levy (2007).

The second family of studies has examined how humans disambiguate sentences
which have multiple possible parses, suggesting that humans prefer whichever parse
is more probable. These studies often rely on a specific classof temporarily ambigu-
ous sentences calledgarden-pathsentences. These sentences, first described by BeverGARDENPATH

(1970), are sentences which are cleverly constructed to have three properties that com-
bine to make them very difficult for people to parse:

DRAFT

26 Chapter 14. Statistical Parsing

1. They aretemporarily ambiguous: The sentence is unambiguous, but its initial
portion is ambiguous.

2. One of the two or more parses in the initial portion is somehow preferable to the
human parsing mechanism.

3. But the dispreferred parse is the correct one for the sentence.

The result of these three properties is that people are “led down the garden path”
toward the incorrect parse, and then are confused when they realize it’s the wrong one.
Sometimes this confusion is quite conscious, as in Bever’s example (14.36); in fact this
sentence is so hard to parse that readers often need to be shown the correct structure. In
the correct structureracedis part of a reduced relative clause modifyingThe horse, and
means “The horse [which was raced past the barn] fell”; this structure is also present in
the sentence “Students taught by the Berlitz method do worsewhen they get to France”.

(14.36) The horse raced past the barn fell.

(a) S (b) S

NP VP NP VP

NP VP

PP PP

NP ? NP

Det N V P Det N V Det N V P Det N V

The horse raced past the barn fell The horse raced past the barn fell

In Marti Hearst’s example (14.37), subjects often misparsethe verbhousesas a
noun (analyzingthe complex housesas a noun phrase, rather than a noun phrase and
a verb). Other times the confusion caused by a garden-path sentence is so subtle that
it can only be measured by a slight increase in reading time. Thus in example (14.38)
readers often mis-parsethe solutionas the direct object offorgot rather than as the
subject of an embedded sentence. This mis-parse is subtle, and is only noticeable
because experimental participants take longer to read the word was than in control
sentences. This “mini-garden-path” effect at the wordwassuggests that subjects had
chosen the direct object parse and had to re-analyze or rearrange their parse now that
they realize they are in a sentential complement.

(14.37) The complex houses married and single students and their families.
(a) S (b) S

NP NP VP

Det Adj N Det N V

The complex houses The complex houses

(14.38) The student forgot the solution was in the back of the book.

DRAFT

Section 14.11. Summary 27

(a) S (b) S

NP VP NP VP

S

NP ? NP VP

Det N V Det N V Det N V Det N V

The students forgot the solution was The students forgot thesolution was

While many factors seem to play a role in these preferences for a particular (incor-
rect) parse, at least one factor seems to be syntactic probabilities, especially lexicalized
(subcategorization) probabilities. For example, the probability of the verbforgot tak-
ing a direct object (VP→ V NP) is higher than the probability of it taking a sentential
complement (VP→ V S); this difference causes readers to expect a direct object after
forgetand be surprised (longer reading times) when they encountera sentential com-
plement. By contrast, a verb which prefers a sentential complement (likehope) didn’t
cause extra reading time atwas.

Similarly, the garden path in (14.37) may be caused by the fact thatP(houses|Noun)>
P(houses|Verb) andP(complex|Ad jective) > P(complex|Noun), and the garden path
in (14.36) at least partially by the low probability of the reduced relative clause con-
struction.

Besides grammatical knowledge, human parsing is affected by many other factors
which we will describe later, including resource constraints (such as memory limita-
tions, to be discussed in Ch. 15), thematic structure (such as whether a verb expects se-
manticagentsor patients, to be discussed in Ch. 19) and discourse constraints (Ch. 21).

14.11 SUMMARY

This chapter has sketched the basics ofprobabilistic parsing, concentrating onprob-
abilistic context-free grammars and probabilistic lexicalized context-free gram-
mars.

• Probabilistic grammars assign a probability to a sentence or string of words,
while attempting to capture more sophisticated syntactic information than the
N-gram grammars of Ch. 4.
• A probabilistic context-free grammar (PCFG) is a context-free

grammar in which every rule is annotated with the probability of choosing that
rule. Each PCFG rule is treated as if it wereconditionally independent; thus the
probability of a sentence is computed bymultiplying the probabilities of each
rule in the parse of the sentence.
• The probabilistic CKY (Cocke-Kasami-Younger) algorithm is a probabilistic

version of the CKY parsing algorithm. There are also probabilistic versions of
other parsers like the Earley algorithm.
• PCFG probabilities can be learning by counting in aparsed corpus, or by pars-

ing a corpus. TheInside-Outsidealgorithm is a way of dealing with the fact that

DRAFT

28 Chapter 14. Statistical Parsing

the sentences being parsed are ambiguous.

• Raw PCFGs suffer from poor independence assumptions between rules and lack
of sensitivity to lexical dependencies.

• One way to deal with this problem is to split and merge non-terminals (automat-
ically or by hand).

• Probabilistic lexicalized CFGs are another solution to this problem in which
the basic PCFG model is augmented with alexical head for each rule. The
probability of a rule can then be conditioned on the lexical head or nearby heads.

• Parsers for lexicalized PCFGs (like the Charniak and Collins parsers) are based
on extensions to probabilistic CKY parsing.

• Parsers are evaluated using three metrics:labeled recall, labeled precision, and
cross-brackets.

• There is evidence based ongarden-path sentencesand other on-line sentence-
processing experiments that the human parser uses some kinds of probabilistic
information about grammar.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Many of the formal properties of probabilistic context-free grammars were first worked
out by Booth (1969) and Salomaa (1969). Baker (1979) proposed the Inside-Outside
algorithm for unsupervised training of PCFG probabilities, and used a CKY-style pars-
ing algorithm to compute inside probabilities. Jelinek andLafferty (1991) extended the
CKY algorithm to compute probabilities for prefixes. Stolcke (1995) drew on both of
these algorithms in adapting the Earley algorithm to use with PCFGs.

A number of researchers starting in the early 1990s worked onadding lexical de-
pendencies to PCFGs, and on making PCFG rule probabilities more sensitive to sur-
rounding syntactic structure. For example Schabes et al. (1988) and Schabes (1990)
presented early work on the use of heads. Many papers on the use of lexical depen-
dencies were first presented at the DARPA Speech and Natural Language Workshop in
June, 1990. A paper by Hindle and Rooth (1990) applied lexical dependencies to the
problem of attaching prepositional phrases; in the question session to a later paper Ken
Church suggested applying this method to full parsing (Marcus, 1990). Early work on
such probabilistic CFG parsing augmented with probabilistic dependency information
includes Magerman and Marcus (1991), Black et al. (1992), Bod (1993), and Jelinek
et al. (1994), in addition to Collins (1996), Charniak (1997), and Collins (1999) dis-
cussed above. Other recent PCFG parsing models include Klein and Manning (2003a)
and Petrov et al. (2006). .

This early lexical probabilistic work led initially to workfocused on solving spe-
cific parsing problems like preposition-phrase attachment, using methods including
Transformation Based Learning (TBL) (Brill and Resnik, 1994), Maximum Entropy
(Ratnaparkhi et al., 1994), Memory-Based Learning (Zavreland Daelemans, 1997),
log-linear models (Franz, 1997), decision trees using semantic distance between heads

DRAFT

Section 14.11. Summary 29

(computed from WordNet) (Stetina and Nagao, 1997), and Boosting (Abney et al.,
1999).

Another direction extended the lexical probabilistic parsing work to build proba-
bilistic formulations of grammar other than PCFGs, such as probabilistic TAG gram-
mar (Resnik, 1992; Schabes, 1992), based on the TAG grammarsdiscussed in Ch. 12,
probabilistic LR parsing (Briscoe and Carroll, 1993), and probabilistic link grammar
(Lafferty et al., 1992). An approach to probabilistic parsing calledsupertaggingex-SUPERTAGGING

tends the part-of-speech tagging metaphor to parsing by using very complex tags that
are in fact fragments of lexicalized parse trees (Bangaloreand Joshi, 1999; Joshi and
Srinivas, 1994), based on the lexicalized TAG grammars of Schabes et al. (1988). For
example the nounpurchasewould have a different tag as the first noun in a noun com-
pound (where it might be on the left of a small tree dominated by Nominal) than as
the second noun (where it might be on the right). Supertagging has also been applied
to CCG parsing and HPSG parsing (Clark and Curran, 2004a; Matsuzaki et al., 2007;
Blunsom and Baldwin, 2006). Non-supertagging statisticalparsers for CCG include
Clark and Curran (2004b).

Goodman (1997), Abney (1997), and Johnson et al. (1999) gaveearly discussions
of probabilistic treatments of feature-based grammars. Other recent work on building
statistical models of feature-based grammar formalisms like HPSG and LFG includes
Riezler et al. (2002), Kaplan et al. (2004), and Toutanova etal. (2005).

We mentioned earlier that discriminative approaches to parsing fall into the two
broad categories of dynamic programming methods and discriminative reranking meth-
ods. Recall that discriminative reranking approaches require N-best parses. Parsers
based on A* search can easily be modified to generateN-best lists just by continuing
the search past the first-best parse (Roark, 2001). Dynamic programming algorithms
like the ones described in this chapter can be modified by eliminating the dynamic
programming and using heavy pruning (Collins, 2000; Collins and Koo, 2005; Bikel,
2004), or via new algorithms (Jiménez and Marzal, 2000; Gildea and Jurafsky, 2002;
Charniak and Johnson, 2005; Huang and Chiang, 2005), some adapted from speech
recognition algorithms such as Schwartz and Chow (1990) (see Sec.??).

By contrast, in dynamic programming methods, instead of outputting and then
reranking anN-best list, the parses are represented compactly in a chart,and log-linear
and other methods are applied for decoding directly from thechart. Such modern
methods include Johnson (2001), Clark and Curran (2004b), and Taskar et al. (2004).
Other reranking developments include changing the optimization criterion (Titov and
Henderson, 2006).

Another important recent area of research is dependency parsing; algorithms in-
clude Eisner’s bilexical algorithm (Eisner, 1996b, 1996a,2000), maximum spanning
tree approaches (using on-line learning) (Ryan McDonald and Pereira, 2005; Mc-
Donald et al., 2005), and approaches based on building classifiers for parser actions
(Kudo and Matsumoto, 2002; Yamada and Matsumoto, 2003; Nivre et al., 2006; Titov
and Henderson, 2007). A distinction is usually made betweenprojective andnon-
projective dependencies. Non-projective dependencies are those in which the depen-NONPROJECTIVE

DEPENDENCIES

dency lines cross; this is not very common in English, but is very common in many
languages with more free word order. Non-projective dependency algorithms include
McDonald et al. (2005) and Nivre (2007). The Klein-Manning parser combines depen-

DRAFT

30 Chapter 14. Statistical Parsing

dency and constituency information (Klein and Manning, 2003c).
Manning and Schütze (1999) has an extensive coverage of probabilistic parsing.

Collins’ (1999) dissertation includes a very readable survey of the field and introduc-
tion to his parser.

The field of grammar induction is closely related to statistical parsing, and a parser
is often used as part of a grammar induction algorithm. One ofthe earliest statistical
works in grammar induction was Horning (1969), who showed that PCFGs could be
induced without negative evidence. Early modern probabilistic grammar work showed
that simply using EM was insufficient (Lari and Young, 1990; Carroll and Charniak,
1992). Recent probabilistic work such as Yuret (1998), Clark (2001), Klein and Man-
ning (2002), and Klein and Manning (2004), are summarized inKlein (2005) and Adri-
aans and van Zaanen (2004). Work since that summary includesSmith and Eisner
(2005), Haghighi and Klein (2006), and Smith and Eisner (2007).

EXERCISES

14.1 Implement the CKY algorithm.

14.2 Modify the algorithm for conversion to CNF from Ch. 13 to correctly handle
rule probabilities. Make sure that the resulting CNF assigns the same total probability
to each parse tree.

14.3 Recall that Exercise?? asked you to update the CKY algorithm to handles unit
productions directly rather than converting them to CNF. Extend this change to proba-
bilistic CKY.

14.4 Fill out the rest of the probabilistic CKY chart in Fig. 14.4.

14.5 Sketch out how the CKY algorithm would have to be augmented tohandle lexi-
calized probabilities.

14.6 Implement your lexicalized extension of the CKY algorithm.

14.7 Implement the PARSEVAL metrics described in Sec. 14.7. Nexteither use a
treebank or create your own hand-checked parsed testset. Now use your CFG (or other)
parser and grammar and parse the testset and compute labeledrecall, labeled precision,
and cross-brackets.

DRAFT

Section 14.11. Summary 31

Abney, S. P. (1997). Stochastic attribute-value grammars.Com-
putational Linguistics, 23(4), 597–618.

Abney, S. P., Schapire, R. E., and Singer, Y. (1999). Boosting
applied to tagging and PP attachment. InEMNLP/VLC-99,
College Park, MD, pp. 38–45.

Adriaans, P. and van Zaanen, M. (2004). Computational gram-
mar induction for linguists.Grammars; special issue with the
theme “Grammar Induction”, 7, 57–68.

Baker, J. K. (1979). Trainable grammars for speech recogni-
tion. In Klatt, D. H. and Wolf, J. J. (Eds.),Speech Communi-
cation Papers for the 97th Meeting of the Acoustical Society
of America, pp. 547–550.

Bangalore, S. and Joshi, A. K. (1999). Supertagging: An ap-
proach to almost parsing.Computational Linguistics, 25(2),
237–265.

Bever, T. G. (1970). The cognitive basis for linguistic struc-
tures. In Hayes, J. R. (Ed.),Cognition and the Development
of Language, pp. 279–352. Wiley.

Bikel, D. M. (2004). Intricacies of Collins’ parsing model.
Computational Linguistics, 30(4), 479–511.

Bikel, D. M., Miller, S., Schwartz, R., and Weischedel, R.
(1997). Nymble: a high-performance learning name-finder.
In Proceedings of ANLP-97, pp. 194–201.

Black, E., Abney, S. P., Flickinger, D., Gdaniec, C., Grishman,
R., Harrison, P., Hindle, D., Ingria, R., Jelinek, F., Klavans,
J. L., Liberman, M. Y., Marcus, M. P., Roukos, S., Santorini,
B., and Strzalkowski, T. (1991). A procedure for quantita-
tively comparing the syntactic coverage of English grammars.
In Proceedings DARPA Speech and Natural Language Work-
shop, Pacific Grove, CA, pp. 306–311. Morgan Kaufmann.

Black, E., Jelinek, F., Lafferty, J. D., Magerman, D. M., Mercer,
R. L., and Roukos, S. (1992). Towards history-based gram-
mars: Using richer models for probabilistic parsing. InPro-
ceedings DARPA Speech and Natural Language Workshop,
Harriman, NY, pp. 134–139. Morgan Kaufmann.

Blunsom, P. and Baldwin, T. (2006). Multilingual deep lexical
acquisition for hpsgs via supertagging. InEMNLP 2006.

Bod, R. (1993). Using an annotated corpus as a stochastic gram-
mar. InEACL-93, pp. 37–44.

Booth, T. L. (1969). Probabilistic representation of formal lan-
guages. InIEEE Conference Record of the 1969 Tenth Annual
Symposium on Switching and Automata Theory, pp. 74–81.

Booth, T. L. and Thompson, R. A. (1973). Applying proba-
bility measures to abstract languages.IEEE Transactions on
Computers, C-22(5), 442–450.

Brill, E. and Resnik, P. (1994). A rule-based approach to prepo-
sitional phrase attachment disambiguation. InCOLING-94,
Kyoto, pp. 1198–1204.

Briscoe, T. and Carroll, J. (1993). Generalized Probabilistic LR
parsing of natural language (corpora) with unification-based
grammars.Computational Linguistics, 19(1), 25–59.

Carroll, G. and Charniak, E. (1992). Two experiments on learn-
ing probabilistic dependency grammars from corpora. Tech.
rep. CS-92-16, Brown University.

Carroll, J., Briscoe, T., and Sanfilippo, A. (1998). Parser eval-
uation: a survey and a new proposal. InLREC-98, Granada,
Spain, pp. 447–454.

Charniak, E. and Johnson, M. (2005). Coarse-to-finen-best
parsing and MaxEnt discriminative reranking. InACL-05,
Ann Arbor.

Charniak, E. (1997). Statistical parsing with a context-free
grammar and word statistics. InAAAI-97, Menlo Park, pp.
598–603. AAAI Press.

Charniak, E. (2000). A maximum-entropy-inspired parser. In
Proceedings of the 1st Annual Meeting of the North Amer-
ican Chapter of the ACL (NAACL’00), Seattle, Washington,
pp. 132–139.

Charniak, E. (2001). Immediate-head parsing for language
models. InACL-01, Toulouse, France.

Chelba, C. and Jelinek, F. (2000). Structured language model-
ing. Computer Speech and Language, 14, 283–332.

Clark, A. (2001). The unsupervised induction of stochas-
tic context-free grammars using distributional clustering. In
CoNLL-01.

Clark, S. and Curran, J. R. (2004a). The importance of su-
pertagging for wide-coverage CCG parsing. InCOLING-04,
pp. 282–288.

Clark, S. and Curran, J. R. (2004b). Parsing the WSJ using
CCG and Log-Linear Models. InACL-04, pp. 104–111.

Collins, M. and Koo, T. (2005). Discriminative reranking for
natural language parsing.Computational Linguistics, 31(1),
25–69.

Collins, M. (1996). A new statistical parser based on bigram
lexical dependencies. InACL-96, Santa Cruz, California, pp.
184–191. ACL.

Collins, M. (1999).Head-driven Statistical Models for Natural
Language Parsing. Ph.D. thesis, University of Pennsylvania,
Philadelphia.

Collins, M. (2000). Discriminative reranking for natural lan-
guage parsing. InICML 2000, Stanford, CA, pp. 175–182.

Collins, M. (2003). Head-driven statistical models for natu-
ral language parsing.Computational Linguistics, 29(4), 589–
637.

Collins, M., Hajič, J., Ramshaw, L. A., and Tillmann, C. (1999).
A statistical parser for Czech. InACL-99, College Park, MA,
pp. 505–512. ACL.

Eisner, J. (1996a). An empirical comparison of probability
models for dependency grammar. Tech. rep. IRCS-96-11, In-
stitute for Research in Cognitive Science, Univ. of Pennsylva-
nia.

Eisner, J. (1996b). Three new probabilistic models for depen-
dency parsing: An exploration. InCOLING-96, Copenhagen,
pp. 340–345.

Eisner, J. (2000). Bilexical grammars and their cubic-timepars-
ing algorithms. In Bunt, H. and Nijholt, A. (Eds.),Advances
in Probabilistic and Other Parsing Technologies, pp. 29–62.
Kluwer.

DRAFT

32 Chapter 14. Statistical Parsing

Francis, H. S., Gregory, M. L., and Michaelis, L. A. (1999). Are
lexical subjects deviant?. InCLS-99. University of Chicago.

Franz, A. (1997). Independence assumptions considered harm-
ful. In ACL/EACL-97, Madrid, Spain, pp. 182–189. ACL.

Gildea, D. and Jurafsky, D. (2002). Automatic labeling of se-
mantic roles.Computational Linguistics, 28(3), 245–288.

Givón, T. (1990).Syntax: A functional typological introduction.
John Benjamins, Amsterdam.

Goodman, J. (1997). Probabilistic feature grammars. InPro-
ceedings of the International Workshop on Parsing Technol-
ogy.

Haghighi, A. and Klein, D. (2006). Prototype-driven grammar
induction. InCOLING/ACL 2006, pp. 881–888.

Hale, J. (2006). Uncertainty about the rest of the sentence.Cog-
nitive Science, 30(4), 609–642.

Hall, K. and Johnson, M. (2003). Language modeling using
efficient best-first bottom-up parsing. InIEEE ASRU-03, pp.
507–512.

Hindle, D. and Rooth, M. (1990). Structural ambiguity and
lexical relations. InProceedings DARPA Speech and Natural
Language Workshop, Hidden Valley, PA, pp. 257–262. Mor-
gan Kaufmann.

Hindle, D. and Rooth, M. (1991). Structural ambiguity and lex-
ical relations. InProceedings of the 29th ACL, Berkeley, CA,
pp. 229–236. ACL.

Horning, J. J. (1969).A study of grammatical inference. Ph.D.
thesis, Stanford University.

Huang, L. and Chiang, D. (2005). Better k-best parsing. In
IWPT-05, pp. 53–64.

Jelinek, F. and Lafferty, J. D. (1991). Computation of the proba-
bility of initial substring generation by stochastic context-free
grammars.Computational Linguistics, 17(3), 315–323.

Jelinek, F., Lafferty, J. D., Magerman, D. M., Mercer, R. L.,
Ratnaparkhi, A., and Roukos, S. (1994). Decision tree pars-
ing using a hidden derivation model. InARPA Human Lan-
guage Technologies Workshop, Plainsboro, N.J., pp. 272–277.
Morgan Kaufmann.

Jiménez, V. M. and Marzal, A. (2000). Computation of then
best parse trees for weighted and stochastic context-free gram-
mars. InAdvances in Pattern Recognition: Proceedings of
the Joint IAPR International Workshops, SSPR 2000 and SPR
2000, Alicante, Spain, pp. 183–192. Springer.

Johnson, M. (1998). PCFG models of linguistic tree represen-
tations.Computational Linguistics, 24(4), 613–632.

Johnson, M. (2001). Joint and conditional estimation of tagging
and parsing models. InACL-01, pp. 314–321.

Johnson, M., Geman, S., Canon, S., Chi, Z., and Riezler, S.
(1999). Estimators for stochastic “unification-based” gram-
mars. InACL-99, pp. 535–541.

Joshi, A. K. and Srinivas, B. (1994). Disambiguation of super
parts of speech (or supertags): Almost parsing. InCOLING-
94, Kyoto, pp. 154–160.

Jurafsky, D., Wooters, C., Tajchman, G., Segal, J., Stolcke, A.,
Fosler, E., and Morgan, N. (1995). Using a stochastic context-
free grammar as a language model for speech recognition. In
IEEE ICASSP-95, pp. 189–192. IEEE.

Kaplan, R. M., Riezler, S., King, T. H., Maxwell, J. T., Vasser-
man, A., and Crouch, R. (2004). Speed and accuracy in shal-
low and deep stochastic parsing. InHLT-NAACL-04.

Klein, D. (2005). The unsupervised learning of Natural Lan-
guage Structure. Ph.D. thesis, Stanford University.

Klein, D. and Manning, C. D. (2001). Parsing and hypergraphs.
In The Seventh Internation Workshop on Parsing Technolo-
gies.

Klein, D. and Manning, C. D. (2002). A generative constituent-
context model for improved grammar induction. InACL-02.

Klein, D. and Manning, C. D. (2003a). A* parsing: Fast exact
Viterbi parse selection. InHLT-NAACL-03.

Klein, D. and Manning, C. D. (2003b). Accurate unlexicalized
parsing. InHLT-NAACL-03.

Klein, D. and Manning, C. D. (2003c). Fast exact inference
with a factored model for natural language parsing. In Becker,
S., Thrun, S., and Obermayer, K. (Eds.),Advances in Neural
Information Processing Systems 15. MIT Press.

Klein, D. and Manning, C. D. (2004). Corpus-based induc-
tion of syntactic structure: Models of dependency and con-
stituency. InACL-04.

Kudo, T. and Matsumoto, Y. (2002). Japanese dependency anal-
ysis using cascaded chunking. InCoNLL-02, pp. 63–69.

Lafferty, J. D., Sleator, D., and Temperley, D. (1992). Gram-
matical trigrams: A probabilistic model of link grammar. In
Proceedings of the 1992 AAAI Fall Symposium on Probabilis-
tic Approaches to Natural Language.

Lari, K. and Young, S. J. (1990). The estimation of stochas-
tic context-free grammars using the Inside-Outside algorithm.
Computer Speech and Language, 4, 35–56.

Levy, R. (2007). Expectation-based syntactic comprehension.
In press, Cognition.

Lin, D. (1995). A dependency-based method for evaluating
broad-coverage parsers. InIJCAI-95, Montreal, pp. 1420–
1425.

Magerman, D. M. and Marcus, M. P. (1991). Pearl: A proba-
bilistic chart parser. InProceedings of the 6th Conference of
the European Chapter of the Association for Computational
Linguistics, Berlin, Germany.

Manning, C. D. and Schütze, H. (1999).Foundations of Statis-
tical Natural Language Processing. MIT Press.

Marcus, M. P. (1990). Summary of session 9: Automatic
acquisition of linguistic structure. InProceedings DARPA
Speech and Natural Language Workshop, Hidden Valley, PA,
pp. 249–250. Morgan Kaufmann.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993).
Building a large annotated corpus of English: The Penn tree-
bank.Computational Linguistics, 19(2), 313–330.

Matsuzaki, T., Miyao, Y., and ichi Tsujii, J. (2007). Efficient
hpsg parsing with supertagging and cfg-filtering. InIJCAI-07.

DRAFT

Section 14.11. Summary 33

McDonald, R., Pereira, F. C. N., Ribarov, K., and Hajič, J.
(2005). Non-projective dependency parsing using spanning
tree algorithms. InHLT-EMNLP-05.

Ney, H. (1991). Dynamic programming parsing for context-free
grammars in continuous speech recognition.IEEE Transac-
tions on Signal Processing, 39(2), 336–340.

Nivre, J. (2007). Incremental non-projective dependency pars-
ing. In NAACL-HLT 07.

Nivre, J., Hall, J., and Nilsson, J. (2006). Maltparser: A data-
driven parser-generator for dependency parsing. InLREC-06,
pp. 2216–2219.

Petrov, S., Barrett, L., Thibaux, R., and Klein, D. (2006). Learn-
ing accurate, compact, and interpretable tree annotation.In
COLING/ACL 2006, Sydney, Australia, pp. 433–440. ACL.

Ratnaparkhi, A. (1996). A maximum entropy part-of-speech
tagger. InProceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, University of Pennsyl-
vania, pp. 133–142. ACL.

Ratnaparkhi, A., Reynar, J., and Roukos, S. (1994). A Maxi-
mum Entropy model for prepositional phrase attachment. In
ARPA Human Language Technologies Workshop, Plainsboro,
N.J., pp. 250–255.

Resnik, P. (1992). Probabilistic tree-adjoining grammar as a
framework for statistical natural language processing. InPro-
ceedings of the 14th International Conference on Computa-
tional Linguistics, Nantes, France, pp. 418–424.

Riezler, S., King, T. H., Kaplan, R. M., Crouch, R., III, J. T.M.,
and Johnson, M. (2002). Parsing the wall street journal us-
ing a lexical-functional grammar and discriminative estima-
tion techniques. InACL-02, Philadelphia, PA.

Roark, B. (2001). Probabilistic top-down parsing and language
modeling.Computational Linguistics, 27(2), 249–276.

Ryan McDonald, K. C. and Pereira, F. C. N. (2005). Online
large-margin training of dependency parsers. InACL-05, Ann
Arbor, pp. 91–98.

Salomaa, A. (1969). Probabilistic and weighted grammars.In-
formation and Control, 15, 529–544.

Schabes, Y. (1990).Mathematical and Computational Aspects
of Lexicalized Grammars. Ph.D. thesis, University of Penn-
sylvania, Philadelphia, PA†.

Schabes, Y. (1992). Stochastic lexicalized tree-adjoining gram-
mars. InProceedings of the 14th International Conference on
Computational Linguistics, Nantes, France, pp. 426–433.

Schabes, Y., Abeillé, A., and Joshi, A. K. (1988). Parsing strate-
gies with ‘lexicalized’ grammars: Applications to Tree Ad-
joining Grammars. InCOLING-88, Budapest, pp. 578–583.

Schwartz, R. and Chow, Y.-L. (1990). The N-best algorithm:
An efficient and exact procedure for finding the N most likely
sentence hypotheses. InIEEE ICASSP-90, Vol. 1, pp. 81–84.
IEEE.

Scott, M. and Shillcock, R. (2003). Eye movements reveal the
on-line computation of lexical probabilities during reading.
Psychological Science, 14(6), 648–652.

Sekine, S. and Collins, M. (1997). The evalb software.http:
//cs.nyu.edu/cs/projects/proteus/evalb.

Smith, D. A. and Eisner, J. (2007). Bootstrapping feature-rich
dependency parsers with entropic priors. InEMNLP 2007,
Prague, pp. 667–677.

Smith, N. A. and Eisner, J. (2005). Guiding unsupervised gram-
mar induction using contrastive estimation. InIJCAI Work-
shop on Grammatical Inference Applications, Edinburgh, pp.
73–82.

Stetina, J. and Nagao, M. (1997). Corpus based PP attachment
ambiguity resolution with a semantic dictionary. In Zhou, J.
and Church, K. W. (Eds.),Proceedings of the Fifth Workshop
on Very Large Corpora, Beijing, China, pp. 66–80. ACL.

Stolcke, A. (1995). An efficient probabilistic context-free pars-
ing algorithm that computes prefix probabilities.Computa-
tional Linguistics, 21(2), 165–202.

Taskar, B., Klein, D., Collins, M., Koller, D., and Manning,
C. D. (2004). Max-margin parsing. InEMNLP 2004.

Titov, I. and Henderson, J. (2006). Loss minimization in parse
reranking. InEMNLP 2006.

Titov, I. and Henderson, J. (2007). A latent variable model for
generative dependency parsing. InIWPT-07.

Toutanova, K., Manning, C. D., Flickinger, D., and Oepen, S.
(2005). Stochastic HPSG Parse Disambiguation using the
Redwoods Corpus.Research on Language & Computation,
3(1), 83–105.

Xu, P., Chelba, C., and Jelinek, F. (2002). A study on richer
syntactic dependencies for structured language modeling.In
ACL-02, pp. 191–198.

Yamada, H. and Matsumoto, Y. (2003). Statistical dependency
analysis with support vector machines. In Noord, G. V. (Ed.),
IWPT-03, pp. 195–206.

Yuret, D. (1998).Discovery of Linguistic Relations Using Lex-
ical Attraction. Ph.D. thesis, MIT.

Zavrel, J. and Daelemans, W. (1997). Memory-based learning:
Using similarity for smoothing. InACL/EACL-97, Madrid,
Spain, pp. 436–443. ACL.

