
DRAFT

Speech and Language Processing: An Introduction to Speech Recognition, Computational
Linguistics and Natural Language Processing: Second Edition, Daniel Jurafsky & James
H. Martin. Copyright c© 2007, All rights reserved. Draft of October 7, 2007. Do not
cite.

13
PARSING WITH
CONTEXT-FREE
GRAMMARS

There are and can exist but two ways of investigating and discov-
ering truth. The one hurries on rapidly from the senses and par-
ticulars to the most general axioms, and from them. . . derives and
discovers the intermediate axioms. The other constructs its ax-
ioms from the senses and particulars, by ascending continually and
gradually, till it finally arrives at the most general axioms.

Francis Bacon, Novum Organum Book I.19 (1620)

We defined parsing in Ch. 3 as a combination of recognizing an input string and as-
signing a structure to it. Syntactic parsing, then, is the task of recognizing a sentence
and assigning a syntactic structure to it. This chapter focuses on the kind of structures
assigned by context-free grammars of the kind described in Ch. 12. However, since
they are a purely declarative formalism, context-free grammars don’t specify how the
parse tree for a given sentence should be computed, therefore we’ll need to specify
algorithms that employ these grammars to produce trees. This chapter presents three
of the most widely used parsing algorithms for automatically assigning a complete
context-free (phrase structure) tree to an input sentence.

These kinds of parse trees are directly useful in applications such as grammar
checking in word-processing systems; a sentence which cannot be parsed may have
grammatical errors (or at least be hard to read). More typically, however, parse trees
serve as an important intermediate stage of representation for semantic analysis (as
we will see in Ch. 18), and thus plays an important role in applications like question
answering and information extraction. For example, to answer the question

What books were written by British women authors before 1800?

we’ll need to know that the subject of the sentence was what books and that the by-
adjunct was British women authors to help us figure out that the user wants a list of
books (and not a list of authors).

Before presenting any parsing algorithms, we begin by describing some of the
factors that motivate the standard algorithms. First, we revisit the search metaphor for
parsing and recognition, which we introduced for finite-state automata in Ch. 2, and
talk about the top-down and bottom-up search strategies. We then discuss how the
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S → NP VP Det → that | this | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | TWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Figure 13.1 The L1 miniature English grammar and lexicon.

ambiguity problem rears its head again in syntactic processing, and how it ultimately
makes simplistic approaches based on backtracking infeasible.

The sections that follow then present the Cocke-Kasami-Younger (CKY) algo-
rithm (Kasami, 1965; Younger, 1967), the Earley algorithm (Earley, 1970), and the
Chart Parsing approach (Kay, 1986; Kaplan, 1973). These approaches all combine in-
sights from bottom-up and top-down parsing with dynamic programming to efficiently
handle complex inputs. Recall that we’ve already seen several applications of dynamic
programming algorithms in earlier chapters — Minimum-Edit-Distance, Viterbi, For-
ward. Finally, we discuss partial parsing methods, for use in situations where a
superficial syntactic analysis of an input may be sufficient.

13.1 PARSING AS SEARCH

Chs. 2 and 3 showed that finding the right path through a finite-state automaton, or
finding the right transduction for an input, can be viewed as a search problem. For
finite-state automata, the search is through the space of all possible paths through a
machine. In syntactic parsing, the parser can be viewed as searching through the space
of possible parse trees to find the correct parse tree for a given sentence. Just as the
search space of possible paths was defined by the structure of an automata, so the
search space of possible parse trees is defined by a grammar. Consider the following
ATIS sentence:

(13.1) Book that flight.

Fig. 13.1 introduces the L1 grammar, which consists of the L0 grammar from
the last chapter with a few additional rules. Given this grammar, the correct parse tree
for this example would be the one shown in Fig. 13.2.
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Figure 13.2 The parse tree for the sentence Book that flight according to grammar L1.

How can we use L1 to assign the parse tree in Fig. 13.2 to this example? The
goal of a parsing search is to find all the trees whose root is the start symbol S and
which cover exactly the words in the input. Regardless of the search algorithm we
choose, there are two kinds of constraints that should help guide the search. One set of
constraints comes from the data, that is, the input sentence itself. Whatever else is true
of the final parse tree, we know that there must be three leaves, and they must be the
words book, that, and flight. The second kind of constraint comes from the grammar.
We know that whatever else is true of the final parse tree, it must have one root, which
must be the start symbol S.

These two constraints, invoked by Bacon at the start of this chapter, give rise to
the two search strategies underlying most parsers: top-down or goal-directed search,
and bottom-up or data-directed search. These constraints are more than just search
strategies. They reflect two important insights in the western philosophical tradition:
the rationalist tradition, which emphasizes the use of prior knowledge, and the em-RATIONALIST

piricist tradition, which emphasizes the data in front of us.EMPIRICIST

13.1.1 Top-Down Parsing

A top-down parser searches for a parse tree by trying to build from the root node STOP-DOWN

down to the leaves. Let’s consider the search space that a top-down parser explores,
assuming for the moment that it builds all possible trees in parallel. The algorithm
starts by assuming the input can be derived by the designated start symbol S. The next
step is to find the tops of all trees which can start with S, by looking for all the grammar
rules with S on the left-hand side. In the grammar in Fig. 13.1, there are three rules that
expand S, so the second ply, or level, of the search space in Fig. 13.3 has three partialPLY

trees.
We next expand the constituents in these three new trees, just as we originally

expanded S. The first tree tells us to expect an NP followed by a VP, the second expects
an Aux followed by an NP and a VP, and the third a VP by itself. To fit the search
space on the page, we have shown in the third ply of Fig. 13.3 only a subset of the trees
that result from the expansion of the left-most leaves of each tree. At each ply of the
search space we use the right-hand sides of the rules to provide new sets of expectations
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Figure 13.3 An expanding top-down search space. Each ply is created by taking each tree from the previous
ply, replacing the leftmost non-terminal with each of its possible expansions, and collecting each of these trees
into a new ply.

for the parser, which are then used to recursively generate the rest of the trees. Trees
are grown downward until they eventually reach the part-of-speech categories at the
bottom of the tree. At this point, trees whose leaves fail to match all the words in the
input can be rejected, leaving behind those trees that represent successful parses. In
Fig. 13.3, only the fifth parse tree in the third ply (the one which has expanded the rule
VP → Verb NP) will eventually match the input sentence Book that flight.

13.1.2 Bottom-Up Parsing

Bottom-up parsing is the earliest known parsing algorithm (it was first suggested byBOTTOM-UP

Yngve (1955)), and is used in the shift-reduce parsers common for computer languages
(Aho and Ullman, 1972). In bottom-up parsing, the parser starts with the words of the
input, and tries to build trees from the words up, again by applying rules from the
grammar one at a time. The parse is successful if the parser succeeds in building a tree
rooted in the start symbol S that covers all of the input. Fig. 13.4 shows the bottom-
up search space, beginning with the sentence Book that flight. The parser begins by
looking up each input word in the lexicon and building three partial trees with the part-
of-speech for each word. But the word book is ambiguous; it can be a noun or a verb.
Thus the parser must consider two possible sets of trees. The first two plies in Fig. 13.4
show this initial bifurcation of the search space.

Each of the trees in the second ply is then expanded. In the parse on the left
(the one in which book is incorrectly considered a noun), the Nominal → Noun rule is
applied to both of the nouns (book and flight). This same rule is also applied to the sole
noun (flight) on the right, producing the trees on the third ply.

In general, the parser extends one ply to the next by looking for places in the
parse-in-progress where the right-hand side of some rule might fit. This contrasts with
the earlier top-down parser, which expanded trees by applying rules when their left-
hand side matched an unexpanded non-terminal.
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Book that flight

Noun Det Noun Verb Det Noun

Book that flight Book that flight

Nominal Nominal Nominal

Noun Det Noun Verb Det Noun

Book that flight Book that flight

NP NP

Nominal Nominal VP Nominal Nominal

Noun Det Noun Verb Det Noun Verb Det Noun

Book that flight Book that flight Book that flight

VP

VP NP NP

Nominal Nominal

Verb Det Noun Verb Det Noun

Book that flight Book that flight

Figure 13.4 An expanding bottom-up search space for the sentence Book that flight. This figure does not show
the final tier of the search with the correct parse tree (see Fig. 13.2). Make sure you understand how that final
parse tree follows from the search space in this figure.

Thus in the fourth ply, in the first and third parse, the sequence Det Nominal is
recognized as the right-hand side of the NP → Det Nominal rule.

In the fifth ply, the interpretation of book as a noun has been pruned from the
search space. This is because this parse cannot be continued: there is no rule in the
grammar with the right-hand side Nominal NP. The final ply of the search space (not
shown in Fig. 13.4) contains the correct parse (see Fig. 13.2).

13.1.3 Comparing Top-Down and Bottom-Up Parsing

Each of these two architectures has its own advantages and disadvantages. The top-
down strategy never wastes time exploring trees that cannot result in an S, since it
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Figure 13.5 Two parse trees for an ambiguous sentence. Parse (a) corresponds to the humorous reading in
which the elephant is in the pajamas, parse (b) to the reading in which Captain Spaulding did the shooting in his
pajamas.

begins by generating just those trees. This means it also never explores subtrees that
cannot find a place in some S-rooted tree. In the bottom-up strategy, by contrast, trees
that have no hope of leading to an S, or fitting in with any of their neighbors, are
generated with wild abandon.

The top-down approach has its own inefficiencies. While it does not waste time
with trees that do not lead to an S, it does spend considerable effort on S trees that are
not consistent with the input. Note that the first four of the six trees in the third ply in
Fig. 13.3 all have left branches that cannot match the word book. None of these trees
could possibly be used in parsing this sentence. This weakness in top-down parsers
arises from the fact that they generate trees before ever examining the input. Bottom-
up parsers, on the other hand, never suggest trees that are not at least locally grounded
in the input.

13.2 AMBIGUITY

One morning I shot an elephant in my pajamas. How he got into my paja-
mas I don’t know.

Groucho Marx, Animal Crackers, 1930

Ambiguity is perhaps the most serious problem faced by parsers. Ch. 5 intro-
duced the notions of part-of-speech ambiguity and part-of-speech disambiguation.
In this section we introduce a new kind of ambiguity, which arises in the syntactic
structures used in parsing, called structural ambiguity. Structural ambiguity occurs
when the grammar assigns more than one possible parse to a sentence. Groucho Marx’s
well-known line as Captain Spaulding is ambiguous because the phrase in my pajamas
can be part of the NP headed by elephant or the verb-phrase headed by shot.
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Structural ambiguity, appropriately enough, comes in many forms. Two par-
ticularly common kinds of ambiguity are attachment ambiguity and coordination
ambiguity.

A sentence has an attachment ambiguity if a particular constituent can be at-
tached to the parse tree at more than one place. The Groucho Marx sentence above is
an example of PP-attachment ambiguity. Various kinds of adverbial phrases are also
subject to this kind of ambiguity. For example in the following example the gerundive-
VP flying to Paris can be part of a gerundive sentence whose subject is the Eiffel Tower
or it can be an adjunct modifying the VP headed by saw:

(13.2) We saw the Eiffel Tower flying to Paris.

In coordination ambiguity there are different sets of phrases that can be con-
joined by a conjunction like and. For example, the phrase old men and women can be
bracketed as [old [men and women]], referring to old men and old women, or as [old
men] and [women], in which case it is only the men who are old.

These ambiguities combine in complex ways in real sentences. A program that
summarized the news, for example, would need to be able to parse sentences like the
following from the Brown corpus:

(13.3) President Kennedy today pushed aside other White House business to devote all his
time and attention to working on the Berlin crisis address he will deliver tomorrow
night to the American people over nationwide television and radio.

This sentence has a number of ambiguities, although since they are semantically
unreasonable, it requires a careful reading to see them. The last noun phrase could
be parsed [nationwide [television and radio]] or [[nationwide television] and radio].
The direct object of pushed aside should be other White House business but could also
be the bizarre phrase [other White House business to devote all his time and attention
to working] (i.e., a structure like Kennedy affirmed [his intention to propose a new
budget to address the deficit]). Then the phrase on the Berlin crisis address he will
deliver tomorrow night to the American people could be an adjunct modifying the verb
pushed. The PP over nationwide television and radio could be attached to any of the
higher VPs or NPs (e.g., it could modify people or night).

The fact that there are many unreasonable parses for naturally occurring sen-
tences is an extremely irksome problem that affects all parsers. Ultimately, most nat-
ural language processing systems need to be able to choose the correct parse from the
multitude of possible parses via process known as syntactic disambiguation. Unfortu-SYNTACTIC

DISAMBIGUATION

nately, effective disambiguation algorithms generally require statistical, semantic, and
pragmatic knowledge not readily available during syntactic processing (techniques for
making use of such knowledge will be introduced later, in Ch. 14 and Ch. 18).

Lacking such knowledge we are left with the choice of simply returning all the
possible parse trees for a given input. Unfortunately, generating all the possible parses
from robust, highly ambiguous, wide-coverage grammars such as the Penn Treebank
grammar described in Ch. 12 is problematic. The reason for this lies in the poten-
tially exponential number of parses that are possible for certain inputs. Consider the
following ATIS example:

(13.4) Show me the meal on Flight UA 386 from San Francisco to Denver.
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Figure 13.6 A reasonable parse for Ex. 13.4.

The recursive VP → VP PP and Nominal → Nominal PP rules conspire with the three
prepositional phrases at the end of this sentence to yield a total of 14 parse trees for
this sentence. For example from San Francisco could be part of the VP headed by show
(which would have the bizarre interpretation that the showing was happening from San
Francisco). Church and Patil (1982) showed that the number of parses for sentences
of this type grows exponentially at the same rate as the number of parenthesizations of
arithmetic expressions.

Even if a sentence isn’t ambiguous (i.e. it doesn’t have more than one parse in
the end), it can be inefficient to parse due to local ambiguity. Local ambiguity occursLOCAL AMBIGUITY

when some part of a sentence is ambiguous, that is, has more than one parse, even
if the whole sentence is not ambiguous. For example the sentence Book that flight is
unambiguous, but when the parser sees the first word Book, it cannot know if it is a
verb or a noun until later. Thus it must use consider both possible parses.
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13.3 SEARCH IN THE FACE OF AMBIGUITY

To fully understand the problem that local and global ambiguity poses for syntactic
parsing let’s return to our earlier description of top-down and bottom-up parsing. There
we made the simplifying assumption that we could explore all possible parse trees
in parallel. Thus each ply of the search in Fig. 13.3 and Fig. 13.4 showed parallel
expansions of the parse trees on the previous plies. Although it is certainly possible
to implement this method directly, it typically entails the use of an unrealistic amount
of memory to store the space of trees as they are being constructed. This is especially
true since realistic grammars have much more ambiguity than the miniature grammar
we’ve been using.

A common alternative approach to exploring complex search-spaces is to use an
agenda-based backtracking strategy such as those used to implement the various finite-
state machines in Chs. 2 and 3. A backtracking approach expands the search space
incrementally by systematically exploring one state at a time. The state chosen for
expansion can be based on simple systematic strategies such as depth-first or breadth-
first methods, or on more complex methods that make use of probabilistic and semantic
considerations. When the given strategy arrives at a tree that is inconsistent with the
input, the search continues by returning to an unexplored option already on the agenda.
The net effect of this strategy is a parser that single-mindedly pursues trees until they
either succeed or fail before returning to work on trees generated earlier in the process.

Unfortunately, the pervasive ambiguity in typical grammars leads to intolerable
inefficiencies in any backtracking approach. Backtracking parsers will often build valid
trees for portions of the input, and then discard them during backtracking, only to find
that they have to be rebuilt again. Consider the top-down backtracking process involved
in finding a parse for the NP in (13.5):

(13.5) a flight from Indianapolis to Houston on TWA

The preferred complete parse shown as the bottom tree in Fig. 13.7. While there are
numerous parses of this phrase, we will focus here on the amount of repeated work
expended on the path to retrieving this single preferred parse.

A typical top-down, depth-first, left-to-right backtracking strategy leads to small
parse trees that fail because they do not cover all of the input. These successive failures
trigger backtracking events which lead to parses that incrementally cover more and
more of the input. The sequence of trees attempted on the way to the correct parse by
this top-down approach is shown in Fig. 13.7.

This figure clearly illustrates the kind of silly reduplication of work that arises in
backtracking approaches. Except for its topmost component, every part of the final tree
is derived more than once. The work done on this simple example would, of course,
be magnified by any ambiguity introduced by the verb phrase or sentential level. Note
that although this example is specific to top-down parsing, similar examples of wasted
effort exist for bottom-up parsing as well.
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Figure 13.7 Reduplicated effort caused by backtracking in top-down parsing.

13.4 DYNAMIC PROGRAMMING PARSING METHODS

The previous section presented some of the problems that afflict standard bottom-up or
top-down parsers due to ambiguity. Luckily, there is a single class of algorithms which
can solve these problems. Dynamic programming once again provides a framework
for solving this problem, just as it helped us with the Minimum Edit Distance, Viterbi,
and Forward algorithms. Recall that dynamic programming approaches systematically
fill in tables of solutions to sub-problems. When complete, the tables contain the solu-
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tion to all the sub-problems needed to solve the problem as a whole.
In the case of parsing, such tables are used to store subtrees for each of the

various constituents in the input as they are discovered. The efficiency gain arises from
the fact that these subtrees are discovered once, stored, and then used in all parses
calling for that constituent. This solves the re-parsing problem (subtrees are looked up,
not re-parsed) and partially solves the ambiguity problem (the dynamic programming
table implicitly stores all possible parses by storing all the constituents with links that
enable the parses to be reconstructed). As we mentioned earlier, the three most widely
used methods are the Cocke-Kasami-Younger (CKY) algorithm, the Earley algorithm,
and Chart Parsing.

13.4.1 CKY Parsing

Let’s begin our investigation of CKY algorithm by examining one of its major require-
ments: the grammars used with it must be in Chomsky Normal Form (CNF). Recall
from Ch. 12 that grammars in CNF are restricted to rules of the form A → B C, or
A → w. That is, the right-hand side of each rule must expand to either two non-
terminals or to a single terminal. Recall also that restricting a grammar to CNF does
not lead to any loss in expressiveness since any context-free grammar can be converted
into a corresponding CNF grammar that accepts exactly the same set of strings as the
original grammar. This single restriction gives rise to an extremely simple and elegant
table-based parsing method.

Conversion to CNF

Let’s start with the process of converting a generic CFG into one represented in CNF.
Assuming we’re dealing with an ε-free grammar, there are three situations we need to
address in any generic grammar: rules that mix terminals with non-terminals on the
right-hand side, rules that have a single non-terminal on the the right, and rules where
the right-hand side’s length is greater than two.

The remediation for rules that mix terminals and non-terminals is to simply intro-
duce a new dummy non-terminal that covers only the original terminal. For example,
a rule for an infinitive verb phrase such as INF-VP → to VP would be replaced by the
two rules INF-VP → TO VP and TO → to.

Rules with a single non-terminal on the right are called unit productions. UnitUNIT PRODUCTIONS

productions are eliminated by rewriting the right-hand side of the original rules with the
right-hand side of all the non-unit production rules that they ultimately lead to. More
formally, if A

∗⇒ B by a chain of one or more unit productions, and B → γ is a non-unit
production in our grammar, then we add A → γ for each such rule in the grammar,
and discard all the intervening unit productions. As we’ll see with our toy grammar,
this can lead to a substantial flattening of the grammar, and a consequent promotion of
terminals to fairly high levels in the resulting trees.

Rules with right-hand sides longer than 2 are remedied through the introduction
of new non-terminals that spread the longer sequences over several new productions.
Formally, if we have a rule like

A → B C γ
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we replace the leftmost pair of non-terminals with a new non-terminal and introduce a
new production result in the following new rules.

X1 → B C

A → X1 γ

In the case of longer right-hand sides, we simply iterate this process until the offending
rule has length 2. The choice of replacing the leftmost pair of non-terminals is purely
arbitrary; any systematic scheme that results in binary rules would suffice.

In our current grammar, the rule S → Aux NP VP would be replaced by the two
rules S → X1 VP and X1 → Aux NP.

The entire conversion process can be summarized as follows:

1. Copy all conforming rules to the new grammar unchanged,
2. Convert terminals within rules to dummy non-terminals,
3. Convert unit-productions,
4. Binarize all rules and add to new grammar.

Fig. 13.8 shows the results of applying this entire conversion procedure to the L1

grammar introduced earlier on page 2. Note that this figure doesn’t show the original
lexical rules; since these original lexical rules are already in CNF, they all carry over
unchanged to the new grammar. Fig. 13.8 does, however, show the various places
where the process of eliminating unit-productions has, in effect, created new lexical
rules. For example, all the original verbs have been promoted to both VPs and to Ss in
the converted grammar.

CKY Recognition

With our grammar now in CNF, each non-terminal node above the part-of-speech level
in a parse tree will have exactly two daughters. A simple two-dimensional matrix can
be used to encode the structure of an entire tree. More specifically, for a sentence of
length n, we will be working with the upper-triangular portion of an (n+1)× (n+1)
matrix. Each cell [i, j] in this matrix contains a set of non-terminals that represent all
the constituents that span positions i through j of the input. Since our indexing scheme
begins with 0, it’s natural to think of the indexes as pointing at the gaps between the
input words (as in 0 Book 1 that 2 flight 3). It follows then that the cell that represents
the entire input resides in position [0,n] in the matrix.

Since our grammar is in CNF, the non-terminal entries in the table have exactly
two daughters in the parse. Therefore, for each constituent represented by an entry [i, j]
in the table there must be a position in the input, k, where it can be split into two parts
such that i < k < j. Given such a k, the first constituent [i,k] must lie to the left of
entry [i, j] somewhere along row i, and the second entry [k, j] must lie beneath it, along
column j.

To make this more concrete, consider the following example with its completed
parse matrix shown in Fig. 13.9.

(13.6) Book the flight through Houston.

The superdiagonal row in the matrix contains the parts of speech for each input word
in the input. The subsequent diagonals above that superdiagonal contain constituents
that cover all the spans of increasing length in the input.
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S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

Figure 13.8 L1 Grammar and its conversion to CNF. Note that although they aren’t
shown here all the original lexical entries from L1 carry over unchanged as well.

Figure 13.9 Completed parse table for Book the flight through Houston.

Given all this, CKY recognition is simply a matter of filling the parse table in
the right way. To do this, we’ll proceed in a bottom-up fashion so that at the point
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where we are filling any cell [i, j], the cells containing the parts that could contribute
to this entry, (i.e. the cells to the left and the cells below) have already been filled.
There are several ways to do this; as the right side of Fig. 13.9 illustrates, the algorithm
given in Fig. 13.10 fills the upper-triangular matrix a column at a time working from
left to right. Each column is then filled from bottom to top. This scheme guarantees
that at each point in time we have all the information we need (to the left, since all
the columns to the left have already been filled, and below since we’re filling bottom
to top). It also mirrors on-line parsing since filling the columns from left to right
corresponds to processing each word one at a time.

function CKY-PARSE(words, grammar) returns table

for j← from 1 to LENGTH(words) do
table[ j−1, j]←{A | A → words[ j] ∈ grammar }
for i← from j−2 downto 0 do

for k← i+1 to j−1 do
table[i,j]← table[i,j] ∪

{A | A → BC ∈ grammar,
B ∈ table[i,k],
C ∈ table[k, j] }

Figure 13.10 The CKY algorithm

The outermost loop of the algorithm given in Fig. 13.10 iterates over the columns,
the second loop iterates over the rows, from the bottom up. The purpose of the inner-
most loop is to range over all the places where a substring spanning i to j in the input
might be split in two. As k ranges over the places where the string can be split, the
pairs of cells we consider move, in lockstep, to the right along row i and down along
column j. Fig. 13.11 illustrates the general case of filling cell [i, j]. At each such split,
the algorithm considers whether the contents of the two cells can be combined in a way
that is sanctioned by a rule in the grammar. If such a rule exists, the non-terminal on
its left-hand side is entered into the table.

Fig. 13.12 shows how the five cells of column 5 of the table are filled after the
word Houston is read. The arrows point out the two spans that are being used to
add an entry to the table. Note that the action in cell [0,5] indicates the presence of
three alternative parses for this input, one where the PP modifies the flight, one where
it modifies the booking, and one that captures the second argument in the original
VP → Verb NP PP rule, now captured indirectly with the VP → X2 PP rule.

In fact, since our current algorithm manipulates sets of non-terminals as cell
entries, it won’t include multiple copies of the same non-terminal in the table; the
second S and VP discovered while processing [0,5] would have no effect. We’ll revisit
this behavior in the next section.
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Figure 13.11 All the ways to fill the [i,j]th cell in the CKY table.

CKY Parsing

The algorithm given in Fig. 13.10 is a recognizer, not a parser; for it to succeed it
simply has to find an S in cell [0,N]. To turn it into a parser capable of returning all
possible parses for a given input, we’ll make two simple changes to the algorithm: the
first change is to augment the entries in the table so that each non-terminal is paired
with pointers to the table entries from which it was derived (more or less as shown in
Fig. 13.12), the second change is to permit multiple versions of the same non-terminal
to be entered into the table (again as shown in Fig. 13.12.) With these changes, the
completed table contains all the possible parses for a given input. Returning an arbitrary
single parse consists of choosing an S from cell [0,n] and then recursively retrieving its
component constituents from the table.

Of course, returning all the parses for a given input may incur considerable cost.
As we saw earlier, there may be an exponential number of parses associated with a
given input. In such cases, returning all the parses will have an unavoidable exponential
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Figure 13.12 Filling the last column after reading the word Houston.
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cost. Looking forward to Ch. 14, we can also think about retrieving the best parse for
a given input by further augmenting the table to contain the probabilities of each entry.
Retrieving the most probable parse consists of running a suitably modified version of
the Viterbi algorithm from Ch. 5 over the completed parse table.

CKY in Practice

Finally, we should note that while the restriction to CNF does not pose a problem theo-
retically, it does pose some non-trivial problems in practice. Obviously, as things stand
now, our parser isn’t returning trees that are consistent with the grammar given to us by
our friendly syntacticians. In addition to making our grammar developers unhappy, the
conversion to CNF will complicate any syntax-driven approach to semantic analysis.

One approach to getting around these problems is to keep enough information
around to transform our trees back to the original grammar as a post-processing step
of the parse. This is trivial in the case of the transformation used for rules with length
greater than 2. Simply deleting the new dummy non-terminals and promoting their
daughters restores the original tree.

In the case of unit productions, it turns out to be more convenient to alter the
basic CKY algorithm to handle them directly than it is to store the information needed
to recover the correct trees. Exercise 13.3 asks you to make this change. Many of
the probabilistic parsers presented in Ch. 14 use the CKY algorithm altered in just this
manner. Another solution is to adopt a more complex dynamic programming solution
that simply accepts arbitrary CFGs. The next section presents such an approach.

13.4.2 The Earley Algorithm

In contrast to the bottom-up search implemented by the CKY algorithm, the Earley
algorithm (Earley, 1970) uses dynamic programming to implement a top-down search
of the kind discussed earlier in Sec. 13.1.1. The core of the Earley algorithm is a single
left-to-right pass that fills an array we’ll call a chart that has N + 1 entries. For eachCHART

word position in the sentence, the chart contains a list of states representing the partial
parse trees that have been generated so far. As with the CKY algorithm, the indexes
represent the locations between the words in an input (as in 0 Book 1 that 2 flight 3).
By the end of the sentence, the chart compactly encodes all the possible parses of the
input. Each possible subtree is represented only once and can thus be shared by all the
parses that need it.

The individual states contained within each chart entry contain three kinds of
information: a subtree corresponding to a single grammar rule, information about the
progress made in completing this subtree, and the position of the subtree with respect to
the input. We’ll use a • within the right-hand side of a state’s grammar rule to indicate
the progress made in recognizing it. The resulting structure is called a dotted rule. ADOTTED RULE

state’s position with respect to the input will be represented by two numbers indicating
where the state begins and where its dot lies.

Consider the following example states, which would be among those created by
the Earley algorithm in the course of parsing Ex. 13.7:

(13.7) Book that flight.
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S → • VP, [0,0]
NP → Det • Nominal, [1,2]
VP → V NP •, [0,3]

The first state, with its dot to the left of its constituent, represents a top-down prediction
for this particular kind of S. The first 0 indicates that the constituent predicted by this
state should begin at the start of the input; the second 0 reflects the fact that the dot lies
at the beginning as well. The second state, created at a later stage in the processing of
this sentence, indicates that an NP begins at position 1, that a Det has been successfully
parsed and that a Nominal is expected next. The third state, with its dot to the right of
all its two constituents, represents the successful discovery of a tree corresponding to a
VP that spans the entire input.

The fundamental operation of an Earley parser is to march through the N + 1
sets of states in the chart in a left-to-right fashion, processing the states within each set
in order. At each step, one of the three operators described below is applied to each
state depending on its status. In each case, this results in the addition of new states to
the end of either the current, or next, set of states in the chart. The algorithm always
moves forward through the chart making additions as it goes; states are never removed
and the algorithm never backtracks to a previous chart entry once it has moved on. The
presence of a state S → α•, [0,N] in the list of states in the last chart entry indicates a
successful parse. Fig. 13.13 gives the complete algorithm.

The following three sections describe in detail the three operators used to process
states in the chart. Each takes a single state as input and derives new states from it.
These new states are then added to the chart as long as they are not already present.
The PREDICTOR and the COMPLETER add states to the chart entry being processed,
while the SCANNER adds a state to the next chart entry.

Predictor

As might be guessed from its name, the job of PREDICTOR is to create new states
representing top-down expectations generated during the parsing process. PREDICTOR

is applied to any state that has a non-terminal immediately to the right of its dot that is
not a part-of-speech category. This application results in the creation of one new state
for each alternative expansion of that non-terminal provided by the grammar. These
new states are placed into the same chart entry as the generating state. They begin and
end at the point in the input where the generating state ends.

For example, applying PREDICTOR to the state S → • VP, [0,0] results in the
addition of the following five states

VP → • Verb, [0,0]
VP → • Verb NP, [0,0]
VP → • Verb NP PP, [0,0]
VP → • Verb PP, [0,0]
VP → • VP PP, [0,0]

to the first chart entry.
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function EARLEY-PARSE(words, grammar) returns chart

ADDTOCHART((γ → • S, [0,0]), chart[0])
for i← from 0 to LENGTH(words) do
for each state in chart[i] do

if INCOMPLETE?(state) and
NEXT-CAT(state) is not a part of speech then

PREDICTOR(state)
elseif INCOMPLETE?(state) and

NEXT-CAT(state) is a part of speech then
SCANNER(state)

else
COMPLETER(state)

end
end
return(chart)

procedure PREDICTOR((A → α • B β , [i, j]))
for each (B → γ) in GRAMMAR-RULES-FOR(B, grammar) do

ADDTOCHART((B → • γ , [ j, j]), chart[j])
end

procedure SCANNER((A → α • B β , [i, j]))
if B ∈ PARTS-OF-SPEECH(word[j]) then

ADDTOCHART((B → word[ j] •, [ j, j +1]), chart[j+1])

procedure COMPLETER((B → γ •, [ j,k]))
for each (A → α • B β , [i, j]) in chart[j] do

ADDTOCHART((A → α B • β , [i,k]), chart[k])
end

procedure ADDTOCHART(state, chart-entry)
if state is not already in chart-entry then

PUSH-ON-END(state, chart-entry)
end

Figure 13.13 The Earley algorithm

Scanner

When a state has a part-of-speech category to the right of the dot, SCANNER is called to
examine the input and incorporate a state corresponding to the prediction of a word with
a particular part-of-speech into the chart. This is accomplished by creating a new state
from the input state with the dot advanced over the predicted input category. Note that
unlike CKY, Earley uses top-down input to help deal with part-of-speech ambiguities;
only those parts-of-speech of a word that are predicted by some existing state will find
their way into the chart.

Returning to our example, when the state VP → • Verb NP, [0,0] is processed,
SCANNER consults the current word in the input since the category following the dot is
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a part-of-speech. It then notes that book can be a verb, matching the expectation in the
current state. This results in the creation of the new state Verb → book•, [0,1]. This
new state is then added to the chart entry that follows the one currently being processed.
The noun sense of book never enters the chart since it is not predicted by any rule at
this position in the input.

Completer

COMPLETER is applied to a state when its dot has reached the right end of the rule.
The presence of such a state represents the fact that the parser has successfully discov-
ered a particular grammatical category over some span of the input. The purpose of
COMPLETER is to find, and advance, all previously created states that were looking for
this grammatical category at this position in the input. New states are then created by
copying the older state, advancing the dot over the expected category, and installing
the new state in the current chart entry.

In the current example, when the state NP → Det Nominal•, [1,3] is processed,
COMPLETER looks for incomplete states ending at position 1 and expecting an NP. It
finds the states VP → Verb•NP, [0,1] and VP → Verb•NP PP, [0,1]. This results in the
addition of the new complete state VP → Verb NP•, [0,3], and the new incomplete state
VP → Verb NP•PP, [0,3] to the chart.

A Complete Example

Fig. 13.14 shows the sequence of states created during the complete processing of Ex.
13.7; each row indicates the state number for reference, the dotted rule, the start and
end points, and finally the function that added this state to the chart. The algorithm
begins by seeding the chart with a top-down expectation for an S. This is accomplished
by adding a dummy state γ → • S, [0,0] to Chart[0]. When this state is processed, it
is passed to PREDICTOR leading to the creation of the three states representing predic-
tions for each possible type of S, and transitively to states for all of the left-corners of
those trees. When the state VP → • Verb, [0,0] is reached, SCANNER is called and the
first word is read. A state representing the verb sense of Book is added to the entry
for Chart[1]. Note that when the subsequent sentence initial VP states are processed,
SCANNER will be called again. However, new states are not added since they would be
identical to the Verb state already in the chart.

When all the states of Chart[0] have been processed, the algorithm moves on
to Chart[1] where it finds the state representing the verb sense of book. This is a
complete state with its dot to the right of its constituent and is therefore passed to
COMPLETER. COMPLETER then finds the four previously existing VP states expecting
a Verb at this point in the input. These states are copied with their dots advanced and
added to Chart[1]. The completed state corresponding to an intransitive VP then leads
to the creation of an S representing an imperative sentence. Alternatively, the dot in the
transitive verb phrase leads to the creation of the three states predicting different forms
of NPs. The state NP → • Det Nominal, [1,1] causes SCANNER to read the word that
and add a corresponding state to Chart[2].

Moving on to Chart[2], the algorithm finds the state representing the determiner
sense of that. This complete state leads to the advancement of the dot in the NP state
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Chart[0] S0 γ → • S [0,0] Dummy start state
S1 S → • NP VP [0,0] Predictor
S2 S → • Aux NP VP [0,0] Predictor
S3 S → • VP [0,0] Predictor
S4 NP → • Pronoun [0,0] Predictor
S5 NP → • Proper-Noun [0,0] Predictor
S6 NP → • Det Nominal [0,0] Predictor
S7 VP → • Verb [0,0] Predictor
S8 VP → • Verb NP [0,0] Predictor
S9 VP → • Verb NP PP [0,0] Predictor
S10 VP → • Verb PP [0,0] Predictor
S11 VP → • VP PP [0,0] Predictor

Chart[1] S12 Verb → book • [0,1] Scanner
S13 VP → Verb • [0,1] Completer
S14 VP → Verb • NP [0,1] Completer
S15 VP → Verb • NP PP [0,1] Completer
S16 VP → Verb • PP [0,1] Completer
S17 S → VP • [0,1] Completer
S18 VP → VP • PP [0,1] Completer
S19 NP → • Pronoun [1,1] Predictor
S20 NP → • Proper-Noun [1,1] Predictor
S21 NP → • Det Nominal [1,1] Predictor
S22 PP → • Prep NP [1,1] Predictor

Chart[2] S23 Det → that • [1,2] Scanner
S24 NP → Det • Nominal [1,2] Completer
S25 Nominal → • Noun [2,2] Predictor
S26 Nominal → • Nominal Noun [2,2] Predictor
S27 Nominal → • Nominal PP [2,2] Predictor

Chart[3] S28 Noun → flight • [2,3] Scanner
S29 Nominal → Noun • [2,3] Completer
S30 NP → Det Nominal • [1,3] Completer
S31 Nominal → Nominal • Noun [2,3] Completer
S32 Nominal → Nominal • PP [2,3] Completer
S33 VP → Verb NP • [0,3] Completer
S34 VP → Verb NP • PP [0,3] Completer
S35 PP → • Prep NP [3,3] Predictor
S36 S → VP • [0,3] Completer
S37 VP → VP • PP [0,3] Completer

Figure 13.14 Chart entries created during an Earley parse of Book that flight. Each
entry shows the state, its start and end points, and the function that placed it in the chart.

predicted in Chart[1], and also to the predictions for the various kinds of Nominal. The
first of these causes SCANNER to be called for the last time to process the word flight.

Finally moving on to Chart[3], the presence of the state representing flight leads
in quick succession to the completion of an NP, transitive VP, and an S. The presence
of the state S → VP•, [0,3] in the last chart entry signals the discovery of a successful
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Chart[1] S12 Verb → book • [0,1] Scanner

Chart[2] S23 Det → that • [1,2] Scanner

Chart[3] S28 Noun → flight • [2,3] Scanner
S29 Nominal → Noun • [2,3] (S28)
S30 NP → Det Nominal • [1,3] (S23, S29)
S33 VP → Verb NP • [0,3] (S12, S30)
S36 S → VP • [0,3] (S33)

Figure 13.15 States that participate in the final parse of Book that flight, including
structural parse information.

parse.
It is useful to contrast this example with the CKY example given earlier. Al-

though Earley managed to avoid adding an entry for the noun sense of book, its overall
behavior is clearly much more promiscuous than CKY. This promiscuity arises from
the purely top-down nature of the predictions that Earley makes. Exercise 13.6 asks
you to improve the algorithm by eliminating some of these unnecessary predictions.

Retrieving Parse Trees from a Chart

As with the CKY algorithm, this version of the Earley algorithm is a recognizer not
a parser. Valid sentences will simply leave the state S → α•, [0,N] in the chart. To
retrieve parses from the chart the representation of each state must be augmented with
an additional field to store information about the completed states that generated its
constituents.

The information needed to fill these fields can be gathered by making a simple
change to the COMPLETER function. Recall that COMPLETER creates new states by
advancing existing incomplete states when the constituent following the dot has been
discovered in the right place. The only change necessary is to have COMPLETER add a
pointer to the older state onto a list of constituent-states for the new state. Retrieving a
parse tree from the chart is then merely a matter of following pointers starting with the
state (or states) representing a complete S in the final chart entry. Fig. 13.15 shows the
chart entries produced by an appropriately updated COMPLETER that participate in the
final parse for this example.

13.4.3 Chart Parsing

In both the CKY and Earley algorithms, the order in which events occur (adding en-
tries to the table, reading words, making predictions, etc.) is statically determined by
the procedures that make up these algorithms. Unfortunately, dynamically determining
the order in which events occur based on the current information is often necessary for
a variety of reasons. Fortunately, an approach advanced by Martin Kay and his col-
leagues (Kaplan, 1973; Kay, 1986) called Chart Parsing facilitates just such dynamicCHART PARSING

determination of the order in which chart entries are processed. This is accomplished
through the introduction of an agenda to the mix. In this scheme, as states (called edges
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in this approach) are created they are added to an agenda that is kept ordered according
to a policy that is specified separately from the main parsing algorithm. This can be
viewed as another instance of state-space search that we’ve seen several times before.
The FSA and FST recognition and parsing algorithms in Chs. 2 and 3 employed agen-
das with simple static policies, while the A∗ decoding algorithm described in Ch. 9 is
driven by an agenda that is ordered probabilistically.

Fig. 13.16 presents a generic version of a parser based on such a scheme. The
main part of the algorithm consists of a single loop that removes a edge from the front
of an agenda, processes it, and then moves on to the next entry in the agenda. When
the agenda is empty, the parser stops and returns the chart. The policy used to order
the elements in the agenda thus determines the order in which further edges are created
and predictions are made.

function CHART-PARSE(words, grammar, agenda-strategy) returns chart

INITIALIZE(chart, agenda, words)
while agenda

current-edge←POP(agenda)
PROCESS-EDGE(current-edge)

return(chart)

procedure PROCESS-EDGE(edge)
ADD-TO-CHART(edge)
if INCOMPLETE?(edge)

FORWARD-FUNDAMENTAL-RULE(edge)
else

BACKWARD-FUNDAMENTAL-RULE(edge)
MAKE-PREDICTIONS(edge)

procedure FORWARD-FUNDAMENTAL((A → α • B β , [i, j]))
for each(B → γ •, [ j,k]) in chart

ADD-TO-AGENDA(A → α B • β , [i,k])

procedure BACKWARD-FUNDAMENTAL((B → γ •, [ j,k]))
for each(A → α • B β , [i, j]) in chart

ADD-TO-AGENDA(A → α B • β , [i,k])

procedure ADD-TO-CHART(edge)
if edge is not already in chart then

Add edge to chart

procedure ADD-TO-AGENDA(edge)
if edge is not already in agenda then

APPLY(agenda-strategy, edge, agenda)

Figure 13.16 A Chart Parsing Algorithm

The key principle in processing edges in this approach is what Kay termed the
fundamental rule of chart parsing. The fundamental rule states that when the chartFUNDAMENTAL RULE

contains two contiguous edges where one of the edges provides the constituent that



DRAFT

24 Chapter 13. Parsing with Context-Free Grammars

the other one needs, a new edge should be created that spans the original edges and
incorporates the provided material. More formally, the fundamental rule states the
following: if the chart contains two edges A → α • B β , [i, j] and B → γ •, [ j,k] then
we should add the new edge A → α B • β [i,k] to the chart. It should be clear that the
fundamental rule is a generalization of the basic table-filling operations found in both
the CKY and Earley algorithms.

The fundamental rule is triggered in Fig. 13.16 when an edge is removed from the
agenda and passed to the PROCESS-EDGE procedure. Note that the fundamental rule
itself does not specify which of the two edges involved has triggered the processing.
PROCESS-EDGE handles both cases by checking to see whether or not the edge in
question is complete. If it is complete than the algorithm looks earlier in the chart to
see if any existing edge can be advanced; if it is incomplete than it looks later in the
chart to see if it can be advanced by any pre-existing edge later in the chart.

The next piece of the algorithm that needs to be filled in is the method for mak-
ing predictions based on the edge being processed. There are two key components to
making predictions in chart parsing: the events that trigger predictions, and the nature
of a predictions. The nature of these components varies depending on whether we are
pursuing a top-down or bottom-up strategy. As in Earley, top-down predictions are trig-
gered by expectations that arise from incomplete edges that have been entered into the
chart; bottom-up predictions are triggered by the discovery of completed constituents.
Fig. 13.17 illustrates how these two strategies can be integrated into the chart parsing
algorithm.

procedure MAKE-PREDICTIONS(edge)
if Top-Down and INCOMPLETE?(edge)

TD-PREDICT(edge)
elsif Bottom-Up and COMPLETE?(edge)

BU-PREDICT(edge)

procedure TD-PREDICT((A → α • B β , [i, j]))
for each(B → γ) in grammar do

ADD-TO-AGENDA(B → • γ , [ j, j])

procedure BU-PREDICT((B → γ •, [i, j]))
for each(A → B β ) in grammar

ADD-TO-AGENDA(A → B • β , [i, j])

Figure 13.17 A Chart Parsing Algorithm

Obviously we’ve left out many of the bookkeeping details that would have to
be specified to turn this approach into a real parser. Among the details that have to be
worked out are how the INITIALIZE procedure gets things started, how and when words
are read, the organization of the chart, and specifying an agenda strategy. Indeed, in
describing the approach here, Kay (1986) refers to it as an algorithm schema ratherALGORITHM SCHEMA

than an algorithm, since it more accurately specifies an entire family of parsers rather
than any particular parser. Exercise 13.7 asks you to explore some of the available
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choices by implementing various chart parsers.

13.5 PARTIAL PARSING

Many language-processing tasks simply do not require complex, complete parse trees
for all inputs. For these tasks, a partial parse, or shallow parse, of input sentencesPARTIAL PARSE

SHALLOW PARSE may be sufficient. For example, information extraction systems generally do not ex-
tract all the possible information from a text; they simply identify and classify the
segments in a text that are likely to contain valuable information. Similarly, informa-
tion retrieval systems may choose to index documents based on a select subset of the
constituents found in a text.

Not surprisingly, there are many different approaches to partial parsing. Some
approaches make use of cascades of FSTs, of the kind discussed in Ch. 3, to to produce
representations that closely approximate the kinds of trees we’ve been assuming in
this chapter and the last. These approaches typically produce flatter trees than the ones
we’ve been discussing. This flatness arises from the fact that such approaches generally
defer decisions that may require semantic or contextual factors, such as prepositional
phrase attachments, coordination ambiguities, and nominal compound analyses. Nev-
ertheless the intent is to produce parse-trees that link all the major constituents in an
input.

An alternative style of partial parsing is known as chunking. Chunking is theCHUNKING

process of identifying and classifying the flat non-overlapping segments of a sen-
tence that constitute the basic non-recursive phrases corresponding to the major parts-
of-speech found in most wide-coverage grammars. This set typically includes noun
phrases, verb phrases, adjective phrases, and prepositional phrases; in other words, the
phrases that correspond to the content-bearing parts-of-speech. Of course, not all ap-
plications require the identification of all of these categories; indeed the most common
chunking task is to simply find all the base noun phrases in a text.

Since chunked texts lack a hierarchical structure, a simple bracketing notation is
sufficient to denote the location and the type of the chunks in a given example. The
following example illustrates a typical bracketed notation.

(13.8) [NP The morning flight] [PP from] [NP Denver] [VP has arrived.]

This bracketing notation makes clear the two fundamental tasks that are involved in
chunking: finding the non-overlapping extents of the chunks, and assigning the correct
label to the discovered chunks.

Note that in this example all the words are contained in some chunk. This will
not be the case in all chunking applications. In many settings, a good number of the
words in any input will fall outside of any chunk. This is, for example, the norm in
systems that are only interested in finding the base-NPs in their inputs, as illustrated by
the following example.

(13.9) [NP The morning flight] from [NP Denver] has arrived.

The details of what constitutes a syntactic base-phrase for any given system
varies according to the syntactic theories underlying the system and whether the phrases
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are being derived from a treebank. Nevertheless, some standard guidelines are followed
in most systems. First and foremost, base phrases of a given type do not recursively
contain any constituents of the same type. Eliminating this kind of recursion leaves us
with the problem of determining the boundaries of the non-recursive phrases. In most
approaches, base-phrases include the headword of the phrase, along with any pre-head
material within the constituent, while crucially excluding any post-head material. Elim-
inating post-head modifiers from the major categories automatically removes the need
to resolve attachment ambiguities. Note that exclusion does lead to certain oddities
such as the fact that PPs and VPs often consist solely of their heads. Thus our earlier
example a flight from Indianapolis to Houston on TWA is reduced to the following:

(13.10) [NP a flight] [PP from] [NP Indianapolis][PP to][NP Houston][PP on][NP TWA].

13.5.1 Finite-State Rule-Based Chunking

Syntactic base-phrases of the kind we’re considering can be characterized by finite-
state automata (or finite-state rules, or regular expressions) of the kind discussed earlier
in Chs. 2 and 3. In finite-state rule-based chunking, a set of rules is hand-crafted to
capture the phrases of interest for any particular application. In most rule-based sys-
tems, chunking proceeds from left-to-right, finding the longest matching chunk from
the beginning of the sentence, it then continues with the first word after the end of the
previously recognized chunk. The process continues until the end of the sentence. This
is a greedy process and is not guaranteed to find the best global analysis for any given
input.

The primary limitation placed on these chunk rules is that they can not contain
any recursion; the right-hand side of the rule can not reference directly, or indirectly, the
category that the rule is designed to capture. In other words, rules of the form NP →
Det Nominal are fine, but rules such as Nominal → Nominal PP are not. Consider the
following example chunk rules adapted from Abney (1996).

NP → (Det) Noun* Noun

NP → Proper-Noun

VP → Verb

VP → Aux Verb

The process of turning these rules into a single finite-state transducer is the same
we introduced in Ch. 3 to capture spelling and phonological rules for English. Finite
state transducers are created corresponding to each rule and are then unioned together
to form a single machine that can then be determinized and minimized.

As we saw in Ch. 3, a major benefit of the finite-state approach is the ability to
use the output of earlier transducers as inputs to subsequent transducers to form cas-
cades. In partial parsing, this technique can be used to more closely approximate
the output of true context-free parsers. In this approach, an initial set of transducers
is used, in the way just described, to find a subset of syntactic base-phrases. These
base-phrases are then passed as input to further transducers that detect larger and larger
constituents such as prepositional phrases, verb phrases, clauses, and sentences. Con-
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FST3

FST2

FST1

S

NP PP VP

NP IN NP VP

DT NN NN IN PRP Aux VB 

The morning flight from Denver has arrived

Figure 13.18 Chunk-based partial parsing via a set of finite-set cascades. FST1 trans-
duces from part-of-speech tags to base noun phrases and verb phrases. FST2 finds prepo-
sitional phrases. Finally, FST3 detects sentences.

sider the following rules, again adapted from Abney (1996).

FST2 PP → Preposition NP

FST3 S → PP* NP PP* VP PP*

Combining these two machines with the earlier rule-set results in a three machine cas-
cade. The application of this cascade to Ex. 13.8 is shown in Fig. 13.18.
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13.5.2 Machine Learning-Based Approaches to Chunking

As with part-of-speech tagging, an alternative to rule-based processing is to use super-
vised machine learning techniques to train a chunker using annotated data as a training
set. As described earlier in Ch. 6, we can view the task as one of sequential classifica-
tion, where a classifier is trained to label each element of the the input in sequence. Any
of the standard approaches to training classifiers apply to this problem. In the work that
pioneered this approach, Ramshaw and Marcus (1995) used the transformation-based
learning method described in Ch. 5.

The critical first step in such an approach is to find a way to view the chunking
process that is amenable to sequential classification. A particularly fruitful approach
is to treat chunking as a tagging task similar to part-of-speech tagging (Ramshaw and
Marcus, 1995). In this approach, a small tagset simultaneously encodes both the seg-
mentation and the labeling of the chunks in the input. The standard way to do this has
come to be called IOB tagging and is accomplished by introducing tags to representIOB TAGGING

the beginning (B) and internal (I) parts of each chunk, as well as those elements of
the input that are outside (O) any chunk. Under this scheme, the size of the tagset is
(2n + 1) where n is the number of categories to be classified. The following exam-
ple shows the tagging version of the bracketing notation given earlier for Ex. 13.8 on
pg. 25.

(13.11) The
B NP

morning
I NP

flight
I NP

from
B PP

Denver
B NP

has
B VP

arrived
I VP

The same sentence with only the base-NPs tagged illustrates the role of the O tags.

(13.12) The
B NP

morning
I NP

flight
I NP

from
O

Denver
B NP

has
O

arrived.
O

Notice that there is no explicit encoding of the end of a chunk in this scheme; the end of
any chunk is implicit in any transition from an I or B, to a B tag, or from an I to an O tag.
This encoding reflects the notion that when sequentially labeling words, it is generally
quite a bit easier (at least in English) to detect the beginning of a new chunk than it is
to know when a chunk has ended. Not surprisingly, there are a variety of other tagging
schemes that represent chunks in subtly different ways, including some that explicitly
mark the end of constituents. Tjong Kim Sang and Veenstra (1999) describe three
variations on this basic tagging scheme and investigate their performance on a variety
of chunking tasks.

Given such a tagging scheme, building a chunker consists of training a classi-
fier to label each word of an input sentence with one of the IOB tags from the tagset.
Of course, training requires training data consisting of the phrases of interest delim-
ited and marked with the appropriate category. The direct approach is to annotate
a representative corpus. Unfortunately, annotation efforts can be both expensive and
time-consuming. It turns out that the best place to find such data for chunking, is in
one of the already existing treebanks described earlier in Ch. 12.

Resources such as the Penn Treebank provide a complete syntactic parse for
each sentence in a corpus. Therefore, base syntactic phrases can be extracted from
the constituents provided by the Treebank parses. Finding the kinds of phrases we’re
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Figure 13.19 The sequential classifier-based approach to chunking. The chunker slides a context window over
the sentence classifying words as it proceeds. At this point the classifier is attempting to label flights. Features
derived from the context typically include: the current, previous and following words; the current, previous and
following parts-of-speech; and the previous assignments of chunk-tags.

interested in is relatively straightforward; we simply need to know the appropriate non-
terminal names in the collection. Finding the boundaries of the chunks entails finding
the head, and then including the material to the left of the head, ignoring the text to the
right. This latter process is somewhat error-prone since it relies on the accuracy of the
head-finding rules described earlier in Ch. 12.

Having extracted a training corpus from a treebank, we must now cast the train-
ing data into a form that’s useful for training classifiers. In this case, each input can
be represented as a set of features extracted from a context window that surrounds the
word to be classified. Using a window that extends two words before, and two words
after the word being classified seems to provide reasonable performance. Features ex-
tracted from this window include: the words themselves, their parts-of-speech, as well
as the chunk tags of the preceding inputs in the window.

Fig. 13.19 illustrates this scheme with the example given earlier. During training,
the classifier would be provided with a training vector consisting of the values of 12
features (using Penn Treebank tags) as shown. To be concrete, during training the
classifier is given the 2 words to the right of the decision point along with their part-of-
speech tags and their chunk tags, the word to be tagged along with its part-of-speech,
the two words that follow along with their parts-of speech, and finally the correct chunk
tag, in this case I NP. During classification, the classifier is given the same vector
without the answer and is asked to assign the most appropriate tag from its tagset.
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13.5.3 Evaluating Chunking Systems

As with the evaluation of part-of-speech taggers, the evaluation of chunkers proceeds
by comparing the output of a chunker against gold-standard answers provided by hu-
man annotators. However, unlike part-of-speech tagging and speech recognition, word-
by-word accuracy measures are not adequate. Instead, chunkers are evaluated using
measures borrowed from the field of information retrieval. In particular, the notions of
precision, recall and the F measure are employed.

Precision measures the percentage of chunks that were provided by a system
that were correct. Correct here means that both the boundaries of the chunk and the
chunk’s label are correct. Precision is therefore defined as:

Precision: = Number of correct chunks given by system
Total number of chunks given by system

Recall measures the percentage of chunks actually present in the input that were
correctly identified by the system. Recall is defined as:

Recall: = Number of correct chunks given by system
Total number of actual chunks in the text

The F-measure (van Rijsbergen, 1975) provides a way to combine these twoF-MEASURE

measures into a single metric. The F-measure is defined as:

Fβ =
(β 2 +1)PR
β 2P+R

The β parameter is used to differentially weight the importance of recall and precision,
based perhaps on the needs of an application. Values of β > 1 favor recall, while values
of β < 1 favor precision. When β = 1, precision and recall are equally balanced; this
is sometimes called Fβ=1 or just F1:

F1 =
2PR
P+R

(13.13)

The F-measure derives from a weighted harmonic mean of precision and recall.
The harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of the
reciprocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1

1
a2

1
a3

... 1
an

(13.14)

and hence F-measure is

F =
1

1
αP × 1

(1−α)R

or

(
with β 2 =

1−α
α

)
F =

(β 2 +1)PR
β 2P+R

(13.15)

The best current systems achieve an F-measure of around .96 on the task of
base-NP chunking. Learning-based systems designed to find a more complete set of
base-phrases, such as the ones given in Fig. 13.20, achieve F-measures in the .92 to .94
range. The exact choice of learning approach seems to have little impact on these re-
sults; a wide-range of machine learning approaches achieve essentially the same results
(Cardie et al., 2000). FST-based systems of the kind discussed in Sec. 13.5.1 achieved
F-measures ranging from .85 to .92 on this task.
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Factors limiting the performance of current systems include the accuracy of the
part-of-speech taggers used to provide features for the system during testing, inconsis-
tencies in the training data introduced by the process of extracting chunks from parse
trees, and difficulty resolving ambiguities involving conjunctions. Consider the follow-
ing examples that involve pre-nominal modifiers and conjunctions.

(13.16) [NP Late arrivals and departures] are commonplace during winter.

(13.17) [NP Late arrivals] and [NP cancellations] are commonplace during winter.

In the first example, late is shared by both arrivals and departures yielding a
single long base-NP. In the second example, late is not shared and modifies arrivals
alone, thus yielding two base-NPs. Distinguishing these two situations, and others
like them, requires access to semantic and context information unavailable to current
chunkers.

Label Category Proportion (%) Example
NP Noun Phrase 51 The most frequently cancelled flight
VP Verb Phrase 20 may not arrive
PP Prepositional Phrase 20 to Houston
ADVP Adverbial Phrase 4 earlier
SBAR Subordinate Clause 2 that
ADJP Adjective Phrase 2 late

Figure 13.20 Most frequent base-phrases used in the 2000 CONLL shared task. These
chunks correspond to the major categories contained in the Penn Treebank.

13.6 SUMMARY

The two major ideas introduced in this chapter are those of parsing and partial pars-
ing. Here’s a summary of the main points we covered about these ideas:

• Parsing can be viewed as a search problem.
• Two common architectural metaphors for this search are top-down (starting with

the root S and growing trees down to the input words) and bottom-up (starting
with the words and growing trees up toward the root S).

• Ambiguity combined with the repeated parsing of sub-trees pose problems for
simple backtracking algorithms.

• A sentence is structurally ambiguous if the grammar assigns it more than one
possible parse.

• Common kinds of structural ambiguity include PP-attachment, coordination
ambiguity and noun-phrase bracketing ambiguity.

• The dynamic programming parsing algorithms use a table of partial-parses to
efficiently parse ambiguous sentences. The CKY, Earley, and Chart-Parsing
algorithms all use dynamic-programming to solve the repeated parsing of sub-
trees problem.



DRAFT

32 Chapter 13. Parsing with Context-Free Grammars

• The CKY algorithm restricts the form of its grammar to Chomsky-Normal Form;
the Earley and Chart-parsers accept unrestricted context-free grammars.

• Many practical problems including information extraction problems can be
solved without full parsing.

• Partial parsing and chunking are methods for identifying shallow syntactic con-
stituents in a text.

• High accuracy partial parsing can be achieved either through rule-based or ma-
chine learning-based methods.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Writing about the history of compilers, Knuth notes:

In this field there has been an unusual amount of parallel discovery of the
same technique by people working independently.

Well, perhaps not unusual, if multiple discovery is the norm (see page ??). But there
has certainly been enough parallel publication that this history will err on the side
of succinctness in giving only a characteristic early mention of each algorithm; the
interested reader should see Aho and Ullman (1972).

Bottom-up parsing seems to have been first described by Yngve (1955), who
gave a breadth-first bottom-up parsing algorithm as part of an illustration of a machine
translation procedure. Top-down approaches to parsing and translation were described
(presumably independently) by at least Glennie (1960), Irons (1961), and Kuno and
Oettinger (1963). Dynamic programming parsing, once again, has a history of inde-
pendent discovery. According to Martin Kay (personal communication), a dynamic
programming parser containing the roots of the CKY algorithm was first implemented
by John Cocke in 1960. Later work extended and formalized the algorithm, as well as
proving its time complexity (Kay, 1967; Younger, 1967; Kasami, 1965). The related
well-formed substring table (WFST) seems to have been independently proposed byWFST

Kuno (1965), as a data structure which stores the results of all previous computations
in the course of the parse. Based on a generalization of Cocke’s work, a similar data-
structure had been independently described by Kay (1967) and Kay (1973). The top-
down application of dynamic programming to parsing was described in Earley’s Ph.D.
dissertation (Earley, 1968) and Earley (1970). Sheil (1976) showed the equivalence of
the WFST and the Earley algorithm. Norvig (1991) shows that the efficiency offered
by all of these dynamic programming algorithms can be captured in any language with
a memoization function (such as LISP) simply by wrapping the memoization operation
around a simple top-down parser.

While parsing via cascades of finite-state automata had been common in the
early history of parsing (Harris, 1962), the focus shifted to full CFG parsing quite soon
afterward. Church (1980) argued for a return to finite-state grammars as a processing
model for natural language understanding; other early finite-state parsing models in-
clude Ejerhed (1988). Abney (1991) argued for the important practical role of shallow
parsing. Much recent work on shallow parsing applies machine learning to the task of
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learning the patterns; see for example Ramshaw and Marcus (1995), Argamon et al.
(1998), Munoz et al. (1999).

The classic reference for parsing algorithms is Aho and Ullman (1972); although
the focus of that book is on computer languages, most of the algorithms have been
applied to natural language. A good programming languages textbook such as Aho
et al. (1986) is also useful.

EXERCISES

13.1 Implement the algorithm to convert arbitrary context-free grammars to CNF.
Apply your program to the L1 grammar.

13.2 Implement the CKY algorithm and test it using your converted L1 grammar.

13.3 Rewrite the CKY algorithm given on page 13.10 so that it can accept grammars
that contain unit productions.

13.4 Augment the Earley algorithm of Fig. 13.13 to enable parse trees to be retrieved
from the chart by modifying the pseudocode for the COMPLETER as described on page
22.

13.5 Implement the Earley algorithm as augmented in the previous exercise. Check
it on a test sentence using the L1 grammar.

13.6 Alter the Earley algorithm so that it makes better use of bottom-up information
to reduce the number of useless predictions.

13.7 Attempt to recast the CKY and Earley algorithms in the chart parsing paradigm.

13.8 Discuss the relative advantages and disadvantages of partial parsing versus full
parsing.

13.9 Implement a more extensive finite-state grammar for noun-groups using the ex-
amples given in Sec. 13.5 and test it on some sample noun-phrases. If you have access
to an on-line dictionary with part-of-speech information, start with that; if not, build a
more restricted system by hand.

13.10 Discuss how you would augment a parser to deal with input that may be incor-
rect, such as spelling errors or misrecognitions from a speech recognition system.
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