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Word segmentation stimulus (Saffran et al., 1996a)

Recall from Ch. 7 thaphonologyis the area of linguistics that describes the sys-
tematic way that sounds are differently realized in différenvironments, and how
this system of sounds is related to the rest of the grammais dftapter introduces

ConpiRToNA: - computational phonology, the use of computational models in phonological theory.

One focus of computational phonology is on computationaletof phonological
representation, and on how to use phonological models tofroapsurface phonolog-
ical forms to underlying phonological representation. Misdn (non-computational)
phonological theory are generative; the goal of the model ispresent how an under-
lying form can generate a surface phonological form. In cotaton, we are generally
more interested in the alternative problenpbbnological parsing going from surface
form to underlying structure. One major tool for this taskhie finite-state automaton,
which is employed in two families of modelfinite-state phonologyandoptimality
theory.

A related kind of phonological parsing tasksigllabification: the task of assigning
syllable structure to sequences of phones. Besides itsdtieal interest, syllabifi-
cation turns out to be a useful practical tool in aspects eksph synthesis such as
pronunciation dictionary design. We therefore summaritewapractical algorithms
for syllabification.

Finally, we spend the remainder of the chapter on the keylenobf how phono-
logical and morphological representations can be learned.

11.1 HNITE-STATE PHONOLOGY

Ch. 3 showed that spelling rules can be implemented by traresd. Phonological
rules can be implemented as transducers in the same wayednte original work

by Johnson (1972) and Kaplan and Kay (1981) on finite-statdetsovas based on
phonological rules rather than spelling rules. There araraber of different models

of computational phonologythat use finite automata in various ways to realize phono-
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logical rules. We will describe thisvo-level morphologyof Koskenniemi (1983) first
mentioned in Ch. 3. Let’s begin with the intuition, by seeihg transducer in Fig. 11.1
which models the simplified flapping rule in (11.1):

(11.1) It — [dx]/V __V

V:@

Figure 11.1  Transducer for English Flapping: ARPAbet “dx” indicatesapfland the
“other” symbol means “any feasible pair not used elsewhetied transducer”. “@"” means
“any symbol not used elsewhere on any arc”.

The transducer in Fig. 11.1 accepts any string in which flaggsioin the correct
places (after a stressed vowel, before an unstressed vandlyejects strings in which
flapping doesn’t occur, or in which flapping occurs in the wyemvironment.

We've seen both transducers and rules before; the intuitiawo-level morphol-
ogy is to augment the rule notation to correspond more niftumatransducers. We
motivate his idea by beginning with the notionrafe ordering . In a traditional phono-
logical system, many different phonological rules applynzen the lexical form and
the surface form. Sometimes these rules interact; the dérpm one rule affects the
input to another rule. One way to implement rule-interatiio a transducer system
is to run transducers in @ascade Consider, for example, the rules that are needed to
deal with the phonological behavior of the English noun @lsuffix -s. This suffix is
pronounced [ix z] after the phones [s], [sh], [z], [zh], [cbT [jh] (so peachess pro-
nounced [p iy ch ix z], anfaxesis pronounced [f ae k s ix z]), [z] after voiced sounds
(pigsis pronounced [p ih g z]), and [s] after unvoiced souncktgis pronounced [k
ae t s]). We model this variation by writing phonologicalasiifor the realization of
the morpheme in different contexts. We first need to chooseodthese three forms
([s], [2], [ix z]) as the “lexical” pronunciation of the sukfj we chose [z] only because
it turns out to simplify rule writing. Next we write two photagical rules. One, sim-
ilar to the E-insertion spelling rule of pa@®, inserts an [ix] after a morpheme-final
sibilant and before the plural morpheme [z]. The other makes that thes suffix is

1 For pedagogical purposes, this example assumes (indgjréwt the factors that influence flapping are
purely phonetic and are non-stochastic.
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properly realized as [s] after unvoiced consonants.
(11.2) € — ix/[+sibilant] " _z #
(11.3) z — s/[-voice] T __ #

BLEEDING

These two rules must berdered rule (11.2) must apply before (11.3). This is
because the environment of (11.2) includeand the rule (11.3) changesConsider
running both rules on the lexical forfox concatenated with the plurad:

Lexical form: faak”z
(11.2) applies: faaks ixz
(11.3) doesn'tapply:faak s ix z

If the devoicing rule (11.3) was ordered first, we would getwrong result. This
situation, in which one rule destroys the environment fathaer, is calledleeding?

Lexical form: faaks "z
(11.3) applies: faaks”s
(11.2) doesn'tapply:-faaks”s

As was suggested in Ch. 3, each of these rules can be repédsna transducer.
Since the rules are ordered, the transducers would alsao&edrdered. For example
if they are placed in @ascadethe output of the first transducer would feed the input
of the second transducer.

Many rules can be cascaded together this way. As Ch. 3 degussmning a cas-
cade, particularly one with many levels, can be unwieldyg smtransducer cascades
are usually replaced with a single more complex transduceoposingthe individ-
ual transducers.

Koskenniemi’'s method afwvo-level morphologythat was sketchily introduced in
Ch. 3 is another way to solve the problem of rule ordering. Kéosiemi (1983) ob-
served that most phonological rules in a grammar are indégrgrof one another; that
feeding and bleeding relations between rules are not tha Ad@ince this is the case,
Koskenniemi proposed that phonological rules be run inljghrather than in series.
The cases where there is rule interaction (feeding or hiegdve deal with by slightly
modifying some rules. Koskenniemi’s two-level rules cantfigught of as a way of
expressingleclarative constraintson the well-formedness of the lexical-surface map-
ping.

Two-level rules also differ from traditional phonologicales by explicitly coding
when they are obligatory or optional, by using four diffgrimle operators; the< rule
corresponds to traditionabligatory phonological rules, while the> rule implements
optional rules:

2 If we had chosen to represent the lexical pronunciatiors ef [s] rather than [z], we would have written
the rule inversely to voice theafter voiced sounds, but the rules would still need to berediehe ordering
would simply flip.

3 Feeding is a situation in which one rule creates the enviesmnfor another rule and so must be run
beforehand.
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Rule type | Interpretation

a:b<c__d |aisalwaysrealized ad in the context __d

a: b= c__d |amay be realized dsonly in the context __d

a: b < c__d |amustbe realized asin contextc __ d and nowhere else
a:b/<c__d|aisneverrealized ad in the context __d

The most important intuition of the two-level rules, and thechanism that lets
them avoid feeding and bleeding, is their ability to repré®®nstraints otwo levels
This is based on the use of the colon ("), which was touchedexy briefly in Ch. 3.
The symbok:b means a lexicah that maps to a surfade Thusa:b < :c __ means
ais realized a® after asurfacec. By contrasta:b < c: __ means thaa is realized
asb after alexical c. As discussed in Ch. 3, the symlmolvith no colon is equivalent
to c:c that means a lexica which maps to a surface

Fig. 11.2 shows an intuition for how the two-level approaebids ordering for the
ix-insertion and z-devoicing rules. The idea is that theezeaicing rule maps &xical
z-insertion to asurfaces and the ix rule refers to thexical z.

lexical level

iX surface level

Figure 11.2 The constraints for théinsertion andz-devoicing rules both refer to g
lexical z, not asurfaces.

The two-level rules that model this constraint are showriih4) and (11.5):

(11.4) £:iXx & [tsibilant]: " __z: #
(11.5) z:s & [-voice]: T __ #

As Ch. 3 discussed, there are compilation algorithms foatorg automata from
rules. Kaplan and Kay (1994) give the general derivationhefsé algorithms, and
Antworth (1990) gives one that is specific to two-level ruléBhe automata corre-
sponding to the two rules are shown in Fig. 11.3 and Fig. 1Higd. 11.3 is based on
Figure 3.14 of Ch. 3; see page 78 for a reminder of how thisraaton works. Note in
Fig. 11.3 that the plural morpheme is represented by z:¢aiuhig that the constraint is
expressed about a lexical rather than surface z.

Fig. 11.5 shows the two automata run in parallel on the infras K s ~ z]. Note that
both the automata assumes the default mappaig remove the morpheme boundary,
and that both automata end in an accepting state.

11.2 ADVANCED FINITE-STATE PHONOLOGY
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Figure 11.3 The transducer for the ix-insertion rule 11.2. The rule candadvhenever
a morpheme ends in a sibilant, and the following morphemeiglfinal z, insert [ix].

Figure 11.4  The transducer for the z-devoicing rule 11.3. This rule rmighsumma-
rized Devoice the morpheme z if it follows a morpheme-final vogset@nsonant.

11.2.1 Harmony

Finite-state models of phonology have also been appliedoie sophisticated phono-
logical and morphological phenomena. Let’s consider adfintate model of a well-
known complex interaction of three phonological rules ie ¥awelmani dialect of
Yokuts, a Native American language spoken in Califofhia.

First, Yokuts (like many other languages including for exdenTurkish and Hun-

voweL HARMONY  garian) hasrowel harmony. Vowel harmony is a process in which a vowel changes its

form to look like a neighboring vowel. In Yokuts, a suffix volnahanges its form to
agree in backness and roundness with the preceding stenh vidvee is, a front vowel
like /i/ will appear as a back vowél] if the stem vowel is/u/. ThisHarmony rule
applies if the suffix and stem vowels are of the same height, (e,/ and/i/ both high,

4 These rules were first drawn up in the traditional Chomskytdalte (1968) format by Kisseberth (1969)
following the field work of Newman (1944).
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Intermediateé f laalk |s || z| # | é
ix—insertion D >
z—devoicing <q <H < @J@ (g @
Surfaces | f |aa| k |s |ix |z | 3

Figure 11.5 The transducer for the ix-insertion rule 11.2 and the z-dévg rule 11.3
run in parallel.

/o/ and/a/ both low):®

High Stem Low Stem
Lexical Surface Gloss Lexical Surface Gloss
Harmony dub+hin — dubhun ‘“tangles” bok’+al — bok’ol “might eat”
No Harmony| xil+hin — xilhin  “leads by the hand|'xat’+al — xat’al “might find”

The second relevant rulepwering, causes long high vowels to become Igh;/
becomedo:] and/i:/ becomede:], while the third rule,Shortening, shortens long
vowels in closed syllables:

Lowering Shortening
fwt’+it — ?0it'ut  “steal, passive aorist” |siap+hin  — saphin
mitk’+it — melk’+it “swallow, passive aorist’sudu:k+hin — sudokhun

The three Yokuts rules must be ordered, just as the ix-iioseand z-devoicing
rules had to be ordered. Harmony must be ordered before limgveecause th¢u:/
in the lexical form/?u:t’+it/ causes the'i/ to becomefu] before it lowers in the
surface form?o:t’ut]. Lowering must be ordered before Shortening becausg¢uthe
in /sudu:k+hin/ lowers too]; if it was ordered after shortening it would appear on the
surface asu].

The Yokuts data can be modeled either as a cascade of theseimuderies, or in
the two-level formalism as three rules in parallel; Fig.6ldhows the two architectures
(Goldsmith, 1993; Lakoff, 1993; Karttunen, 1998). Justrathie two-level examples
presented earlier, the rules work by referring sometimebkddexical context, some-
times to the surface context; writing the rules is left asrEse 11.4 for the reader.

11.2.2 Templatic Morphology

Finite-state models of phonology/morphology have alsmb@®posed for the tem-
platic (non-concatenative) morphology (discussed on g&yeommon in Semitic lan-
guages like Arabic, Hebrew, and Syriac. McCarthy (1981ppe&d that this kind of

5 Examples from Cole and Kisseberth (1995). Some parts ofsystich as vowel underspecification have
been removed for pedagogical simplification (ArchangélB4).
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Lexical ¢ [ ? [ur[t [+ [h]i [n] ¢ g [?2]uw[t][+]h][i[n] ¢
T
| Rounding | B e e S
i Lowcéring i iRoundingI iLowering | iShorteningI
| Shortening | N s Y R
iy T v
k]
sufaceg [?[0 [t [hfufn] [ 3 ¢ [?]oft[hjJuln] [ 3
a) Cascade of rules. b) Parallel two-level rules.
Figure 11.6 Combining the rounding, lowering, and shortening rulesYawelmani
Yokuts.

morphology could be modeled by using different levels ofrespntation that Gold-
Ters  smith (1976) had calletlers. Kay (1987) proposed a computational model of these
tiers via a special transducer which reads four tapes idstE&vo, as in Fig. 11.7.

lexical tape % ‘ a ‘ k ‘ t

binyan tape é ‘ V‘C ‘C ‘V

vocalic morph. tape é ‘ atbi

Figure11.7  Afinite-state model of templatic (“non-concatenative”)npiaology. Mod-
ified from Kay (1987) and Sproat (1993).

The tricky part here is designing a machine which aligns #réowus strings on the
tapes in the correct way; Kay proposed that the binyan tapkl @zt as a sort of guide
for alignment. Kay's intuition has led to a number of mordyfuborked out finite-state
models of Semitic morphology such as Beesley’s (1996) mimderabic and Kiraz's
(1997) model for Syriac.

Kornai (1991) and Bird and Ellison (1994) show how one-tagemata (i.e. finite-
state automata rather than four-tape or even two-tapeduasss) could be used to
model templatic morphology and other kinds of phenomengateahandled with the

AuTosEGMENTAL  tier-basedhutosegmentatepresentations of Goldsmith (1976).

11.3 GOMPUTATIONAL OPTIMALITY THEORY

In a traditional phonological derivation, we are given amenying lexical form and
a surface form. The phonological system then consists ofjaesee of rules which
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OPTIMALITY THEORY
or

(11.6)

(11.7)

RESYLLABIFIED

map the underlying form to the surface fori@ptimality Theory (OT) (Prince and
Smolensky, 1993) offers an alternative way of viewing pHogizal derivation, based
on the metaphor of filtering rather than transforming. An OJdel includes two func-
tions (GEN and EVAL) and a set of ranked violable constraf@®N). Given an un-
derlying form, the GEN function produces all imaginableface forms, even those
which couldn’t possibly be a legal surface form for the inpthe EVAL function then
applies each constraint in CON to these surface forms inr@fdeonstraint rank. The
surface form which best meets the constraints is chosen.

Let’s briefly introduce OT, using some Yawlemani data, arehtturn to the com-
putational ramification§. In addition to the interesting vowel harmony phenomena
discussed above, Yawelmani has phonotactic constraiatsrtie out sequences of
consonants; three consonants in a row (CCC) are not alloweddur in a surface
word. Sometimes, however, a word contains two consecuto@hemes such that the
first one ends in two consonants and the second one startemgtbonsonant (or vice
versa). What does the language do to solve this problem?ni$ it that Yawelmani
either deletes one of the consonants or inserts a vowel welest.

If a stem ends in a C, and its suffix starts with CC, the first efduffix is deleted
(“+" here means a morpheme boundary):

C-deletion: C—¢/C+_C

For example, simplifying somewhat, the CCVC “passive cqusat adjunctive” mor-
phemehne:l drops the initial C if the previous morpheme ends in a consbrihus
afterdiyel “guard”, we would get the formdiyel-ne:l-aw, “guard - passive consequent
adjunctive - locative”.

If a stem ends in CC and the suffix starts with C, the languagieau inserts a
vowel to break up the first two consonants:

V-insertion: € -V/C__C+C

For example in is inserted into the rodtilk- “sing” when it is followed by the C-initial
suffix -hin, “past”, producingrilik-hin, “sang”, but not when followed by a V-initial
suffix like -en, “future” in ?ilken “will sing”.

Kisseberth (1970) proposed that these two rules have the 8amtion: avoiding
three consonants in a row. Let’s restate this in terms oébigdl structure. It happens
that Yawelmani syllables can only be of the form CVC or CV; @ex onsets or com-
plex codas i.e., with multiple consonants, aren’t allow@ithce CVCC syllables aren’t
allowed on the surface, CVCC roots must fesyllabified when they appear on the
surface. From the point of view of syllabification, then,gbénsertions and deletions
all happen so as to allow Yawelmani words to be properly bifiled. Here’s examples
of resyllabifications with no change, with an insertion, avith a deletion:

6 The following explication of OT via the Yawelmani exampleadis heavily from Archangeli (1997) and
a lecture by Jennifer Cole at the 1999 LSA Linguistic In$éitu
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TABLEAU

underlying surface ~ gloss
morphemes syllabification

?ilk-en ?il.ken “will sing”
?ilk-hin ?i.lik.hin “sang”

diyel-hnil-aw di.yel.ne:.law “guard - pass. cons. adjunct. - locative”

The intuition of Optimality Theory is to try to directly repsent these kind of con-
straints on syllable structure directly, rather than ugitgsyncratic insertion and dele-
tion rules. One such constraint, &®PLEX, says “No complex onsets or codas”.
Another class of constraints requires the surface form iddmtical to (faithful to) the
underlying form. Thus KITHV says “Don’t delete or insert vowels” and\FH C says
“Don’t delete or insert consonants”. Given an underlyingripthe GEN function pro-
duces all possible surface forms (i.e., every possibletioseand deletion of segments
with every possible syllabification) and they are rankedhmy EVAL function using
these (violable) constraints. The idea is that while in gahasertion and deletion are
dispreferred, in some languages and situations they aferped over violating other
constraints, such as those of syllable structure. Fig. 4108s the architecture.

[?ilk=hin/

otn

?ilk.hin ?il.khin  ?il.hin  ?ak.pid ?i.lik.hin

W

EVAL (*COMPLEX, FAITHC, FAITHV)

[2i.lik.hin]

Figure 11.8 The architecture of a derivation in Optimality Theory (affachangeli
(1997)).

The EVAL function works by applying each constraint in radkarder to each
candidate. Starting with the highest-ranked constraihtsne candidate either does
not violate no constraints or violates less of them thantedl dther candidates, that
candidate is declared optimal. If two candidates tie (haeesame highest ranked vio-
lation), then the next-highest ranked violation is conséde This evaluation is usually
shown on @ableau (pluraltableaux). The top left-hand cell shows the input, the con-
straints are listed in order of rank across the top row, aedothssible outputs along
the left-most columr. If a form violates a constraint, the relevant cell contains
*I indicates the fatal violation which causes a candidate telinainated. Cells for

7 Although there are an infinite number of candidates, it iditi@nal to show only the ones which are
‘close’; in the tableau below we have shown the ouffakt pid just to make it clear that even very different
surface forms are to be included.
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constraints which are irrelevant (since a higher-levekt@int is already violated) are
shaded.

[ [?ilk-hin/ || *COMPLEX|FAITHC|FAITHV ||

?ilk.hin *
?il khin *
Pil hin *

[T ?ilik.hin *
Pakpid *

One appeal of Optimality Theoretic derivations is that tbestraints are presumed
to be cross-linguistic generalizations. That is all largpsaare presumed to have some
version of faithfulness, some preference for simple sjdgisband so on. Languages
differ in how they rank the constraints; thus English, preably, ranks &ITH C higher
than *ComMmpPLEX. (How do we know this?)

11.3.1 Finite-State Transducer Models of Optimality Theory

Now that we've sketched the linguistic motivations for @maiity Theory, let’s turn to
the computational implications. We'll explore two: implentation of OT via finite-
state models, and stochastic versions of OT.

Can a derivation in Optimality Theory be implemented by &rstate transducers?
Frank and Satta (1998), following the foundational work difsen (1994), showed
that (1) if GEN is a regular relation (for example assuming itiput doesn’t contain
context-free trees of some sort), and (2) if the number afwald violations of any
constraint has some finite bound, then an OT derivation cacobgputed by finite-
state means. This second constraint is relevant becausproparty of OT that we
haven't mentioned: if two candidates violate exactly themsaaumber of constraints,
the winning candidate is the one which has the smallest nuwibéolations of the
relevant constraint.

One way to implement OT as a finite-state system was workethy#tarttunen
(1998), following the above-mentioned work and that of Haonigh (1997). In Kart-
tunen’s model, GEN is implemented as a finite-state traresdarhich is given an un-
derlying form and produces a set of candidate forms. For elafor the syllabifica-
tion example above, GEN would generate all strings that arants of the input with
consonant deletions or vowel insertions, and their syfiledttions.

Each constraint is implemented as a filter transducer thatpass only strings
which meet the constraint. For legal strings, the transdtlugs acts as the iden-
tity mapping. For example, *GMPLEX would be implemented via a transducer that
mapped any input string to itself, unless the input string tvao consonants in the
onset or coda, in which case it would be mapped to null.

The constraints can then be placed in a cascade, in whickhighked constraints
are simply run first, as suggested in Fig. 11.9.

There is one crucial flaw with the cascade model in Fig. 11.@cdR that the
constraints-transducersfilter out any candidate whiclatés a constraint. Butin many
derivations, including the proper derivationtiflik.hin, even the optimal form still vi-
olates a constraint. The cascade in Fig. 11.8 would inctiyréitter it out, leaving
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LENIENT
COMPOSITION

STOCHASTIC OT

|
GEN

o
*COMPLEX
o
FAITHC
o
FAITHV

i

Figure 11.9 Version #1 (“merciless cascade”) of Karttunen'’s finitetstaascade imple-
mentation of OT.

no surface form at alll Frank and Satta (1998) and Hammon87jLBoth point out
that it is essential to only enforce a constraint if it does nrealuce the candidate set
to zero. Karttunen (1998) formalizes this intuition witletlenient compositionop-
erator. Lenient composition is a combination of regular position and an operation
calledpriority union . The basic idea is that if any candidates meet the constreiae
candidates will be passed through the filter as usual. If npuduneets the constraint,
lenient composition retaira| of the candidates. Fig. 11.10 shows the general idea; the
interested reader should see Karttunen (1998) for thelsletai

L [?ilk=hin/
o} ?ilk.hin ?il.khin ?il.hin ?ak.pid ?i.lik.hin
*COMPLEX *COMPLEX
o ?il.hin - ?ak.pid ?i.lik.hin
FAITHC FAITHC
FAITHV ?i.lik.hin
FAITHV
) [2i.lik.hin]
Figure 11.10 Version #2 (“lenient cascade”) of Karttunen'’s finite-statscade imple-
mentation of OT, showing a visualization of the candidateytations that would be passed
through each FST constraint.

11.3.2 Stochastic Models of Optimality Theory

Classic OT was not designed to handle variation of the kindawe in Sec??, since
it assigns a single most-harmonic output for each input. libgavith variation re-
quires a more dynamic concept of constraint ranking. We ioeedl in that section the
variationist model in sociolinguistics, in which logistiegression is used to combine
phonetic, contextual, and social factors to predict a podityof a particular phonetic
variant. Part of this variationist intuition can be absatlirto an Optimality Theory
framework through probabilistic augmentations.

One such augmentation&ochastic OT(Boersma and Hayes, 2001). In Stochas-
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tic OT, instead of the constraints being rank-ordered, eacdistraint is associated with
a value on a continuous scale. The continuous scale offerthimg a ranking cannot;
the relative importance or weight of two constraints cantopeprtional to the distance
between them. Fig. 11.11 shows a sketch of such a contineaies s

Cc Cc Cc

1 2 3

' '

high ranked low ranked

Figure 11.11 Continuous scale in Stochastic OT. After (Boersma and Ha3@31).

How can the distance between constraints play a role in atiah? Stochastic OT
makes a further assumption about the values of constrairgtead of each constraint
having a fixed value as shown in Fig. 11.11. it has a Gaussgriliition of values
centered on a fixed value, as shown in Fig. 11.12. At evalodtine, a value for
the constraint is drawn (gelection poin) with a probability defined by the mean and
variance of the Gaussian associated with each constraint.

C C C

high ranked low ranked

Figure 11.12 Three constraints in Stochastic OT which are strictly raihkbus non-
stochastic OT is a special case of Stochastic OT. After (8oarand Hayes, 2001).

If the distribution for two constraints is far enough apasd,shown in Fig. 11.12
there will be little or no probability of the lower ranked ciraint outranking the
higher-ranked one. Thus Stochastic OT includes non-sgtich@T as a special case.

The interesting cases arise when two constraints in Stach@$ overlap in their
distribution, when there is some probability that a lonamied constraint will override
a higher-ranked constraint. In Fig. 11.13, for example,st@intC, will generally
outrankCsz but occasionally outran®;. This allows Stochastic OT to model variation,
since for the same underlying form differing selection p®tan cause different surface
variants to be most highly ranked.

In addition to the advantage of modeling variation, StothadT differs from
non-stochastic OT in having a stochastic learning theohjclwvwe will return to in
Sec.11.5.3.

We can see stochastic OT itself as a special case of the ¢iéineea models of
Ch. 6.
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high ranked low ranked

Figure 11.13 Three constraints in Stochastic OT in whiCh will sometimes outrank
C,. . After (Boersma and Hayes, 2001).

11.4 SYLLABIFICATION

SYLLABIFICATION Syllabification, the task of segmenting a sequence of phones into syllablaspor-
tant in a variety of speech applications. In speech syrghsgilables are important in
predicting prosodic factors like accent; the realizatiba phone is also dependent on
its position in the syllable (onset [I] is pronounced diéfatly than coda [l]). In speech
recognition syllabification has been used to build recognsizvhich represent pronun-
ciations in terms of syllables rather than phones. Sylledion can help find errors in
pronunciation dictionaries, by finding words that can’t gkabified, and can help an-
notate corpora with syllable boundaries for corpus linticésresearch. Syllabification
also plays an important role in theoretical generative jolmyy.

One reason syllabification is a difficult computational tasthat there is no com-
pletely agreed-upon definition of syllable boundariesfédént on-line syllabified dic-
tionaries (such as the CMU and the CELEX lexicons) sometithesse different syl-
labifications. Indeed, as Ladefoged (1993) points out, siomes it isn't even clear
how many syllables a word has; some wordeeél, teal, seal, hire, fire, hoycan be
viewed either as having one syllable or two.

Like much work in speech and language processing, syllabifian be based on
hand-written rules, or on machine learning from hand-letd&laining sets. What kinds
of knowledge can we use in designing either kind of syllabi#fi®©ne possible con-

MAXIMUMONSET  Straint is theMaximum Onset principle, which says that when a series of consonants
occur word-medially before a vowel (VCCV), as many as pdssfgiven the other
constraints of the language) should be syllabified into theebof the second syllable
rather than the coda of the first syllable. Thus the Maximureedprinciple favors the
syllabification V.CCV over the syllabifications VC.CV or VCOC

SONORITY Another principle is to use thsonority of a sound, which is a measure of how
perceptually salient, loud or vowel-like it is. There areivas attempts to define a

LamoRilY  sonority hierarchy; in general, all things being equal, vowels are more sorotioan
glides (w, y), which are more sonorous than liquids (I, r)ldwed by nasals (n, m,
ng), fricatives (z, s, sh, zh, v, f th, dh), and stops. The sibnoonstraint on syllable
structure says that the nucleus of the syllable must be ths somorous phone in a
sequence (thsonority peak), and that sonority decreases monotonically out from the
nucleus (toward the coda and toward the onset). Thus in abdgliGC,VC3Cy, the
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nucleusV/ will be the most sonorous element, consor@ntill be more sonorous than
C,; and consonarts will be more sonorant than conson&it

Goldwater and Johnson (2005) implement a simple rule-dasgtdiage-independent
classifier based only on maximum onset and sonority sequgn&iven a cluster of
consonants between two syllable nuclei, sonority conwstrie syllable boundary to
be either just before or just after the consonant with theekiveonority. Combining
sonority with maximum onset, their parser predicts a sydldoundary just before the
consonant with the lowest sonority. They show that this sngyllabifier correctly
syllabifies 86-87% of multisyllabic words in English and &an.

While this error rate is not unreasonable, and there is éatihguistic and some
psychological evidence that these principles play a rolsyitable structure, both
Maximum Onset and sonority sequencing seem to have exosptieor example in
the English syllable-initial clusters /sp st sk/ in wordeelispell the less sonorous
/p/ occurs between the more sonorous /s/ and the vowel,tiviglaonority sequenc-
ing (Blevins, 1995). Without some way to rule out onset @usthat are disallowed
language-specifically like /kn/ in English, the combinataf sonority sequencing plus
maximum onset incorrectly predicts the syllabification afrds like weakness$o be
wea.knessather tharweak.nessFurthermore, other constraints seem to be important,
including whether a syllable is stressed (stressed sgiataind to have more complex
codas), the presence or absence of morphological bousdarid even the spelling of
the word (Titone and Connine, 1997; Treiman et al., 2002).

Achieving higher performance thus requires the use of tisests of language-
specific knowledge. The most commonly used rule-basedbifiiais based on the
dissertation of Kahn (1976), available in an implementatiy Fisher (1996), The
Kahn algorithm makes use of language-specific informatiothé form of lists of al-
lowable English initial initial clusters, allowable Engfi final clusters, and 'universally
bad’ clusters. The algorithm takes strings of phones, tagewith other information
like word boundaries and stress if they are available, arifjas syllable boundaries
between the phones. Syllables are built up incrementalbedban three rules, as
sketched out in Fig. 11.14. Rule 1 forms nuclei at each sidlabgment, Rule 2a
attaches onset consonants to the nucleus, and Rule 2bestzotia consonarftRule
2a and 2b make use of lists of legal onset consonant sequ@nciesling e.g. [b], [b
1], [br], [byl, [ch], [d], [d 1], [d w], [d Y], [dh], [f], [F1], [fr], [fy], [9]. [9 1], [9 1],

[g w], etc). and legal coda clusters. There are a very largeb®aun of coda consonant
clusters in English; some of the longer (4-consonant) efgshclude:

ksts Ifths mfst ndths nkst rkts rpts
ksths lkts mpft ntst nkts ridz rsts
Itst mpst ntths nkths rmpth rtst

The algorithm also takes a parameter indicating how fasaeual the speech is;
the faster or more informal the speech, the more resyllatifio happens, based on
further rules we haven'’t shown.

Instead of hand-written rules, we can apply a machine lagrapproach, using
a hand-syllabified dictionary as a supervised training $&tr example the CELEX
syllabified lexicon discussed in Se2? is often used this way, selecting some words

8 Note that the fact that Rule 2a precedes Rule 2b can be seerimplamentation of Maximum Onset.
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m‘is‘is‘ip‘i C]_Cn\‘/—>clw \‘/Cl...cn—>VC1...CjCj+l-..Cn
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Rule 1: Form Nuclei: Rule 2a: Add Onsets: where Rule 2b: Add Codas: where
link S with each [+syl- Ci;;...G, is a permissible initial C;...Cj is a permissible coda cluster

labic] segment

cluster but @Cj1...Gy is not but G,...C;C; +1is not

Figure 11.14 First three syllabification rules of Kahn (1976). Rule 2b may apply across word boundarig

n

WEIGHTED FST

as a training set, and reserving others as a dev-test ansetesbtatistical classifiers
can be used to predict syllabifications, including decisiers (van den Bosch, 1997),
weighted finite-state transducers (Kiraz and Mobius, 1988d probabilistic context-

free grammars (Seneff etal., 1996; Muller, 2002, 2001 p@&aker and Johnson, 2005).

For example the Kiraz and Mobius (1998) algorithm is a wedgHinite-state trans-
ducerwhich inserts a syllable boundary in a sequence ofgé@kin to the morpheme-
boundaries we saw in Ch. 3). weighted FST(Pereira et al., 1994) is a simple aug-
mentation of the finite transducer in which each arc is aasediwith a probability as
well as a pair of symbols. The probability indicates how lkinat path is to be taken;
the probability on all the arcs leaving a node must sum to 1.

The syllabification automaton of Kiraz and Mobius (1998t dsmposed of three
separate weighted transducers, one for onsets, one fazipaot one for codas, con-
catenated together into an FST that inserts a syllable mafter the end of the coda.
Kiraz and Mdbius (1998) compute path weights from frequesh the training set;
each path (for example the nucleus [iy]) of frequericis assigned a weight of/X.
Another way to convert frequencies to costs is to use log addities. Fig. 11.15
shows a sample automaton, simplified from Kiraz and Mohli998). We have shown
the weights only for some of the nuclei. The arcs for eachiptessnset, nucleus, and
coda, are drawn from a language-dependentlist like the see in the Kahn algorithm
above.

The automaton shown in Fig. 11.15 can be used to map from ah$eguence like
the phonetic representation wkaknes$w iy k n eh s] into an output sequence that
includes the syllabification marker like “-": [w iy k - n eh df.there are multiple pos-
sible legal syllabifications of a word, the Viterbi algonithis used to choose the most
likely path through the FST, and hence the most probable segation. For exam-
ple, the German worBenstey “window”, has three possible syllabification$eiis-te]
<74>, [fen-ste] <75>, and fenst-e] <87> (with costs shown in angle brackets).
Their syllabifier correctly chooses the lowest cost syfiahtionfens-te, based on the
frequencies of onsets and codas from the training set. Matestnce morphological
boundaries also are important for syllabification, the Kieamd Mobius (1998) syl-
labification transducer can be placed after a morphologiaeding transducer, so that
syllabification can be influenced by morphological struetur

More recent syllabifiers based on probabilistic contegefgrammars (PCFGs) can
model more complex hierarchical probabilistic dependesbetween syllables (Seneff
et al., 1996; Miller, 2002, 2001; Goldwater and Johnsof520Together with other
machine learning approaches like van den Bosch (1997), madatistical syllabifi-
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Figure 11.15 Syllabifier automaton, showing onset (0), coda (c), and euglarcs.
Costs on each arc shown only for some sample nucleus arcsylalele boundary marker|

-"is inserted after every non-final syllable. eps standseo Simplified from Kiraz and
Mobius (1998).

cation approaches have a word accuracy of around 97-98%ctoand probabilistic
model of syllable structure have also been shown to predictam judgments of the
acceptability of nonsense words (Coleman and Pierrehurit837).

There are a number of other directions in syllabificatione @rthe use of unsuper-
vised machine learning algorithms (Ellison, 1992; Mubeial., 2000; Goldwater and
Johnson, 2005) Another is the use of other cues for syllaifio such as allophonic
details from a narrow phonetic transcription (Church, 7983

11.5 LEARNING PHONOLOGY & M ORPHOLOGY

Machine learning of phonological structures is an actigeagch area in computational
phonology above and beyond the induction of syllable stmgctliscussed in the pre-
vious section. Supervised learning work is based on a trgiset that is explicitly
labeled for the phonological (or morphological) structirde induced. Unsupervised
work attempts to induce phonological or morphologicalture without labeled train-
ing data. Let’s look at three representative areas of lagrriearning of phonological
rules, learning of morphological rules, and learning of @hstraint rankings

11.5.1 Learning Phonological Rules

In this section we briefly summarize some early literaturderning phonological

rules, generally couched either in terms of finite state rsodetwo-level phonology
or classic Chomsky-Halle rules.

Johnson (1984) gives one of the first computational algaritifior phonological
rule induction. His algorithm works for rules of the form

(11.8) a—b/C

whereC is the feature matrix of the segments aroundJohnson’s algorithm sets



Section 11.5.

Learning Phonology & Morphology 17

up a system of constraint equations whichmust satisfy, by considering both the
positive contexts, i.e., all the contex@sin which ab occurs on the surface, as well
as all the negative contex@ in which ana occurs on the surface. Touretzky et al.
(1990) extended Johnsons work in various ways, includiagjiigwith epenthesis and

deletion rules.

The algorithm of Gildea and Jurafsky (1996) was designeddade transducers
representing two-level rules of the type we have discusaééee Gildea and Juraf-
sky’s supervised algorithm was trained on pairs of undedyind surface forms. For
example, they attempted to learn the rule of English flappffagusing only on the
phonetic context and ignoring social and other factorsg ffaining set thus consisted
of underlying/surface pairs, either with an underlyingaftd surface flap [dx], or an
underlying /t/ and surface [t], as follows:

flapping non-flapping
butter /b ah taxr/ — [b ah dx axr]|stop /staap/ — [staap]
meter /miytaxr/ — [miydxaxr]/cat /kaet/ — [kaet]

The algorithm was based on OSTIA (Oncina et al., 1993), amgétearning al-
gorithm for thesubsequential transducerdefined on pag@?. Gildea and Jurafsky
showed that by itself, the OSTIA algorithm was too generédéon phonological trans-
ducers, even given a large corpus of underlying-form/serfarm pairs. For example,
given 25,000 underlying/surface pairs like the examplesapthe algorithm ended up
with the huge and incorrect automaton in Fig. 11.16(a). &zildnd Jurafsky then aug-
mented the domain-independent OSTIA system with learniaggs which are specific
to natural language phonology. For example they addedithfulness bias that un-
derlying segments tend to be realized similarly on the serfae. that all things being
equal, an underlying /p/ was likely to emerge as a surfade Jjey did this by start-
ing OSTIA with the underlying and surface strings aligneithg4.evenshtein distance.
They also added knowledge about phonetic features (vowsliseonsonant, reduced
versus non-reduced vowel, etc). Together, adding thesedenabled OSTIA to learn
the automaton in Fig. 11.16(b), as well as correct autonsatmnother phonological
rules like German consonant devoicing.

This phonological learning experiment illustrates thatcgassful learning requires
two components: a model which fits some empirical data aneégwior knowledge or
biases about the structure of the model.

Recent work on learning has focused either on morpholotgaahing, or on rank-
ing of OT constraints rather than on the induction of ruled eonstraints, and will be
discussed in the next two sections.

11.5.2 Learning Morphology

We discussed in Ch. 3 the use of finite-state transducers éopmological parsing.
In general, these morphological parsers are built by haddame relatively high ac-
curacy, although there has also been some work on supenviaelline learning of
morphological parsers (van den Bosch, 1997). Recent warkeber, has focused on
unsupervised ways to automatically bootstrap morpho&gtucture. The unsuper-
vised (or weakly supervised) learning problem has pralctipplications, since there
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Figure 11.16 Induction of a flapping rule transducer (after Gildea andfhlty (1996)).
The transducer in (a) is the initial attempt at learning. Traesducer in (b) is the correct
transducer induced after a faithfulness bias.

are many languages for which a hand-built morphologica¢raior a morphological
segmented training corpus, does not yet exist. In additienlearnability of linguistic
structure is a much-discussed scientific topic in lingogstunsupervised morphologi-
cal learning may help us understand what makes languageriggyossible.

Approaches to unsupervised morphology induction have eyapl a wide variety
of heuristics or cues to a proper morphological parse. Eaplyroaches were all es-
sentially segmentation-based; given a corpus of wordsdtteynpted to segment each
word into a stem and an affix using various unsupervised siesi For example the
earliest work hypothesized morpheme boundaries at the poaword where there
is large uncertainty about the following letters (Harri854, 1988; Hafer and Weiss,
1974). For example, Fig. 11.17 showsria ® which stores the wordsar, care, cars
cares cared etc. Note that there there are certain nodes in the treeginl#i17 that
have a wide branching factor (aftear and aftercare). If we think of the task of pre-
dicting the next letter giving the path in the trie so far, ve@ cay that these points have
a high conditional entropy; there are many possible coations® While this is a
useful heuristic, it is not sufficient; in this example we Wboeed a way to rule out the
morphemecar as well ascare being part of the wordarefut this requires a complex
set of thresholds.

Another class of segmentation-based approaches to magphinlduction focuses
on globally optimizing a single criterion for the whole gramar, the criterion ofmin-
imum description length, or MDL . The MDL principle is widely used in language

9 A trie is a tree structure used for storing strings, in which a gtisnrepresented as a path from the root
to a leaf. Each non-terminal node in the tree thus storesfimfea string; every common prefix is thus
represented by a node. The wari@ comes fronretrieval and is pronounced either [t riy] or [t r ay].

10 |nterestingly, this idea of placing boundaries at regiohkow predictability has been shown to be used
by infants for word segmentation (Saffran et al., 1996b).
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(11.9)

SIGNATURES

Figure 11.17 Example of a letter trie. A Harris style algorithm would ins@orpheme
boundaries aftetar andcare After Schone and Jurafsky (2000).

learning, and we will see it again in grammar induction in Ch. The idea is that we
are trying to learn the optimal probabilistic model of sona¢ad Given any proposed
model, we can assign a likelihood to the entire data set. Wealsm use the proposed
model to assign a compressed length to this data (with pilidtabmodels we can use
the intuition that the compressed length of the data isedltd the entropy, which we
can estimate from the log probability). We can also assigength to the proposed
model itself. The MDL principle says to choose the model fhich the sum of the
data length and the model length is the smallest. The ptm@mften viewed from a
Bayesian perspective; If we are attempting to learn therbesieIM out of all models
M for some dat® which has the maximum a posteriori probabilRyM|D), we can
use Bayes Rule to express the best médlels:

P(D|M)P(M)

M = argmaxP(M|D) = argmax PD)

= argmaxP(D|M)P(M)

Thus the best model is the one which maximizes two terms:ikbéHood of the data
P(D|M) and the prior of the mod&(M). The MDL principle can be viewed as saying
that the prior term on the model should be related to the keafjthe model.

MDL approaches to segmentation induction were first propdsede Marcken
(1996) and Brent (1999), as well as Kazakov (1997); let's mamize from a more
recent instantiation by Goldsmith (2001). The MDL intuitican be seen from the
schematic example in Fig. 11.18 inspired by Goldsmith.

As we see in Fig. 11.18, using morphological structure makpessible to rep-
resent a lexicon with far fewer letters. Of course this exi@nmesn’t represent the
true complexity of morphological representations, sincedality not every word is
combinable with every affix. One way to represent slightlyrencomplexity is to use
signatures A signature is a list of suffixes that can appear with a paldicstem. Here
are some sample signatures from Goldsmith (2001):

Signature Example
NULL.ed.ing.s remain remained remaining remains
NULL.s COwW COws

e.ed.es.ing notice noticed notices noticing
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cooked cooks cookin cook ed

played plays playing play S

boiled boils boiling boil ing
(a) Word list with no structure (b) Word list with morpholaegi structure
Total letter count: 54 Total letter count: 18 letters

Figure 11.18 Naive version of MDL, showing the reduction in the descoptiength
of a lexicon with morphological structure; adapted from @ohith (2001).

The Goldsmith (2001) version of MDL considers all possibégraentations of
every word into a stem and a suffix. It then chooses the setgohestations for the
whole corpus that jointly minimize the compressed lengtthefcorpus and the length
of the model. The length of the model is the sum of the lengthiseoaffixes, the stems,
and the signatures. The length of the corpus is computedibyg tlee model to assign
a probability to the corpus and using this probably to corapl¢ cross-entropy of the
corpus given the model.

While approaches based solely on stem and affix statiskesMiDL have been
quite successful in morphological learning, they do haveumlrer of limitations.
For example Schone and Jurafsky (2000, 2001) noted in an &nadysis that MDL
sometimes segments valid affixes inappropriately (suclegsienting the wordally
to all+y), or fails to segment valid but non-productive affixes (rimgsthe relation-
ship betweerdirt anddirty). They argued that such problems stemmed from a lack
of semantic or syntactic knowledge, and showed how to usgively simple semantic
features to address them. The Schone and Jurafsky (20@0ithig uses a trie to come
up with “pairs of potential morphological variants”, (PPMMvords which differ only
in potential affixes. For each pair, they compute the seroantiilarity between the
words, using the Latent Semantic Analysis (LSA) algorithinCh. 23. LSA is an un-
supervised model of word similarity which is induced difg&tom the distributions of
word in context. Schone and Jurafsky (2000) showed thagubasemantic similarity
alone was at least as good a predictor of morphologicaltstre@s MDL. The table
below shows the LSA-based similarity between PPMVs; inélxample the similarity
is high only for words that are morphologically related.

PPMVs Scor¢PPMV ~ Scord PPMV  Scoré PPMV  Score
ally/allies 6.5 |dirty/dirt 2.4 |car/cares -0.14car/cared -.096
car/cars 5.6 |rating/rate 0.97|car/caring -0.71ally/all -1.3

Schone and Jurafsky (2001) extended the algorithm to le@fixps and circum-
fixes, and incorporated other useful features, includingasytic and other effects of
neighboring word context (Jacquemin, 1997), and the Léweirs distance between
the PPMVs (Gaussier, 1999).

The algorithms we have mentioned so far have focused on di#gm of learning
regular morphology. Yarowsky and Wicentowski (2000) famlisn the more complex
problem of learning irregular morphology. Their idea waptobabilistically align an
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inflected form (such as Engligbokor Spanisuegan with each potential stem (such
as Englishtake or Spanishjugar). The result of their alignment-based algorithm was
a inflection-root mapping, with both an optional stem chaage a suffix, as shown in
the following table:

English Spanish
root | inflection| stem changgsuffix || root |inflection| stem changgsuffix
take| took ake—ook |+¢ jugar|juega gar—eg +a
take|taking |e—¢ +ing || jugar|jugamos |ar— € +amos
skip|skipped | & —p +ed | tener|tienen |ener—ien |+en

The Yarowsky and Wicentowski (2000) algorithm requires satmat more infor-
mation than the algorithms for inducing regular morphololgyparticular it assumes
knowledge of the regular inflectional affixes of the languagd a list of open class
stems; both are things that might be induced by the MDL orro#thgorithms men-
tioned above. Given an inflected form, the Yarowsky and Wim&ski (2000) algo-
rithm uses various knowledge sources to weight the potestéen, including the rela-
tive frequency of the inflected form and potential stem, th@larity in lexical context,
and the Levenshtein distance between them. See Baroni{208R) and Clark (2002)
for alternative alignment-based approaches.

11.5.3 Learning in Optimality Theory

Let’'s conclude with a brief sketch of work which addresseslgarning problem in
Optimality Theory. Most work on OT learning has assumed thatconstraints are
already given, and the task is to learn the ranking. Two &lgwois for learning rankings
have been worked out in some detail; tba@nstraint demotion algorithm of Tesar
and Smolensky (2000) and ti&radual Learning Algorithm of Boersma and Hayes
(2001).

TheConstraint Demotion algorithm makes two assumptions: that we know all the
possible OT constraints of the language, and that eachceufdam is annotated with
its complete parse and underlying form. The intuition of &lhgorithm is that each of
these surface observations gives us implicit evidencetaheiwconstraint ranking.

Given the underlying form, we can use the GEN algorithm tdlioify form the set
of competitors. Now we can construct a set of pairs congjsifrthe correct observed
grammatical form and each competitor. The learner must fiedrstraint ranking
that prefers the observed learniminnerover each (non-observed) competitoser.
Because the set of constraints is given, we can use the stbB@dgarsing architecture
to determine for each winner or loser exactly which consteahey violate.

For example, consider the learning algorithm that has ekseCandidate 1, but
whose current constraint ranking prefers Candidate 2,lemsv® (this example and the
following tables are modified from Boersma and Hayes (2001))

I funderlying form/ [C1]C2|C3[C4|Cs5|Cs|Cr|Cs]
Candidate 1 (learning observatior]) *! | ** | * * *
[] Candidate 2 (learner’s output) || R * *

Given a set of suctvinner/loserpairs, the Constraint Demotion algorithm needs to
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demote each constraint that is violated by the winner Catdid, until the observed
form (Candidate 1) is preferred. The algorithm first canaalsmarks due to violations
that are identical between the two candidates:

I funderlying form/ [C1]C2|C3[C4|Cs5|Cs|Cr|Cs]
Candidate 1 (learning observation) ! | s [ = * *
[ Candidate 2 (learner’s output) || | = | x * *

These constraints are pushed down in the hierarchy untildteedominated by the
constraints violated by the loser. The algorithm dividesstrmints intostrata, and
tries to find a lower strata to move the constraints into. KHesleows a simplification
of this intuition, asC; andC, get moved belovCs.

0 /underlying form/ [C3]C4|Cs5|Cs|C7[Cg][C1]C2]
[1 Candidate 1 (learning observatior * N
Candidate 2 (learner’s output) *1 *

GRADUAL LEARNING TheGradual Learning Algorithm (GLA) of (Boersma and Hayes, 2001) is a gen-
eralization of Constraint Demotion that learns constreamkings in Stochastic Opti-
mality Theory. Since OT is a special case of Stochastic Giratgorithm also implic-
itly learns OT rankings. It generalizes Constraint Demobig being able to learn from
cases of free variation. Recall from Sec. 11.3 that in Steth®T each constraint is
associated with aanking value on a continuous scale. The ranking value is defined
as the mean of the Gaussian distribution that constitugesdhstraint. The goal of the
GLA is to assign a ranking value for each constraint. Theritlgm is a simple exten-
sion to the Constraint Demotion algorithm, and follows élathe same steps until the
final step. Inside of demoting constraints to a lower striii@,ranking value of each
constraint violated by the learning observation (Canaidatis decreased slightly, and
the ranking value of each constraint violated by the leasrmrtput (Candidate 2) is
increased slightly, as shown below:

|| /underlying form/ || C, | Co | Cs | Cy | Cs | Cs | Cy | Cs ||
Candidate 1 (learning observatiorf)«! — [« — * —
[J Candidate 2 (learner’s output) | — % — %

11.6 SUMMARY

This chapter has introduced many of the important concdpgibanetics and compu-
tational phonology.

e Transducerscan be used to model phonological rules just as they wereinsed
Ch. 3 to model spelling rulesTwo-level morphologyis a theory of morphol-
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ogy/phonology which models phonological rules as finistestell-formedness
constraintson the mapping between lexical and surface form.

e Optimality theory is a theory of phonological well-formedness; there are com-
putational implementations, and relationships to traneds

e Computational models exist fayllabification, inserting syllable boundaries in
phone strings.

e There are numerous algorithms for learning phonological mrorphological
rules, both supervised and unsupervised.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

HARMONIC
GRAMMAR

HARMONY

Computational phonology is a fairly recent field. The ideattphhonological rules
could be modeled as regular relations dates to Johnson )\, 2@#A2 showed that any
phonological system that didn’t allow rules to apply to thmvn output (i.e., systems
that did not have recursive rules) could be modeled withleggalations (or finite-state
transducers). Virtually all phonological rules that hagétérmulated at the time had
this property (except some rules with integral-valuedifees, like early stress and tone
rules). Johnson’s insight unfortunately did not attraet étention of the community,
and was independently discovered by Ronald Kaplan and iVidety; see Ch. 3 for the
rest of the history of two-level morphology. Karttunen (B98ives a tutorial introduc-
tion to two-level morphology that includes more of the advethdetails than we were
able to present here, and the definitive text on finite-staigphology is Beesley and
Karttunen (2003). Other FSA models of phonology includelBind Ellison (1994).

Optimality theory was developed by Prince and Smolensky a@ralilated as a
technical report (Prince and Smolensky, 1993) until itsligakion more than a decade
later (Prince and Smolensky, 2004). Other finite-state worl0T includes Eisner
(1997, 2000, 2002), Gerdemann and van Noord (2000).

Recent work on phonological learning has focused on legrphonotactic con-
straints (Hayes, 2004; Prince and Tesar, 2004; Tesar, Zk&&r and Prince, 2007;
Hayes and Wilson, 2007).

Much recent work in computational phonology has focused odets with weighted
constraints. For exampldarmonic Grammar is an extension to Optimality Theory
(indeed is the theory that Optimality Theory originally greut of) in which optimal-
ity for a form is defined as maximd&larmony. Harmony is defined by the sum of
weighted constraints (Smolensky and Legendre, 2006).ihgssims of weight rather
than OT-style rankings, Harmony Theory resembles the itogat models of Ch. 6.
Recent computational work in Harmonic Grammar includegPett al. (2007), Pater
(2007).

Recent work in learning morphological rules includes Adiitiand Hayes (2003),
Alderete et al. (2005), Albright (2007).

Word segmentation is one of the earliest problems in contipui@ linguistics,
and models date back to Harris (1954). Among the many modedets are Bayesian
ones like Brent (1999) and Goldwater et al. (2006). The weghzentation problem
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is important also in computational developmental psyctmplistics; for represenative
recent work see H. et al. (1998), Kuhl et al. (2003), Thiesaaeh Saffran (2004) and
Thiessen et al. (2005).

Readers interested in phonology should consult textbdkksQdden (2005) and
Kager (2000).

EXERCISES

CANADIAN RAISING

(11.10)

11.1 Build an automaton for rule (11.3).

11.2 One difference between one dialect of Canadian English av&t dialects of
American English is calle@anadian raising. Bromberger and Halle (1989) note that
some Canadian dialects of English raiag/ to [ar]and/au/ to [au] in stressed position
before a voiceless consonant. A simplified version of the ddaling only with/a1/
can be stated as:

—voice

Jar) — [ar [C }

This rule has an interesting interaction with the flappinig.rdun some Canadian
dialects the wordider and writer are pronounced differentlyrider is pronounced
[rarrar] while writer is pronouncedraira]. Write a two-level rule and an automaton for
both the raising rule and the flapping rule which correctlydels this distinction. You
may make simplifying assumptions as needed.

11.3 Write the lexical entry for the pronunciation of the Englishst tense (preterite)
suffix -d, and the two level-rules that express the difference inritsipnciation de-
pending on the previous context. Don’t worry about the épglfules. (Hint: make
sure you correctly handle the pronunciation of the pasteein$ the wordsadd, pat,
bake andbag)

11.4 Write two-level rules for the Yawelmani Yokuts phenomen&afmony, Short-
ening, and Lowering introduced on page 5. Make sure yousate capable of running
in parallel.
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