
DRAFT

Speech and Language Processing: An introduction to natural language processing,
computational linguistics, and speech recognition. Daniel Jurafsky & James H. Martin.
Copyright c© 2007, All rights reserved. Draft of September 19, 2007. Do not cite
without permission.

11
COMPUTATIONAL
PHONOLOGY

bidakupadotigolabubidakutupiropadotigolabutupirobidaku...
Word segmentation stimulus (Saffran et al., 1996a)

Recall from Ch. 7 thatphonology is the area of linguistics that describes the sys-
tematic way that sounds are differently realized in different environments, and how
this system of sounds is related to the rest of the grammar. This chapter introduces
computational phonology, the use of computational models in phonological theory.COMPUTATIONAL

PHONOLOGY

One focus of computational phonology is on computational models of phonological
representation, and on how to use phonological models to mapfrom surface phonolog-
ical forms to underlying phonological representation. Models in (non-computational)
phonological theory are generative; the goal of the model isto represent how an under-
lying form can generate a surface phonological form. In computation, we are generally
more interested in the alternative problem ofphonological parsing; going from surface
form to underlying structure. One major tool for this task isthe finite-state automaton,
which is employed in two families of models:finite-state phonologyandoptimality
theory.

A related kind of phonological parsing task issyllabification: the task of assigning
syllable structure to sequences of phones. Besides its theoretical interest, syllabifi-
cation turns out to be a useful practical tool in aspects of speech synthesis such as
pronunciation dictionary design. We therefore summarize afew practical algorithms
for syllabification.

Finally, we spend the remainder of the chapter on the key problem of how phono-
logical and morphological representations can be learned.

11.1 FINITE-STATE PHONOLOGY

Ch. 3 showed that spelling rules can be implemented by transducers. Phonological
rules can be implemented as transducers in the same way; indeed the original work
by Johnson (1972) and Kaplan and Kay (1981) on finite-state models was based on
phonological rules rather than spelling rules. There are a number of different models
of computational phonologythat use finite automata in various ways to realize phono-

DRAFT

2 Chapter 11. Computational Phonology

logical rules. We will describe thetwo-level morphologyof Koskenniemi (1983) first
mentioned in Ch. 3. Let’s begin with the intuition, by seeingthe transducer in Fig. 11.1
which models the simplified flapping rule in (11.1):

/t/→ [dx] / V́ V(11.1)

210

3other

other

V:@

V:@

V:@

V:@

t:dx

t

t

t

V:@

V:@
other

Figure 11.1 Transducer for English Flapping: ARPAbet “dx” indicates a flap, and the
“other” symbol means “any feasible pair not used elsewhere in the transducer”. “@” means
“any symbol not used elsewhere on any arc”.

The transducer in Fig. 11.1 accepts any string in which flaps occur in the correct
places (after a stressed vowel, before an unstressed vowel), and rejects strings in which
flapping doesn’t occur, or in which flapping occurs in the wrong environment.1

We’ve seen both transducers and rules before; the intuitionof two-level morphol-
ogy is to augment the rule notation to correspond more naturally to transducers. We
motivate his idea by beginning with the notion ofrule ordering . In a traditional phono-
logical system, many different phonological rules apply between the lexical form and
the surface form. Sometimes these rules interact; the output from one rule affects the
input to another rule. One way to implement rule-interaction in a transducer system
is to run transducers in acascade. Consider, for example, the rules that are needed to
deal with the phonological behavior of the English noun plural suffix -s. This suffix is
pronounced [ix z] after the phones [s], [sh], [z], [zh], [ch], or [jh] (so peachesis pro-
nounced [p iy ch ix z], andfaxesis pronounced [f ae k s ix z]), [z] after voiced sounds
(pigs is pronounced [p ih g z]), and [s] after unvoiced sounds (cats is pronounced [k
ae t s]). We model this variation by writing phonological rules for the realization of
the morpheme in different contexts. We first need to choose one of these three forms
([s], [z], [ix z]) as the “lexical” pronunciation of the suffix; we chose [z] only because
it turns out to simplify rule writing. Next we write two phonological rules. One, sim-
ilar to the E-insertion spelling rule of page??, inserts an [ix] after a morpheme-final
sibilant and before the plural morpheme [z]. The other makessure that the-s suffix is

1 For pedagogical purposes, this example assumes (incorrectly) that the factors that influence flapping are
purely phonetic and are non-stochastic.

DRAFT

Section 11.1. Finite-State Phonology 3

properly realized as [s] after unvoiced consonants.

ε → ix / [+sibilant] ˆ z #(11.2)

z → s / [-voice] ˆ #(11.3)

These two rules must beordered; rule (11.2) must apply before (11.3). This is
because the environment of (11.2) includesz, and the rule (11.3) changesz. Consider
running both rules on the lexical formfoxconcatenated with the plural-s:

Lexical form: f aa k ˆ z
(11.2) applies: f aa k s ˆ ix z
(11.3) doesn’t apply:f aa k sˆ ix z

If the devoicing rule (11.3) was ordered first, we would get the wrong result. This
situation, in which one rule destroys the environment for another, is calledbleeding:2BLEEDING

Lexical form: f aa k s ˆ z
(11.3) applies: f aa k s ˆ s
(11.2) doesn’t apply:f aa k s ˆ s

As was suggested in Ch. 3, each of these rules can be represented by a transducer.
Since the rules are ordered, the transducers would also needto be ordered. For example
if they are placed in acascade, the output of the first transducer would feed the input
of the second transducer.

Many rules can be cascaded together this way. As Ch. 3 discussed, running a cas-
cade, particularly one with many levels, can be unwieldy, and so transducer cascades
are usually replaced with a single more complex transducer by composingthe individ-
ual transducers.

Koskenniemi’s method oftwo-level morphology that was sketchily introduced in
Ch. 3 is another way to solve the problem of rule ordering. Koskenniemi (1983) ob-
served that most phonological rules in a grammar are independent of one another; that
feeding and bleeding relations between rules are not the norm.3 Since this is the case,
Koskenniemi proposed that phonological rules be run in parallel rather than in series.
The cases where there is rule interaction (feeding or bleeding) we deal with by slightly
modifying some rules. Koskenniemi’s two-level rules can bethought of as a way of
expressingdeclarative constraintson the well-formedness of the lexical-surface map-
ping.

Two-level rules also differ from traditional phonologicalrules by explicitly coding
when they are obligatory or optional, by using four differing rule operators; the⇔ rule
corresponds to traditionalobligatory phonological rules, while the⇒ rule implements
optional rules:

2 If we had chosen to represent the lexical pronunciation of-s as [s] rather than [z], we would have written
the rule inversely to voice the-safter voiced sounds, but the rules would still need to be ordered; the ordering
would simply flip.
3 Feeding is a situation in which one rule creates the environment for another rule and so must be run
beforehand.

DRAFT

4 Chapter 11. Computational Phonology

Rule type Interpretation
a:b⇐ c d a is alwaysrealized asb in the contextc d
a:b⇒ c d a may be realized asb only in the contextc d
a:b⇔ c d a must be realized asb in contextc d and nowhere else
a:b /⇐ c d a is never realized asb in the contextc d

The most important intuition of the two-level rules, and themechanism that lets
them avoid feeding and bleeding, is their ability to represent constraints ontwo levels.
This is based on the use of the colon (“:”), which was touched on very briefly in Ch. 3.
The symbola:b means a lexicala that maps to a surfaceb. Thusa:b⇔ :c means
a is realized asb after asurfacec. By contrasta:b⇔ c: means thata is realized
asb after alexical c. As discussed in Ch. 3, the symbolc with no colon is equivalent
to c:c that means a lexicalc which maps to a surfacec.

Fig. 11.2 shows an intuition for how the two-level approach avoids ordering for the
ix-insertion and z-devoicing rules. The idea is that the z-devoicing rule maps alexical
z-insertion to asurfaces and the ix rule refers to thelexical z.

[+sib] z

s

^ lexical level

surface levelix

[−voice]

Figure 11.2 The constraints for the1-insertion andz-devoicing rules both refer to a
lexicalz, not asurfaces.

The two-level rules that model this constraint are shown in (11.4) and (11.5):

ε : ix ⇔ [+sibilant]: ˆ z: #(11.4)

z : s ⇔ [-voice]: ˆ #(11.5)

As Ch. 3 discussed, there are compilation algorithms for creating automata from
rules. Kaplan and Kay (1994) give the general derivation of these algorithms, and
Antworth (1990) gives one that is specific to two-level rules. The automata corre-
sponding to the two rules are shown in Fig. 11.3 and Fig. 11.4.Fig. 11.3 is based on
Figure 3.14 of Ch. 3; see page 78 for a reminder of how this automaton works. Note in
Fig. 11.3 that the plural morpheme is represented by z:, indicating that the constraint is
expressed about a lexical rather than surface z.

Fig. 11.5 shows the two automata run in parallel on the input [f aa k s ˆ z]. Note that
both the automata assumes the default mapping ˆ:ε to remove the morpheme boundary,
and that both automata end in an accepting state.

11.2 ADVANCED FINITE-STATE PHONOLOGY

DRAFT

Section 11.2. Advanced Finite-State Phonology 5

0 2 3 41
ε^: ε

5other
#

##, other

#, other

^: ε

ε other^:

[+sib]

[+sib]
[+sib]

:ix z:
z:

s, sh

Figure 11.3 The transducer for the ix-insertion rule 11.2. The rule can be readwhenever
a morpheme ends in a sibilant, and the following morpheme is word-final z, insert [ix].

0 2 31
^: ε

##, other

z, sh,
s, zh#, other

:[−vce]

:[−vce]
ε^:

z:s

otherz, #,

Figure 11.4 The transducer for the z-devoicing rule 11.3. This rule might be summa-
rizedDevoice the morpheme z if it follows a morpheme-final voiceless consonant.

11.2.1 Harmony

Finite-state models of phonology have also been applied to more sophisticated phono-
logical and morphological phenomena. Let’s consider a finite-state model of a well-
known complex interaction of three phonological rules in the Yawelmani dialect of
Yokuts, a Native American language spoken in California.4

First, Yokuts (like many other languages including for example Turkish and Hun-
garian) hasvowel harmony. Vowel harmony is a process in which a vowel changes itsVOWEL HARMONY

form to look like a neighboring vowel. In Yokuts, a suffix vowel changes its form to
agree in backness and roundness with the preceding stem vowel. That is, a front vowel
like /i/ will appear as a back vowel[u] if the stem vowel is/u/. ThisHarmony rule
applies if the suffix and stem vowels are of the same height (e.g.,/u/ and/i/ both high,

4 These rules were first drawn up in the traditional Chomsky andHalle (1968) format by Kisseberth (1969)
following the field work of Newman (1944).

DRAFT

6 Chapter 11. Computational Phonology

Surface f

fIntermediate

0

00

00

aa k

aa k

1

^ #

0

04

0

s z

s ix z

0 2 3

1 1 1 2 0z−devoicing

ix−insertion

Figure 11.5 The transducer for the ix-insertion rule 11.2 and the z-devoicing rule 11.3
run in parallel.

/o/ and/a/ both low): 5

High Stem Low Stem
Lexical Surface Gloss Lexical Surface Gloss

Harmony dub+hin → dubhun “tangles” bok’+al → bok’ol “might eat”
No Harmony xil+hin → xilhin “leads by the hand”xat ’+al → xat ’al “might find”

The second relevant rule,Lowering, causes long high vowels to become low;/u:/
becomes[o:] and/i:/ becomes[e:], while the third rule,Shortening, shortens long
vowels in closed syllables:

Lowering Shortening
Pu:t ’+it → Po:t ’ut “steal, passive aorist” s:ap+hin → saphin
mi:k’+it → me:k’+it “swallow, passive aorist”sudu:k+hin → sudokhun

The three Yokuts rules must be ordered, just as the ix-insertion and z-devoicing
rules had to be ordered. Harmony must be ordered before Lowering because the/u:/
in the lexical form/Pu:t ’+it/ causes the/i/ to become[u] before it lowers in the
surface form[Po:t ’ut]. Lowering must be ordered before Shortening because the/u:/
in /sudu:k+hin/ lowers to[o]; if it was ordered after shortening it would appear on the
surface as[u].

The Yokuts data can be modeled either as a cascade of three rules in series, or in
the two-level formalism as three rules in parallel; Fig. 11.6 shows the two architectures
(Goldsmith, 1993; Lakoff, 1993; Karttunen, 1998). Just as in the two-level examples
presented earlier, the rules work by referring sometimes tothe lexical context, some-
times to the surface context; writing the rules is left as Exercise 11.4 for the reader.

11.2.2 Templatic Morphology

Finite-state models of phonology/morphology have also been proposed for the tem-
platic (non-concatenative) morphology (discussed on page??) common in Semitic lan-
guages like Arabic, Hebrew, and Syriac. McCarthy (1981) proposed that this kind of

5 Examples from Cole and Kisseberth (1995). Some parts of system such as vowel underspecification have
been removed for pedagogical simplification (Archangeli, 1984).

DRAFT

Section 11.3. Computational Optimality Theory 7

Lexical

t

? u: t + h i n

Rounding

Lowering

Shortening

Surface

Rounding Lowering Shortening

? t

? u: t + h i n

? o h u n o h u n

a) Cascade of rules. b) Parallel two−level rules.

Figure 11.6 Combining the rounding, lowering, and shortening rules forYawelmani
Yokuts.

morphology could be modeled by using different levels of representation that Gold-
smith (1976) had calledtiers. Kay (1987) proposed a computational model of theseTIERS

tiers via a special transducer which reads four tapes instead of two, as in Fig. 11.7.

lexical tape

consonantal root tape

binyan tape

vocalic morph. tape

k

a k t a ib b

t b

V C C V C V C

a i

Figure 11.7 A finite-state model of templatic (“non-concatenative”) morphology. Mod-
ified from Kay (1987) and Sproat (1993).

The tricky part here is designing a machine which aligns the various strings on the
tapes in the correct way; Kay proposed that the binyan tape could act as a sort of guide
for alignment. Kay’s intuition has led to a number of more fully worked out finite-state
models of Semitic morphology such as Beesley’s (1996) modelfor Arabic and Kiraz’s
(1997) model for Syriac.

Kornai (1991) and Bird and Ellison (1994) show how one-tape automata (i.e. finite-
state automata rather than four-tape or even two-tape transducers) could be used to
model templatic morphology and other kinds of phenomena that are handled with the
tier-basedautosegmentalrepresentations of Goldsmith (1976).AUTOSEGMENTAL

11.3 COMPUTATIONAL OPTIMALITY THEORY

In a traditional phonological derivation, we are given an underlying lexical form and
a surface form. The phonological system then consists of a sequence of rules which

DRAFT

8 Chapter 11. Computational Phonology

map the underlying form to the surface form.Optimality Theory (OT) (Prince andOPTIMALITY THEORY

OT Smolensky, 1993) offers an alternative way of viewing phonological derivation, based
on the metaphor of filtering rather than transforming. An OT model includes two func-
tions (GEN and EVAL) and a set of ranked violable constraints(CON). Given an un-
derlying form, the GEN function produces all imaginable surface forms, even those
which couldn’t possibly be a legal surface form for the input. The EVAL function then
applies each constraint in CON to these surface forms in order of constraint rank. The
surface form which best meets the constraints is chosen.

Let’s briefly introduce OT, using some Yawlemani data, and then turn to the com-
putational ramifications.6 In addition to the interesting vowel harmony phenomena
discussed above, Yawelmani has phonotactic constraints that rule out sequences of
consonants; three consonants in a row (CCC) are not allowed to occur in a surface
word. Sometimes, however, a word contains two consecutive morphemes such that the
first one ends in two consonants and the second one starts withone consonant (or vice
versa). What does the language do to solve this problem? It turns out that Yawelmani
either deletes one of the consonants or inserts a vowel in between.

If a stem ends in a C, and its suffix starts with CC, the first C of the suffix is deleted
(“+” here means a morpheme boundary):

C-deletion: C→ ε / C + C(11.6)

For example, simplifying somewhat, the CCVC “passive consequent adjunctive” mor-
phemehne:l drops the initial C if the previous morpheme ends in a consonant. Thus
afterdiyel “guard”, we would get the formdiyel-ne:l-aw, “guard - passive consequent
adjunctive - locative”.

If a stem ends in CC and the suffix starts with C, the language instead inserts a
vowel to break up the first two consonants:

V-insertion: ε → V / C C +C(11.7)

For example ini is inserted into the rootPilk- “sing” when it is followed by the C-initial
suffix -hin, “past”, producingPilik-hin, “sang”, but not when followed by a V-initial
suffix like -en, “future” in Pilken “will sing”.

Kisseberth (1970) proposed that these two rules have the same function: avoiding
three consonants in a row. Let’s restate this in terms of syllable structure. It happens
that Yawelmani syllables can only be of the form CVC or CV; complex onsets or com-
plex codas i.e., with multiple consonants, aren’t allowed.Since CVCC syllables aren’t
allowed on the surface, CVCC roots must beresyllabified when they appear on theRESYLLABIFIED

surface. From the point of view of syllabification, then, these insertions and deletions
all happen so as to allow Yawelmani words to be properly syllabified. Here’s examples
of resyllabifications with no change, with an insertion, andwith a deletion:

6 The following explication of OT via the Yawelmani example draws heavily from Archangeli (1997) and
a lecture by Jennifer Cole at the 1999 LSA Linguistic Institute.

DRAFT

Section 11.3. Computational Optimality Theory 9

underlying surface gloss
morphemes syllabification
Pilk-en Pil.ken “will sing”
Pilk-hin Pi.lik.hin “sang”
diyel-hnil-aw di.yel.ne:.law “guard - pass. cons. adjunct. - locative”

The intuition of Optimality Theory is to try to directly represent these kind of con-
straints on syllable structure directly, rather than usingidiosyncratic insertion and dele-
tion rules. One such constraint, *COMPLEX, says “No complex onsets or codas”.
Another class of constraints requires the surface form to beidentical to (faithful to) the
underlying form. Thus FAITH V says “Don’t delete or insert vowels” and FAITH C says
“Don’t delete or insert consonants”. Given an underlying form, the GEN function pro-
duces all possible surface forms (i.e., every possible insertion and deletion of segments
with every possible syllabification) and they are ranked by the EVAL function using
these (violable) constraints. The idea is that while in general insertion and deletion are
dispreferred, in some languages and situations they are preferred over violating other
constraints, such as those of syllable structure. Fig. 11.8shows the architecture.

/?ilk−hin/

[?i.lik.hin]

?ilk.hin ?i.lik.hin?il.khin ?il.hin ?ak.pid

GEN

EVAL (*COMPLEX, FAITHC, FAITHV)

Figure 11.8 The architecture of a derivation in Optimality Theory (after Archangeli
(1997)).

The EVAL function works by applying each constraint in ranked order to each
candidate. Starting with the highest-ranked constraints,if one candidate either does
not violate no constraints or violates less of them than all the other candidates, that
candidate is declared optimal. If two candidates tie (have the same highest ranked vio-
lation), then the next-highest ranked violation is considered. This evaluation is usually
shown on atableau (plural tableaux). The top left-hand cell shows the input, the con-TABLEAU

straints are listed in order of rank across the top row, and the possible outputs along
the left-most column.7 If a form violates a constraint, the relevant cell contains* ; a*

! indicates the fatal violation which causes a candidate to beeliminated. Cells for!

7 Although there are an infinite number of candidates, it is traditional to show only the ones which are
‘close’; in the tableau below we have shown the outputPak.pid just to make it clear that even very different
surface forms are to be included.

DRAFT

10 Chapter 11. Computational Phonology

constraints which are irrelevant (since a higher-level constraint is already violated) are
shaded.

/Pilk-hin/ *COMPLEX FAITH C FAITH V

Pilk.hin *!
Pil.khin *!
Pil.hin *!

☞ Pi.lik.hin *
Pak.pid *!

One appeal of Optimality Theoretic derivations is that the constraints are presumed
to be cross-linguistic generalizations. That is all languages are presumed to have some
version of faithfulness, some preference for simple syllables, and so on. Languages
differ in how they rank the constraints; thus English, presumably, ranks FAITH C higher
than *COMPLEX. (How do we know this?)

11.3.1 Finite-State Transducer Models of Optimality Theory

Now that we’ve sketched the linguistic motivations for Optimality Theory, let’s turn to
the computational implications. We’ll explore two: implementation of OT via finite-
state models, and stochastic versions of OT.

Can a derivation in Optimality Theory be implemented by finite-state transducers?
Frank and Satta (1998), following the foundational work of Ellison (1994), showed
that (1) if GEN is a regular relation (for example assuming the input doesn’t contain
context-free trees of some sort), and (2) if the number of allowed violations of any
constraint has some finite bound, then an OT derivation can becomputed by finite-
state means. This second constraint is relevant because of aproperty of OT that we
haven’t mentioned: if two candidates violate exactly the same number of constraints,
the winning candidate is the one which has the smallest number of violations of the
relevant constraint.

One way to implement OT as a finite-state system was worked outby Karttunen
(1998), following the above-mentioned work and that of Hammond (1997). In Kart-
tunen’s model, GEN is implemented as a finite-state transducer which is given an un-
derlying form and produces a set of candidate forms. For example for the syllabifica-
tion example above, GEN would generate all strings that are variants of the input with
consonant deletions or vowel insertions, and their syllabifications.

Each constraint is implemented as a filter transducer that lets pass only strings
which meet the constraint. For legal strings, the transducer thus acts as the iden-
tity mapping. For example, *COMPLEX would be implemented via a transducer that
mapped any input string to itself, unless the input string had two consonants in the
onset or coda, in which case it would be mapped to null.

The constraints can then be placed in a cascade, in which higher-ranked constraints
are simply run first, as suggested in Fig. 11.9.

There is one crucial flaw with the cascade model in Fig. 11.9. Recall that the
constraints-transducers filter out any candidate which violates a constraint. But in many
derivations, including the proper derivation ofPi.lik.hin, even the optimal form still vi-
olates a constraint. The cascade in Fig. 11.8 would incorrectly filter it out, leaving

DRAFT

Section 11.3. Computational Optimality Theory 11

GEN

*COMPLEX

FAITHC

FAITHV

Figure 11.9 Version #1 (“merciless cascade”) of Karttunen’s finite-state cascade imple-
mentation of OT.

no surface form at all! Frank and Satta (1998) and Hammond (1997) both point out
that it is essential to only enforce a constraint if it does not reduce the candidate set
to zero. Karttunen (1998) formalizes this intuition with the lenient compositionop-LENIENT

COMPOSITION

erator. Lenient composition is a combination of regular composition and an operation
calledpriority union . The basic idea is that if any candidates meet the constraintthese
candidates will be passed through the filter as usual. If no output meets the constraint,
lenient composition retainsall of the candidates. Fig. 11.10 shows the general idea; the
interested reader should see Karttunen (1998) for the details.

GEN

*COMPLEX

FAITHC

FAITHV

/?ilk−hin/

[?i.lik.hin]

?ilk.hin ?i.lik.hin?il.khin ?il.hin ?ak.pid

GEN

*COMPLEX

?i.lik.hin
FAITHC

?i.lik.hin?il.hin ?ak.pid

FAITHV

L

L

L

Figure 11.10 Version #2 (“lenient cascade”) of Karttunen’s finite-statecascade imple-
mentation of OT, showing a visualization of the candidate populations that would be passed
through each FST constraint.

11.3.2 Stochastic Models of Optimality Theory

Classic OT was not designed to handle variation of the kind wesaw in Sec.??, since
it assigns a single most-harmonic output for each input. Dealing with variation re-
quires a more dynamic concept of constraint ranking. We mentioned in that section the
variationist model in sociolinguistics, in which logisticregression is used to combine
phonetic, contextual, and social factors to predict a probability of a particular phonetic
variant. Part of this variationist intuition can be absorbed into an Optimality Theory
framework through probabilistic augmentations.

One such augmentation isStochastic OT(Boersma and Hayes, 2001). In Stochas-STOCHASTIC OT

DRAFT

12 Chapter 11. Computational Phonology

tic OT, instead of the constraints being rank-ordered, eachconstraint is associated with
a value on a continuous scale. The continuous scale offers one thing a ranking cannot:
the relative importance or weight of two constraints can be proportional to the distance
between them. Fig. 11.11 shows a sketch of such a continuous scale.

Figure 11.11 Continuous scale in Stochastic OT. After (Boersma and Hayes, 2001).

How can the distance between constraints play a role in evaluation? Stochastic OT
makes a further assumption about the values of constraints.Instead of each constraint
having a fixed value as shown in Fig. 11.11. it has a Gaussian distribution of values
centered on a fixed value, as shown in Fig. 11.12. At evaluation time, a value for
the constraint is drawn (aselection point) with a probability defined by the mean and
variance of the Gaussian associated with each constraint.

Figure 11.12 Three constraints in Stochastic OT which are strictly ranked; thus non-
stochastic OT is a special case of Stochastic OT. After (Boersma and Hayes, 2001).

If the distribution for two constraints is far enough apart,as shown in Fig. 11.12
there will be little or no probability of the lower ranked constraint outranking the
higher-ranked one. Thus Stochastic OT includes non-stochastic OT as a special case.

The interesting cases arise when two constraints in Stochastic OT overlap in their
distribution, when there is some probability that a lower-ranked constraint will override
a higher-ranked constraint. In Fig. 11.13, for example, constraintC2 will generally
outrankC3 but occasionally outrankC2. This allows Stochastic OT to model variation,
since for the same underlying form differing selection points can cause different surface
variants to be most highly ranked.

In addition to the advantage of modeling variation, Stochastic OT differs from
non-stochastic OT in having a stochastic learning theory, which we will return to in
Sec. 11.5.3.

We can see stochastic OT itself as a special case of the general linear models of
Ch. 6.

DRAFT

Section 11.4. Syllabification 13

Figure 11.13 Three constraints in Stochastic OT in whichC3 will sometimes outrank
C2. . After (Boersma and Hayes, 2001).

11.4 SYLLABIFICATION

Syllabification, the task of segmenting a sequence of phones into syllables,is impor-SYLLABIFICATION

tant in a variety of speech applications. In speech synthesis, syllables are important in
predicting prosodic factors like accent; the realization of a phone is also dependent on
its position in the syllable (onset [l] is pronounced differently than coda [l]). In speech
recognition syllabification has been used to build recognizers which represent pronun-
ciations in terms of syllables rather than phones. Syllabification can help find errors in
pronunciation dictionaries, by finding words that can’t be syllabified, and can help an-
notate corpora with syllable boundaries for corpus linguistics research. Syllabification
also plays an important role in theoretical generative phonology.

One reason syllabification is a difficult computational taskis that there is no com-
pletely agreed-upon definition of syllable boundaries. Different on-line syllabified dic-
tionaries (such as the CMU and the CELEX lexicons) sometimeschoose different syl-
labifications. Indeed, as Ladefoged (1993) points out, sometimes it isn’t even clear
how many syllables a word has; some words (meal, teal, seal, hire, fire, hour) can be
viewed either as having one syllable or two.

Like much work in speech and language processing, syllabifiers can be based on
hand-written rules, or on machine learning from hand-labeled training sets. What kinds
of knowledge can we use in designing either kind of syllabifier? One possible con-
straint is theMaximum Onset principle, which says that when a series of consonantsMAXIMUM ONSET

occur word-medially before a vowel (VCCV), as many as possible (given the other
constraints of the language) should be syllabified into the onset of the second syllable
rather than the coda of the first syllable. Thus the Maximum Onset principle favors the
syllabification V.CCV over the syllabifications VC.CV or VCC.V.

Another principle is to use thesonority of a sound, which is a measure of howSONORITY

perceptually salient, loud or vowel-like it is. There are various attempts to define a
sonority hierarchy; in general, all things being equal, vowels are more sonorous thanSONORITY

HIERARCHY

glides (w, y), which are more sonorous than liquids (l, r), followed by nasals (n, m,
ng), fricatives (z, s, sh, zh, v, f th, dh), and stops. The sonority constraint on syllable
structure says that the nucleus of the syllable must be the most sonorous phone in a
sequence (thesonority peak), and that sonority decreases monotonically out from the
nucleus (toward the coda and toward the onset). Thus in a syllable C1C2VC3C4, the

DRAFT

14 Chapter 11. Computational Phonology

nucleusV will be the most sonorous element, consonantC2 will be more sonorous than
C1 and consonantC3 will be more sonorant than consonantC4.

Goldwater and Johnson (2005) implement a simple rule-basedlanguage-independent
classifier based only on maximum onset and sonority sequencing. Given a cluster of
consonants between two syllable nuclei, sonority constrains the syllable boundary to
be either just before or just after the consonant with the lowest sonority. Combining
sonority with maximum onset, their parser predicts a syllable boundary just before the
consonant with the lowest sonority. They show that this simple syllabifier correctly
syllabifies 86-87% of multisyllabic words in English and German.

While this error rate is not unreasonable, and there is further linguistic and some
psychological evidence that these principles play a role insyllable structure, both
Maximum Onset and sonority sequencing seem to have exceptions. For example in
the English syllable-initial clusters /sp st sk/ in words like spell, the less sonorous
/p/ occurs between the more sonorous /s/ and the vowel, violating sonority sequenc-
ing (Blevins, 1995). Without some way to rule out onset clusters that are disallowed
language-specifically like /kn/ in English, the combination of sonority sequencing plus
maximum onset incorrectly predicts the syllabification of words likeweaknessto be
wea.knessrather thanweak.ness. Furthermore, other constraints seem to be important,
including whether a syllable is stressed (stressed syllables tend to have more complex
codas), the presence or absence of morphological boundaries, and even the spelling of
the word (Titone and Connine, 1997; Treiman et al., 2002).

Achieving higher performance thus requires the use of thesesorts of language-
specific knowledge. The most commonly used rule-based syllabifier is based on the
dissertation of Kahn (1976), available in an implementation by Fisher (1996), The
Kahn algorithm makes use of language-specific information in the form of lists of al-
lowable English initial initial clusters, allowable English final clusters, and ’universally
bad’ clusters. The algorithm takes strings of phones, together with other information
like word boundaries and stress if they are available, and assigns syllable boundaries
between the phones. Syllables are built up incrementally based on three rules, as
sketched out in Fig. 11.14. Rule 1 forms nuclei at each syllabic segment, Rule 2a
attaches onset consonants to the nucleus, and Rule 2b attaches coda consonants.8 Rule
2a and 2b make use of lists of legal onset consonant sequences(including e.g. [b], [b
l], [b r], [b y], [ch], [d], [d r], [d w], [d y], [dh], [f], [f l], [f r], [f y], [g], [g l], [g r],
[g w], etc). and legal coda clusters. There are a very large number of coda consonant
clusters in English; some of the longer (4-consonant) clusters include:

k s t s l f th s m f s t n d th s n k s t r k t s r p t s
k s th s l k t s m p f t n t s t n k t s r l d z r s t s

l t s t m p s t n t th s n k th s r m p th r t s t

The algorithm also takes a parameter indicating how fast or casual the speech is;
the faster or more informal the speech, the more resyllabification happens, based on
further rules we haven’t shown.

Instead of hand-written rules, we can apply a machine learning approach, using
a hand-syllabified dictionary as a supervised training set.For example the CELEX
syllabified lexicon discussed in Sec.?? is often used this way, selecting some words

8 Note that the fact that Rule 2a precedes Rule 2b can be seen as an implementation of Maximum Onset.

DRAFT

Section 11.4. Syllabification 15

m i s i s i p i

S S S S

C1 ... Cn V −→ C1 ... Ci Ci+1 ... Cn V

S S

V C1 ... Cn −→ V C1 ... Cj C j+1 ... Cn

S S

Rule 1: Form Nuclei:
link S with each [+syl-
labic] segment

Rule 2a: Add Onsets: where
Ci+1...Cn is a permissible initial
cluster but CiCi+1...Cn is not

Rule 2b: Add Codas: where
C1...Cj is a permissible coda cluster
but C1...CjC j +1 is not

Figure 11.14 First three syllabification rules of Kahn (1976). Rule 2b maynot apply across word boundaries.

as a training set, and reserving others as a dev-test and testset. Statistical classifiers
can be used to predict syllabifications, including decisiontrees (van den Bosch, 1997),
weighted finite-state transducers (Kiraz and Möbius, 1998), and probabilistic context-
free grammars (Seneff et al., 1996; Müller, 2002, 2001; Goldwater and Johnson, 2005).

For example the Kiraz and Möbius (1998) algorithm is a weighted finite-state trans-
ducer which inserts a syllable boundary in a sequence of phones (akin to the morpheme-
boundaries we saw in Ch. 3). Aweighted FST(Pereira et al., 1994) is a simple aug-WEIGHTED FST

mentation of the finite transducer in which each arc is associated with a probability as
well as a pair of symbols. The probability indicates how likely that path is to be taken;
the probability on all the arcs leaving a node must sum to 1.

The syllabification automaton of Kiraz and Möbius (1998) iscomposed of three
separate weighted transducers, one for onsets, one for nuclei, and one for codas, con-
catenated together into an FST that inserts a syllable marker after the end of the coda.
Kiraz and Möbius (1998) compute path weights from frequencies in the training set;
each path (for example the nucleus [iy]) of frequencyf is assigned a weight of 1/ f .
Another way to convert frequencies to costs is to use log probabilities. Fig. 11.15
shows a sample automaton, simplified from Kiraz and Möbius (1998). We have shown
the weights only for some of the nuclei. The arcs for each possible onset, nucleus, and
coda, are drawn from a language-dependent list like the one used in the Kahn algorithm
above.

The automaton shown in Fig. 11.15 can be used to map from an input sequence like
the phonetic representation ofweakness[w iy k n eh s] into an output sequence that
includes the syllabification marker like “-”: [w iy k - n eh s].If there are multiple pos-
sible legal syllabifications of a word, the Viterbi algorithm is used to choose the most
likely path through the FST, and hence the most probable segmentation. For exam-
ple, the German wordFenster, “window”, has three possible syllabifications: [fEns-t5]
<74>, [fEn-st5] <75>, and [fEnst-5] <87> (with costs shown in angle brackets).
Their syllabifier correctly chooses the lowest cost syllabificationfEns-t5, based on the
frequencies of onsets and codas from the training set. Note that since morphological
boundaries also are important for syllabification, the Kiraz and Möbius (1998) syl-
labification transducer can be placed after a morphologicalparsing transducer, so that
syllabification can be influenced by morphological structure.

More recent syllabifiers based on probabilistic context-free grammars (PCFGs) can
model more complex hierarchical probabilistic dependencies between syllables (Seneff
et al., 1996; Müller, 2002, 2001; Goldwater and Johnson, 2005). Together with other
machine learning approaches like van den Bosch (1997), modern statistical syllabifi-

DRAFT

16 Chapter 11. Computational Phonology

Figure 11.15 Syllabifier automaton, showing onset (o), coda (c), and nucleus arcs.
Costs on each arc shown only for some sample nucleus arcs. Thesyllable boundary marker
‘-’ is inserted after every non-final syllable. eps stands for ε. Simplified from Kiraz and
Möbius (1998).

cation approaches have a word accuracy of around 97–98% correct, and probabilistic
model of syllable structure have also been shown to predict human judgments of the
acceptability of nonsense words (Coleman and Pierrehumbert, 1997).

There are a number of other directions in syllabification. One is the use of unsuper-
vised machine learning algorithms (Ellison, 1992; Mülleret al., 2000; Goldwater and
Johnson, 2005) Another is the use of other cues for syllabification such as allophonic
details from a narrow phonetic transcription (Church, 1983).

11.5 LEARNING PHONOLOGY & M ORPHOLOGY

Machine learning of phonological structures is an active research area in computational
phonology above and beyond the induction of syllable structure discussed in the pre-
vious section. Supervised learning work is based on a training set that is explicitly
labeled for the phonological (or morphological) structureto be induced. Unsupervised
work attempts to induce phonological or morphological structure without labeled train-
ing data. Let’s look at three representative areas of learning: learning of phonological
rules, learning of morphological rules, and learning of OT constraint rankings

11.5.1 Learning Phonological Rules

In this section we briefly summarize some early literature inlearning phonological
rules, generally couched either in terms of finite state models of two-level phonology
or classic Chomsky-Halle rules.

Johnson (1984) gives one of the first computational algorithms for phonological
rule induction. His algorithm works for rules of the form

(11.8) a→ b/C

whereC is the feature matrix of the segments arounda. Johnson’s algorithm sets

DRAFT

Section 11.5. Learning Phonology & Morphology 17

up a system of constraint equations whichC must satisfy, by considering both the
positive contexts, i.e., all the contextsCi in which ab occurs on the surface, as well
as all the negative contextsCj in which ana occurs on the surface. Touretzky et al.
(1990) extended Johnsons work in various ways, including dealing with epenthesis and
deletion rules.

The algorithm of Gildea and Jurafsky (1996) was designed to induce transducers
representing two-level rules of the type we have discussed earlier. Gildea and Juraf-
sky’s supervised algorithm was trained on pairs of underlying and surface forms. For
example, they attempted to learn the rule of English flapping, (focusing only on the
phonetic context and ignoring social and other factors). The training set thus consisted
of underlying/surface pairs, either with an underlying /t/and surface flap [dx], or an
underlying /t/ and surface [t], as follows:

flapping non-flapping
butter /b ah t axr/ → [b ah dx axr] stop /s t aa p/→ [s t aa p]
meter /m iy t axr/ → [m iy dx axr] cat /k ae t/ → [k ae t]

The algorithm was based on OSTIA (Oncina et al., 1993), a general learning al-
gorithm for thesubsequential transducersdefined on page??. Gildea and Jurafsky
showed that by itself, the OSTIA algorithm was too general tolearn phonological trans-
ducers, even given a large corpus of underlying-form/surface-form pairs. For example,
given 25,000 underlying/surface pairs like the examples above, the algorithm ended up
with the huge and incorrect automaton in Fig. 11.16(a). Gildea and Jurafsky then aug-
mented the domain-independent OSTIA system with learning biases which are specific
to natural language phonology. For example they added aFaithfulnessbias that un-
derlying segments tend to be realized similarly on the surface (i.e. that all things being
equal, an underlying /p/ was likely to emerge as a surface [p]). They did this by start-
ing OSTIA with the underlying and surface strings aligned using Levenshtein distance.
They also added knowledge about phonetic features (vowel versus consonant, reduced
versus non-reduced vowel, etc). Together, adding these biases enabled OSTIA to learn
the automaton in Fig. 11.16(b), as well as correct automatons for other phonological
rules like German consonant devoicing.

This phonological learning experiment illustrates that successful learning requires
two components: a model which fits some empirical data and some prior knowledge or
biases about the structure of the model.

Recent work on learning has focused either on morphologicallearning, or on rank-
ing of OT constraints rather than on the induction of rules and constraints, and will be
discussed in the next two sections.

11.5.2 Learning Morphology

We discussed in Ch. 3 the use of finite-state transducers for morphological parsing.
In general, these morphological parsers are built by hand and have relatively high ac-
curacy, although there has also been some work on supervisedmachine learning of
morphological parsers (van den Bosch, 1997). Recent work, however, has focused on
unsupervised ways to automatically bootstrap morphological structure. The unsuper-
vised (or weakly supervised) learning problem has practical applications, since there

DRAFT

18 Chapter 11. Computational Phonology

0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69 70 71

72 73 74 75 76 77 78 79 80 81 82 83

84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107

108 109 110 111 112 113 114 115 116 117 118 119

120 121 122 123 124 125 126 127 128 129 130 131

132 133 134 135 136 137 138 139 140

2

0 1
V C

r C

tV

V

t : 0

V

r

V V: t
C : t C

: t #

: t rr
V : V dx

(a) (b)

Figure 11.16 Induction of a flapping rule transducer (after Gildea and Jurafsky (1996)).
The transducer in (a) is the initial attempt at learning. Thetransducer in (b) is the correct
transducer induced after a faithfulness bias.

are many languages for which a hand-built morphological parser, or a morphological
segmented training corpus, does not yet exist. In addition,the learnability of linguistic
structure is a much-discussed scientific topic in linguistics; unsupervised morphologi-
cal learning may help us understand what makes language learning possible.

Approaches to unsupervised morphology induction have employed a wide variety
of heuristics or cues to a proper morphological parse. Earlyapproaches were all es-
sentially segmentation-based; given a corpus of words theyattempted to segment each
word into a stem and an affix using various unsupervised heuristics. For example the
earliest work hypothesized morpheme boundaries at the point in a word where there
is large uncertainty about the following letters (Harris, 1954, 1988; Hafer and Weiss,
1974). For example, Fig. 11.17 shows atrie9 which stores the wordscar, care, cars,TRIE

cares, cared, etc. Note that there there are certain nodes in the tree in Fig. 11.17 that
have a wide branching factor (aftercar and aftercare). If we think of the task of pre-
dicting the next letter giving the path in the trie so far, we can say that these points have
a high conditional entropy; there are many possible continuations.10 While this is a
useful heuristic, it is not sufficient; in this example we would need a way to rule out the
morphemecar as well ascarebeing part of the wordcareful; this requires a complex
set of thresholds.

Another class of segmentation-based approaches to morphology induction focuses
on globally optimizing a single criterion for the whole grammar, the criterion ofmin-
imum description length, or MDL . The MDL principle is widely used in language

MINIMUM
DESCRIPTION

LENGTH

MDL

9 A trie is a tree structure used for storing strings, in which a string is represented as a path from the root
to a leaf. Each non-terminal node in the tree thus stores a prefix of a string; every common prefix is thus
represented by a node. The wordtrie comes fromretrieval and is pronounced either [t r iy] or [t r ay].
10 Interestingly, this idea of placing boundaries at regions of low predictability has been shown to be used
by infants for word segmentation (Saffran et al., 1996b).

DRAFT

Section 11.5. Learning Phonology & Morphology 19

Figure 11.17 Example of a letter trie. A Harris style algorithm would insert morpheme
boundaries aftercar andcare. After Schone and Jurafsky (2000).

learning, and we will see it again in grammar induction in Ch.14. The idea is that we
are trying to learn the optimal probabilistic model of some data. Given any proposed
model, we can assign a likelihood to the entire data set. We can also use the proposed
model to assign a compressed length to this data (with probabilistic models we can use
the intuition that the compressed length of the data is related to the entropy, which we
can estimate from the log probability). We can also assign a length to the proposed
model itself. The MDL principle says to choose the model for which the sum of the
data length and the model length is the smallest. The principle is often viewed from a
Bayesian perspective; If we are attempting to learn the bestmodelM̂ out of all models
M for some dataD which has the maximum a posteriori probabilityP(M|D), we can
use Bayes Rule to express the best modelM̂ as:

M̂ = argmaxMP(M|D) = argmaxM
P(D|M)P(M)

P(D)
= argmaxMP(D|M)P(M)(11.9)

Thus the best model is the one which maximizes two terms: the likelihood of the data
P(D|M) and the prior of the modelP(M). The MDL principle can be viewed as saying
that the prior term on the model should be related to the length of the model.

MDL approaches to segmentation induction were first proposed by de Marcken
(1996) and Brent (1999), as well as Kazakov (1997); let’s summarize from a more
recent instantiation by Goldsmith (2001). The MDL intuition can be seen from the
schematic example in Fig. 11.18 inspired by Goldsmith.

As we see in Fig. 11.18, using morphological structure makesit possible to rep-
resent a lexicon with far fewer letters. Of course this example doesn’t represent the
true complexity of morphological representations, since in reality not every word is
combinable with every affix. One way to represent slightly more complexity is to use
signatures. A signature is a list of suffixes that can appear with a particular stem. HereSIGNATURES

are some sample signatures from Goldsmith (2001):

Signature Example
NULL.ed.ing.s remain remained remaining remains
NULL.s cow cows
e.ed.es.ing notice noticed notices noticing

DRAFT

20 Chapter 11. Computational Phonology

cooked cooks cooking
played plays playing
boiled boils boiling

cook
play
boil

ed
s
ing

(a) Word list with no structure (b) Word list with morphological structure
Total letter count: 54 Total letter count: 18 letters

Figure 11.18 Naive version of MDL, showing the reduction in the description length
of a lexicon with morphological structure; adapted from Goldsmith (2001).

The Goldsmith (2001) version of MDL considers all possible segmentations of
every word into a stem and a suffix. It then chooses the set of segmentations for the
whole corpus that jointly minimize the compressed length ofthe corpus and the length
of the model. The length of the model is the sum of the lengths of the affixes, the stems,
and the signatures. The length of the corpus is computed by using the model to assign
a probability to the corpus and using this probably to compute the cross-entropy of the
corpus given the model.

While approaches based solely on stem and affix statistics like MDL have been
quite successful in morphological learning, they do have a number of limitations.
For example Schone and Jurafsky (2000, 2001) noted in an error analysis that MDL
sometimes segments valid affixes inappropriately (such as segmenting the wordally
to all+y), or fails to segment valid but non-productive affixes (missing the relation-
ship betweendirt anddirty). They argued that such problems stemmed from a lack
of semantic or syntactic knowledge, and showed how to use relatively simple semantic
features to address them. The Schone and Jurafsky (2000) algorithm uses a trie to come
up with “pairs of potential morphological variants”, (PPMVs) words which differ only
in potential affixes. For each pair, they compute the semantic similarity between the
words, using the Latent Semantic Analysis (LSA) algorithm of Ch. 23. LSA is an un-
supervised model of word similarity which is induced directly from the distributions of
word in context. Schone and Jurafsky (2000) showed that using the semantic similarity
alone was at least as good a predictor of morphological structure as MDL. The table
below shows the LSA-based similarity between PPMVs; in thisexample the similarity
is high only for words that are morphologically related.

PPMVs ScorePPMV Score PPMV Score PPMV Score
ally/allies 6.5 dirty/dirt 2.4 car/cares -0.14car/cared -.096
car/cars 5.6 rating/rate 0.97 car/caring -0.71 ally/all -1.3

Schone and Jurafsky (2001) extended the algorithm to learn prefixes and circum-
fixes, and incorporated other useful features, including syntactic and other effects of
neighboring word context (Jacquemin, 1997), and the Levenshtein distance between
the PPMVs (Gaussier, 1999).

The algorithms we have mentioned so far have focused on the problem of learning
regular morphology. Yarowsky and Wicentowski (2000) focused on the more complex
problem of learning irregular morphology. Their idea was toprobabilistically align an

DRAFT

Section 11.5. Learning Phonology & Morphology 21

inflected form (such as Englishtookor Spanishjuegan) with each potential stem (such
as Englishtakeor Spanishjugar). The result of their alignment-based algorithm was
a inflection-root mapping, with both an optional stem changeand a suffix, as shown in
the following table:

English Spanish
root inflection stem changesuffix root inflection stem changesuffix
take took ake→ook +ε jugar juega gar→eg +a
take taking e→ ε +ing jugar jugamos ar→ ε +amos
skip skipped ε →p +ed tener tienen ener→ien +en

The Yarowsky and Wicentowski (2000) algorithm requires somewhat more infor-
mation than the algorithms for inducing regular morphology. In particular it assumes
knowledge of the regular inflectional affixes of the languageand a list of open class
stems; both are things that might be induced by the MDL or other algorithms men-
tioned above. Given an inflected form, the Yarowsky and Wicentowski (2000) algo-
rithm uses various knowledge sources to weight the potential stem, including the rela-
tive frequency of the inflected form and potential stem, the similarity in lexical context,
and the Levenshtein distance between them. See Baroni et al.(2002) and Clark (2002)
for alternative alignment-based approaches.

11.5.3 Learning in Optimality Theory

Let’s conclude with a brief sketch of work which addresses the learning problem in
Optimality Theory. Most work on OT learning has assumed thatthe constraints are
already given, and the task is to learn the ranking. Two algorithms for learning rankings
have been worked out in some detail; theconstraint demotion algorithm of Tesar
and Smolensky (2000) and theGradual Learning Algorithm of Boersma and Hayes
(2001).

TheConstraint Demotion algorithm makes two assumptions: that we know all theCONSTRAINT
DEMOTION

possible OT constraints of the language, and that each surface form is annotated with
its complete parse and underlying form. The intuition of thealgorithm is that each of
these surface observations gives us implicit evidence about the constraint ranking.

Given the underlying form, we can use the GEN algorithm to implicitly form the set
of competitors. Now we can construct a set of pairs consisting of the correct observed
grammatical form and each competitor. The learner must find aconstraint ranking
that prefers the observed learningwinnerover each (non-observed) competitorloser.
Because the set of constraints is given, we can use the standard OT parsing architecture
to determine for each winner or loser exactly which constraints they violate.

For example, consider the learning algorithm that has observed Candidate 1, but
whose current constraint ranking prefers Candidate 2, as follows (this example and the
following tables are modified from Boersma and Hayes (2001)):

/underlying form/ C1 C2 C3 C4 C5 C6 C7 C8

Candidate 1 (learning observation) *! ** * * *
☞ Candidate 2 (learner’s output) * * * * *

Given a set of suchwinner/loserpairs, the Constraint Demotion algorithm needs to

DRAFT

22 Chapter 11. Computational Phonology

demote each constraint that is violated by the winner Candidate 2, until the observed
form (Candidate 1) is preferred. The algorithm first cancelsany marks due to violations
that are identical between the two candidates:

/underlying form/ C1 C2 C3 C4 C5 C6 C7 C8

Candidate 1 (learning observation) ∗! ∗∗ ∗ ∗ ∗
☞ Candidate 2 (learner’s output) ∗ ∗ ∗ ∗ ∗

These constraints are pushed down in the hierarchy until they are dominated by the
constraints violated by the loser. The algorithm divides constraints intostrata, and
tries to find a lower strata to move the constraints into. Here’s shows a simplification
of this intuition, asC1 andC2 get moved belowC8.

/underlying form/ C3 C4 C5 C6 C7 C8 C1 C2

☞ Candidate 1 (learning observation) * * *
Candidate 2 (learner’s output) *! *

TheGradual Learning Algorithm (GLA) of (Boersma and Hayes, 2001) is a gen-GRADUAL LEARNING
ALGORITHM

eralization of Constraint Demotion that learns constraintrankings in Stochastic Opti-
mality Theory. Since OT is a special case of Stochastic OT, the algorithm also implic-
itly learns OT rankings. It generalizes Constraint Demotion by being able to learn from
cases of free variation. Recall from Sec. 11.3 that in Stochastic OT each constraint is
associated with aranking value on a continuous scale. The ranking value is defined
as the mean of the Gaussian distribution that constitutes the constraint. The goal of the
GLA is to assign a ranking value for each constraint. The algorithm is a simple exten-
sion to the Constraint Demotion algorithm, and follows exactly the same steps until the
final step. Inside of demoting constraints to a lower strata,the ranking value of each
constraint violated by the learning observation (Candidate 1) is decreased slightly, and
the ranking value of each constraint violated by the learner’s output (Candidate 2) is
increased slightly, as shown below:

/underlying form/ C1 C2 C3 C4 C5 C6 C7 C8

Candidate 1 (learning observation)∗!→ ∗→ ∗→
☞ Candidate 2 (learner’s output) ←∗ ← ∗

11.6 SUMMARY

This chapter has introduced many of the important concepts of phonetics and compu-
tational phonology.

• Transducerscan be used to model phonological rules just as they were usedin
Ch. 3 to model spelling rules.Two-level morphology is a theory of morphol-

DRAFT

Section 11.6. Summary 23

ogy/phonology which models phonological rules as finite-statewell-formedness
constraintson the mapping between lexical and surface form.

• Optimality theory is a theory of phonological well-formedness; there are com-
putational implementations, and relationships to transducers.

• Computational models exist forsyllabification, inserting syllable boundaries in
phone strings.

• There are numerous algorithms for learning phonological and morphological
rules, both supervised and unsupervised.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Computational phonology is a fairly recent field. The idea that phonological rules
could be modeled as regular relations dates to Johnson (1972), who showed that any
phonological system that didn’t allow rules to apply to their own output (i.e., systems
that did not have recursive rules) could be modeled with regular relations (or finite-state
transducers). Virtually all phonological rules that had been formulated at the time had
this property (except some rules with integral-valued features, like early stress and tone
rules). Johnson’s insight unfortunately did not attract the attention of the community,
and was independently discovered by Ronald Kaplan and Martin Kay; see Ch. 3 for the
rest of the history of two-level morphology. Karttunen (1993) gives a tutorial introduc-
tion to two-level morphology that includes more of the advanced details than we were
able to present here, and the definitive text on finite-state morphology is Beesley and
Karttunen (2003). Other FSA models of phonology include Bird and Ellison (1994).

Optimality theory was developed by Prince and Smolensky andcirculated as a
technical report (Prince and Smolensky, 1993) until its publication more than a decade
later (Prince and Smolensky, 2004). Other finite-state workin OT includes Eisner
(1997, 2000, 2002), Gerdemann and van Noord (2000).

Recent work on phonological learning has focused on learning phonotactic con-
straints (Hayes, 2004; Prince and Tesar, 2004; Tesar, 2006;Tesar and Prince, 2007;
Hayes and Wilson, 2007).

Much recent work in computational phonology has focused on models with weighted
constraints. For exampleHarmonic Grammar is an extension to Optimality TheoryHARMONIC

GRAMMAR

(indeed is the theory that Optimality Theory originally grew out of) in which optimal-
ity for a form is defined as maximalharmony. Harmony is defined by the sum ofHARMONY

weighted constraints (Smolensky and Legendre, 2006). In using sums of weight rather
than OT-style rankings, Harmony Theory resembles the log-linear models of Ch. 6.
Recent computational work in Harmonic Grammar includes Pater et al. (2007), Pater
(2007).

Recent work in learning morphological rules includes Albright and Hayes (2003),
Alderete et al. (2005), Albright (2007).

Word segmentation is one of the earliest problems in computational linguistics,
and models date back to Harris (1954). Among the many modern models are Bayesian
ones like Brent (1999) and Goldwater et al. (2006). The word segmentation problem

DRAFT

24 Chapter 11. Computational Phonology

is important also in computational developmental psycholinguistics; for represenative
recent work see H. et al. (1998), Kuhl et al. (2003), Thiessenand Saffran (2004) and
Thiessen et al. (2005).

Readers interested in phonology should consult textbooks like Odden (2005) and
Kager (2000).

EXERCISES

11.1 Build an automaton for rule (11.3).

11.2 One difference between one dialect of Canadian English and most dialects of
American English is calledCanadian raising. Bromberger and Halle (1989) note thatCANADIAN RAISING

some Canadian dialects of English raise/aI/ to [2I]and/aU/ to [2U] in stressed position
before a voiceless consonant. A simplified version of the rule dealing only with/aI/
can be stated as:

/aI/→ [2I] /

[

C
−voice

]

(11.10)

This rule has an interesting interaction with the flapping rule. In some Canadian
dialects the wordrider and writer are pronounced differently:rider is pronounced
[raIRÄ] while writer is pronounced[r2IRÄ]. Write a two-level rule and an automaton for
both the raising rule and the flapping rule which correctly models this distinction. You
may make simplifying assumptions as needed.

11.3 Write the lexical entry for the pronunciation of the Englishpast tense (preterite)
suffix -d, and the two level-rules that express the difference in its pronunciation de-
pending on the previous context. Don’t worry about the spelling rules. (Hint: make
sure you correctly handle the pronunciation of the past tenses of the wordsadd, pat,
bake, andbag.)

11.4 Write two-level rules for the Yawelmani Yokuts phenomena ofHarmony, Short-
ening, and Lowering introduced on page 5. Make sure your rules are capable of running
in parallel.

DRAFT

Section 11.6. Summary 25

Albright, A. (2007). How many grammars am i holding up?
Discovering phonological differences between word classes.
In WCCFL 26, pp. 34–42.

Albright, A. and Hayes, B. (2003). Rules vs. analogy in english
past tenses: A computational/experimental study.Cognition,
90, 119–161.

Alderete, J., Brasoveanu, A., Merchant, N., Prince, A., and
Tesar, B. (2005). Contrast analysis aids in the learning of
phonological underlying forms. InWCCFL 24, pp. 34–42.

Antworth, E. L. (1990). PC-KIMMO: A Two-level Processor
for Morphological Analysis. Summer Institute of Linguistics,
Dallas, TX.

Archangeli, D. (1984). Underspecification in Yawelmani
Phonology and Morphology. Ph.D. thesis, MIT.

Archangeli, D. (1997). Optimality theory: An introductionto
linguistics in the 1990s. In Archangeli, D. and Langendoen,
D. T. (Eds.),Optimality Theory: An Overview. Blackwell, Ox-
ford.

Baroni, M., Matiasek, J., and Trost, H. (2002). Unsupervised
discovery of morphologically related words based on ortho-
graphic and semantic similarity. InProceedings of ACL SIG-
PHON, Philadelphia, PA.

Beesley, K. R. (1996). Arabic finite-state morphological analy-
sis and generation. InCOLING-96, Copenhagen, pp. 89–94.

Beesley, K. R. and Karttunen, L. (2003).Finite-State Morphol-
ogy. CSLI Publications, Stanford University.

Bird, S. and Ellison, T. M. (1994). One-level phonology:
Autosegmental representations and rules as finite automata.
Computational Linguistics, 20(1).

Blevins, J. (1995). The handbook of phonological theory.
In Goldsmith, J. (Ed.),The syllable in phonological theory.
Blackwell, Oxford.

Boersma, P. and Hayes, B. (2001). Empirical tests of the grad-
ual learning algorithm.Linguistic Inquiry, 32, 45–86.

Brent, M. R. (1999). An efficient, probabilistically sound algo-
rithm for segmentation and word discovery.Machine Learn-
ing, 34(1–3), 71–105.

Bromberger, S. and Halle, M. (1989). Why phonology is dif-
ferent.Linguistic Inquiry, 20, 51–70.

Chomsky, N. and Halle, M. (1968).The Sound Pattern of En-
glish. Harper and Row.

Church, K. W. (1983).Phrase-Structure Parsing: A Method for
Taking Advantage of Allophonic Constraints. Ph.D. thesis,
MIT.

Clark, A. (2002). Memory-based learning of morphology with
stochastic transducers. InACL-02, Philadelphia, PA, pp. 513–
520.

Cole, J. S. and Kisseberth, C. W. (1995). Restricting multi-level
constraint evaluation. Rutgers Optimality Archive ROA-98.

Coleman, J. and Pierrehumbert, J. B. (1997). Stochastic phono-
logical grammars and acceptability. InProceedings of ACL
SIGPHON.

de Marcken, C. (1996).Unsupervised Language Acquisition.
Ph.D. thesis, MIT.

Eisner, J. (1997). Efficient generation in primitive optimality
theory. InACL/EACL-97, Madrid, Spain, pp. 313–320.

Eisner, J. (2000). Directional constraint evaluation in Optimal-
ity Theory. InCOLING-00, Saarbrücken, Germany, pp. 257–
263.

Eisner, J. (2002). Comprehension and compilation in Optimal-
ity Theory. InACL-02, Philadelphia, pp. 56–63.

Ellison, T. M. (1992).The Machine Learning of Phonological
Structure. Ph.D. thesis, University of Western Australia.

Ellison, T. M. (1994). Phonological derivation in optimality
theory. InCOLING-94, Kyoto, pp. 1007–1013.

Fisher, W. (1996). tsylb2 software and documentation. http://.

Frank, R. and Satta, G. (1998). Optimality theory and the gen-
erative complexity of constraint violability.Computational
Linguistics, 24(2), 307–315.

Gaussier, E. (1999). Unsupervised learning of derivational mor-
phology from inflectional lexicons. InACL-99.

Gerdemann, D. and van Noord, G. (2000). Approximation and
exactness in finite state optimality theory. InProceedings of
ACL SIGPHON.

Gildea, D. and Jurafsky, D. (1996). Learning bias and phono-
logical rule induction.Computational Linguistics, 22(4), 497–
530.

Goldsmith, J. (1976).Autosegmental Phonology. Ph.D. thesis,
MIT.

Goldsmith, J. (1993). Harmonic phonology. In Goldsmith, J.
(Ed.), The Last Phonological Rule, pp. 21–60. University of
Chicago Press, Chicago.

Goldsmith, J. (2001). Unsupervised learning of the morphol-
ogy of a natural language.Computational Linguistics, 27,
153–198.

Goldwater, S., Griffiths, T. L., and Johnson, M. (2006). Con-
textual dependencies in unsupervised word segmentation. In
COLING/ACL 2006, Sydney, Australia.

Goldwater, S. and Johnson, M. (2005). Representational bias in
unsupervised learning of syllable structure. InProceedings of
the Conference on Computational Natural Language Learn-
ing (CoNLL-2005).

H., C. M., J., A., and S., S. M. (1998). Learning to segment
speech using multiple cues: A connectionist model.Language
and Cognitive Processes, 13(2), 221–268.

Hafer, M. A. and Weiss, S. F. (1974). Word segmentation by
letter successor varieties.Information Storage and Retrieval,
10(11-12), 371–385.

Hammond, M. (1997). Parsing in OT. Alternative title “Parsing
syllables: Modeling OT computationally”. Rutgers Optimal-
ity Archive ROA-222-1097.

Harris, Z. S. (1954). Distributional structure.Word, 10, 146–
162. Reprinted in J. Fodor and J. Katz, The structure of lan-
guage: Readings in the philosophy of language, Prentice-hall,
1964 and in Z. S. Harris, Papers in structural and transforma-
tional linguistics, Reidel, Dordrecht, 1970, 775–794.

DRAFT

26 Chapter 11. Computational Phonology

Harris, Z. S. (1988). Language and Information. Columbia
University Press.

Hayes, B. and Wilson, C. (2007). A maximum entropy model
of phonotactics and phonotactic learning.Linguistic Inquiry.
To appear.

Hayes, B. (2004). Phonological acquisition in optimality the-
ory: the early stages. In Kager, R., Pater, J., and Zonn-
eveld, W. (Eds.),Constraints in Phonological Acquisition.
Cambridge University Press.

Jacquemin, C. (1997). Guessing morphology from terms and
corpora. InSIGIR 1997, Philadelphia, PA, pp. 156–165.

Johnson, C. D. (1972).Formal Aspects of Phonological De-
scription. Mouton, The Hague. Monographs on Linguistic
Analysis No. 3.

Johnson, M. (1984). A discovery procedure for certain phono-
logical rules. InCOLING-84, Stanford, CA, pp. 344–347.

Kager, R. (2000).Optimality Theory. Cambridge University
Press.

Kahn, D. (1976). Syllable-based Generalizations in English
Phonology. Ph.D. thesis, MIT.

Kaplan, R. M. and Kay, M. (1981). Phonological rules and
finite-state transducers. Paper presented at the Annual meet-
ing of the Linguistics Society of America. New York.

Kaplan, R. M. and Kay, M. (1994). Regular models of phono-
logical rule systems.Computational Linguistics, 20(3), 331–
378.

Karttunen, L. (1993). Finite-state constraints. In Goldsmith, J.
(Ed.), The Last Phonological Rule, pp. 173–194. University
of Chicago Press.

Karttunen, L. (1998). The proper treatment of optimality in
computational phonology. InProceedings of FSMNLP’98:
International Workshop on Finite-State Methods in Natural
Language Processing, Bilkent University. Ankara, Turkey, pp.
1–12.

Kay, M. (1987). Nonconcatenative finite-state morphology.In
EACL-87, Copenhagen, Denmark, pp. 2–10.

Kazakov, D. (1997). Unsupervised learning of naı̈ve morphol-
ogy with genetic algorithms. InECML/Mlnet Workshop on
Empirical Learning of Natural Language Processing Tasks,
Prague, pp. 105–111.

Kiraz, G. A. (1997). Compiling regular formalisms with rule
features into finite-state automata. InACL/EACL-97, Madrid,
Spain, pp. 329–336.

Kiraz, G. A. and Möbius, B. (1998). Multilingual syllabifica-
tion using weighted finite-state transducers. InProceedings of
3rd ESCA Workshop on Speech Synthesis, Jenolan Caves, pp.
59–64.

Kisseberth, C. W. (1969). On the abstractness of phonology:
The evidence from Yawelmani.Papers in Linguistics, 1, 248–
282.

Kisseberth, C. W. (1970). On the functional unity of phonolog-
ical rules.Linguistic Inquiry, 1(3), 291–306.

Kornai, A. (1991). Formal Phonology. Ph.D. thesis, Stanford
University, Stanford, CA†.

Koskenniemi, K. (1983). Two-level morphology: A general
computational model of word-form recognition and produc-
tion. Tech. rep. Publication No. 11, Department of General
Linguistics, University of Helsinki.

Kuhl, P. K., F.-M., T., and Liu, H.-M. (2003). Foreign-language
experience in infancy: Effects of short-term exposure and so-
cial interaction on phonetic learning.Proceedings of the Na-
tional Academy of Sciences, 100, 9096–9101.

Ladefoged, P. (1993).A Course in Phonetics. Harcourt Brace
Jovanovich. Third Edition.

Lakoff, G. (1993). Cognitive phonology. In Goldsmith, J.
(Ed.), The Last Phonological Rule, pp. 117–145. University
of Chicago Press, Chicago.

McCarthy, J. J. (1981). A prosodic theory of non-concatenative
morphology.Linguistic Inquiry, 12, 373–418.

Müller, K. (2001). Automatic detection of syllable boundaries
combining the advantages of treebank and bracketed corpora
training. InACL-01, Toulouse, France. ACL.

Müller, K. (2002). Probabilistic context-free grammars for
phonology. InProceedings of ACL SIGPHON, Philadelphia,
PA, pp. 70–80.

Müller, K., Möbius, B., and Prescher, D. (2000). Inducingprob-
abilistic syllable classes using multivariate clustering. In ACL-
00, pp. 225–232.

Newman, S. (1944).Yokuts Language of California. Viking
Fund Publications in Anthropology 2, New York.

Odden, D. (2005).Introducing Phonology. Cambridge Univer-
sity Press.

Oncina, J., Garcı́a, P., and Vidal, E. (1993). Learning sub-
sequential transducers for pattern recognition tasks.IEEE
Transactions on Pattern Analysis and Machine Intelligence,
15, 448–458.

Pater, J. (2007). Gradual learning and convergence.Linguistic
Inquiry. In press.

Pater, J., Potts, C., and Bhatt, R. (2007). Harmonic grammar
with linear programming. unpublished manuscript.

Pereira, F. C. N., Riley, M. D., and Sproat, R. (1994). Weighted
rational transductions and their applications to human lan-
guage processing. InARPA Human Language Technology
Workshop, Plainsboro, NJ, pp. 262–267. Morgan Kaufmann.

Prince, A. and Smolensky, P. (1993). Optimality theory: Con-
straint interaction in generative grammar.. Appeared as Tech.
rep. CU-CS-696-93, Department of Computer Science, Uni-
versity of Colorado at Boulder, and TEch. rep. TR-2, Rut-
gers Center for Cognitive Science, Rutgers University, New
Brunswick, NJ, April 1993.

Prince, A. and Smolensky, P. (2004).Optimality Theory: Con-
straint interaction in generative grammar. Blackwell.

Prince, A. and Tesar, B. (2004). Learning phonotactic distri-
butions. In Kager, R., Pater, J., and Zonneveld, W. (Eds.),
Constraints in Phonological Acquisition, pp. 245–291. Cam-
bridge University Press.

DRAFT

Section 11.6. Summary 27

Saffran, J. R., Newport, E. L., and Aslin, R. N. (1996a). Statisti-
cal learning by 8-month old infants.Science, 274, 1926–1928.

Saffran, J. R., Newport, E. L., and Aslin, R. N. (1996b). Word
segmentation: The role of distributional cues.Journal of
Memory and Language, 35, 606–621.

Schone, P. and Jurafsky, D. (2000). Knowlege-free induction
of morphology using latent semantic analysis. InProceed-
ings of the Conference on Computational Natural Language
Learning (CoNLL-2000).

Schone, P. and Jurafsky, D. (2001). Knowledge-free induction
of inflectional morphologies. InProceedings of the Second
Meeting of the North American Chapter of the Association
for Computational Linguistics (NAACL-2001).

Seneff, S., Lau, R., and Meng, H. (1996). ANGIE: A new
framework for speech analysis based on morpho-phonological
modelling. InICSLP-96.

Smolensky, P. and Legendre, G. (2006).The Harmonic Mind.
MIT Press.

Sproat, R. (1993).Morphology and Computation. MIT Press.

Tesar, B. (2006). Faithful contrastive features in learning. Cog-
nitive Science, 30(5), 863–903.

Tesar, B. and Prince, A. (2007). Using phonotactics to learn
phonological alternations. InCLS 39, pp. 200–213.

Tesar, B. and Smolensky, P. (2000).Learning in Optimality
Theory. MIT Press.

Thiessen, E. D., Hill, E. A., and Saffran, J. R. (2005). Infant-
directed speech facilitates word segmentation.Infancy, 7, 53–
71.

Thiessen, E. D. and Saffran, J. R. (2004). Spectral tilt as a cue
to word segmentation in infancy and adulthood.Perception
and Psychophysics, 66(2), 779–791.

Titone, D. and Connine, C. M. (1997). Syllabification strate-
gies in spoken word processing: Evidence from phonological
priming. Psychological Research, 60(4), 251–263.

Touretzky, D. S., Elvgren III, G., and Wheeler, D. W. (1990).
Phonological rule induction: An architectural solution. In
COGSCI-90, pp. 348–355.

Treiman, R., Bowey, J., and Bourassa, D. (2002). Segmentation
of spoken words into syllables by english-speaking children as
compared to adults.Journal of Experimental Child Psychol-
ogy, 83, 213–238.

van den Bosch, A. (1997).Learning to Pronounce Written
Words: A Study in Inductive Language Learning. Ph.D. thesis,
University of Maastricht, Maastricht, The Netherlands.

Yarowsky, D. and Wicentowski, R. (2000). Minimally super-
vised morphological analysis by multimodal alignment. In
ACL-00, Hong Kong, pp. 207–216.

