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SPEECH RECOGNITION:
10 ADVANCED TOPICS

True, their voice-print machine was unfortunately a crude.olt
could discriminate among only a few frequencies, and itdatid
amplitude by indecipherable blots. But it had never beesnidéd
for such vitally important work.

Aleksandr I. Solzhenitsyrhe First Circle p. 505

The keju civil service examinations of Imperial China lasted almb300 years,
from the year 606 until it was abolished in 1905. In its peaklions of would-be
officials from all over China competed for high-ranking goweent positions by par-
ticipating in a uniform examination. For the final ‘metropah’ part of this exam in
the capital city, the candidates would be locked into an émation compound for a
grueling 9 days and nights answering questions about kjgpoetry, the Confucian
classics, and policy.

Naturally all these millions of candidates didn’t all shopvin the capital. Instead,
the exam had progressive levels; candidates who passeddagnecal exam in their
local prefecture could then sit for the biannual provinexm, and only upon passing
that exam in the provincial capital was a candidate eligiblethe metropolitan and
palace examinations.

This algorithm for selecting capable officials is an ins&o€ multi-stage search.
The final 9-day process requires far too many resources (im $;ace and time) to
examine every candidate. Instead, the algorithm uses aer el@ss intensive 1-day
process to come up with a preliminary list of potential caaties, and applies the final
test only to this list.

Thekejualgorithm can also be applied to speech recognition. Wké&ltth be able
to apply very expensive algorithms in the speech recognjiiocess, such as 4-gram,
5-gram, or even parser-based language models, or corgprindent phone models
that can see two or three phones into the future or past. But tre a huge number
of potential transcriptions sentences for any given wavefand it's too expensive
(in time, space, or both) to apply these powerful algorithanevery single candidate.
Instead, we'll introducenultipass decodingalgorithms in which efficient but dumber
decoding algorithms produce shortlists of potential cdatiis to be rescored by slow
but smarter algorithms. We'll also introduce tbentext-dependent acoustic model
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which is one of these smarter knowledge sources that turrte dwe essential in large-
vocabulary speech recognition. We'll also briefly introdube important topics of
discriminative training and the modeling of variation.

10.1 MULTIPASSDECODING: N-BEST LISTS AND LATTICES

(10.1)

(10.2)

VITERBI
APPROXIMATION

The previous chapter applied the Viterbi algorithm for HMcdding. There are two
main limitations of the Viterbi decoder, however. Firste tifiterbi decoder does not
actually compute the sequence of words which is most pretzgtbén the input acous-
tics. Instead, it computes an approximation to this: theieege ofstated(i.e., phones
or subphoneswhich is most probable given the input. More formally, rétaat the
true likelihood of an observation sequeri@és computed by the forward algorithm by
summing over all possible paths:

P(OW) = P(O,SW)
&

The Viterbi algorithm only approximates this sum by using finobability of the best
path:

P(O|W) ~ gnengxP(O, SW)

It turns out that thi&/iterbi approximation is not too bad, since the most probable
sequence of phones usually turns out to correspond to thé pnolsable sequence
of words. But not always. Consider a speech recognitioresysthose lexicon has
multiple pronunciations for each word. Suppose the comect sequence includes a
word with very many pronunciations. Since the probabditieaving the start arc of
each word must sum to 1.0, each of these pronunciation-gatiggh this multiple-
pronunciation HMM word model will have a smaller probalyiihan the path through
a word with only a single pronunciation path. Thus becauseViterbi decoder can
only follow one of these pronunciation paths, it may igndris tmany-pronunciation
word in favor of an incorrect word with only one pronunciatipath. In essence, the
Viterbi approximation penalizes words with many pronutioiss.

A second problem with the Viterbi decoder is that it is impblesor expensive for
it to take advantage of many useful knowledge sources. Fampile the Viterbi al-
gorithm as we have defined it cannot take complete advanfagg/danguage model
more complex than a bigram grammar. This is because of therfantioned earlier
that a trigram grammar, for example, violates tly@amic programming invariant.
Recall that this invariant is the simplifying (but incortpassumption that if the ulti-
mate best path for the entire observation sequence happgastirough a statg, that
this best path must include the best path up to and includatgg. Since a trigram
grammar allows the probability of a word to be based on thepmwious words, it is
possible that the best trigram-probability path for theteeoe may go through a word
but not include the best path to that word. Such a situatiahdcoccur if a particular
word wy has a high trigram probability givemy, w,, but that conversely the best path
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to wy didn’t includews (i.e., P(wy|wg, w;) was low for allg). Advanced probabilistic
LMs like SCFGs also violate the same dynamic programmingrapsons.

There are two solutions to these problems with Viterbi deapdThe most com-
mon is to modify the Viterbi decoder to return multiple pdiehutterances, instead
of just the single best, and then use other high-level laggumaodel or pronunciation-
modeling algorithms to re-rank these multiple outputs (&atz and Austin, 1991;
Soong and Huang, 1990; Murveit et al., 1993).

The second solution is to employ a completely different déup algorithm, such
as thestack decoder or A* decoder (Jelinek, 1969; Jelinek et al., 1975). We begin
in this section with multiple-pass decoding, and returntézls decoding in the next
section.

In multiple-pass decodingwe break up the decoding process into two stages. In
the first stage we use fast, efficient knowledge sources orittigns to perform a non-
optimal search. So for example we might use an unsophistidaut time-and-space
efficient language model like a bigram, or use simplified atioumodels. In the second
decoding pass we can apply more sophisticated but sloweddegalgorithms on a
reduced search space. The interface between these passeN-Isest list or word
lattice.

The simplest algorithm for multipass decoding is to modifg Viterbi algorithm
to return theN-best sentences (word sequences) for a given speech input. Sappos
for example a bigram grammar is used with suctNabest-Viterbi algorithm to return
the 1000 most highly-probable sentences, each with theitikélihood and LM prior
score. This 1000-best list can now be passed to a more sicphést language model
like a trigram grammar. This new LM is used to replace the digiM score of
each hypothesized sentence with a new trigram LM probgbilihese priors can be
combined with the acoustic likelihood of each sentence teggte a new posterior
probability for each sentence. Sentences are thssoredand re-ranked using this
more sophisticated probability. Fig. 10.1 shows an irmifior this algorithm.

Simple Smarter
Knowledge Knowledge
Source Source

l l 1-Best Utterance
N-Best . If music be the

N-Best List

? Alice was beginning to get...
2 Every happy family

? In a hole in the ground...

? If music be the food of love...
? If music be the foot of dove...

Speech Input

it o

Figure 10.1 The use oiN-best decoding as part of a two-stage decoding model. Effi-
cient but unsophisticated knowledge sources are useduimritteN-best utterances. Thig
significantly reduces the search space for the second padsisnavhich are thus free tg
be very sophisticated but slow.

There are a number of algorithms for augmenting the Vitddmi@thm to generate
N-best hypotheses. It turns out that there is no polynoniad-tdmissible algorithm
for finding theN most likely hypotheses (Young, 1984). There are howeveunaler
of approximate (non-admissible) algorithms; we will irdte just one of them, the
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HYPOTHESIS
RECOMBINATION

WORD LATTICE

“Exact N-best” algorithm of Schwartz and Chow (1990). In Ex&ebest, instead of
each state maintaining a single path/backtrace, we mainfatoN different paths for
each state. But we'd like to insure that these paths corresfmodifferent word paths;

we don’t want to waste ouX paths on different state sequences that map to the same
words. To do this, we keep for each path therd history, the entire sequence of
words up to the current word/state. If two paths with the samedl history come to

a state at the same time, we merge the paths and sum the phtbjites. To keep

the N best word sequences, the resulting algorithm requd@é) times the normal
Viterbi time. We’'ll see this merging of paths again when wiaducing decoding for
statistical machine translation, where it is callggbothesis recombination

AM LM

Rank Path logprob logprob
1. it's an area that's naturally sort of mysterious -7193.53 -20.25
2 that’s an area that's naturally sort of mysterious -7282. -21.11
3 it's an area that's not really sort of mysterious -7221.68 -18.91
4. that scenario that's naturally sort of mysterious -7189. -22.08
5. there’s an area that's naturally sort of mysterious -7398 -21.34
6 that's an area that’s not really sort of mysterious -7220. -19.77
7 the scenario that's naturally sort of mysterious -72p5.4  -21.50
8 so it’s an area that's naturally sort of mysterious -7995. -21.71
9. that scenario that's not really sort of mysterious -7247. -20.70
10. there’s an area that'’s not really sort of mysterious 6/2P -20.01

Figure 10.2  An example 10-Best list from the Broadcast News corpus,ywed by the

CU-HTK BN system (thanks to Phil Woodland). Logprobs use dothe language model

scale factor (LMSF) is 15.

The result of any of these algorithms isldfbest list like the one shown in Fig. 10.2.
In Fig. 10.2 the correct hypothesis happens to be the firsttmrteof course the reason
to useN-best lists is that isn’t always the case. Each sentence M-best list is also
annotated with an acoustic model probability and a languag@el probability. This
allows a second-stage knowledge source to replace ones# tho probabilities with
an improved estimate.

One problem with aN-best list is that whem is large, listing all the sentences
is extremely inefficient. Another problem is tHdtbest lists don't give quite as much
information as we might want for a second-pass decoder. @mple, we might want
distinct acoustic model information for each word hypotbes that we can reapply a
new acoustic model for the word. Or we might want to have aédl different start
and end times of each word so that we can apply a new duratidieimo

For this reason, the output of a first-pass decoder is usaatipre sophisticated
representation calledwaord lattice (Murveit et al., 1993; Aubert and Ney, 1995). A
word lattice is a directed graph that efficiently represemish more information about
possible word sequencésdn some systems, nodes in the graph are words and arcs are

1 Actually an ASR lattice is not the kind of lattice that may leniliar to you from mathematics, since it is
not required to have the properties of a true lattice (i.e.alpartially ordered set with particular properties,
such as a unique join for each pair of elements). Reallylts a graph, but it is conventional to call it a
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transitions between words. In others, arcs represent wgpdtheses and nodes are
pointsintime. Let's use this latter model, and so each gresents lots of information
about the word hypothesis, including the start and end ttime acoustic model and
language model probabilities, the sequence of phones (tmeipciation of the word),
or even the phone durations. Fig. 10.3 shows a sample latticesponding to thisl-
best list in Fig. 10.2. Note that the lattice contains marsjinct links (records) for the
same word, each with a slightly different starting or endingg. Such lattices are not
produced fromN-best lists; instead, a lattice is produced during firstsglecoding by
including some of the word hypotheses which were activehglteam) at each time-
step. Since the acoustic and language models are contegident, distinct links
need to be created for each relevant context, resulting ange Inumber of links with
the same word but different times and conteXsbest lists like Fig. 10.2 can also be
produced by first building a lattice like Fig. 10.3 and theacing through the paths to
produceN word strings.

SO IT'S
E,
IT'S
THERE'S, - NATURALLY
H —g—————9¢ 2
THAT'S s ale) e
= REALLY
S | ——. ' OF
SCENARIO 'MYSTERIOUS
£ =0
THAT,

Figure 10.3  Word lattice corresponding to thé-best list in Fig. 10.2. The arcs beneath
each word show the different start and end times for each Wwgpdthesis in the lattice;
for some of these we've shown schematically how each woratmgsis must start at the
end of a previous hypothesis. Not shown in this figure aretbestic and language mode|
probabilities that decorate each arc.

The fact that each word hypothesis in a lattice is augmergpdrately with its
acoustic model likelihood and language model probabilitpves us to rescore any
path through the lattice, using either a more sophisticeteduage model or a more
sophisticated acoustic model. As wiltbest lists, the goal of this rescoring is to
replace thel-best utterancewith a different utterance that perhaps had a lower score
on the first decoding pass. For this second-pass knowledgeesto get perfect word
error rate, the actual correct sentence would have to beeitattice orN-best list. If
the correct sentence isn't there, the rescoring knowledgecs can't find it. Thus it

lattice.
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LATTICE ERROR
RATE

ORACLE

LATTICE DENSITY

WORD GRAPH

(10.3)

is important when working with a lattice &i-best list to consider the baselitatice
error rate (Woodland et al., 1995; Ortmanns et al., 1997): the lowemnidomord error
rate from the lattice. The lattice error rate is the word erete we get if we chose
the lattice path (the sentence) that has the lowest word et®. Because it relies on
perfect knowledge of which path to pick, we call this @amacle error rate, since we
need some oracle to tell us which sentence/path to pick.

Another important lattice concept is thattice density, which is the number of
edges in a lattice divided by the number of words in the refesdranscript. As we saw
schematically in Fig. 10.3, real lattices are often extrigrdense, with many copies of
individual word hypotheses at slightly different start aenttl times. Because of this
density, lattices are often pruned.

Besides pruning, lattices are often simplified into a défér more schematic kind
of lattice that is sometimes calledwrd graph or finite state machineg although often
it's still just referred to as a word lattice. In these wordgins, the timing information
is removed and multiple overlapping copies of the same wrgdreerged. The timing
of the words is left implicit in the structure of the graph.dadition, the acoustic model
likelihood information is removed, leaving only the langeanodel probabilities. The
resulting graph is a weighted FSA, which is a natural extanef anN-gram language
model; the word graph corresponding to Fig. 10.3 is shownign £0.4. This word
graph can in fact be used as the language model for anothedidgmpass. Since such
a wordgraph language model vastly restricts the searctesfiatan make it possible
to use a complicated acoustic model which is too slow to uiesinpass decoding.

AREA THAT’S NATURALLY

SORT OF  MYSTERIOUS

THAT SCENARIO

Figure 10.4 Word graph corresponding to tié-best list in Fig. 10.2. Each word hy:
pothesis in the lattice also has language model probasil{tiot shown in this figure).

A final type of lattice is used when we need to represent theepos probability of
individual words in a lattice. It turns out that in speechaguition, we almost never see
the true posterior probability of anything, despite the fhat the goal of speech recog-
nition is to compute the sentence with the maximum a posigriobability. This is
because in the fundamental equation of speech recognigdgnere the denominator
in our maximization:

W = argmaxw = argmaP(O|W) P(W)
WeZ P(O) We.Z

The product of the likelihood and the priori®t the posterior probability of the
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CONFUSION
NETWORKS

MESHES
SAUSAGES
PINCHED LATTICES

utterance. It is not even a probability, since it doesn’tassarily lie between 0 and
1. It's just a score. Why does it matter that we don’'t have a wobability? The
reason is that without having true probability, we can cledibe best hypothesis, but
we can’'t know how good it is. Perhaps the best hypothesidliiseslly bad, and we
need to ask the user to repeat themselves. If we had the jpogtebability of a word

it could be used as eonfidencemetric, since the posterior is an absolute rather than
relative measure. A confidence metric is a metric that thedpeecognizer can give
to a higher-level process (like dialogue) to indicate howfiment the recognizer is that
the word string that it returns is a good one. We’ll returntie tise of confidence in
Ch. 24.

In order to compute the posterior probability of a word, Wwa&ed to normalize
over all the different word hypotheses available at a paldicpoint in the utterances.
At each point we’ll need to know which words are competing onfasable. The
lattices that show these sequences of word confusions Bee canfusion networks
meshessausagesor pinched lattices A confusion network consists of a sequence of
word positions. At each position is a set of mutually exclasvord hypotheses. The
network represents the set of sentences that can be crgatbddsing one word from
each position.

IT'S .94

.98
NATURALLY

AN 99 AREA THAT'S SORT OF MYSTERIOUS

.007 THAT

Figure 10.5 Confusion network corresponding to the word lattice in Hi§.3. Each
word is associated with a posterior probability. Note th@ne of the words from the
lattice have been pruned away. (Probabilities computedi&BRI-LM toolkit).

Note that unlike lattices or word graphs, the process of ttonosng a confusion
network actually adds paths that were not in the originaicet Confusion networks
have other uses besides computing confidence. They werimailygproposed for
use in minimizing word error rate, by focusing on maximizingproving the word
posterior probability rather than the sentence likelihdedcently confusion networks
have been used to train discriminative classifiers thaindjstsh between words.

Roughly speaking, confusion networks are built by takirgydifferent hypothesis
paths in the lattice and aligning them with each other. Thetgyr probability for
each word is computing by first summing over all paths pasingugh a word, and
then normalizing by the sum of the probabilities of all cottiqpg words. For further
details see Mangu et al. (2000), Evermann and Woodland {26@@nar and Byrne
(2002), Doumpiotis et al. (2003b).

Standard publicly available language modeling toolkks BRI-LM (Stolcke, 2002)
(htt p: // www. speech. sri.conl projects/srilnm)andthe HTK language



8 Chapter 10. Speech Recognition: Advanced Topics

modeling toolkit (Young et al., 2005h¢ t p: / / ht k. eng. cam ac. uk/) can be
used to generate and manipulate lattidédest lists, and confusion networks.

B There are many other kinds of multiple-stage search, suttteésrward-backward
search algorithm (not to be confused with fevard-backward algorithm for HMM
parameter setting) (Austin et al., 1991) which performsnapse forward search fol-
lowed by a detailed backward (i.e., time-reversed) search.

10.2 A" (‘STACK’) DECODING

Recall that the Viterbi algorithm approximated the forwaaimputation, computing
the likelihood of the single best (MAX) path through the HMhile the forward al-
gorithm computes the likelihood of the total (SUM) of all thaths through the HMM.
The A* decoding algorithm allows us to use the complete forwardaldity, avoiding
the Viterbi approximation. Adecoding also allows us to use any arbitrary language
model. Thus A is a one-pass alternative to multi-pass decoding.

The A* decoding algorithm is a best-first search of the tree thatiditly defines
the sequence of allowable words in a language. Considerdbért Fig. 10.6, rooted in
the START node on the left. Each leaf of this tree defines onegee of the language;
the one formed by concatenating all the words along the path START to the leaf.
We don't represent this tree explicitly, but the stack déegdlgorithm uses the tree
implicitly as a way to structure the decoding search.

START- is can't————— believe
NS

50
S underwriter

N/ \
‘,/i': typically lives

Figure 10.6 A visual representation of the implicit lattice of allowahWord sequencesg
that defines a language. The set of sentences of a languagetiflarge to represen
explicitly, but the lattice gives a metaphor for exploringfixes.

The algorithm performs a search from the root of the tree tdwlze leaves, look-
ing for the highest probability path, and hence the higheshgbility sentence. As we
proceed from root toward the leaves, each branch leavingem giord node represents
a word which may follow the current word. Each of these braschas a probabil-
ity, which expresses the conditional probability of thisineord given the part of the
sentence we've seen so far. In addition, we will use the fodvedgorithm to assign
each word a likelihood of producing some part of the obseamulistic data. The
A* decoder must thus find the path (word sequence) from the ooatléaf which
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has the highest probability, where a path probability isrdefias the product of its
language model probability (prior) and its acoustic matchhe data (likelihood). It
rrorTYouete  does this by keeping priority queue of partial paths (i.e., prefixes of sentences, each

FAST MATCH

annotated with a score). In a priority queue each elemerd kasre, and theopoper-
ation returns the element with the highest score. Thdécoding algorithm iteratively
chooses the best prefix-so-far, computes all the possilatenmeds for that prefix, and
adds these extended sentences to the queue. Fig. 10.7 $leopamsriplete algorithm.

function STACK-DECODING) returns min-distance

Initialize the priority queue with a null sentence.

Pop the best (highest score) sentesioff the queue.

If (sis marked end-of-sentence (EOS) ) outpand terminate.

Get list of candidate next words by doing fast matches.

For each candidate next wovd
Create a new candidate senteseew.
Use forward algorithm to compute acoustic likelihdodf s+ w
Compute language model probabil®yof extended senteneet+ w
Compute “score” fos+w (a function ofL, P, and ???)
if (end-of-sentence) set EOS flag o+ w.
Inserts+w into the queue together with its score and EOS flag

Figure 10.7 The A" decoding algorithm (modified from Paul (1991) and Jelinek
(1997)). The evaluation function that is used to computesttae for a sentence is nat
completely defined here; possible evaluation functionslmeussed below.

Let's consider a stylized example of ari Alecoder working on a waveform for
which the correct transcription i music be the food of loveFig. 10.8 shows the
search space after the decoder has examined paths of lergflom the root. Aast
matchis used to select the likely next words. A fast match is oneabéiss of heuristics
designed to efficiently winnow down the number of possibléofeing words, often
by computing some approximation to the forward probabilége below for further
discussion of fast matching).

At this point in our example, we've done the fast match, sekk@ subset of the
possible next words, and assigned each of them a score. TrideAlice has the highest
score. We haven't yet said exactly how the scoring works.

Fig. 10.9a show the next stage in the search. We have expanelédice node.
This means that th&lice node is no longer on the queue, but its children are. Note that
now the node labelel actually has a higher score than any of the childreAlafe.
Fig. 10.9b shows the state of the search after expanding ttegle, removing it, and
addingif musig if muscle andif messyon to the queue.

We clearly want the scoring criterion for a hypothesis toddated to its probability.
Indeed it might seem that the score for a string of W(W@Igiven an acoustic strinyg'l
should be the product of the prior and the likelihood:

P(y}|wh)P(w))
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If
30
P("If"| START)
' Alice
40
[START]
1
In
. 4
P("Every" | START)
Every
25

Figure 10.8 The beginning of the search for the senteffaausic be the food of love
At this early stagdiliceis the most likely hypothesis. (It has a higher score tharother
hypotheses.)

~

0 24 e was
[START] - 29
START
1 walls [ 1 WG
In 2 1 4
4 In

4 walls

music

. P( "music" | "if") 32
P(O "if") =

forwacd probability P(O "if") = 3 muscle

S |If forward probability 3

ﬁ 30 was ] x

messy

P("If"| START) 23 N
h ce wants P("If" | SP\ART)

Every

25 Every

25

@ (b)

Figure 10.9 The next steps of the search for the sentdficrisic be the food of lovén
(a) we've now expanded thlice node and added three extensions which have a relatiyely
high score; the highest-scoring nodeSIBART if which is not along th&TART Alicgoath
at all. In (b) we've expanded thié& node. The hypothesiSTART if musithen has the
highest score.

Alas, the score cannot be this probability because the pilityawill be much
smaller for a longer path than a shorter one. This is due tonglsifact about prob-
abilities and substrings; any prefix of a string must haveghdri probability than the
string itself (e.g., P(START the ...) will be greater tharSPART the book)). Thus
if we used probability as the score, thé decoding algorithm would get stuck on the



Section 10.3.

Context-Dependent Acoustic Models: Trigson 11

TREE-STRUCTURED
LEXICON

single-word hypotheses.
Instead, we use the *Aevaluation function (Nilsson, 1980; Pearl, 1984) p),
given a partial pattp:

f*(p) =g(p) +h*(p)

f*(p) is theestimatedscore of the best complete path (complete sentence) which
starts with the partial patp. In other words, it is an estimate of how well this path
would do if we let it continue through the sentence. Theaigorithm builds this
estimate from two components:

e g(p) is the score from the beginning of utterance to the end of #régb path
p. This g function can be nicely estimated by the probabilitymfiven the
acoustics so far (i.e., & O|W)P(W) for the word stringV constitutingp).

e h*(p) is an estimate of the best scoring extension of the parttaltoahe end of
the utterance.

Coming up with a good estimate bf is an unsolved and interesting problem. A
very simple approach is to chose lahestimate which correlates with the number of
words remaining in the sentence (Paul, 1991). Slightly sznds to estimate the ex-
pected likelihood per frame for the remaining frames, anttipia this by the estimate
of the remaining time. This expected likelihood can be cota@by averaging the
likelihood per frame in the training set. See Jelinek (1987 jurther discussion.

Tree Structured Lexicons

We mentioned above that both thé And various other two-stage decoding algorithms
require the use of &st match for quickly finding which words in the lexicon are
likely candidates for matching some portion of the acousiput. Many fast match
algorithms are based on the use dfege-structured lexicon, which stores the pronun-
ciations of all the words in such a way that the computatiotihefforward probability
can be shared for words which start with the same sequencbafeg. The tree-
structured lexicon was first suggested by Klovstad and Miogids(1975); fast match
algorithms which make use of it include Gupta et al. (198&hIEet al. (1992) in the
context of A" decoding, and Ney et al. (1992) and Nguyen and Schwartz ji0%8e
context of Viterbi decoding. Fig. 10.10 shows an example éa-structured lexicon
from the Sphinx-1l recognizer (Ravishankar, 1996). Eaek toot represents the first
phone of all words beginning with that context dependenigh@hone context may
or may not be preserved across word boundaries), and edds Essociated with a
word.

10.3 CONTEXT-DEPENDENTACOUSTICMODELS. TRIPHONES

In our discussion in Se®? of how the HMM architecture is applied to ASR, we
showed how an HMM could be created for each phone, with isetlemitting states
corresponding to subphones at the beginning, middle, ada&the phone. We thus
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COARTICULATION

CI PHONE
CD PHONES
TRIPHONE

AW(B,N) |~[N(AW,DD) [ DD(N.#) | ABOUND
AW(B,TD)] [TD(AW#)] ABOUT

B(AX,AH) [+ AH(BY) | [ V(AH#) | ABOVE
KD(EY#) BAKE
KD(EY,TD)}+{ TD(KD,#) | BAKED
KEY,IX) [ IX(KNG) | -{NG(X#) | BAKING

BAKER

AXR(KIY) - IY(AXR,#)| BAKERY

Figure 10.10 A tree-structured lexicon from the Sphinx-1l recognizeftéa Ravis-

hankar (1996)). Each node corresponds to a particularamnighn the slightly modified
version of the ARPAbet used by Sphinx-1l. Thus EY(B,KD) mgdhe phone EY pre-
ceded by a B and followed by the closure of a K.

represent each subphone (“beginning of [eh]”, “beginnindt]d, “middle of [ae]”)
with its own GMM.

There is a problem with using a fixed GMM for a subphone likegihaing of
[eh]”. The problem is that phones vary enormously based epkiones on either side.
This is because the movement of the articulators (tongps, lielum) during speech
production is continuous and is subject to physical coimggdike momentum. Thus
an articulator may start moving during one phone to get itdogin time for the next
phone. In Ch. 7 we defined the wardarticulation as the movement of articulators to
anticipate the next sound, or perseverating movement fhenteist sound. Fig. 10.11
shows coarticulation due to neighboring phone contextthi®rowel [eh].

In order to model the marked variation that a phone exhibidifferent contexts,
most LVCSR systems replace the idea of a context-indeperi@&mphone) HMM
with a context-dependent @D phones The most common kind of context-dependent
model is ariphone HMM (Schwartz et al., 1985; Deng et al., 1990). A triphone @lod
represents a phone in a particular left and right context.eikample the triphonpy/-
eh+l] means “[eh] preceded by [y] and followed by [I]". In geneffakb+c] will mean
“[b] preceded by [a] and followed by [c]”. In situations wieewe don’t have a full
triphone context, we'll use [a-b] to mean “[b] preceded bl fnd [b+c] to mean “[b]
followed by [c]".

Context-dependent phones capture an important sourceiafiga, and are a key
part of modern ASR systems. But unbridled context-depetydalso introduces the
same problem we saw in language modeling: training datasparhe more complex
the model we try to train, the less likely we are to have seeugh observations of
each phone-type to train on. For a phoneset with 50 phonpsgniciple we would need
50% or 125,000 triphones. In practice not every sequence oéthh®nes is possible
(English doesn’t seem to allow triphone sequences likeefagsw] or [m-j+t]). Young
et al. (1994) found that 55,000 triphones are needed in tie\Rall Street Journal
task. But they found that only 18,500 of these triphones,less than half, actually
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Figure 10.11 The vowel [eh] in three different triphone contexts, in therdswed yell,
andBen Notice the marked differences in the second formant (F#)ebeginning and
end of the [eh] in all three cases.

occurred in the SI84 section of the WSJ training data.

Because of the problem of data sparsity, we must reduce tmbeuof triphone
parameters that we need to train. The most common way to dastiy clustering
some of the contexts together atyihg subphones whose contexts fall into the same
cluster (Young and Woodland, 1994). For example, the béginof a phone with an
[n] on its left may look much like the beginning of a phone watih[m] on its left. We
can therefore tie together the first (beginning) subphonsay, the [m-eh+d] and [n-
eh+d] triphones. Tying two states together means that thasegshe same Gaussians.
So we only train a single Gaussian model for the first subplbbtiee [m-eh+d] and [n-
eh+d] triphones. Likewise, it turns out that the left conexones [r] and [w] produce
a similar effect on the initial subphone of following phones

Fig. 10.12 shows, for example the vowel [iy] preceded by thesonants [w], [r],
[m], and [n]. Notice that the beginning of [iy] has a simil&e in F2 after [w] and [r].
And notice the similarity of the beginning of [m] and [n]; a&.C7 noted, the position
of nasal formants varies strongly across speakers, buspleizker (the first author) has
a nasal formant (N2) around 1000 Hz.

Fig. 10.13 shows an example of the kind of triphone tyingriedrby the clustering
algorithm. Each mixture Gaussian model is shared by thetmuimpstates of various
triphone HMMs.

How do we decide what contexts to cluster together? The nwstmmn method
is to use a decision tree. For each state (subphone) of eacteph separate tree is
built. Fig. 10.14 shows a sample tree from the first (begighgatate of the phone /ih/,
modified from Odell (1995). We begin at the root node of the trith a single large
cluster containing (the beginning state of) all triphonestered on /ih/. At each node
in the tree, we split the current cluster into two smallerstdus by asking questions
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[wiy] [riy] [m iy] [niy]

Figure 10.12 The wordswe, re, mg andknee The glides [w] and [r] have similar
effects on the beginning of the vowel [iy], as do the two nafial and [m].

Figure 10.13  Four triphones showing the result of clustering. Notice tha initial
subphone of [t-iy+n] and [t-iy+ng] is tied together, i.e.asbs the same Gaussian mixture

acoustic model. After Young et al. (1994).

about the context. For example the tree in Fig. 10.14 firstssiile initial cluster into
two clusters, one with nasal phone on the left, and one withsiwe descend the tree
from the root, each of these clusters is progressively.spiie tree in Fig. 10.14 would
split all beginning-state /ih/ triphones into 5 clusteehdled A-E in the figure.

The questions used in the decision tree ask whether the pgbdhe left or right
has a certairphonetic feature of the type introduced in Ch. 7. Fig. 10.15 shows
a few decision tree questions; note that there are sepawatgions for vowels and
consonants. Real trees would have many more questions.

How are decision trees like the one in Fig. 10.14 trained? tides are grown top
down from the root. At each iteration, the algorithm conssdeach possible question
g and each noda in the tree. For each such question, it considers how the pétv s
would impact the acoustic likelihood of the training datdeTalgorithm computes the
difference between the current acoustic likelihood of tfaéning data, and the new
likelihood if the models were tied based on splitting via sfien q. The algorithm
picks the noden and questiorg which give the maximum likelihood. The procedure
then iterates, stopping when each each leaf node has sormaumirthreshold number
of examples.

We also need to modify the embedded training algorithm weis&ec.??to deal
with context-dependent phones and also to handle mixtuos&ans. In both cases we
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Phone /ib/
beg. state
Left nasal?
Yes No
Right liquid? Left fricative?
Yes No
Yes No
Cluster A: Right i @
n-ih+, D O O
ng-ih+], Yes No
Cluster B:
-ih+r,
O O D O O O o
g-ihtr,
B-0-8> B8O
n-ih+w,
Figure 10.14 Decision tree for choosing which triphone states (subp$pt®tie to-
gether. This particular tree will cluster state 0 (the beiig state) of the triphones /n
ih+l/, Ing-ih+l/, /Im-ih+l/, into cluster class A, and vatis other triphones into classes B-E.
Adapted from Odell (1995).
Feature Phones
Stop bdgkpt
Nasal m n ng
Fricative chdhfjhsshthvzzh
Liquid lrwy
Vowel aa ae ah ao aw ax axr ay eh er ey ih ix iy ow oy uh giw
Front Vowel ae ehihixiy
Central Vowel aa ah ao axrer
Back Vowel ax ow uh uw
High Vowel ih ix iy uh uw
Rounded ao ow oy uh uw w
Reduced ax axr ix
Unvoiced chfhhkpsshtth
Coronal chddhjhinrsshtthzzh
Figure 10.15 Sample decision tree questions on phonetic features. Mdditom Odell
(1995).
CLONING use a more complex process that involekEming and using extra iterations of EM, as

described in Young et al. (1994).

To train context-dependent models, for example, we firsttheestandard em-
bedded training procedure to train context-independertaisp using multiple passes
of EM and resulting in separate single-Gaussians modelsdoh subphone of each
monophone /aa/, /ael, etc. We thdane each monophone model, i.e. make identical
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copies of the model with its 3 substates of Gaussians, ome ¢tor each potential tri-
phone. TheA transition matrices are not cloned, but tied together fothal triphone
clones of a monophone. We then run an iteration of EM agairreindin the triphone
Gaussians. Now for each monophone we cluster all the codependent triphones
using the clustering algorithm described on page 15 to get afdied state clusters.
One typical state is chosen as the exemplar for this clustbttee rest are tied to it.

We use this same cloning procedure to learn Gaussian méxtiive first use em-
bedded training with multiple iterations of EM to learn diggnixture Gaussian models
for each tied triphone state as described above. We thee ¢#miit) each state into 2
identical Gaussians, perturb the values of each by sommepand run EM again to
retrain these values. We then split each of the two mixtuessylting in four, perturb
them, retrain. We continue until we have an appropriate rarmob mixtures for the
amount of observations in each state.

A full context-depending GMM triphone model is thus creabgdapplying these
two cloning-and-retraining procedures in series, as stemkematically in Fig. 10.16.

(1) Train monophone
single Gaussian
models

(2) Clone monophones
to triphones

.. etc.
(3) Cluster and tie
triphones
.. etc.
(4) Expand to
GMMs
.. etc.

Figure 10.16 The four stages in training a tied-mixture triphone acaustodel. After Young et al. (1994).
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10.4 DISCRIMINATIVE TRAINING

The Baum-Welch and embedded training models we have pezbémt training the
HMM parameters (thé and B matrices) are based on maximizing the likelihood of
LKELHOOD  the training data. An alternative to thisaximum likelihood estimation (MLE ) is to
ESTIMATION - . . .
focus not on fitting the best model to the data, but rathedisariminating the best
oiscrminaing — model from all the other models. Such training procedurekide Maximum Mu-
tual Information Estimation (MMIE) (Woodland and Povey,02) the use of neural
net/SVM classifiers (Bourlard and Morgan, 1994) as well &g otechniques like Min-
imum Classification Error training (Chou et al., 1993; McBeitt and Hazen, 2004) or
Minimum Bayes Risk estimation (Doumpiotis et al., 2003a) Bimmarize the first
two of these in the next two subsections.

10.4.1 Maximum Mutual Information Estimation

Recall that in Maximum Likelihood Estimation (MLE), we tradbur acoustic model
parametersA andB) so as to maximize the likelihood of the training data. Cdasa
particular observation sequen®eand a particular HMM modé¥y corresponding to
word sequenc®, out of all the possible sentendé® € .#. The MLE criterion thus
maximizes

(10.4) FMLE (A) =P (O[My)

Since our goal in speech recognition is to have the corracistription for the
largest number of sentences, we'd like on average for thbatnitity of the correct
word stringW to be high; certainly higher than the probability of all theong word
stringsWjst.j # k. But the MLE criterion above does not guarantee this. Thud we
like to pick some other criterion which will let us chose thedelA which assigns the
highest probability to the correct model, i.e. maximiB$My|O). Maximizing the
probability of the word string rather than the probabilifyttee observation sequence is
calledconditional maximum likelihood estimation or CMLE:

(10.5) FcMLE(A) = Py (M¢|O)

Using Bayes Law, we can express this as
B _ Py (OM)P(M)
(10.6) FcMLE(A) =Py (M([O) = P, (O)

Let's now expandP, (O) by marginalizing (summing over all sequences which
could have produced it). The total probability of the obs#ion sequence is the
weighted sum over all word strings of the observation Itketid given that word string:

(10.7) P(O)= % P(OW)P(W)
Wez
So a complete expansion of Eq. 10.6 is:
Px (O[My)P(My)
Ymez Py (O[M)P(M)

(10.8) fCMLE(/\) =P, (Mk|0) =
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(10.9)

(10.10)

In a slightly confusing bit of standard nomenclature, CMkEénerally referred to
instead as Maximum Mutual Information Estimation (MMIEhI$ is because it turns
out that maximizing the posterid?(W|O) and maximizing the mutual information
I (W,0) are equivalent if we assume that the language model pratyadfileach sen-
tenceW is constant (fixed) during acoustic training, an assumptierusually make.
Thus from here on we will refer to this criterion as the MMIEterion rather than the
CMLE criterion, and so here is Eq. 10.8 restated:

_ - __ Py(O|Mi)P(My)

In a nutshell, then, the goal of MMIE estimation is to maxim{Z0.9) rather than
(10.4). Now if our goal is to maximizB, (My|O), we not only need to maximize the
numerator of (10.9), but also minimize the denominator.idéathat we can rewrite the
denominator to make it clear that it includes a term equai¢anodel we are trying to
maximize and a term for all other models:

Py (O[My)P(M)
Px (OIMk)P(Mx) + Sk P (O[Mi)P(M;)

Thus in order to maximiz&, (Mi|O), we will need to incrementally changeso
that it increases the probability of the correct model, @/simultaneously decreasing
the probability of each of the incorrect models. Thus tragniith MMIE clearly
fulfills the important goal ofliscriminating between the correct sequence and all other
sequences.

The implementation of MMIE is quite complex, and we don'tdiss it here except
to mention that it relies on a variant of Baum-Welch traingadled Extended Baum-
Welch that maximizes (10.9) instead of (10.4). Briefly, wa ga&w this as a two step
algorithm; we first use standard MLE Baum-Welch to compuéeftiward-backward
counts for the training utterances. Then we compute andtherrd-backward pass
using all other possible utterances and subtract these thhencounts. Of course it
turns out that computing this full denominator is computadilly extremely expensive,
because it requires running a full recognition pass on ealtthining data. Recall that
in normal EM, we don’t need to run decoding on the trainingadaince we are only
trying to maximize the likelihood of theorrectword sequence; in MMIE, we need
to compute the probabilities @l possible word sequences. Decoding is very time-
consuming because of complex language models. Thus inggadMIE algorithms
estimate the denominator by summing over only the pathstt@tr in a word lattice,
as an approximation to the full set of possible paths.

CMLE was first proposed by Nadas (1983) and MMIE by Bahl et 2386), but
practical implementations that actually reduced wordrerate came much later; see
Woodland and Povey (2002) or Normandin (1996) for details.

Py (M¢|O) =

10.4.2 Acoustic Models based on Posterior Classifiers

Another way to think about discriminative training is to cise a classifier at the frame
level which is discriminant. Thus while the Gaussian cléssis by far the most com-
monly used acoustic likelihood classifier, it is possibldrtstead use classifiers that
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(10.11)

(10.12)

SCALED LIKELIHOOD

are naturally discriminative or posterior estimators,hsas neural networks or SVMs
(support vector machines).

The posterior classifier (neural net or SVM) is generallggnated with an HMM
architecture, is often calleddMM-SVM or HMM-MLP hybrid approach (Bourlard
and Morgan, 1994).

The SVM or MLP approaches, like the Gaussian model, estittiatgrobability
with respect to a cepstral feature vector at a single tinténlike the Gaussian model,
the posterior approaches often uses a larger window of #can®rmation, relying
on cepstral feature vectors from neighboring time pericdwell. Thus the input to a
typical acoustic MLP or SVM might be feature vectors for theerent frame plus the
four previous and four following frames, i.e. a total of 9 stpl feature vectors instead
of the single one that the Gaussian model uses. Becausedhegtich a wide context,
SVM or MLP models generally use phones rather than subphoanggphones, and
compute a posterior for each phone.

The SVM or MLP classifiers are thus computing the posteriobpbility of a state
j given the observation vectors, i(qj|o). (also conditioned on the context, but let’s
ignore that for the moment). But the observation likelihaeel need for the HMM,
bj(at), isP(ot|q;j). The Bayes rule can help us see how to compute one from the othe
The net is computing:

P(ox|d;)p(d;)

p(gjlor) = ey

We can rearrange the terms as follows:

p(olgj)  P(gjlor)

p(or) p(a;j)

The two terms on the right-hand side of (10.12) can be dyecdiputed from the
posterior classifier; the numerator is the output of the SUWNiaP, and the denomi-
nator is the total probability of a given state, summing aaléobservations (i.e., the
sum over allt of &j(t)). Thus although we cannot directly compiteo|q;), we can

use (10.12) to comput@%, which is known as acaled likelihood(the likelihood
divided by the probability of the observation). In fact, thealed likelihood is just
as good as the regular likelihood, since the probabilityhef 6bservatiorp(o;) is a
constant during recognition and doesn’t hurt us to haveeretjuation.

The supervised training algorithms for training a SVM or MpBsterior phone
classifiers require that we know the correct phone lajyefor each observation.
We can use the sam@mbedded training algorithm that we saw for Gaussians; we
start with some initial version of our classifier and a womhscript for the training
sentences. We run a forced alignment of the training datadyming a phone string,
and now we retrain the classifier, and iterate.
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10.5 MODELING VARIATION

SPECTRAL
SUBTRACTION
ADDITIVE NOISE

LOMBARD EFFECT

CEPSTRAL MEAN
NORMALIZATION
CONVOLUTIONAL

NOISE

As we noted at the beginning of this chapter, variation isafitbe largest obstacles to
successful speech recognition. We mentioned variationasggeaker differences from
vocal characteristics or dialect, due to genre (such astapeaus versus read speech),
and due to the environment (such as noisy versus quiet emagots). Handling this
kind of variation is a major subject of modern research.

10.5.1 Environmental Variation and Noise

Environmental variation has received the most attentiomfthe speech literature, and
a number of techniques have been suggested for dealing withoemental noise.
Spectral subtraction, for example, is used to combadditive noise Additive noise
is noise from external sound sources like engines or windidgés that is relatively
constant and can be modeled as a noise signal that is jusd adttee time domain to
the speech waveform to produce the observed signal. Inrspsabtraction, we esti-
mate the average noise during non-speech regions and theaduhis average value
from the speech signal. Interestingly, speakers often emsgte for high background
noise levels by increasing their amplitude, FO, and fornfi@tiuencies. This change
in speech production due to noise is called tloenbard effect, named for Etienne
Lombard who first described it in 1911 (Junqua, 1993).

Other noise robustness techniques lidepstral mean normalizationare used to
deal withconvolutional noisg noise introduced by channel characteristics like differ-
ent microphones. Here we compute the average of the cepstreinime and subtract
it from each frame; the average cepstrum models the fixedrgppebaracteristics of
the microphone and the room acoustics (Atal, 1974).

Finally, some kinds of short non-verbal sounds like couddnsd breathing, and
throat clearing, or environmental sounds like beeps, telap rings, and door slams,
can be modeled explicitly. For each of these non-verbal deuwe create a special
phone and add to the lexicon a word consisting only of thanphdVe can then use
normal Baum-Welch training to train these phones just byifgot) the training data
transcripts to include labels for these new non-verbal ds8b{Ward, 1989). These
words also need to be added to the language model; often bwljowing them to
appear in between any word.

10.5.2 Speaker and Dialect Adaptation: Variation due to spaker
differences

Speech recognition systems are generally designed to laéespmdependent, since
it's rarely practical to collect sufficient training data boild a system for a single
user. But in cases where we have enough data to build spdekendent systems,
they function better than speaker-independent systenis.onty makes sense; we can
reduce the variability and increase the precision of ouretoiflwe are guaranteed that
the test data will look more like the training data.

While it is rare to have enough data to train on an individpalaker, we do have
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MLLR

SPEAKER
ADAPTATION

(10.13)

(10.14)

enough data to train separate models for two important grofigspeakers: men ver-
sus women. Since women and men have different vocal tradteter acoustic and

phonetic characteristics, we can split the training datagéyder, and train separate
acoustic models for men and for women. Then when a test sentemes in, we use

a gender detector to decide if it is male or female, and sw@those acoustic models.
Gender detectors can be built out of binary GMM classifiesedan cepstral features.
Suchgender-dependent acoustic modeling used in most LVCSR systems.

Although we rarely have enough data to train on a specifickapethere are tech-
nigues that work quite well at adapting the acoustic modela hew speaker very
quickly. For example tht/LLR (Maximum Likelihood Linear Regression) tech-
nique (Leggetter and Woodland, 1995) is used to adapt Gauasbustic models to a
small amount of data from a new speaker. The idea is to usarth# amount of data
to train a linear transform to warp the means of the Gaussidiht R and other such
techniques fospeaker adaptationhave been one of the largest sources of improve-
ment in ASR performance in recent years.

The MLLR algorithm begins with a trained acoustic model arsirnall adaptation
dataset from a new speaker. The adaptation set can be asesn®a#ientences or 10
seconds of speech. The idea is to learn a linear transformix(t) and a bias vector
(w) to transform the means of the acoustic model Gaussiandielbld mean of a
Gaussian i1, the equation for the new meanis thus:

=Wu+w

In the simplest case, we can learn a single global transfodraaply it to each Gaus-
sian models. The resulting equation for the acoustic likedd is thus only very slightly
modified:

1 1
bj(or) = \/ﬁ 9Xp<—§(0t — (W + w))sz Yo — (W + w)))

The transform is learned by using linear regression to meperthe likelihood of
the adaptation dataset. We first run forward-backward algm on the adaptation set
to compute the state occupation probabilife&). We then comput®/ by solving a
system of simultaneous equations involvf)dt). If enough data is available, it's also
possible to learn a larger number of transforms.

MLLR is an example of théinear transform approach to speaker adaptation, one
of the three major classes of speaker adaptation methagsthbr two aréAP adap-
tation andSpeaker Clustering/Speaker Spacapproaches. See Woodland (2001) for
a comprehensive survey of speaker adaptation which coll¢nsee families.

MLLR and other speaker adaptation algorithms can also betoszddress another
large source of error in LVCSR, the problem of foreign or é@laccented speakers.
Word error rates go up when the test set speaker speaks atdialaccent (such as
Spanish-accented English or southern accented Mandairie §) that differs from the
(usually standard) training set, Here we can take an adaptsét of a few sentences
from say 10 speakers, and adapt to them as a group, creatvglaR transform that
addresses whatever characteristics are present in tleeda@l accent (Huang et al.,
2000; Tomokiyo and Waibel, 2001; Wang et al., 2003; Zhend.e2@05).



22

Chapter 10. Speech Recognition: Advanced Topics

VTLN

Another useful speaker adaptation technique is to controtife differing vocal
tract lengths of speakers. Cues to the speaker’s vocallaagth are present in the
signal; for example speakers with longer vocal tracts tentiave lower formants.
Vocal tract length can therefore be detected and normalizedprocess calledTLN
(Vocal Tract Length Normalization); see the end notes for detalils.

10.5.3 Pronunciation Modeling: Variation due to Genre

We said at the beginning of the chapter that recognizingexsational speech is harder
for ASR systems than recognizing read speech. What are tisesaf this difference?
Isit the difference in vocabulary? Grammar? Something tth@speaker themselves?
Perhaps it's a fact about the microphones or telephone nsbe iexperiment.

None of these seems to be the cause. In a well-known expetikivemtraub et al.
(1996) compared ASR performance on natural conversatgpegch versus perfor-
mance on read speech, controlling for the influence of ptessdusal factors. Pairs of
subjects in the lab had spontaneous conversations on tghtale. Weintraub et al.
(1996) then hand-transcribed the conversations, anceihtite participants back into
the lab to read their own transcripts to each other over theegzhone lines as if they
were dictating. Both the natural and read conversatione vezorded. Now Weintraub
et al. (1996) had two speech corpora from identical trapsgrione original natural
conversation, and one read speech. In both cases the spéskactual words, and
the microphone were identical; the only difference was taeiralness or fluency of
the speech. They found that read speech was much easier (2@&6than conver-
sational speech (WER=53%). Since the speakers, words,hemhel were controlled
for, this difference must be modelable somewhere in the stomodel or pronuncia-
tion lexicon.

Saraclar et al. (2000) tested the hypothesis that this dliffievith conversational
speech was due to changed pronunciations, i.e., to a misrbateveen the phone
strings in the lexicon and what people actually said. Refcath Ch. 7 that conver-
sational corpora like Switchboard contain many differergnunciations for words,
(such as 12 different pronunciations foecausexind hundreds fothe). Saraclar et al.
(2000) showed in an oracle experiment that if a Switchboacdgnizer is told which
pronunciations to use for each word, the word error rateslfisgm 47% to 27%.

If knowing which pronunciation to use improves accuracyldave improve recog-
nition by simply adding more pronunciations for each worthte lexicon?

Alas, it turns out that adding multiple pronunciations doesork well, even if the
list of pronunciation is represented as an efficient proratimn HMM (Cohen, 1989).
Adding extra pronunciations adds more confusability; ifomenon pronunciation of
the word “of” is the single vowel [ax], it is now very confudalwith the word “a”.
Another problem with multiple pronunciations is the use @kxbi decoding. Recall
our discussion on 2 that since the Viterbi decoder finds teediene string, rather than
the best word string, it biases against words with many pmoiations. Finally, using
multiple pronunciations to model coarticulatory effectaynbe unnecessary because
CD phones (triphones) are already quite good at modelingdmeextual effects in
phones due to neighboring phones, like the flapping and vosekiction handled by
Fig. ?? (Jurafsky et al., 2001).
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Instead, most current LVCSR systems use a very small nunfl@oounciations
per word. What is commonly done is to start with a multiplemrociation lexicon,
where the pronunciations are found in dictionaries or areegged via phonological
rules of the type described in Ch. 7. A forced Viterbi phongrahent is then run of the
training set, using this dictionary. The result of the afiggnt is a phonetic transcription
of the training corpus, showing which pronunciation wasdysand the frequency of
each pronunciation. We can then collapse similar prontiocia (for example if two
pronunciations differ only in a single phone substitutioa @hose the more frequent
pronunciation). We then chose the maximum likelihood pramation for each word.
For frequent words which have multiple high-frequency praciations, some systems
chose multiple pronunciations, and annotate the dictiowith the probability of these
pronunciations; the probabilities are used in computiregatoustic likelihood (Cohen,
1989; Hain et al., 2001; Hain, 2002).

Finding a better method to deal with pronunciation variatiemains an unsolved
research problem. One promising avenue is to focus on nongtit factors that affect
pronunciation. For example words which are highly prediktaor at the beginning
or end of intonation phrases, or are followed by disfluencé&e pronounced very
differently (Jurafsky et al., 1998; Fosler-Lussier and lybor, 1999; Bell et al., 2003).
Fosler-Lussier (1999) shows an improvement in word errte by using these sorts
of factors to predict which pronunciation to use. Anothecigng line of research
in pronunciation modeling uses a dynamic Bayesian netwonkddel the complex
overlap in articulators that produces phonetic reductiawecu and Glass, 2004b,
2004a).

Another important issue in pronunciation modeling is dealvith unseen words.
In web-based applications such as telephone-based itgsria the Web, the recog-
nizer lexicon must be automatically augmented with proimatiens for the millions
of unseen words, particularly names, that occur on the Wehpl@&me-to-phoneme
techniques like those described in Se2are used to solve this problem.

10.6 METADATA: BOUNDARIES, PUNCTUATION, AND DISFLUEN-

CIES

The output of the speech recognition process as we haveilie$dt so far is just
a string of raw words. Consider the following sample golaiastard transcript (i.e.,
assuming perfect word recognition) of part of a dialogu@édoet al., 2003):

yeah actually um i belong to a gym down here a gold’s gym uh-duuth uh
exercise i try to exercise five days a week um and i usually dbuh what type
of exercising do you do in the gym

Compare the difficult transcript above with the following chwclearer version:

A: Yeah | belong to a gym down here. Gold’s Gym. And | try to evise five
days a week. And | usually do that.
B: What type of exercising do you do in the gym?
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DIARIZATION

SENTENCE
SEGMENTATION

TRUECASING

PUNCTUATION
DETECTION

DISFLUENCY
DETECTION

METADATA

RICH
TRANSCRIPTION

The raw transcript is not divided up among speakers, then® ipunctuation or
capitalization, and disfluencies are scattered among thidswoA number of studies
have shown that such raw transcripts are harder for peopksatb Jones et al. (2003,
2005) and that adding, for example, commas back into thes¢rgst improve sthe
accuracy of information extraction algorithms on the taaited text (Makhoul et al.,
2005; Hillard et al., 2006). Post-processing ASR outpublives tasks including the
following:

diarization: Many speech tasks have multiple speakers, such as telegbower-
sations, business meetings, and news reports (with meiltimdadcasters). Di-
arization is the task of breaking up a speech file by speak@réag parts of the
transcript to the relevant speakers, like fieandB: labels above.

sentence boundary detection\We discussed the task of breaking speech into sen-
tences (sentence segmentation) in Ch. 3 and Ch. 8. But fee thagks we already
add punctuation like periods to help us; from speech we @dready have punc-
tuation, just words. Sentence segmentation from speecthbasided difficulty
that the transcribed words will be errorful, but has the atlsge that prosodic
features like pauses and sentence-final intontation casdutas cues.

truecasing: Words in a clean transcript need to have sentence-initiatisvstart-
ing with an upper-case letter, acronyms all in capitals, sm@n. Truecasing
is the task of assigning the correct case for a word, and endadtidressed as
a HMM classification task like part-of-speech tagging, wiidden states like
ALL -LOWER CASE UPPERCASE-INITIAL , all-caps and so on.

punctuation detection: In addition to segmenting sentences, we need to choose
sentence-final punctuation (period, question mark, exateon mark), and in-
sert commas and quotation marks and so on.

disfluency detection: Disfluencies can be removed from a transcript for readgpilit
or at least marked off with commas or font changes. Sincedstanrecogniz-
ers don't actually include disfluencies (like word fragn®nih their transcripts,
disfluency detection algorithms can also play an importalat in avoiding the
misrecognized words that may result.

Marking these features (punctuation, boundaries, digoizpin the text output is
often calledmetadataor sometimesich transcription . Let’s look at a couple of these
tasks in slightly more detail.

Sentence segmentatiogan be modeled as a binary classification task, in which
each boundary between two words is judged as a sentence dgurdas sentence-
internal. Such classifiers can use similar features to théeesee segmentation dis-
cussed in Se®@?, such as words and part-of-speech tags around each candalatd-
ary, or length features such as the distance from the prslyidound boundary. We
can also make use of prosodic features, especially pausgatyword duration (recall
that sentence-final words are lengthened), and pitch mavisme

Fig. 10.17 shows the candidate boundary locations in a sasgitence. Com-
monly extracted features include:

pause features:duration of the interword pause at the candidate boundary.
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SENTENCE
BOUI\iDARY
powerful earthquake hit last | night : (pause): at | eleven we bring you live coverage
200ms 200ms 200ms 200ms
Figure 10.17 Candidate sentence boundaries computed at each interhmortary,
showing prosodic feature extraction regions. After Shrgket al. (2000).

DISFLUENCIES
REPAIR

JITTER

duration features: durations of the phone and rime (nucleus plus coda) pregedin
the candidate boundary. Since some phones are inherentigidhan others,
each phone is normalized to the mean duration for that phone.

FO features: the change in pitch across the boundary; sentence boundaries often
have pitch reset (an abrupt change in pitch), while non-boundaries are more
likely to have continuous pitch across the boundary. Anotiseful FO feature
is thepitch range of the preboundary word; sentences often end witha fall
(Sec.??) which is close to the speaker’s FO baseline.

For punctuation detection, similar features are used as for sentence boundary de-
tection, but with multiple hidden classes (comma, sentdimed question mark, quota-
tion mark, no punctuation). instead of just two.

For both of these tasks, instead of a simple binary classgaguence informa-
tion can be incorporated by modeling sentence segmentdian HMM in which the
hidden states correspond to sentence boundary or non-aguddcisions. We will
describe methods for combining prosodic and lexical fegtim more detail when we
introduce dialogue act detection in S&e.

Recall from Sec??thatdisfluenciesor repair in conversation include phenomena
like the following:

Disfluency type Example

fillers (orfilled pauseg: But, uh, that was absurd

word fragments A guy went to ad-, a landfill

repetitions: it was just achange ofchange ofocation
restarts it's — I find it very strange

The ATIS sentence in Fig. 10.18 shows examples of a restarttan filler uh,
showing the

Detection methods for disfluencies are very similar to detgesentence bound-
aries; a classifier is trained to make a decision at each wauddeary, using both text
and prosodic features. HMM and CRF classifiers are commaoseyl uand features
are quite similar to the features for boundary detectiooluiting neighoring words
and part-of-speech tags, the duration of pauses at the voonddary, the duration of
the word and phones preceding the boundary, the differenpiéch values across the
boundary, and so on.

For detecting fragments, features for detecting voiceityuate used (Liu, 2004),
such agitter , a measure of perturbation in the pitch period (Rosenb&gfl ispectral
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Does American Airlines offer any one-way flights  [uh] one-way fares for 160 dollars?

Interruption Point

i

P d—> 4>
Reparandum Repair

Editing Phase

Figure 10.18 Repeated from Fig2?An example of a disfluency (after Shriberg (1994); termigglés from
Levelt (1983)).

SPECTRAL TILT
OPEN QUOTIENT

tilt, the slope of the spectrum, (see S&®), andopen quotient, the percentage of the
glottal cycle in which the vocal folds are open (Fant, 1997).

10.7 SPEECHRECOGNITION BY HUMANS

LEXICAL ACCESS

PHONEME
RESTORATION
EFFECT

MCGURK EFFECT

Humans are of course much better at speech recognition thahines; current ma-
chines are roughly about five times worse than humans on sleaech, and the gap
seems to increase with noisy speech.

Speech recognition in humans shares some features with B8Rthms. We men-
tioned above that signal processing algorithms like PLRyaisa(Hermansky, 1990)
were in fact inspired by properties of the human auditoryesys In addition, three
properties of humatexical accesgthe process of retrieving a word from the mental
lexicon) are also true of ASR modelfrequency, parallelism, andcue-based pro-
cessing For example, as in ASR with itl-gram language models, human lexical
access is sensitive to woffctequency. High-frequency spoken words are accessed
faster or with less information than low-frequency word$iey are successfully rec-
ognized in noisier environments than low frequency wordsyleen only parts of the
words are presented (Howes, 1957; Grosjean, 1980; Tyl84,i8ter alia). Like ASR
models, human lexical accessparallel: multiple words are active at the same time
(Marslen-Wilson and Welsh, 1978; Salasoo and Pisoni, 1i98&r, alia).

Finally, human speech perceptioncise based speech input is interpreted by in-
tegrating cues at many different levels. Human phone pé&mregombines acous-
tic cues, such as formant structure or the exact timing ofirgi (Oden and Mas-
saro, 1978; Miller, 1994) visual cues, such as lip movembttQGurk and Macdon-
ald, 1976; Massaro and Cohen, 1983; Massaro, 1998) andaleodes such as the
identity of the word in which the phone is placed (Warren,d;9%8amuel, 1981; Con-
nine and Clifton, 1987; Connine, 1990). For example, in wikadften called the
phoneme restoration effect Warren (1970) took a speech sample and replaced one
phone (e.g. the [s] itegislaturg with a cough. Warren found that subjects listening
to the resulting tape typically heard the entire wéadislatureincluding the [s], and
perceived the cough as background. In MeGurk effect, (McGurk and Macdon-
ald, 1976) showed that visual input can interfere with php@aeeption, causing us to
perceive a completely different phone. They showed subgeideo of someone say-
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WORD ASSOCIATION

REPETITION PRIMING

ON-LINE

ing the syllablegain which the audio signal was dubbed instead with someoniegay
the syllableba. Subjects reported hearing something ldeinstead. It is definitely
worth trying this out yourself from video demos on the wele & examplent t p:

/I ww. haski ns. yal e. edu/ f eat ur ed/ heads/ ncgur k. ht m . Other cues
in human speech perception include semawticd association(words are accessed
more quickly if a semantically related word has been heacdmly) andrepetition
priming (words are accessed more quickly if they themselves havdaen heard).
The intuitions of both these results are incorporated iat®nt language models dis-
cussed in Ch. 4, such as the cache model of Kuhn and De MorDj1@&ich models
repetition priming, or the trigger model of Rosenfeld (1986d the LSA models of
Coccaro and Jurafsky (1998) and Bellegarda (1999), whictielword association.
In a fascinating reminder that good ideas are never disedvenly once, Cole and
Rudnicky (1983) point out that many of these insights aboutext effects on word
and phone processing were actually discovered by Williamgl®a(1901). Bagley
achieved his results, including an early version of the jgioa restoration effect, by
recording speech on Edison phonograph cylinders, modjfitirand presenting it to
subjects. Bagley'’s results were forgotten and only redisged much latef.

One difference between current ASR models and human speegfnition is the
time-course of the model. It is important for the performainf the ASR algorithm
that the the decoding search optimizes over the entireamiber This means that the
best sentence hypothesis returned by a decoder at the emgl séritence may be very
different than the current-best hypothesis, halfway ihtogentence. By contrast, there
is extensive evidence that human processiranidine: people incrementally segment
and utterance into words and assign it an interpretatioh@shtear it. For example,
Marslen-Wilson (1973) studiedose shadowerspeople who are able to shadow (re-
peat back) a passage as they hear it with lags as short as 25Marslen-Wilson
found that when these shadowers made errors, they werectigatly and semanti-
cally appropriate with the context, indicating that wordmsentation, parsing, and in-
terpretation took place within these 250 ms. Cole (1973)@ole and Jakimik (1980)
found similar effects in their work on the detection of mispunciations. These results
have led psychological models of human speech perceptizh @s the Cohort model
(Marslen-Wilson and Welsh, 1978) and the computational TRAnodel (McClelland
and Elman, 1986)) to focus on the time-course of word seleaind segmentation.
The TRACE model, for example, is a connectionist interactietivation model, based
on independent computational units organized into threelde feature, phoneme, and
word. Each unit represents a hypothesis about its presaribe input. Units are acti-
vated in parallel by the input, and activation flows betweeitsy connections between
units on different levels are excitatory, while connecsitvetween units on single level
are inhibitatory. Thus the activation of a word slightly ibits all other words.

We have focused on the similarities between human and mashieech recogni-
tion; there are also many differences. In particular, mahgiocues have been shown
to play a role in human speech recognition but have yet to beesisfully integrated
into ASR. The most important class of these missing cuesdsqaly. To give only
one example, Cutler and Norris (1988), Cutler and Carte87)@ote that most mul-

2 Recall the discussion on page of multiple independent discovery in science.
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tisyllabic English word tokens have stress on the initidlabje, suggesting in their
metrical segmentation strategy (MSS) that stress shouldskd as a cue for word
segmentation. Another difference is that human lexica¢ss@xhibit:meighborhood
effects (the neighborhood of a word is the set of words which closesemble it).
Words with large frequency-weighted neighborhoods aress®d slower than words
with less neighbors (Luce et al., 1990). Current models oRAI®N’t generally focus
on this word-level competition.

10.8 SUMMARY

e We introduced two advanced decoding algorithms: The nag8pN-best or
lattice) decoding algorithm, argtack or A* decoding.

e Advanced acoustic models are based on context-depetnigidiaines rather than
phones. Because the complete set of triphones would be tge, leve use a
smaller number of automatically clustered triphones edte

e Acoustic models can badaptedto new speakers.

e Pronunciation variation is a source of errors in human-husgeech recogni-
tion, but one that is not successfully handled by currertrietogy.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

See the previous chapter for most of the relevant speeclymémm history. Note that

r*searc although stack decoding is equivalent to thesearchdeveloped in artificial intelli-
gence, the stack decoding algorithm was developed indepgéigdn the information
theory literature and the link with Al best-first search wasiced only later (Jelinek,
1976). Useful references on vocal tract length normabrainclude (Cohen et al.,
1995; Wegmann et al., 1996; Eide and Gish, 1996; Lee and R6S6, Welling et al.,
2002; Kim et al., 2004).

There are many new directions in current speech recogniéieearch involving
alternatives to the HMM model. For example,there are newitactures based on
graphical models (dynamic bayes nets, factorial HMMs, @ég)eig, 1998; Bilmes,
2003; Livescu et al., 2003; Bilmes and Bartels, 2005; Frhekal., 2007). There are

FRAME-BASED attempts to replace tHeame-basedHMM acoustic model (that make a decision about
SEGMENTBASED  each frame) withsegment-based recognizerthat attempt to detect variable-length
segments (phones) (Digilakis, 1992; Ostendorf et al., 1@éss, 2003). Landmark-
based recognizers and articulatory phonology-based néoeaxg focus on the use of
distinctive features, defined acoustically or articulgyairespectively) (Niyogi et al.,
1998; Livescu, 2005; Hasegawa-Johnson and et al, 2005jaJand Espy-Wilson,
2003).

See Shriberg (2005) for an overview of metadata researchibesy (2002) and
Nakatani and Hirschberg (1994) are computationally-fedusorpus studies of the
acoustic and lexical properties of disfluencies. Early pajp& sentence segmenta-
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tion from speech include Wang and Hirschberg (1992), Ostdrachd Ross (1997) See
Shriberg et al. (2000), Liu et al. (2006a) for recent work entence segmentation,
Kim and Woodland (2001), Hillard et al. (2006) on punctuatietection, Nakatani
and Hirschberg (1994), Honal and Schultz (2003, 2005), ¢ edsal. (2006), and a
number of papers that jointly address multiple metadataetion tasks (Heeman and
Allen, 1999; Liu et al., 2005, 2006b).

EXERCISES

10.1 Implementthe Stack decoding algorithm of Fig. 10.7 on padg&i&k a very sim-
pleh* function like an estimate of the number of words remainintp&ésentence.

10.2 Modify the forward algorithm of Fig?? from Ch. 9 to use the tree-structured
lexicon of Fig. 10.10 on page 12.

10.3 Many ASR systems, including the Sonic and HTK systems, uséfexeht al-
gorithm for Viterbi called theoken-passing Viterbi algorithm (Young et al., 1989).
Read this paper and implement this algorithm.
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