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10
SPEECH RECOGNITION:
ADVANCED TOPICS

True, their voice-print machine was unfortunately a crude one. It
could discriminate among only a few frequencies, and it indicated
amplitude by indecipherable blots. But it had never been intended
for such vitally important work.

Aleksandr I. Solzhenitsyn,The First Circle, p. 505

The keju civil service examinations of Imperial China lasted almost1300 years,
from the year 606 until it was abolished in 1905. In its peak, millions of would-be
officials from all over China competed for high-ranking government positions by par-
ticipating in a uniform examination. For the final ‘metropolitan’ part of this exam in
the capital city, the candidates would be locked into an examination compound for a
grueling 9 days and nights answering questions about history, poetry, the Confucian
classics, and policy.

Naturally all these millions of candidates didn’t all show up in the capital. Instead,
the exam had progressive levels; candidates who passed a one-day local exam in their
local prefecture could then sit for the biannual provincialexam, and only upon passing
that exam in the provincial capital was a candidate eligiblefor the metropolitan and
palace examinations.

This algorithm for selecting capable officials is an instance of multi-stage search.
The final 9-day process requires far too many resources (in both space and time) to
examine every candidate. Instead, the algorithm uses an easier, less intensive 1-day
process to come up with a preliminary list of potential candidates, and applies the final
test only to this list.

Thekejualgorithm can also be applied to speech recognition. We’d like to be able
to apply very expensive algorithms in the speech recognition process, such as 4-gram,
5-gram, or even parser-based language models, or context-dependent phone models
that can see two or three phones into the future or past. But there are a huge number
of potential transcriptions sentences for any given waveform, and it’s too expensive
(in time, space, or both) to apply these powerful algorithmsto every single candidate.
Instead, we’ll introducemultipass decodingalgorithms in which efficient but dumber
decoding algorithms produce shortlists of potential candidates to be rescored by slow
but smarter algorithms. We’ll also introduce thecontext-dependent acoustic model,
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which is one of these smarter knowledge sources that turns out to be essential in large-
vocabulary speech recognition. We’ll also briefly introduce the important topics of
discriminative training and the modeling of variation.

10.1 MULTIPASS DECODING: N-BEST LISTS AND LATTICES

The previous chapter applied the Viterbi algorithm for HMM decoding. There are two
main limitations of the Viterbi decoder, however. First, the Viterbi decoder does not
actually compute the sequence of words which is most probable given the input acous-
tics. Instead, it computes an approximation to this: the sequence ofstates(i.e.,phones
or subphones) which is most probable given the input. More formally, recall that the
true likelihood of an observation sequenceO is computed by the forward algorithm by
summing over all possible paths:

P(O|W) = ∑
S∈ST

1

P(O,S|W)(10.1)

The Viterbi algorithm only approximates this sum by using the probability of the best
path:

P(O|W) ≈ max
S∈ST

1

P(O,S|W)(10.2)

It turns out that thisViterbi approximation is not too bad, since the most probableVITERBI
APPROXIMATION

sequence of phones usually turns out to correspond to the most probable sequence
of words. But not always. Consider a speech recognition system whose lexicon has
multiple pronunciations for each word. Suppose the correctword sequence includes a
word with very many pronunciations. Since the probabilities leaving the start arc of
each word must sum to 1.0, each of these pronunciation-pathsthrough this multiple-
pronunciation HMM word model will have a smaller probability than the path through
a word with only a single pronunciation path. Thus because the Viterbi decoder can
only follow one of these pronunciation paths, it may ignore this many-pronunciation
word in favor of an incorrect word with only one pronunciation path. In essence, the
Viterbi approximation penalizes words with many pronunciations.

A second problem with the Viterbi decoder is that it is impossible or expensive for
it to take advantage of many useful knowledge sources. For example the Viterbi al-
gorithm as we have defined it cannot take complete advantage of any language model
more complex than a bigram grammar. This is because of the fact mentioned earlier
that a trigram grammar, for example, violates thedynamic programming invariant .
Recall that this invariant is the simplifying (but incorrect) assumption that if the ulti-
mate best path for the entire observation sequence happens to go through a stateqi , that
this best path must include the best path up to and including stateqi . Since a trigram
grammar allows the probability of a word to be based on the twoprevious words, it is
possible that the best trigram-probability path for the sentence may go through a word
but not include the best path to that word. Such a situation could occur if a particular
word wx has a high trigram probability givenwy,wz, but that conversely the best path
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to wy didn’t includewz (i.e., P(wy|wq,wz) was low for allq). Advanced probabilistic
LMs like SCFGs also violate the same dynamic programming assumptions.

There are two solutions to these problems with Viterbi decoding. The most com-
mon is to modify the Viterbi decoder to return multiple potential utterances, instead
of just the single best, and then use other high-level language model or pronunciation-
modeling algorithms to re-rank these multiple outputs (Schwartz and Austin, 1991;
Soong and Huang, 1990; Murveit et al., 1993).

The second solution is to employ a completely different decoding algorithm, such
as thestack decoder, or A∗ decoder (Jelinek, 1969; Jelinek et al., 1975). We beginSTACK DECODER

A
∗ in this section with multiple-pass decoding, and return to stack decoding in the next

section.
In multiple-pass decodingwe break up the decoding process into two stages. In

the first stage we use fast, efficient knowledge sources or algorithms to perform a non-
optimal search. So for example we might use an unsophisticated but time-and-space
efficient language model like a bigram, or use simplified acoustic models. In the second
decoding pass we can apply more sophisticated but slower decoding algorithms on a
reduced search space. The interface between these passes isan N-best list or word
lattice.

The simplest algorithm for multipass decoding is to modify the Viterbi algorithm
to return theN-best sentences (word sequences) for a given speech input. SupposeNBEST

for example a bigram grammar is used with such anN-best-Viterbi algorithm to return
the 1000 most highly-probable sentences, each with their AMlikelihood and LM prior
score. This 1000-best list can now be passed to a more sophisticated language model
like a trigram grammar. This new LM is used to replace the bigram LM score of
each hypothesized sentence with a new trigram LM probability. These priors can be
combined with the acoustic likelihood of each sentence to generate a new posterior
probability for each sentence. Sentences are thusrescoredand re-ranked using thisRESCORED

more sophisticated probability. Fig. 10.1 shows an intuition for this algorithm.

Rescoring
N-Best
Decoder

Speech Input

Simple
Knowledge
Source

Smarter
Knowledge
Source

N-Best List 1-Best Utterance
? Alice was beginning to get...
? Every happy family
? In a hole in the ground...
? If music be the food of love...
? If music be the foot of dove...

If music be the

food of love

Figure 10.1 The use ofN-best decoding as part of a two-stage decoding model. Effi-
cient but unsophisticated knowledge sources are used to return theN-best utterances. This
significantly reduces the search space for the second pass models, which are thus free to
be very sophisticated but slow.

There are a number of algorithms for augmenting the Viterbi algorithm to generate
N-best hypotheses. It turns out that there is no polynomial-time admissible algorithm
for finding theN most likely hypotheses (Young, 1984). There are however, a number
of approximate (non-admissible) algorithms; we will introduce just one of them, the
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“Exact N-best” algorithm of Schwartz and Chow (1990). In ExactN-best, instead of
each state maintaining a single path/backtrace, we maintain up toN different paths for
each state. But we’d like to insure that these paths correspond to different word paths;
we don’t want to waste ourN paths on different state sequences that map to the same
words. To do this, we keep for each path theword history , the entire sequence of
words up to the current word/state. If two paths with the sameword history come to
a state at the same time, we merge the paths and sum the path probabilities. To keep
the N best word sequences, the resulting algorithm requiresO(N) times the normal
Viterbi time. We’ll see this merging of paths again when we introducing decoding for
statistical machine translation, where it is calledhypothesis recombination.HYPOTHESIS

RECOMBINATION

AM LM
Rank Path logprob logprob
1. it’s an area that’s naturally sort of mysterious -7193.53 -20.25
2. that’s an area that’s naturally sort of mysterious -7192.28 -21.11
3. it’s an area that’s not really sort of mysterious -7221.68 -18.91
4. that scenario that’s naturally sort of mysterious -7189.19 -22.08
5. there’s an area that’s naturally sort of mysterious -7198.35 -21.34
6. that’s an area that’s not really sort of mysterious -7220.44 -19.77
7. the scenario that’s naturally sort of mysterious -7205.42 -21.50
8. so it’s an area that’s naturally sort of mysterious -7195.92 -21.71
9. that scenario that’s not really sort of mysterious -7217.34 -20.70
10. there’s an area that’s not really sort of mysterious -7226.51 -20.01

Figure 10.2 An example 10-Best list from the Broadcast News corpus, produced by the
CU-HTK BN system (thanks to Phil Woodland). Logprobs use log10; the language model
scale factor (LMSF) is 15.

The result of any of these algorithms is anN-best list like the one shown in Fig. 10.2.
In Fig. 10.2 the correct hypothesis happens to be the first one, but of course the reason
to useN-best lists is that isn’t always the case. Each sentence in anN-best list is also
annotated with an acoustic model probability and a languagemodel probability. This
allows a second-stage knowledge source to replace one of those two probabilities with
an improved estimate.

One problem with anN-best list is that whenN is large, listing all the sentences
is extremely inefficient. Another problem is thatN-best lists don’t give quite as much
information as we might want for a second-pass decoder. For example, we might want
distinct acoustic model information for each word hypothesis so that we can reapply a
new acoustic model for the word. Or we might want to have available different start
and end times of each word so that we can apply a new duration model.

For this reason, the output of a first-pass decoder is usuallya more sophisticated
representation called aword lattice (Murveit et al., 1993; Aubert and Ney, 1995). AWORD LATTICE

word lattice is a directed graph that efficiently representsmuch more information about
possible word sequences.1 In some systems, nodes in the graph are words and arcs are

1 Actually an ASR lattice is not the kind of lattice that may be familiar to you from mathematics, since it is
not required to have the properties of a true lattice (i.e., be a partially ordered set with particular properties,
such as a unique join for each pair of elements). Really it’s just a graph, but it is conventional to call it a
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transitions between words. In others, arcs represent word hypotheses and nodes are
points in time. Let’s use this latter model, and so each arc represents lots of information
about the word hypothesis, including the start and end time,the acoustic model and
language model probabilities, the sequence of phones (the pronunciation of the word),
or even the phone durations. Fig. 10.3 shows a sample latticecorresponding to theN-
best list in Fig. 10.2. Note that the lattice contains many distinct links (records) for the
same word, each with a slightly different starting or endingtime. Such lattices are not
produced fromN-best lists; instead, a lattice is produced during first-pass decoding by
including some of the word hypotheses which were active (in the beam) at each time-
step. Since the acoustic and language models are context-dependent, distinct links
need to be created for each relevant context, resulting in a large number of links with
the same word but different times and contexts.N-best lists like Fig. 10.2 can also be
produced by first building a lattice like Fig. 10.3 and then tracing through the paths to
produceN word strings.

Figure 10.3 Word lattice corresponding to theN-best list in Fig. 10.2. The arcs beneath
each word show the different start and end times for each wordhypothesis in the lattice;
for some of these we’ve shown schematically how each word hypothesis must start at the
end of a previous hypothesis. Not shown in this figure are the acoustic and language model
probabilities that decorate each arc.

The fact that each word hypothesis in a lattice is augmented separately with its
acoustic model likelihood and language model probability allows us to rescore any
path through the lattice, using either a more sophisticatedlanguage model or a more
sophisticated acoustic model. As withN-best lists, the goal of this rescoring is to
replace the1-best utterancewith a different utterance that perhaps had a lower score
on the first decoding pass. For this second-pass knowledge source to get perfect word
error rate, the actual correct sentence would have to be in the lattice orN-best list. If
the correct sentence isn’t there, the rescoring knowledge source can’t find it. Thus it

lattice.
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is important when working with a lattice orN-best list to consider the baselinelattice
error rate (Woodland et al., 1995; Ortmanns et al., 1997): the lower bound word errorLATTICE ERROR

RATE

rate from the lattice. The lattice error rate is the word error rate we get if we chose
the lattice path (the sentence) that has the lowest word error rate. Because it relies on
perfect knowledge of which path to pick, we call this anoracle error rate, since weORACLE

need some oracle to tell us which sentence/path to pick.
Another important lattice concept is thelattice density, which is the number ofLATTICE DENSITY

edges in a lattice divided by the number of words in the reference transcript. As we saw
schematically in Fig. 10.3, real lattices are often extremely dense, with many copies of
individual word hypotheses at slightly different start andend times. Because of this
density, lattices are often pruned.

Besides pruning, lattices are often simplified into a different, more schematic kind
of lattice that is sometimes called aword graph orfinite state machine, although oftenWORD GRAPH

it’s still just referred to as a word lattice. In these word graphs, the timing information
is removed and multiple overlapping copies of the same word are merged. The timing
of the words is left implicit in the structure of the graph. Inaddition, the acoustic model
likelihood information is removed, leaving only the language model probabilities. The
resulting graph is a weighted FSA, which is a natural extension of anN-gram language
model; the word graph corresponding to Fig. 10.3 is shown in Fig. 10.4. This word
graph can in fact be used as the language model for another decoding pass. Since such
a wordgraph language model vastly restricts the search space, it can make it possible
to use a complicated acoustic model which is too slow to use infirst-pass decoding.

Figure 10.4 Word graph corresponding to theN-best list in Fig. 10.2. Each word hy-
pothesis in the lattice also has language model probabilities (not shown in this figure).

A final type of lattice is used when we need to represent the posterior probability of
individual words in a lattice. It turns out that in speech recognition, we almost never see
the true posterior probability of anything, despite the fact that the goal of speech recog-
nition is to compute the sentence with the maximum a posteriori probability. This is
because in the fundamental equation of speech recognition we ignore the denominator
in our maximization:

Ŵ = argmax
W∈L

P(O|W)P(W)

P(O)
= argmax

W∈L

P(O|W)P(W)(10.3)

The product of the likelihood and the prior isnot the posterior probability of the
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utterance. It is not even a probability, since it doesn’t necessarily lie between 0 and
1. It’s just a score. Why does it matter that we don’t have a true probability? The
reason is that without having true probability, we can choose the best hypothesis, but
we can’t know how good it is. Perhaps the best hypothesis is still really bad, and we
need to ask the user to repeat themselves. If we had the posterior probability of a word
it could be used as aconfidencemetric, since the posterior is an absolute rather than
relative measure. A confidence metric is a metric that the speech recognizer can give
to a higher-level process (like dialogue) to indicate how confident the recognizer is that
the word string that it returns is a good one. We’ll return to the use of confidence in
Ch. 24.

In order to compute the posterior probability of a word, we’ll need to normalize
over all the different word hypotheses available at a particular point in the utterances.
At each point we’ll need to know which words are competing or confusable. The
lattices that show these sequences of word confusions are called confusion networks,CONFUSION

NETWORKS

meshes, sausages, orpinched lattices. A confusion network consists of a sequence ofMESHES

SAUSAGES

PINCHED LATTICES

word positions. At each position is a set of mutually exclusive word hypotheses. The
network represents the set of sentences that can be created by choosing one word from
each position.

Figure 10.5 Confusion network corresponding to the word lattice in Fig.10.3. Each
word is associated with a posterior probability. Note that some of the words from the
lattice have been pruned away. (Probabilities computed by the SRI-LM toolkit).

Note that unlike lattices or word graphs, the process of constructing a confusion
network actually adds paths that were not in the original lattice. Confusion networks
have other uses besides computing confidence. They were originally proposed for
use in minimizing word error rate, by focusing on maximizingimproving the word
posterior probability rather than the sentence likelihood. Recently confusion networks
have been used to train discriminative classifiers that distinguish between words.

Roughly speaking, confusion networks are built by taking the different hypothesis
paths in the lattice and aligning them with each other. The posterior probability for
each word is computing by first summing over all paths passingthrough a word, and
then normalizing by the sum of the probabilities of all competing words. For further
details see Mangu et al. (2000), Evermann and Woodland (2000), Kumar and Byrne
(2002), Doumpiotis et al. (2003b).

Standard publicly available language modeling toolkits like SRI-LM (Stolcke, 2002)
(http://www.speech.sri.com/projects/srilm/) and the HTK language
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modeling toolkit (Young et al., 2005) (http://htk.eng.cam.ac.uk/) can be
used to generate and manipulate lattices,N-best lists, and confusion networks.

There are many other kinds of multiple-stage search, such astheforward-backwardFORWARD
BACKWARD

search algorithm (not to be confused with theforward-backward algorithm for HMM
parameter setting) (Austin et al., 1991) which performs a simple forward search fol-
lowed by a detailed backward (i.e., time-reversed) search.

10.2 A∗ (‘STACK ’) D ECODING

Recall that the Viterbi algorithm approximated the forwardcomputation, computing
the likelihood of the single best (MAX) path through the HMM,while the forward al-
gorithm computes the likelihood of the total (SUM) of all thepaths through the HMM.
The A∗ decoding algorithm allows us to use the complete forward probability, avoiding
the Viterbi approximation. A∗ decoding also allows us to use any arbitrary language
model. Thus A∗ is a one-pass alternative to multi-pass decoding.

The A∗ decoding algorithm is a best-first search of the tree that implicitly defines
the sequence of allowable words in a language. Consider the tree in Fig. 10.6, rooted in
the START node on the left. Each leaf of this tree defines one sentence of the language;
the one formed by concatenating all the words along the path from START to the leaf.
We don’t represent this tree explicitly, but the stack decoding algorithm uses the tree
implicitly as a way to structure the decoding search.

Figure 10.6 A visual representation of the implicit lattice of allowable word sequences
that defines a language. The set of sentences of a language is far too large to represent
explicitly, but the lattice gives a metaphor for exploring prefixes.

The algorithm performs a search from the root of the tree toward the leaves, look-
ing for the highest probability path, and hence the highest probability sentence. As we
proceed from root toward the leaves, each branch leaving a given word node represents
a word which may follow the current word. Each of these branches has a probabil-
ity, which expresses the conditional probability of this next word given the part of the
sentence we’ve seen so far. In addition, we will use the forward algorithm to assign
each word a likelihood of producing some part of the observedacoustic data. The
A∗ decoder must thus find the path (word sequence) from the root to a leaf which
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has the highest probability, where a path probability is defined as the product of its
language model probability (prior) and its acoustic match to the data (likelihood). It
does this by keeping apriority queue of partial paths (i.e., prefixes of sentences, eachPRIORITY QUEUE

annotated with a score). In a priority queue each element hasa score, and thepopoper-
ation returns the element with the highest score. The A∗ decoding algorithm iteratively
chooses the best prefix-so-far, computes all the possible next words for that prefix, and
adds these extended sentences to the queue. Fig. 10.7 shows the complete algorithm.

function STACK-DECODING() returns min-distance

Initialize the priority queue with a null sentence.
Pop the best (highest score) sentences off the queue.
If (s is marked end-of-sentence (EOS) ) outputsand terminate.
Get list of candidate next words by doing fast matches.
For each candidate next wordw:

Create a new candidate sentences+w.
Use forward algorithm to compute acoustic likelihoodL of s+w
Compute language model probabilityP of extended sentences+w
Compute “score” fors+w (a function ofL, P, and ???)
if (end-of-sentence) set EOS flag fors+w.
Inserts+w into the queue together with its score and EOS flag

Figure 10.7 The A∗ decoding algorithm (modified from Paul (1991) and Jelinek
(1997)). The evaluation function that is used to compute thescore for a sentence is not
completely defined here; possible evaluation functions arediscussed below.

Let’s consider a stylized example of an A∗ decoder working on a waveform for
which the correct transcription isIf music be the food of love. Fig. 10.8 shows the
search space after the decoder has examined paths of length one from the root. Afast
match is used to select the likely next words. A fast match is one of aclass of heuristicsFAST MATCH

designed to efficiently winnow down the number of possible following words, often
by computing some approximation to the forward probability(see below for further
discussion of fast matching).

At this point in our example, we’ve done the fast match, selected a subset of the
possible next words, and assigned each of them a score. The word Alicehas the highest
score. We haven’t yet said exactly how the scoring works.

Fig. 10.9a show the next stage in the search. We have expandedthe Alice node.
This means that theAlicenode is no longer on the queue, but its children are. Note that
now the node labeledif actually has a higher score than any of the children ofAlice.
Fig. 10.9b shows the state of the search after expanding theif node, removing it, and
addingif music, if muscle, andif messyon to the queue.

We clearly want the scoring criterion for a hypothesis to be related to its probability.
Indeed it might seem that the score for a string of wordswi

1 given an acoustic stringy j
1

should be the product of the prior and the likelihood:

P(y j
1|w

i
1)P(wi

1)
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[START]

If

Alice

In

Every

1

30

40

4

25

P("If" | START)

P("Every" | START)

Figure 10.8 The beginning of the search for the sentenceIf music be the food of love.
At this early stageAlice is the most likely hypothesis. (It has a higher score than theother
hypotheses.)
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32
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Figure 10.9 The next steps of the search for the sentenceIf music be the food of love. In
(a) we’ve now expanded theAlicenode and added three extensions which have a relatively
high score; the highest-scoring node isSTART if, which is not along theSTART Alicepath
at all. In (b) we’ve expanded theif node. The hypothesisSTART if musicthen has the
highest score.

Alas, the score cannot be this probability because the probability will be much
smaller for a longer path than a shorter one. This is due to a simple fact about prob-
abilities and substrings; any prefix of a string must have a higher probability than the
string itself (e.g., P(START the . . . ) will be greater than P(START the book)). Thus
if we used probability as the score, the A∗ decoding algorithm would get stuck on the
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single-word hypotheses.
Instead, we use the A∗ evaluation function (Nilsson, 1980; Pearl, 1984)f ∗(p),

given a partial pathp:

f ∗(p) = g(p)+h∗(p)

f ∗(p) is theestimatedscore of the best complete path (complete sentence) which
starts with the partial pathp. In other words, it is an estimate of how well this path
would do if we let it continue through the sentence. The A∗ algorithm builds this
estimate from two components:

• g(p) is the score from the beginning of utterance to the end of the partial path
p. This g function can be nicely estimated by the probability ofp given the
acoustics so far (i.e., asP(O|W)P(W) for the word stringW constitutingp).

• h∗(p) is an estimate of the best scoring extension of the partial path to the end of
the utterance.

Coming up with a good estimate ofh∗ is an unsolved and interesting problem. A
very simple approach is to chose anh∗ estimate which correlates with the number of
words remaining in the sentence (Paul, 1991). Slightly smarter is to estimate the ex-
pected likelihood per frame for the remaining frames, and multiple this by the estimate
of the remaining time. This expected likelihood can be computed by averaging the
likelihood per frame in the training set. See Jelinek (1997)for further discussion.

Tree Structured Lexicons

We mentioned above that both the A∗ and various other two-stage decoding algorithms
require the use of afast match for quickly finding which words in the lexicon are
likely candidates for matching some portion of the acousticinput. Many fast match
algorithms are based on the use of atree-structured lexicon, which stores the pronun-TREESTRUCTURED

LEXICON

ciations of all the words in such a way that the computation ofthe forward probability
can be shared for words which start with the same sequence of phones. The tree-
structured lexicon was first suggested by Klovstad and Mondshein (1975); fast match
algorithms which make use of it include Gupta et al. (1988), Bahl et al. (1992) in the
context of A∗ decoding, and Ney et al. (1992) and Nguyen and Schwartz (1999) in the
context of Viterbi decoding. Fig. 10.10 shows an example of atree-structured lexicon
from the Sphinx-II recognizer (Ravishankar, 1996). Each tree root represents the first
phone of all words beginning with that context dependent phone (phone context may
or may not be preserved across word boundaries), and each leaf is associated with a
word.

10.3 CONTEXT-DEPENDENTACOUSTICMODELS: TRIPHONES

In our discussion in Sec.?? of how the HMM architecture is applied to ASR, we
showed how an HMM could be created for each phone, with its three emitting states
corresponding to subphones at the beginning, middle, and end of the phone. We thus
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AX(#,B)

N(AW,DD)

B(AX,AW)

B(AX,AH)

AW(B,N)

AW(B,TD)

AH(B,V)

DD(N,#)

B(#,EY)
TD(KD,#)

EY(B,KD)

EY(B,K)

KD(EY,#)

KD(EY,TD)

K(EY,IX)

K(EY,AXR)
AXR(K,#)

AXR(K,IY) IY(AXR,#)

IX(K,NG) NG(IX,#)

ABOUND

ABOUTTD(AW,#)

V(AH,#) ABOVE

BAKE

BAKED

BAKING

BAKER

BAKERY

Figure 10.10 A tree-structured lexicon from the Sphinx-II recognizer (after Ravis-
hankar (1996)). Each node corresponds to a particular triphone in the slightly modified
version of the ARPAbet used by Sphinx-II. Thus EY(B,KD) means the phone EY pre-
ceded by a B and followed by the closure of a K.

represent each subphone (“beginning of [eh]”, “beginning of [t]”, “middle of [ae]”)
with its own GMM.

There is a problem with using a fixed GMM for a subphone like ”beginning of
[eh]”. The problem is that phones vary enormously based on the phones on either side.
This is because the movement of the articulators (tongue, lips, velum) during speech
production is continuous and is subject to physical constraints like momentum. Thus
an articulator may start moving during one phone to get into place in time for the next
phone. In Ch. 7 we defined the wordcoarticulation as the movement of articulators toCOARTICULATION

anticipate the next sound, or perseverating movement from the last sound. Fig. 10.11
shows coarticulation due to neighboring phone contexts forthe vowel [eh].

In order to model the marked variation that a phone exhibits in different contexts,
most LVCSR systems replace the idea of a context-independent (CI phone) HMMCI PHONE

with a context-dependent orCD phones. The most common kind of context-dependentCD PHONES

model is atriphone HMM (Schwartz et al., 1985; Deng et al., 1990). A triphone modelTRIPHONE

represents a phone in a particular left and right context. For example the triphone[y-
eh+l] means “[eh] preceded by [y] and followed by [l]”. In general,[a-b+c] will mean
“[b] preceded by [a] and followed by [c]”. In situations where we don’t have a full
triphone context, we’ll use [a-b] to mean “[b] preceded by [a]” and [b+c] to mean “[b]
followed by [c]”.

Context-dependent phones capture an important source of variation, and are a key
part of modern ASR systems. But unbridled context-dependency also introduces the
same problem we saw in language modeling: training data sparsity. The more complex
the model we try to train, the less likely we are to have seen enough observations of
each phone-type to train on. For a phoneset with 50 phones, inprinciple we would need
503 or 125,000 triphones. In practice not every sequence of three phones is possible
(English doesn’t seem to allow triphone sequences like [ae-eh+ow] or [m-j+t]). Young
et al. (1994) found that 55,000 triphones are needed in the 20K Wall Street Journal
task. But they found that only 18,500 of these triphones, i.e. less than half, actually
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Figure 10.11 The vowel [eh] in three different triphone contexts, in the wordswed, yell,
andBen. Notice the marked differences in the second formant (F2) atthe beginning and
end of the [eh] in all three cases.

occurred in the SI84 section of the WSJ training data.
Because of the problem of data sparsity, we must reduce the number of triphone

parameters that we need to train. The most common way to do this is by clustering
some of the contexts together andtying subphones whose contexts fall into the sameTYING

cluster (Young and Woodland, 1994). For example, the beginning of a phone with an
[n] on its left may look much like the beginning of a phone withan [m] on its left. We
can therefore tie together the first (beginning) subphone of, say, the [m-eh+d] and [n-
eh+d] triphones. Tying two states together means that they share the same Gaussians.
So we only train a single Gaussian model for the first subphoneof the [m-eh+d] and [n-
eh+d] triphones. Likewise, it turns out that the left context phones [r] and [w] produce
a similar effect on the initial subphone of following phones.

Fig. 10.12 shows, for example the vowel [iy] preceded by the consonants [w], [r],
[m], and [n]. Notice that the beginning of [iy] has a similar rise in F2 after [w] and [r].
And notice the similarity of the beginning of [m] and [n]; as Ch. 7 noted, the position
of nasal formants varies strongly across speakers, but thisspeaker (the first author) has
a nasal formant (N2) around 1000 Hz.

Fig. 10.13 shows an example of the kind of triphone tying learned by the clustering
algorithm. Each mixture Gaussian model is shared by the subphone states of various
triphone HMMs.

How do we decide what contexts to cluster together? The most common method
is to use a decision tree. For each state (subphone) of each phone, a separate tree is
built. Fig. 10.14 shows a sample tree from the first (beginning) state of the phone /ih/,
modified from Odell (1995). We begin at the root node of the tree with a single large
cluster containing (the beginning state of) all triphones centered on /ih/. At each node
in the tree, we split the current cluster into two smaller clusters by asking questions
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Figure 10.12 The wordswe, re, me, andknee. The glides [w] and [r] have similar
effects on the beginning of the vowel [iy], as do the two nasals [n] and [m].

t-iy+n t-iy+ng f-iy+l s-iy+l

... etc.

Figure 10.13 Four triphones showing the result of clustering. Notice that the initial
subphone of [t-iy+n] and [t-iy+ng] is tied together, i.e. shares the same Gaussian mixture
acoustic model. After Young et al. (1994).

about the context. For example the tree in Fig. 10.14 first splits the initial cluster into
two clusters, one with nasal phone on the left, and one without. As we descend the tree
from the root, each of these clusters is progressively split. The tree in Fig. 10.14 would
split all beginning-state /ih/ triphones into 5 clusters, labeled A-E in the figure.

The questions used in the decision tree ask whether the phoneto the left or right
has a certainphonetic feature, of the type introduced in Ch. 7. Fig. 10.15 shows
a few decision tree questions; note that there are separate questions for vowels and
consonants. Real trees would have many more questions.

How are decision trees like the one in Fig. 10.14 trained? Thetrees are grown top
down from the root. At each iteration, the algorithm considers each possible question
q and each noden in the tree. For each such question, it considers how the new split
would impact the acoustic likelihood of the training data. The algorithm computes the
difference between the current acoustic likelihood of the training data, and the new
likelihood if the models were tied based on splitting via question q. The algorithm
picks the noden and questionq which give the maximum likelihood. The procedure
then iterates, stopping when each each leaf node has some minimum threshold number
of examples.

We also need to modify the embedded training algorithm we sawin Sec.?? to deal
with context-dependent phones and also to handle mixture Gaussians. In both cases we
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Figure 10.14 Decision tree for choosing which triphone states (subphones) to tie to-
gether. This particular tree will cluster state 0 (the beginning state) of the triphones /n-
ih+l/, /ng-ih+l/, /m-ih+l/, into cluster class A, and various other triphones into classes B-E.
Adapted from Odell (1995).

Feature Phones
Stop b d g k p t
Nasal m n ng
Fricative ch dh f jh s sh th v z zh
Liquid l r w y
Vowel aa ae ah ao aw ax axr ay eh er ey ih ix iy ow oy uh uw
Front Vowel ae eh ih ix iy
Central Vowel aa ah ao axr er
Back Vowel ax ow uh uw
High Vowel ih ix iy uh uw
Rounded ao ow oy uh uw w
Reduced ax axr ix
Unvoiced ch f hh k p s sh t th
Coronal ch d dh jh l n r s sh t th z zh

Figure 10.15 Sample decision tree questions on phonetic features. Modified from Odell
(1995).

use a more complex process that involvescloning and using extra iterations of EM, asCLONING

described in Young et al. (1994).
To train context-dependent models, for example, we first usethe standard em-

bedded training procedure to train context-independent models, using multiple passes
of EM and resulting in separate single-Gaussians models foreach subphone of each
monophone /aa/, /ae/, etc. We thencloneeach monophone model, i.e. make identical
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copies of the model with its 3 substates of Gaussians, one clone for each potential tri-
phone. TheA transition matrices are not cloned, but tied together for all the triphone
clones of a monophone. We then run an iteration of EM again andretrain the triphone
Gaussians. Now for each monophone we cluster all the context-dependent triphones
using the clustering algorithm described on page 15 to get a set of tied state clusters.
One typical state is chosen as the exemplar for this cluster and the rest are tied to it.

We use this same cloning procedure to learn Gaussian mixtures. We first use em-
bedded training with multiple iterations of EM to learn single-mixture Gaussian models
for each tied triphone state as described above. We then clone (split) each state into 2
identical Gaussians, perturb the values of each by some epsilon, and run EM again to
retrain these values. We then split each of the two mixtures,resulting in four, perturb
them, retrain. We continue until we have an appropriate number of mixtures for the
amount of observations in each state.

A full context-depending GMM triphone model is thus createdby applying these
two cloning-and-retraining procedures in series, as shownschematically in Fig. 10.16.

iy

t-iy+n t-iy+ng f-iy+l s-iy+l

(1) Train monophone 
single Gaussian

models

(2) Clone monophones
 to triphones

... etc.

t-iy+n t-iy+ng f-iy+l s-iy+l(3) Cluster and tie 
triphones

... etc.

t-iy+n t-iy+ng f-iy+l s-iy+l

... etc.

(4) Expand to 
GMMs

Figure 10.16 The four stages in training a tied-mixture triphone acoustic model. After Young et al. (1994).
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10.4 DISCRIMINATIVE TRAINING

The Baum-Welch and embedded training models we have presented for training the
HMM parameters (theA andB matrices) are based on maximizing the likelihood of
the training data. An alternative to thismaximum likelihood estimation (MLE ) is to

MAXIMUM
LIKELIHOOD
ESTIMATION

MLE focus not on fitting the best model to the data, but rather ondiscriminating the best
DISCRIMINATING model from all the other models. Such training procedures include Maximum Mu-

tual Information Estimation (MMIE) (Woodland and Povey, 2002) the use of neural
net/SVM classifiers (Bourlard and Morgan, 1994) as well as other techniques like Min-
imum Classification Error training (Chou et al., 1993; McDermott and Hazen, 2004) or
Minimum Bayes Risk estimation (Doumpiotis et al., 2003a). We summarize the first
two of these in the next two subsections.

10.4.1 Maximum Mutual Information Estimation

Recall that in Maximum Likelihood Estimation (MLE), we train our acoustic model
parameters (A andB) so as to maximize the likelihood of the training data. Consider a
particular observation sequenceO, and a particular HMM modelMk corresponding to
word sequenceWk, out of all the possible sentencesW′ ∈ L . The MLE criterion thus
maximizes

FMLE(λ ) = Pλ (O|Mk)(10.4)

Since our goal in speech recognition is to have the correct transcription for the
largest number of sentences, we’d like on average for the probability of thecorrect
word stringWk to be high; certainly higher than the probability of all thewrong word
stringsWjs.t. j 6= k. But the MLE criterion above does not guarantee this. Thus we’d
like to pick some other criterion which will let us chose the modelλ which assigns the
highest probability to the correct model, i.e. maximizesPλ (Mk|O). Maximizing the
probability of the word string rather than the probability of the observation sequence is
calledconditional maximum likelihood estimation or CMLE:

FCMLE(λ ) = Pλ (Mk|O)(10.5)

Using Bayes Law, we can express this as

FCMLE(λ ) = Pλ (Mk|O) =
Pλ (O|Mk)P(Mk)

Pλ (O)
(10.6)

Let’s now expandPλ (O) by marginalizing (summing over all sequences which
could have produced it). The total probability of the observation sequence is the
weighted sum over all word strings of the observation likelihood given that word string:

P(O) = ∑
W∈L

P(O|W)P(W)(10.7)

So a complete expansion of Eq. 10.6 is:

FCMLE(λ ) = Pλ (Mk|O) =
Pλ (O|Mk)P(Mk)

∑M∈L Pλ (O|M)P(M)
(10.8)
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In a slightly confusing bit of standard nomenclature, CMLE is generally referred to
instead as Maximum Mutual Information Estimation (MMIE). This is because it turns
out that maximizing the posteriorP(W|O) and maximizing the mutual information
I(W,O) are equivalent if we assume that the language model probability of each sen-
tenceW is constant (fixed) during acoustic training, an assumptionwe usually make.
Thus from here on we will refer to this criterion as the MMIE criterion rather than the
CMLE criterion, and so here is Eq. 10.8 restated:

FMMIE (λ ) = Pλ (Mk|O) =
Pλ (O|Mk)P(Mk)

∑M∈L Pλ (O|M)P(M)
(10.9)

In a nutshell, then, the goal of MMIE estimation is to maximize (10.9) rather than
(10.4). Now if our goal is to maximizePλ (Mk|O), we not only need to maximize the
numerator of (10.9), but also minimize the denominator. Notice that we can rewrite the
denominator to make it clear that it includes a term equal to the model we are trying to
maximize and a term for all other models:

Pλ (Mk|O) =
Pλ (O|Mk)P(Mk)

Pλ (O|Mk)P(Mk)+ ∑i 6=k Pλ (O|Mi)P(Mi)
(10.10)

Thus in order to maximizePλ (Mk|O), we will need to incrementally changeλ so
that it increases the probability of the correct model, while simultaneously decreasing
the probability of each of the incorrect models. Thus training with MMIE clearly
fulfills the important goal ofdiscriminating between the correct sequence and all other
sequences.

The implementation of MMIE is quite complex, and we don’t discuss it here except
to mention that it relies on a variant of Baum-Welch trainingcalled Extended Baum-
Welch that maximizes (10.9) instead of (10.4). Briefly, we can view this as a two step
algorithm; we first use standard MLE Baum-Welch to compute the forward-backward
counts for the training utterances. Then we compute anotherforward-backward pass
using all other possible utterances and subtract these fromthe counts. Of course it
turns out that computing this full denominator is computationally extremely expensive,
because it requires running a full recognition pass on all the training data. Recall that
in normal EM, we don’t need to run decoding on the training data, since we are only
trying to maximize the likelihood of thecorrect word sequence; in MMIE, we need
to compute the probabilities ofall possible word sequences. Decoding is very time-
consuming because of complex language models. Thus in practice MMIE algorithms
estimate the denominator by summing over only the paths thatoccur in a word lattice,
as an approximation to the full set of possible paths.

CMLE was first proposed by Nadas (1983) and MMIE by Bahl et al. (1986), but
practical implementations that actually reduced word error rate came much later; see
Woodland and Povey (2002) or Normandin (1996) for details.

10.4.2 Acoustic Models based on Posterior Classifiers

Another way to think about discriminative training is to choose a classifier at the frame
level which is discriminant. Thus while the Gaussian classifier is by far the most com-
monly used acoustic likelihood classifier, it is possible toinstead use classifiers that
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are naturally discriminative or posterior estimators, such as neural networks or SVMs
(support vector machines).

The posterior classifier (neural net or SVM) is generally integrated with an HMM
architecture, is often called aHMM-SVM or HMM-MLP hybrid approach (Bourlard
and Morgan, 1994).

The SVM or MLP approaches, like the Gaussian model, estimatethe probability
with respect to a cepstral feature vector at a single timet. Unlike the Gaussian model,
the posterior approaches often uses a larger window of acoustic information, relying
on cepstral feature vectors from neighboring time periods as well. Thus the input to a
typical acoustic MLP or SVM might be feature vectors for the current frame plus the
four previous and four following frames, i.e. a total of 9 cepstral feature vectors instead
of the single one that the Gaussian model uses. Because they have such a wide context,
SVM or MLP models generally use phones rather than subphonesor triphones, and
compute a posterior for each phone.

The SVM or MLP classifiers are thus computing the posterior probability of a state
j given the observation vectors, i.e.P(q j |ot). (also conditioned on the context, but let’s
ignore that for the moment). But the observation likelihoodwe need for the HMM,
b j(ot), is P(ot |q j). The Bayes rule can help us see how to compute one from the other.
The net is computing:

p(q j |ot) =
P(ot |q j)p(q j)

p(ot)
(10.11)

We can rearrange the terms as follows:

p(ot |q j)

p(ot)
=

P(q j |ot)

p(q j)
(10.12)

The two terms on the right-hand side of (10.12) can be directly computed from the
posterior classifier; the numerator is the output of the SVM or MLP, and the denomi-
nator is the total probability of a given state, summing overall observations (i.e., the
sum over allt of ξ j(t)). Thus although we cannot directly computeP(ot |q j), we can

use (10.12) to compute
p(ot |q j )

p(ot)
, which is known as ascaled likelihood(the likelihoodSCALED LIKELIHOOD

divided by the probability of the observation). In fact, thescaled likelihood is just
as good as the regular likelihood, since the probability of the observationp(ot) is a
constant during recognition and doesn’t hurt us to have in the equation.

The supervised training algorithms for training a SVM or MLPposterior phone
classifiers require that we know the correct phone labelq j for each observationot .
We can use the sameembedded training algorithm that we saw for Gaussians; we
start with some initial version of our classifier and a word transcript for the training
sentences. We run a forced alignment of the training data, producing a phone string,
and now we retrain the classifier, and iterate.
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10.5 MODELING VARIATION

As we noted at the beginning of this chapter, variation is oneof the largest obstacles to
successful speech recognition. We mentioned variation dueto speaker differences from
vocal characteristics or dialect, due to genre (such as spontaneous versus read speech),
and due to the environment (such as noisy versus quiet environments). Handling this
kind of variation is a major subject of modern research.

10.5.1 Environmental Variation and Noise

Environmental variation has received the most attention from the speech literature, and
a number of techniques have been suggested for dealing with environmental noise.
Spectral subtraction, for example, is used to combatadditive noise. Additive noiseSPECTRAL

SUBTRACTION

ADDITIVE NOISE is noise from external sound sources like engines or wind or fridges that is relatively
constant and can be modeled as a noise signal that is just added in the time domain to
the speech waveform to produce the observed signal. In spectral subtraction, we esti-
mate the average noise during non-speech regions and then subtract this average value
from the speech signal. Interestingly, speakers often compensate for high background
noise levels by increasing their amplitude, F0, and formantfrequencies. This change
in speech production due to noise is called theLombard effect, named for EtienneLOMBARD EFFECT

Lombard who first described it in 1911 (Junqua, 1993).
Other noise robustness techniques likecepstral mean normalizationare used toCEPSTRAL MEAN

NORMALIZATION

deal withconvolutional noise, noise introduced by channel characteristics like differ-CONVOLUTIONAL
NOISE

ent microphones. Here we compute the average of the cepstrumover time and subtract
it from each frame; the average cepstrum models the fixed spectral characteristics of
the microphone and the room acoustics (Atal, 1974).

Finally, some kinds of short non-verbal sounds like coughs,loud breathing, and
throat clearing, or environmental sounds like beeps, telephone rings, and door slams,
can be modeled explicitly. For each of these non-verbal sounds, we create a special
phone and add to the lexicon a word consisting only of that phone. We can then use
normal Baum-Welch training to train these phones just by modifying the training data
transcripts to include labels for these new non-verbal ‘words’ (Ward, 1989). These
words also need to be added to the language model; often by just allowing them to
appear in between any word.

10.5.2 Speaker and Dialect Adaptation: Variation due to speaker
differences

Speech recognition systems are generally designed to be speaker-independent, since
it’s rarely practical to collect sufficient training data tobuild a system for a single
user. But in cases where we have enough data to build speaker-dependent systems,
they function better than speaker-independent systems. This only makes sense; we can
reduce the variability and increase the precision of our models if we are guaranteed that
the test data will look more like the training data.

While it is rare to have enough data to train on an individual speaker, we do have
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enough data to train separate models for two important groups of speakers: men ver-
sus women. Since women and men have different vocal tracts and other acoustic and
phonetic characteristics, we can split the training data bygender, and train separate
acoustic models for men and for women. Then when a test sentence comes in, we use
a gender detector to decide if it is male or female, and switchto those acoustic models.
Gender detectors can be built out of binary GMM classifiers based on cepstral features.
Suchgender-dependent acoustic modelingis used in most LVCSR systems.

Although we rarely have enough data to train on a specific speaker, there are tech-
niques that work quite well at adapting the acoustic models to a new speaker very
quickly. For example theMLLR (Maximum Likelihood Linear Regression) tech-MLLR

nique (Leggetter and Woodland, 1995) is used to adapt Gaussian acoustic models to a
small amount of data from a new speaker. The idea is to use the small amount of data
to train a linear transform to warp the means of the Gaussians. MLLR and other such
techniques forspeaker adaptationhave been one of the largest sources of improve-SPEAKER

ADAPTATION

ment in ASR performance in recent years.
The MLLR algorithm begins with a trained acoustic model and asmall adaptation

dataset from a new speaker. The adaptation set can be as smallas 3 sentences or 10
seconds of speech. The idea is to learn a linear transform matrix (W) and a bias vector
(ω) to transform the means of the acoustic model Gaussians. If the old mean of a
Gaussian isµ , the equation for the new meanµ̂ is thus:

µ̂ = Wµ + ω(10.13)

In the simplest case, we can learn a single global transform and apply it to each Gaus-
sian models. The resulting equation for the acoustic likelihood is thus only very slightly
modified:

b j(ot) =
1

√

2π |Σ j|
exp

(

−
1
2
(ot − (Wµ j + ω))TΣ−1

j (ot − (Wµ j + ω))

)

(10.14)

The transform is learned by using linear regression to maximize the likelihood of
the adaptation dataset. We first run forward-backward alignment on the adaptation set
to compute the state occupation probabilitiesξ j(t). We then computeW by solving a
system of simultaneous equations involvingξ j(t). If enough data is available, it’s also
possible to learn a larger number of transforms.

MLLR is an example of thelinear transform approach to speaker adaptation, one
of the three major classes of speaker adaptation methods; the other two areMAP adap-
tation andSpeaker Clustering/Speaker Spaceapproaches. See Woodland (2001) for
a comprehensive survey of speaker adaptation which covers all three families.

MLLR and other speaker adaptation algorithms can also be used to address another
large source of error in LVCSR, the problem of foreign or dialect accented speakers.
Word error rates go up when the test set speaker speaks a dialect or accent (such as
Spanish-accented English or southern accented Mandarin Chinese) that differs from the
(usually standard) training set, Here we can take an adaptation set of a few sentences
from say 10 speakers, and adapt to them as a group, creating anMLLR transform that
addresses whatever characteristics are present in the dialect or accent (Huang et al.,
2000; Tomokiyo and Waibel, 2001; Wang et al., 2003; Zheng et al., 2005).
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Another useful speaker adaptation technique is to control for the differing vocal
tract lengths of speakers. Cues to the speaker’s vocal tractlength are present in the
signal; for example speakers with longer vocal tracts tend to have lower formants.
Vocal tract length can therefore be detected and normalized, in a process calledVTLNVTLN

(Vocal Tract Length Normalization ); see the end notes for details.

10.5.3 Pronunciation Modeling: Variation due to Genre

We said at the beginning of the chapter that recognizing conversational speech is harder
for ASR systems than recognizing read speech. What are the causes of this difference?
Is it the difference in vocabulary? Grammar? Something about the speaker themselves?
Perhaps it’s a fact about the microphones or telephone used in the experiment.

None of these seems to be the cause. In a well-known experiment, Weintraub et al.
(1996) compared ASR performance on natural conversationalspeech versus perfor-
mance on read speech, controlling for the influence of possible causal factors. Pairs of
subjects in the lab had spontaneous conversations on the telephone. Weintraub et al.
(1996) then hand-transcribed the conversations, and invited the participants back into
the lab to read their own transcripts to each other over the same phone lines as if they
were dictating. Both the natural and read conversations were recorded. Now Weintraub
et al. (1996) had two speech corpora from identical transcripts; one original natural
conversation, and one read speech. In both cases the speaker, the actual words, and
the microphone were identical; the only difference was the naturalness or fluency of
the speech. They found that read speech was much easier (WER=29%) than conver-
sational speech (WER=53%). Since the speakers, words, and channel were controlled
for, this difference must be modelable somewhere in the acoustic model or pronuncia-
tion lexicon.

Saraclar et al. (2000) tested the hypothesis that this difficulty with conversational
speech was due to changed pronunciations, i.e., to a mismatch between the phone
strings in the lexicon and what people actually said. Recallfrom Ch. 7 that conver-
sational corpora like Switchboard contain many different pronunciations for words,
(such as 12 different pronunciations forbecauseand hundreds forthe). Saraclar et al.
(2000) showed in an oracle experiment that if a Switchboard recognizer is told which
pronunciations to use for each word, the word error rate drops from 47% to 27%.

If knowing which pronunciation to use improves accuracy, could we improve recog-
nition by simply adding more pronunciations for each word tothe lexicon?

Alas, it turns out that adding multiple pronunciations doesn’t work well, even if the
list of pronunciation is represented as an efficient pronunciation HMM (Cohen, 1989).
Adding extra pronunciations adds more confusability; if a common pronunciation of
the word “of” is the single vowel [ax], it is now very confusable with the word “a”.
Another problem with multiple pronunciations is the use of Viterbi decoding. Recall
our discussion on 2 that since the Viterbi decoder finds the best phone string, rather than
the best word string, it biases against words with many pronunciations. Finally, using
multiple pronunciations to model coarticulatory effects may be unnecessary because
CD phones (triphones) are already quite good at modeling thecontextual effects in
phones due to neighboring phones, like the flapping and vowel-reduction handled by
Fig. ?? (Jurafsky et al., 2001).
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Instead, most current LVCSR systems use a very small number of pronunciations
per word. What is commonly done is to start with a multiple pronunciation lexicon,
where the pronunciations are found in dictionaries or are generated via phonological
rules of the type described in Ch. 7. A forced Viterbi phone alignment is then run of the
training set, using this dictionary. The result of the alignment is a phonetic transcription
of the training corpus, showing which pronunciation was used, and the frequency of
each pronunciation. We can then collapse similar pronunciations (for example if two
pronunciations differ only in a single phone substitution we chose the more frequent
pronunciation). We then chose the maximum likelihood pronunciation for each word.
For frequent words which have multiple high-frequency pronunciations, some systems
chose multiple pronunciations, and annotate the dictionary with the probability of these
pronunciations; the probabilities are used in computing the acoustic likelihood (Cohen,
1989; Hain et al., 2001; Hain, 2002).

Finding a better method to deal with pronunciation variation remains an unsolved
research problem. One promising avenue is to focus on non-phonetic factors that affect
pronunciation. For example words which are highly predictable, or at the beginning
or end of intonation phrases, or are followed by disfluencies, are pronounced very
differently (Jurafsky et al., 1998; Fosler-Lussier and Morgan, 1999; Bell et al., 2003).
Fosler-Lussier (1999) shows an improvement in word error rate by using these sorts
of factors to predict which pronunciation to use. Another exciting line of research
in pronunciation modeling uses a dynamic Bayesian network to model the complex
overlap in articulators that produces phonetic reduction (Livescu and Glass, 2004b,
2004a).

Another important issue in pronunciation modeling is dealing with unseen words.
In web-based applications such as telephone-based interfaces to the Web, the recog-
nizer lexicon must be automatically augmented with pronunciations for the millions
of unseen words, particularly names, that occur on the Web. Grapheme-to-phoneme
techniques like those described in Sec.??are used to solve this problem.

10.6 METADATA : BOUNDARIES, PUNCTUATION, AND DISFLUEN-
CIES

The output of the speech recognition process as we have described it so far is just
a string of raw words. Consider the following sample gold-standard transcript (i.e.,
assuming perfect word recognition) of part of a dialogue (Jones et al., 2003):

yeah actually um i belong to a gym down here a gold’s gym uh-huhand uh
exercise i try to exercise five days a week um and i usually do that uh what type
of exercising do you do in the gym

Compare the difficult transcript above with the following much clearer version:

A: Yeah I belong to a gym down here. Gold’s Gym. And I try to exercise five
days a week. And I usually do that.

B: What type of exercising do you do in the gym?
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The raw transcript is not divided up among speakers, there isno punctuation or
capitalization, and disfluencies are scattered among the words. A number of studies
have shown that such raw transcripts are harder for people toread Jones et al. (2003,
2005) and that adding, for example, commas back into the transcript improve sthe
accuracy of information extraction algorithms on the transcribed text (Makhoul et al.,
2005; Hillard et al., 2006). Post-processing ASR output involves tasks including the
following:

diarization: Many speech tasks have multiple speakers, such as telephoneconver-DIARIZATION

sations, business meetings, and news reports (with multiple broadcasters). Di-
arization is the task of breaking up a speech file by speaker assigning parts of the
transcript to the relevant speakers, like theA: andB: labels above.

sentence boundary detection:We discussed the task of breaking speech into sen-SENTENCE
SEGMENTATION

tences (sentence segmentation) in Ch. 3 and Ch. 8. But for those tasks we already
add punctuation like periods to help us; from speech we don’talready have punc-
tuation, just words. Sentence segmentation from speech hasthe added difficulty
that the transcribed words will be errorful, but has the advantage that prosodic
features like pauses and sentence-final intontation can be used as cues.

truecasing: Words in a clean transcript need to have sentence-initial words start-TRUECASING

ing with an upper-case letter, acronyms all in capitals, andso on. Truecasing
is the task of assigning the correct case for a word, and is often addressed as
a HMM classification task like part-of-speech tagging, withhidden states like
ALL -LOWER CASE, UPPER-CASE-INITIAL , all-caps, and so on.

punctuation detection: In addition to segmenting sentences, we need to choosePUNCTUATION
DETECTION

sentence-final punctuation (period, question mark, exclamation mark), and in-
sert commas and quotation marks and so on.

disfluency detection:Disfluencies can be removed from a transcript for readability,DISFLUENCY
DETECTION

or at least marked off with commas or font changes. Since standard recogniz-
ers don’t actually include disfluencies (like word fragments) in their transcripts,
disfluency detection algorithms can also play an important role in avoiding the
misrecognized words that may result.

Marking these features (punctuation, boundaries, diarization) in the text output is
often calledmetadataor sometimesrich transcription . Let’s look at a couple of theseMETADATA

RICH
TRANSCRIPTION

tasks in slightly more detail.
Sentence segmentationcan be modeled as a binary classification task, in which

each boundary between two words is judged as a sentence boundary or as sentence-
internal. Such classifiers can use similar features to the sentence segmentation dis-
cussed in Sec.??, such as words and part-of-speech tags around each candidate bound-
ary, or length features such as the distance from the previously found boundary. We
can also make use of prosodic features, especially pause duration, word duration (recall
that sentence-final words are lengthened), and pitch movements.

Fig. 10.17 shows the candidate boundary locations in a sample sentence. Com-
monly extracted features include:

pause features:duration of the interword pause at the candidate boundary.
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after a powerful earthquake hit last night   (pause)  at eleven we bring you live coverage

200ms200ms 200ms200ms

SENTENCE
BOUNDARY

Figure 10.17 Candidate sentence boundaries computed at each inter-wordboundary,
showing prosodic feature extraction regions. After Shriberg et al. (2000).

duration features: durations of the phone and rime (nucleus plus coda) preceding
the candidate boundary. Since some phones are inherently longer than others,
each phone is normalized to the mean duration for that phone.

F0 features: the change in pitch across the boundary; sentence boundaries often
havepitch reset (an abrupt change in pitch), while non-boundaries are more
likely to have continuous pitch across the boundary. Another useful F0 feature
is thepitch range of the preboundary word; sentences often end with afinal fall
(Sec.??) which is close to the speaker’s F0 baseline.

Forpunctuation detection, similar features are used as for sentence boundary de-
tection, but with multiple hidden classes (comma, sentence-final question mark, quota-
tion mark, no punctuation). instead of just two.

For both of these tasks, instead of a simple binary classifier, sequence informa-
tion can be incorporated by modeling sentence segmentationas an HMM in which the
hidden states correspond to sentence boundary or non-boundary decisions. We will
describe methods for combining prosodic and lexical features in more detail when we
introduce dialogue act detection in Sec.??.

Recall from Sec.?? thatdisfluenciesor repair in conversation include phenomenaDISFLUENCIES

REPAIR like the following:

Disfluency type Example
fillers (or filled pauses): But, uh, that was absurd
word fragments A guy went to ad-, a landfill
repetitions: it was just achange of, change oflocation
restarts it’s – I find it very strange

The ATIS sentence in Fig. 10.18 shows examples of a restart and the filler uh,
showing the

Detection methods for disfluencies are very similar to detecting sentence bound-
aries; a classifier is trained to make a decision at each word boundary, using both text
and prosodic features. HMM and CRF classifiers are commonly used, and features
are quite similar to the features for boundary detection, including neighoring words
and part-of-speech tags, the duration of pauses at the word boundary, the duration of
the word and phones preceding the boundary, the difference in pitch values across the
boundary, and so on.

For detecting fragments, features for detecting voice quality are used (Liu, 2004),
such asjitter , a measure of perturbation in the pitch period (Rosenberg, 1971),spectralJITTER
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Figure 10.18 Repeated from Fig.??An example of a disfluency (after Shriberg (1994); terminology is from
Levelt (1983)).

tilt , the slope of the spectrum, (see Sec.??), andopen quotient, the percentage of theSPECTRAL TILT

OPEN QUOTIENT glottal cycle in which the vocal folds are open (Fant, 1997).

10.7 SPEECHRECOGNITION BY HUMANS

Humans are of course much better at speech recognition than machines; current ma-
chines are roughly about five times worse than humans on cleanspeech, and the gap
seems to increase with noisy speech.

Speech recognition in humans shares some features with ASR algorithms. We men-
tioned above that signal processing algorithms like PLP analysis (Hermansky, 1990)
were in fact inspired by properties of the human auditory system. In addition, three
properties of humanlexical access(the process of retrieving a word from the mentalLEXICAL ACCESS

lexicon) are also true of ASR models:frequency, parallelism, andcue-based pro-
cessing. For example, as in ASR with itsN-gram language models, human lexical
access is sensitive to wordfrequency. High-frequency spoken words are accessed
faster or with less information than low-frequency words. They are successfully rec-
ognized in noisier environments than low frequency words, or when only parts of the
words are presented (Howes, 1957; Grosjean, 1980; Tyler, 1984, inter alia). Like ASR
models, human lexical access isparallel: multiple words are active at the same time
(Marslen-Wilson and Welsh, 1978; Salasoo and Pisoni, 1985,inter alia).

Finally, human speech perception iscue based: speech input is interpreted by in-
tegrating cues at many different levels. Human phone perception combines acous-
tic cues, such as formant structure or the exact timing of voicing, (Oden and Mas-
saro, 1978; Miller, 1994) visual cues, such as lip movement (McGurk and Macdon-
ald, 1976; Massaro and Cohen, 1983; Massaro, 1998) and lexical cues such as the
identity of the word in which the phone is placed (Warren, 1970; Samuel, 1981; Con-
nine and Clifton, 1987; Connine, 1990). For example, in whatis often called the
phoneme restoration effect, Warren (1970) took a speech sample and replaced one

PHONEME
RESTORATION

EFFECT

phone (e.g. the [s] inlegislature) with a cough. Warren found that subjects listening
to the resulting tape typically heard the entire wordlegislatureincluding the [s], and
perceived the cough as background. In theMcGurk effect , (McGurk and Macdon-MCGURK EFFECT

ald, 1976) showed that visual input can interfere with phoneperception, causing us to
perceive a completely different phone. They showed subjects a video of someone say-
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ing the syllablega in which the audio signal was dubbed instead with someone saying
the syllableba. Subjects reported hearing something likeda instead. It is definitely
worth trying this out yourself from video demos on the web; see for examplehttp:
//www.haskins.yale.edu/featured/heads/mcgurk.html. Other cues
in human speech perception include semanticword association(words are accessedWORD ASSOCIATION

more quickly if a semantically related word has been heard recently) andrepetition
priming (words are accessed more quickly if they themselves have just been heard).REPETITION PRIMING

The intuitions of both these results are incorporated into recent language models dis-
cussed in Ch. 4, such as the cache model of Kuhn and De Mori (1990), which models
repetition priming, or the trigger model of Rosenfeld (1996) and the LSA models of
Coccaro and Jurafsky (1998) and Bellegarda (1999), which model word association.
In a fascinating reminder that good ideas are never discovered only once, Cole and
Rudnicky (1983) point out that many of these insights about context effects on word
and phone processing were actually discovered by William Bagley (1901). Bagley
achieved his results, including an early version of the phoneme restoration effect, by
recording speech on Edison phonograph cylinders, modifying it, and presenting it to
subjects. Bagley’s results were forgotten and only rediscovered much later.2

One difference between current ASR models and human speech recognition is the
time-course of the model. It is important for the performance of the ASR algorithm
that the the decoding search optimizes over the entire utterance. This means that the
best sentence hypothesis returned by a decoder at the end of the sentence may be very
different than the current-best hypothesis, halfway into the sentence. By contrast, there
is extensive evidence that human processing ison-line: people incrementally segmentONLINE

and utterance into words and assign it an interpretation as they hear it. For example,
Marslen-Wilson (1973) studiedclose shadowers: people who are able to shadow (re-
peat back) a passage as they hear it with lags as short as 250 ms. Marslen-Wilson
found that when these shadowers made errors, they were syntactically and semanti-
cally appropriate with the context, indicating that word segmentation, parsing, and in-
terpretation took place within these 250 ms. Cole (1973) andCole and Jakimik (1980)
found similar effects in their work on the detection of mispronunciations. These results
have led psychological models of human speech perception (such as the Cohort model
(Marslen-Wilson and Welsh, 1978) and the computational TRACE model (McClelland
and Elman, 1986)) to focus on the time-course of word selection and segmentation.
The TRACE model, for example, is a connectionist interactive-activation model, based
on independent computational units organized into three levels: feature, phoneme, and
word. Each unit represents a hypothesis about its presence in the input. Units are acti-
vated in parallel by the input, and activation flows between units; connections between
units on different levels are excitatory, while connections between units on single level
are inhibitatory. Thus the activation of a word slightly inhibits all other words.

We have focused on the similarities between human and machine speech recogni-
tion; there are also many differences. In particular, many other cues have been shown
to play a role in human speech recognition but have yet to be successfully integrated
into ASR. The most important class of these missing cues is prosody. To give only
one example, Cutler and Norris (1988), Cutler and Carter (1987) note that most mul-

2 Recall the discussion on page?? of multiple independent discovery in science.
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tisyllabic English word tokens have stress on the initial syllable, suggesting in their
metrical segmentation strategy (MSS) that stress should beused as a cue for word
segmentation. Another difference is that human lexical access exhibitsneighborhood
effects (the neighborhood of a word is the set of words which closely resemble it).
Words with large frequency-weighted neighborhoods are accessed slower than words
with less neighbors (Luce et al., 1990). Current models of ASR don’t generally focus
on this word-level competition.

10.8 SUMMARY

• We introduced two advanced decoding algorithms: The multipass (N-best or
lattice) decoding algorithm, andstackor A∗ decoding.

• Advanced acoustic models are based on context-dependenttriphones rather than
phones. Because the complete set of triphones would be too large, we use a
smaller number of automatically clustered triphones instead.

• Acoustic models can beadaptedto new speakers.

• Pronunciation variation is a source of errors in human-human speech recogni-
tion, but one that is not successfully handled by current technology.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

See the previous chapter for most of the relevant speech recognition history. Note that
although stack decoding is equivalent to theA∗ searchdeveloped in artificial intelli-A

∗
SEARCH

gence, the stack decoding algorithm was developed independently in the information
theory literature and the link with AI best-first search was noticed only later (Jelinek,
1976). Useful references on vocal tract length normalization include (Cohen et al.,
1995; Wegmann et al., 1996; Eide and Gish, 1996; Lee and Rose,1996; Welling et al.,
2002; Kim et al., 2004).

There are many new directions in current speech recognitionresearch involving
alternatives to the HMM model. For example,there are new architectures based on
graphical models (dynamic bayes nets, factorial HMMs, etc)(Zweig, 1998; Bilmes,
2003; Livescu et al., 2003; Bilmes and Bartels, 2005; Frankel et al., 2007). There are
attempts to replace theframe-basedHMM acoustic model (that make a decision aboutFRAMEBASED

each frame) withsegment-based recognizersthat attempt to detect variable-lengthSEGMENTBASED
RECOGNIZERS

segments (phones) (Digilakis, 1992; Ostendorf et al., 1996; Glass, 2003). Landmark-
based recognizers and articulatory phonology-based recognizers focus on the use of
distinctive features, defined acoustically or articulatorily (respectively) (Niyogi et al.,
1998; Livescu, 2005; Hasegawa-Johnson and et al, 2005; Juneja and Espy-Wilson,
2003).

See Shriberg (2005) for an overview of metadata research. Shriberg (2002) and
Nakatani and Hirschberg (1994) are computationally-focused corpus studies of the
acoustic and lexical properties of disfluencies. Early papers on sentence segmenta-
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tion from speech include Wang and Hirschberg (1992), Ostendorf and Ross (1997) See
Shriberg et al. (2000), Liu et al. (2006a) for recent work on sentence segmentation,
Kim and Woodland (2001), Hillard et al. (2006) on punctuation detection, Nakatani
and Hirschberg (1994), Honal and Schultz (2003, 2005), Lease et al. (2006), and a
number of papers that jointly address multiple metadata extraction tasks (Heeman and
Allen, 1999; Liu et al., 2005, 2006b).

EXERCISES

10.1 Implement the Stack decoding algorithm of Fig. 10.7 on page 9. Pick a very sim-
pleh∗ function like an estimate of the number of words remaining inthe sentence.

10.2 Modify the forward algorithm of Fig.?? from Ch. 9 to use the tree-structured
lexicon of Fig. 10.10 on page 12.

10.3 Many ASR systems, including the Sonic and HTK systems, use a different al-
gorithm for Viterbi called thetoken-passing Viterbi algorithm (Young et al., 1989).
Read this paper and implement this algorithm.



DRAFT

30 Chapter 10. Speech Recognition: Advanced Topics

Atal, B. S. (1974). Effectiveness of linear prediction charac-
teristics of the speech wave for automatic speaker identifica-
tion and verification.The Journal of the Acoustical Society of
America, 55(6), 1304–1312.

Aubert, X. and Ney, H. (1995). Large vocabulary continu-
ous speech recognition using word graphs. InIEEE ICASSP,
Vol. 1, pp. 49–52.

Austin, S., Schwartz, R., and Placeway, P. (1991). The forward-
backward search algorithm. InIEEE ICASSP-91, Vol. 1, pp.
697–700.

Bagley, W. C. (1900–1901). The apperception of the spoken
sentence: A study in the psychology of language.The Ameri-
can Journal of Psychology, 12, 80–130. †.

Bahl, L. R., Brown, P. F., de Souza, P. V., and Mercer, R. L.
(1986). Maximum mutual information estimation of hidden
Markov model parameters for speech recognition. InIEEE
ICASSP-86, Tokyo, pp. 49–52.

Bahl, L. R., de Souza, P. V., Gopalakrishnan, P. S., Nahamoo,
D., and Picheny, M. A. (1992). A fast match for continu-
ous speech recognition using allophonic models. InIEEE
ICASSP-92, San Francisco, CA, pp. I.17–20.

Bell, A., Jurafsky, D., Fosler-Lussier, E., Girand, C., Gregory,
M. L., and Gildea, D. (2003). Effects of disfluencies, pre-
dictability, and utterance position on word form variationin
English conversation.Journal of the Acoustical Society of
America, 113(2), 1001–1024.

Bellegarda, J. R. (1999). Speech recognition experiments using
multi-span statistical language models. InIEEE ICASSP-99,
pp. 717–720.

Bilmes, J. (2003). Buried Markov Models: A graphical-
modeling approach to automatic speech recognition.Com-
puter Speech and Language, 17(2-3).

Bilmes, J. and Bartels, C. (2005). Graphical model architec-
tures for speech recognition.IEEE Signal Processing Maga-
zine, 22(5), 89–100.

Bourlard, H. and Morgan, N. (1994).Connectionist Speech
Recognition: A Hybrid Approach. Kluwer Press.

Chou, W., Lee, C. H., and Juang, B. H. (1993). Minimum error
rate training based onn-best string models. InIEEE ICASSP-
93, pp. 2.652–655.

Coccaro, N. and Jurafsky, D. (1998). Towards better integra-
tion of semantic predictors in statistical language modeling.
In ICSLP-98, Sydney, Vol. 6, pp. 2403–2406.

Cohen, J., Kamm, T., and Andreou, A. (1995). Vocal tract nor-
malization in speech recognition: compensating for system-
atic systematic speaker variability.Journal of the Acoustical
Society of America, 97(5), 3246–3247.

Cohen, M. H. (1989). Phonological Structures for Speech
Recognition. Ph.D. thesis, University of California, Berkeley.

Cole, R. A. (1973). Listening for mispronunciations: A mea-
sure of what we hear during speech.Perception and Psy-
chophysics, 13, 153–156.

Cole, R. A. and Jakimik, J. (1980). A model of speech per-
ception. In Cole, R. A. (Ed.),Perception and Production of
Fluent Speech, pp. 133–163. Lawrence Erlbaum.

Cole, R. A. and Rudnicky, A. I. (1983). What’s new in speech
perception? The research and ideas of William Chandler
Bagley.Psychological Review, 90(1), 94–101.

Connine, C. M. (1990). Effects of sentence context and lexi-
cal knowledge in speech processing. In Altmann, G. T. M.
(Ed.), Cognitive Models of Speech Processing, pp. 281–294.
MIT Press.

Connine, C. M. and Clifton, C. (1987). Interactive use of lexi-
cal information in speech perception.Journal of Experimental
Psychology: Human Perception and Performance, 13, 291–
299.

Cutler, A. and Carter, D. M. (1987). The predominance of
strong initial syllables in the English vocabulary.Computer
Speech and Language, 2, 133–142.

Cutler, A. and Norris, D. (1988). The role of strong syllables in
segmentation for lexical access.Journal of Experimental Psy-
chology: Human Perception and Performance, 14, 113–121.

Deng, L., Lennig, M., Seitz, F., and Mermelstein, P. (1990).
Large vocabulary word recognition using context-dependent
allophonic hidden Markov models.Computer Speech and
Language, 4, 345–357.

Digilakis, V. (1992).Segment-based stochastic models of spec-
tral dynamics for continuous speech recognition. Ph.D. thesis,
Boston University.

Doumpiotis, V., Tsakalidis, S., and Byrne, W. (2003a). Dis-
criminative training for segmental minimum bayes-risk de-
coding. InIEEE ICASSP-03.

Doumpiotis, V., Tsakalidis, S., and Byrne, W. (2003b). Lattice
segmentation and minimum bayes risk discriminative train-
ing. In EUROSPEECH-03.

Eide, E. M. and Gish, H. (1996). A parametric approach to vo-
cal tract length normalization. InIEEE ICASSP-96, Atlanta,
GA, pp. 346–348.

Evermann, G. and Woodland, P. C. (2000). Large vocabu-
lary decoding and confidence estimation using word poste-
rior probabilities. InIEEE ICASSP-00, Istanbul, Vol. III, pp.
1655–1658.

Fant, G. (1997). The voice source in connected speech.Speech
Communication, 22(2-3), 125–139.

Fosler-Lussier, E. (1999). Multi-level decision trees forstatic
and dynamic pronunciation models. InEUROSPEECH-99,
Budapest.

Fosler-Lussier, E. and Morgan, N. (1999). Effects of speaking
rate and word predictability on conversational pronunciations.
Speech Communication, 29(2-4), 137–158.

Frankel, J., Wester, M., and King, S. (2007). Articulatory fea-
ture recognition using dynamic bayesian networks.Computer
Speech and Language, 21(4), 620–640.

Glass, J. (2003). A probabilistic framework for segment-based
speech recognition.Computer Speech and Language,, 17(1–
2), 137–152.



DRAFT

Section 10.8. Summary 31

Grosjean, F. (1980). Spoken word recognition processes and
the gating paradigm.Perception and Psychophysics, 28, 267–
283.

Gupta, V., Lennig, M., and Mermelstein, P. (1988). Fast search
strategy in a large vocabulary word recognizer.Journal of the
Acoustical Society of America, 84(6), 2007–2017.

Hain, T. (2002). Implicit pronunciation modelling in asr. In
Proceedings of ISCA Pronunciation Modeling Workshop.

Hain, T., Woodland, P. C., Evermann, G., and Povey, D. (2001).
New features in the CU-HTK system for transcription of con-
versational telephone speech. InIEEE ICASSP-01, Salt Lake
City, Utah.

Hasegawa-Johnson, M. and et al (2005). Landmark-based
speech recognition: Report of the 2004 Johns Hopkins Sum-
mer Workshop. InIEEE ICASSP-05.

Heeman, P. A. and Allen, J. (1999). Speech repairs, intona-
tional phrases and discourse markers: Modeling speakers’ ut-
terances in spoken dialog.Computational Linguistics, 25(4).

Hermansky, H. (1990). Perceptual linear predictive (PLP) anal-
ysis of speech.Journal of the Acoustical Society of America,
87(4), 1738–1752.

Hillard, D., Huang, Z., Ji, H., Grishman, R., Hakkani-Tür,D.,
Harper, M., Ostendorf, M., and Wang, W. (2006). Impact of
automatic comma prediction on pos/name tagging of speech.
In Proceedings of IEEE/ACL 06 Workshop on Spoken Lan-
guage Technology, Aruba.

Honal, M. and Schultz, T. (2003). Correction of disfluencies
in spontaneous speech using a noisy-channel approach. In
EUROSPEECH-03.

Honal, M. and Schultz, T. (2005). Automatic disfluency re-
moval on recognized spontaneous speech - rapid adaptation
to speaker-dependent disfluencies. InIEEE ICASSP-05.

Howes, D. (1957). On the relation between the intelligibility
and frequency of occurrence of English words.Journal of the
Acoustical Society of America, 29, 296–305.

Huang, C., Chang, E., Zhou, J., and Lee, K.-F. (2000). Ac-
cent modeling based on pronunciation dictionary adaptation
for large vocabulary mandarin speech recognition. InICSLP-
00, Beijing, China.

Jelinek, F. (1969). A fast sequential decoding algorithm using
a stack.IBM Journal of Research and Development, 13, 675–
685.

Jelinek, F. (1976). Continuous speech recognition by statistical
methods.Proceedings of the IEEE, 64(4), 532–557.

Jelinek, F. (1997).Statistical Methods for Speech Recognition.
MIT Press.

Jelinek, F., Mercer, R. L., and Bahl, L. R. (1975). Design of a
linguistic statistical decoder for the recognition of continuous
speech.IEEE Transactions on Information Theory, IT-21(3),
250–256.

Jones, D. A., Gibson, E., Shen, W., Granoien, N., Herzog, M.,
Reynolds, D., and Weinstein, C. (2005). Measuring human
readability of machine generated text: Three case studies in

speech recognition and machine translation. InIEEE ICASSP-
05, pp. 18–23.

Jones, D. A., Wolf, F., Gibson, E., Williams, E., Fedorenko,
E., Reynolds, D. A., and Zissman, M. (2003). Measuring
the readability of automatic speech-to-text transcripts.In
EUROSPEECH-03, pp. 1585–1588.

Juneja, A. and Espy-Wilson, C. (2003). Speech segmenta-
tion using probabilistic phonetic feature hierarchy and support
vector machines. InIJCNN 2003.

Junqua, J. C. (1993). The Lombard reflex and its role on hu-
man listeners and automatic speech recognizers.Journal of
the Acoustical Society of America, 93(1), 510–524.

Jurafsky, D., Ward, W., Jianping, Z., Herold, K., Xiuyang, Y.,
and Sen, Z. (2001). What kind of pronunciation variation is
hard for triphones to model?. InIEEE ICASSP-01, Salt Lake
City, Utah, pp. I.577–580.

Jurafsky, D., Bell, A., Fosler-Lussier, E., Girand, C., andRay-
mond, W. D. (1998). Reduction of English function words in
Switchboard. InICSLP-98, Sydney, Vol. 7, pp. 3111–3114.

Kim, D., Gales, M., Hain, T., and Woodland, P. C. (2004). Us-
ing vtln for broadcast news transcription. InICSLP-04, Jeju,
South Korea.

Kim, J. and Woodland, P. (2001). The use of prosody in a com-
bined system for punctuation generation and speech recogni-
tion. In EUROSPEECH-01, pp. 2757–2760.

Klovstad, J. W. and Mondshein, L. F. (1975). The CASPERS
linguistic analysis system.IEEE Transactions on Acoustics,
Speech, and Signal Processing, ASSP-23(1), 118–123.

Kuhn, R. and De Mori, R. (1990). A cache-based natural lan-
guage model for speech recognition.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12(6), 570–583.

Kumar, S. and Byrne, W. (2002). Risk based lattice cutting
for segmental minimum Bayes-risk decoding. InICSLP-02,
Denver, CO.

Lease, M., Johnson, M., and Charniak, E. (2006). Recognizing
disfluencies in conversational speech.IEEE Transactions on
Audio, Speech and Language Processing, 14(5), 1566–1573.

Lee, L. and Rose, R. C. (1996). Speaker normalisation using ef-
ficient frequency warping procedures. InICASSP96, pp. 353–
356.

Leggetter, C. J. and Woodland, P. C. (1995). Maximum likeli-
hood linear regression for speaker adaptation ofHMMs.Com-
puter Speech and Language,, 9(2), 171–186.

Levelt, W. J. M. (1983). Monitoring and self-repair in speech.
Cognition, 14, 41–104.

Liu, Y., Chawla, N. V., Harper, M. P., Shriberg, E., and Stolcke,
A. (2006a). A study in machine learning from imbalanced
data for sentence boundary detection in speech.Computer
Speech & Language, 20(4), 468–494.

Liu, Y., Shriberg, E., Stolcke, A., Hillard, D., Ostendorf,M.,
and Harper, M. (2006b). Enriching speech recognition with
automatic detection of sentence boundaries and disfluencies.
IEEE Transactions on Audio, Speech, and Language Process-
ing, 14(5), 1526–1540.



DRAFT

32 Chapter 10. Speech Recognition: Advanced Topics

Liu, Y., Shriberg, E., Stolcke, A., Peskin, B., Ang, J., Hillard,
D., Ostendorf, M., Tomalin, M., Woodland, P. C., and Harper,
M. P. (2005). Structural metadata research in the ears pro-
gram. InIEEE ICASSP-05.

Liu, Y. (2004). Word fragment identification using acoustic-
prosodic features in conversational speech. InHLT-NAACL-
03 student research workshop, pp. 37–42.

Livescu, K., Glass, J., and Bilmes, J. (2003). Hidden feature
modeling for speech recognition using dynamic bayesian net-
works. InEUROSPEECH-03.

Livescu, K. (2005).Feature-Based Pronuncaition Modeling for
Automatic Speech Recognition. Ph.D. thesis, Massachusetts
Institute of Technology.

Livescu, K. and Glass, J. (2004a). Feature-based pronunciation
modeling for speech recognition. InHLT-NAACL-04, Boston,
MA.

Livescu, K. and Glass, J. (2004b). Feature-based pronunciation
modeling with trainable asynchrony probabilities. InICSLP-
04, Jeju, South Korea.

Luce, P. A., Pisoni, D. B., and Goldfinger, S. D. (1990). Simi-
larity neighborhoods of spoken words. In Altmann, G. T. M.
(Ed.), Cognitive Models of Speech Processing, pp. 122–147.
MIT Press.

Makhoul, J., Baron, A., Bulyko, I., Nguyen, L., Ramshaw, L.,
Stallard, D., Schwartz, R., and Xiang, B. (2005). The effects
of speech recognition and punctuation on information extrac-
tion performance. InINTERSPEECH-05, Lisbon, Portugal,
pp. 57–60.

Mangu, L., Brill, E., and Stolcke, A. (2000). Finding consen-
sus in speech recognition: Word error minimization and other
applications of confusion networks.Computer Speech and
Language, 14(4), 373–400.

Marslen-Wilson, W. and Welsh, A. (1978). Processing interac-
tions and lexical access during word recognition in continuous
speech.Cognitive Psychology, 10, 29–63.

Marslen-Wilson, W. (1973). Linguistic structure and speech
shadowing at very short latencies.Nature, 244, 522–523.

Massaro, D. W. (1998).Perceiving Talking Faces: From Speech
Perception to a Behavioral Principle. MIT Press.

Massaro, D. W. and Cohen, M. M. (1983). Evaluation and in-
tegration of visual and auditory information in speech percep-
tion. Journal of Experimental Psychology: Human Perception
and Performance, 9, 753–771.

McClelland, J. L. and Elman, J. L. (1986). Interactive processes
in speech perception: The TRACE model. In McClelland,
J. L., Rumelhart, D. E., and the PDP Research Group (Eds.),
Parallel Distributed Processing Volume 2: Psychological and
Biological Models, pp. 58–121. MIT Press.

McDermott, E. and Hazen, T. (2004). Minimum Classification
Error training of landmark models for real-time continuous
speech recognition. InIEEE ICASSP-04.

McGurk, H. and Macdonald, J. (1976). Hearing lips and seeing
voices.Nature, 264, 746–748.

Miller, J. L. (1994). On the internal structure of phonetic cate-
gories: a progress report.Cognition, 50, 271–275.

Murveit, H., Butzberger, J. W., Digalakis, V. V., and Weintraub,
M. (1993). Large-vocabulary dictation using SRI’s decipher
speech recognition system: Progressive-search techniques. In
IEEE ICASSP-93, Vol. 2, pp. 319–322. IEEE.

Nadas, A. (1983). A decision theorectic formulation of a train-
ing problem in speech recognition and a comparison of train-
ing by unconditional versus conditional maximum likelihood.
IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, 31(4), 814–817.

Nakatani, C. and Hirschberg, J. (1994). A corpus-based study
of repair cues in spontaneous speech.Journal of the Acousti-
cal Society of America, 95(3), 1603–1616.

Ney, H., Haeb-Umbach, R., Tran, B.-H., and Oerder, M. (1992).
Improvements in beam search for 10000-word continuous
speech recognition. InIEEE ICASSP-92, San Francisco, CA,
pp. I.9–12. IEEE.

Nguyen, L. and Schwartz, R. (1999). Single-tree method for
grammar-directed search. InIEEE ICASSP-99, pp. 613–616.
IEEE.

Nilsson, N. J. (1980).Principles of Artificial Intelligence. Mor-
gan Kaufmann, Los Altos, CA.

Niyogi, P., Burges, C., and Ramesh, P. (1998). Distinctive
feature detection using support vector machines. InIEEE
ICASSP-98.

Normandin, Y. (1996). Maximum mutual information estima-
tion of hidden Markov models. In Lee, C. H., Soong, F. K.,
and Paliwal, K. K. (Eds.),Automatic Speech and Speaker
Recognition, pp. 57–82. Kluwer.

Odell, J. J. (1995).The Use of Context in Large Vocabulary
Speech Recognition. Ph.D. thesis, Queen’s College, Univer-
sity of Cambridge.

Oden, G. C. and Massaro, D. W. (1978). Integration of featural
information in speech perception.Psychological Review, 85,
172–191.

Ortmanns, S., Ney, H., and Aubert, X. (1997). A word graph
algorithm for large vocabulary continuous speech recognition.
Computer Speech and Language,, 11, 43–72.

Ostendorf, M., Digilakis, V., and Kimball, O. (1996). From
HMMs to segment models: A unified view of stochastic mod-
eling for speech recognition.IEEE Transactions on Speech
and Audio, 4(5), 360–378.

Ostendorf, M. and Ross, K. (1997). Multi-level recogni-
tion of intonation labels. In Sagisaka, Y., Campbell, N.,
and Higuchi, N. (Eds.),Computing Prosody: Computational
Models for Processing Spontaneous Speech, chap. 19, pp.
291–308. Springer.

Paul, D. B. (1991). Algorithms for an optimal A∗ search and
linearizing the search in the stack decoder. InIEEE ICASSP-
91, Vol. 1, pp. 693–696. IEEE.

Pearl, J. (1984).Heuristics. Addison-Wesley, Reading, MA.



DRAFT

Section 10.8. Summary 33

Ravishankar, M. K. (1996).Efficient Algorithms for Speech
Recognition. Ph.D. thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh. Available as CMU
CS tech report CMU-CS-96-143.

Rosenberg, A. E. (1971). Effect of Glottal Pulse Shape on the
Quality of Natural Vowels.The Journal of the Acoustical So-
ciety of America, 49, 583–590.

Rosenfeld, R. (1996). A maximum entropy approach to adap-
tive statistical language modeling.Computer Speech and Lan-
guage, 10, 187–228.

Salasoo, A. and Pisoni, D. B. (1985). Interaction of knowledge
sources in spoken word identification.Journal of Memory and
Language, 24, 210–231.

Samuel, A. G. (1981). Phonemic restoration: Insights from a
new methodology.Journal of Experimental Psychology: Gen-
eral, 110, 474–494.

Saraclar, M., Nock, H., and Khudanpur, S. (2000). Pronunci-
ation modeling by sharing gaussian densities across phonetic
models.Computer Speech and Language, 14(2), 137–160.

Schwartz, R. and Austin, S. (1991). A comparison of several
approximate algorithms for finding multiple (N-BEST) sen-
tence hypotheses. Inicassp91, Toronto, Vol. 1, pp. 701–704.
IEEE.

Schwartz, R. and Chow, Y.-L. (1990). The N-best algorithm:
An efficient and exact procedure for finding the N most likely
sentence hypotheses. InIEEE ICASSP-90, Vol. 1, pp. 81–84.
IEEE.

Schwartz, R., Chow, Y.-L., Kimball, O., Roukos, S., Krasnwer,
M., and Makhoul, J. (1985). Context-dependent modeling for
acoustic-phonetic recognition of continuous speech. InIEEE
ICASSP-85, Vol. 3, pp. 1205–1208. IEEE.

Shriberg, E. (2002). To ‘errrr’ is human: ecology and acoustics
of speech disfluencies.Journal of the International Phonetic
Association, 31(1), 153–169.

Shriberg, E. (2005). Spontaneous speech: How people really
talk, and why engineers should care. InINTERSPEECH-05,
Lisbon, Portugal.

Shriberg, E., Stolcke, A., Hakkani-Tür, D., and Tür, G. (2000).
Prosody-based automatic segmentation of speech into sen-
tences and topics.Speech Communication, 32(1-2), 127–154.

Shriberg, E. (1994).Preliminaries to a Theory of Speech Disflu-
encies. Ph.D. thesis, University of California, Berkeley, CA.
(unpublished).

Soong, F. K. and Huang, E.-F. (1990). A tree-trellis based fast
search for finding the n-best sentence hypotheses in continu-
ous speech recognition. InProceedings DARPA Speech and
Natural Language Processing Workshop, Hidden Valley, PA,
pp. 705–708. Also in Proceedings of IEEE ICASSP-91, 705-
708.

Stolcke, A. (2002). Srilm - an extensible language modeling
toolkit. In ICSLP-02, Denver, CO.

Tomokiyo, L. M. and Waibel, A. (2001). Adaptation methods
for non-native speech. InProceedings of Multilinguality in
Spoken Language Processing, Aalborg, Denmark.

Tyler, L. K. (1984). The structure of the initial cohort: Evidence
from gating.Perception & Psychophysics, 36(5), 417–427.

Wang, M. Q. and Hirschberg, J. (1992). Automatic classifica-
tion of intonational phrasing boundaries.Computer Speech
and Language, 6(2), 175–196.

Wang, Z., Schultz, T., and Waibel, A. (2003). Comparison of
acoustic model adaptation techniques on non-native speech.
In IEEE ICASSP, Vol. 1, pp. 540–543.

Ward, W. (1989). Modelling non-verbal sounds for speech
recognition. InHLT ’89: Proceedings of the Workshop on
Speech and Natural Language, Cape Cod, MA, pp. 47–50.

Warren, R. M. (1970). Perceptual restoration of missing speech
sounds.Science, 167, 392–393.

Wegmann, S., McAllaster, D., Orloff, J., and Peskin, B. (1996).
Speaker normalisation on conversational telephone speech. In
IEEE ICASSP-96, Atlanta, GA.

Weintraub, M., Taussig, K., Hunicke-Smith, K., and Snodgras,
A. (1996). Effect of speaking style on LVCSR performance.
In ICSLP-96, Philadelphia, PA, pp. 16–19.

Welling, L., Ney, H., and Kanthak, S. (2002). Speaker adaptive
modeling by vocal tract normalisation.IEEE Transactions on
Speech and Audio Processing, 10, 415–426.

Woodland, P. C., Leggetter, C. J., Odell, J. J., Valtchev, V., and
Young, S. J. (1995). The 1994 htk large vocabulary speech
recognition system. InIEEE ICASSP.

Woodland, P. C. and Povey, D. (2002). Large scale discrimina-
tive training of hidden Markov models for speech recognition.
Computer Speech and Language,, 16, 25–47.

Woodland, P. C. (2001). Speaker adaptation for continuous
density HMMs: A review. In Juncqua, J.-C. and Wellekens,
C. (Eds.),Proceedings of the ITRW ‘Adaptation Methods For
Speech Recognition’, Sophia-Antipolis, France.

Young, S. J. (1984). Generating multiple solutions from con-
nected word dp recognition algorithms.Proceedings of the
Institute of Acoustics, 6(4), 351–354.

Young, S. J., Odell, J. J., and Woodland, P. C. (1994). Tree-
based state tying for high accuracy acoustic modelling. In
Proceedings ARPA Workshop on Human Language Technol-
ogy, pp. 307–312.

Young, S. J., Russell, N. H., and Thornton, J. H. S. (1989). To-
ken passing: A simple conceptual model for connected speech
recognition systems. Tech. rep. CUED/F-INFENG/TR.38,
Cambridge University Engineering Department, Cambridge,
England.

Young, S. J. and Woodland, P. C. (1994). State clustering
in HMM-based continuous speech recognition.Computer
Speech and Language, 8(4), 369–394.

Young, S. J., Evermann, G., Gales, M., Hain, T., Kershaw, D.,
Moore, G., Odell, J. J., Ollason, D., Povey, D., Valtchev, V.,
and Woodland, P. C. (2005).The HTK Book. Cambridge Uni-
versity Engineering Department.

Zheng, Y., Sproat, R., Gu, L., Shafran, I., Zhou, H., Su, Y., Ju-
rafsky, D., Starr, R., and Yoon, S.-Y. (2005). Accent detection



DRAFT

34 Chapter 10. Speech Recognition: Advanced Topics

and speech recognition for shanghai-accented mandarin. In
InterSpeech 2005, Lisbon, Portugal.

Zweig, G. (1998).Speech Recognition with Dynamic Bayesian
Networks. Ph.D. thesis, University of California, Berkeley.


