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INTRODUCTION

Dave Bowman: Open the pod bay doors, HAL.
HAL: I'm sorry Dave, I'm afraid | can’t do that.

Stanley Kubrick and Arthur C. Clarke,
screenplay 0R001: A Space Odyssey

This book is about a new interdisciplinary field variousiledcomputer speech
and language processing@r human language technologyr natural language pro-
cessingor computational linguistics. The goal of this new field is to get computers
to perform useful tasks involving human language, tasksdikabling human-machine
communication, improving human-human communicationirapy doing useful pro-
cessing of text or speech.

CONVERSATIONAL One example of a useful such task isamversational agent The HAL 9000 com-
puter in Stanley Kubrick’s filn2001: A Space Odyss&yone of the most recognizable
characters in twentieth-century cinema. HAL is an artifiaigent capable of such ad-
vanced language-processing behavior as speaking andstemi#ing English, and at a
crucial momentin the plot, even reading lips. It is now clibat HAL's creator Arthur
C. Clarke was a little optimistic in predicting when an acidi agent such as HAL
would be available. But just how far off was he? What wouldkd to create at least
the language-related parts of HAL? We call programs like HiAat converse with hu-

CONVERSATIONAL  mans via natural languagenversational agentr dialogue systemsin this text we

piaocuesystems  study the various components that make up modern convansatigents, including
language inputgutomatic speech recognitiorand natural language understand-
ing) and language outputétural language generationandspeech synthesjs

Let’s turn to another useful language-related task, thataking available to non-
English-speaking readers the vast amount of scientifiainéion on the Web in En-
glish. Or translating for English speakers the hundredsillibms of Web pages written

TrakiSHAEin other languages like Chinese. The goahwdchine translationis to automatically
translate a document from one language to another. Mactanslation is far from
a solved problem; we will cover the algorithms currentlydigethe field, as well as
important component tasks.

Many other language processing tasks are also related #/e¢he Another such

aOEEHoN - task isWeb-based question answeringThis is a generalization of simple web search,
where instead of just typing keywords a user might ask cotamjaestions, ranging
from easy to hard, like the following:
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What does “divergent” mean?

What year was Abraham Lincoln born?

How many states were in the United States that year?

How much Chinese silk was exported to England by the end df8itlecentury?
e What do scientists think about the ethics of human cloning?

Some of these, such definition questions, or simpléctoid questions like dates
and locations, can already be answered by search enginesnBuering more com-
plicated questions might require extracting informatioattis embedded in other text
on a Web page, or doinigference (drawing conclusions based on known facts), or
synthesizing and summarizing information from multipleisees or web pages. In this
text we study the various components that make up moderrrstageling systems of
this kind, includinginformation extraction , word sense disambiguationand so on.

Although the subfields and problems we've described abavealhvery far from
completely solved, these are all very active research améisnany technologies are
already available commercially. In the rest of this chapterbriefly summarize the
kinds of knowledge that is necessary for these tasks (aretotikespell correction,
grammar checking, and so on), as well as the mathematical models that will toe-in
duced throughout the book.

1.1 KNOWLEDGE IN SPEECH ANDLANGUAGE PROCESSING

What distinguishes language processing applications fstirar data processing sys-
tems is their use dtnowledge of languageConsider the Unixvc program, which is
used to count the total number of bytes, words, and lines éxtfile. When used to
count bytes and linesyc is an ordinary data processing application. However, when i
is used to count the words in a file it requitesowledge about what it means to be a
word, and thus becomes a language processing system.

Of course,wc is an extremely simple system with an extremely limited amd i
poverished knowledge of language. Sophisticated contiensa agents like HAL,
or machine translation systems, or robust question-amsgveystems, require much
broader and deeper knowledge of language. To get a feelirthdscope and kind of
required knowledge, consider some of what HAL would neechtmkto engage in the
dialogue that begins this chapter, or for a question ansgeystem to answer one of
the questions above.

HAL must be able to recognize words from an audio signal andetoerate an
audio signal from a sequence of words. These taskp@éch recognitiorandspeech
synthesistasks require knowledge abopihonetics and phonology how words are
pronounced in terms of sequences of sounds, and how eacksef sounds is realized
acoustically.

Note also that unlike Star Trek's Commander Data, HAL is tépaf producing
contractions likd’'m andcan’t. Producing and recognizing these and other variations
of individual words (e.g., recognizing thdborsis plural) requires knowledge about
morphology, the way words break down into component parts that carrynimga like
singularversusplural.
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Moving beyond individual words, HAL must use structural lwiedge to properly
string together the words that constitute its response.ekample, HAL must know
that the following sequence of words will not make sense teeDdespite the fact that
it contains precisely the same set of words as the original.

I'm | do, sorry that afraid Dave I'm can't.

The knowledge needed to order and group words together conakes the heading of
syntax.
Now consider a question answering system dealing with th@dmng question:

e How much Chinese silk was exported to Western Europe by tHeéthe 18th
century?

In order to answer this question we need to know somethingtdéxical seman-
tics, the meaning of all the wordgxport or silk) as well ascompositional semantics
(what exactly constitute¥/estern Europas opposed to Eastern or Southern Europe,
what doesend mean when combined witthe 18th century We also need to know
something about the relationship of the words to the syittattucture. For example
we need to know thdty the end of the 18th centuiya temporal end-point, and not a
description of the agent, as the by-phrase is in the follgwsientence:

e How much Chinese silk was exported to Western Europe by southerchants?

We also need the kind of knowledge that lets HAL determinée[iave’s utterance
is a request for action, as opposed to a simple statement tid@oworld or a question
about the door, as in the following variations of his oridistatement.

REQUEST: HAL, open the pod bay door.
STATEMENT: HAL, the pod bay door is open.
INFORMATION QUESTION: HAL, is the pod bay door open?

Next, despite its bad behavior, HAL knows enough to be ptditBave. It could,
for example, have simply repliedo or No, | won't open the door Instead, it first
embellishes its response with the phradessorry andI’'m afraid, and then only indi-
rectly signals its refusal by sayidgcan't, rather than the more direct (and truthful)
won't.t This knowledge about the kind of actions that speakers thbgntheir use of
sentences ipragmatic or dialogueknowledge.

Another kind of pragmatic adiscourseknowledge is required to answer the ques-
tion

e How many states were in the United Statiest yeaf?

What year ighat yeaf In order to interpret words likihat yeara question answer-
ing system need to examine the the earlier questions that asked; in this case the
previous question talked about the year that Lincoln wag bbhus this task oforef-
erence resolutionmakes use of knowledge about how words tikat or pronouns like
it or sherefer to previous parts of thdiscourse

To summarize, engaging in complex language behavior regwiarious kinds of
knowledge of language:

1 For those unfamiliar with HAL, it is neither sorry nor afraidor is it incapable of opening the door. It
has simply decided in a fit of paranoia to kill its crew.
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e Phonetics and Phonology — knowledge about linguistic seund

e Morphology — knowledge of the meaningful components of vgord
e Syntax — knowledge of the structural relationships betweerds

e Semantics — knowledge of meaning

e Pragmatics — knowledge of the relationship of meaning togtheds and inten-
tions of the speaker.

e Discourse — knowledge about linguistic units larger thamgle utterance

1.2 AWMBIGUITY

AMBIGUITY
AMBIGUOUS

(1.1)
(1.2)
(1.3)
(1.4)
(1.5)

A perhaps surprising fact about these categories of litiglisowledge is that most
tasks in speech and language processing can be viewed bgimgsonbiguity at one
of these levels. We say some inputisibiguousif there are multiple alternative lin-
guistic structures that can be built for it. Consider thekgmosentencemade her duck.
Here’s five different meanings this sentence could havei{se®i can think of some
more), each of which exemplifies an ambiguity at some level:

| cooked waterfowl for her.

| cooked waterfowl belonging to her.

| created the (plaster?) duck she owns.

| caused her to quickly lower her head or body.

| waved my magic wand and turned her into undifferentiatetbviawl.

These different meanings are caused by a number of amlaigukiirst, the wordduck
andher are morphologically or syntactically ambiguous in theirtpaf-speech Duck
can be a verb or a noun, whilteer can be a dative pronoun or a possessive pronoun.
Second, the worthakeis semantically ambiguous; it can mearateor cook Finally,
the verbmakeis syntactically ambiguous in a different wallake can be transitive,
that is, taking a single direct object (1.2), or it can beatisitive, that is, taking two
objects (1.5), meaning that the first objdutf) got made into the second objeduicK.
Finally, makecan take a direct object and a verb (1.4), meaning that trezbbyier) got
caused to perform the verbal actictu€k. Furthermore, in a spoken sentence, there
is an even deeper kind of ambiguity; the first word could haaeneyeor the second
word maid

We will often introduce the models and algorithms we presiemmughout the book
as ways taesolveor disambiguatethese ambiguities. For example deciding whether
duckis a verb or a noun can be solved jpgrt-of-speech tagging Deciding whether
makemeans “create” or “cook” can be solved twprd sense disambiguation Reso-
lution of part-of-speech and word sense ambiguities ardnvpomrtant kinds ofexical
disambiguation. A wide variety of tasks can be framed as lexical disambiguat
problems. For example, a text-to-speech synthesis systeding the wordeadneeds
to decide whether it should be pronounced atead pipeor as inlead me on By
contrast, deciding wheth&erandduckare part of the same entity (as in (1.1) or (1.4))
or are different entity (as in (1.2)) is an examplesghtactic disambiguationand can
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be addressed bgrobabilistic parsing. Ambiguities that don't arise in this particu-
lar example (like whether a given sentence is a statementyoieation) will also be
resolved, for example bypeech act interpretation

1.3 MODELS AND ALGORITHMS

One of the key insights of the last 50 years of research inuagg processing is that
the various kinds of knowledge described in the last sestt@m be captured through
the use of a small number of formal models, or theories. Ihaitly, these models and
theories are all drawn from the standard toolkits of compgt&nce, mathematics, and
linguistics and should be generally familiar to those tediin those fields. Among the
most important models agtate machinesrule systems logic, probabilistic models,
andvector-space models These models, in turn, lend themselves to a small number
of algorithms, among the most important of which atate space searcllgorithms
such aglynamic programming, and machine learning algorithms suchctessifiers
andEM and other learning algorithms.

In their simplest formulation, state machines are formaleis that consist of
states, transitions among states, and an input repreisent&ome of the variations
of this basic model that we will consider adeterministic and non-deterministic
finite-state automataandfinite-state transducers

Closely related to these models are their declarative eopatts: formal rule sys-
tems. Among the more important ones we will considerragular grammars and
regular relations, context-free grammars feature-augmented grammars as well
as probabilistic variants of them all. State machines amchdbrule systems are the
main tools used when dealing with knowledge of phonology;phology, and syntax.

The third model that plays a critical role in capturing knedgde of language is
logic. We will discusdirst order logic, also known as thpredicate calculus as well
as such related formalisms as lambda-calculus, featuretstes, and semantic primi-
tives. These logical representations have traditionadlgrbused for modeling seman-
tics and pragmatics, although more recent work has focuseaave robust techniques
drawn from non-logical lexical semantics.

Probabilistic models are crucial for capturing every kirfdirguistic knowledge.
Each of the other models (state machines, formal rule systand logic) can be aug-
mented with probabilities. For example the state machimelm augmented with
probabilities to become th&eighted automatonor Markov model. We will spend
a significant amount of time ohidden Markov models or HMMs, which are used
everywhere in the field, in part-of-speech tagging, speecbgnition, dialogue under-
standing, text-to-speech, and machine translation. Thie@#gantage of probabilistic
models is their ability to to solve the many kinds of ambiguyitoblems that we dis-
cussed earlier; almost any speech and language processinlgip can be recast as:
“given N choices for some ambiguous input, choose the most probable o

Finally, vector-space models, based on linear algebragnlirdhformation retrieval
and many treatments of word meanings.

Processing language using any of these models typicalbhiag a search through
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a space of states representing hypotheses about an inpspeéth recognition, we
search through a space of phone sequences for the correttigrarsing, we search
through a space of trees for the syntactic parse of an inpigisee. In machine trans-
lation, we search through a space of translation hypotties#ge correct translation of
a sentence into another language. For non-probabilisisfasuch as state machines,
we use well-known graph algorithms such depth-first search For probabilistic
tasks, we use heuristic variants suctbast-first andA* search, and rely on dynamic
programming algorithms for computational tractability.

For many language tasks, we rely on machine learning tdkgsclassifiersand
sequence modelClassifiers likalecision treessupport vector machines Gaussian
Mixture Models andlogistic regressionare very commonly used. A hidden Markov
model is one kind of sequence model; otherdeximum Entropy Markov Models
or Conditional Random Fields

Another tool that is related to machine learning is methodiglal; the use of dis-
tinct training and test sets, statistical techniquesdikess-validation and careful eval-
uation of our trained systems.

1.4 LANGUAGE, THOUGHT, AND UNDERSTANDING

TURING TEST

To many, the ability of computers to process language aBukilas we humans do
will signal the arrival of truly intelligent machines. Thadis of this belief is the fact
that the effective use of language is intertwined with ounegal cognitive abilities.
Among the first to consider the computational implicatioh#@ intimate connection
was Alan Turing (1950). In this famous paper, Turing introgd what has come to be
known as theTuring Test. Turing began with the thesis that the question of what it
would mean for a machine to think was essentially unansveidile to the inherent
imprecision in the termmachineandthink. Instead, he suggested an empirical test, a
game, in which a computer’s use of language would form theslfasdetermining if

it could think. If the machine could win the game it would bdged intelligent.

In Turing’s game, there are three participants: two peopteacomputer. One of
the people is a contestant and plays the role of an intermaged win, the interrogator
must determine which of the other two participants is the ez by asking a series
of questions via a teletype. The task of the machine is to fleelinterrogator into
believing it is a person by responding as a person would toteerogator’s questions.
The task of the second human participant is to convince tteerogator that the other
participant is the machine, and that they are human.

The following interaction from Turing’s paper illustratédse kind of interactions
he had in mind. Clearly a convincing simulation of humanibedn’t require being an
expert in all domains:

Q: Please write me a sonnet on the topic of the Forth Bridge.
A: Count me out on this one. | never could write poetry.

Q: Add 34957 to 70764.

A: (Pause about 30 seconds and then give answer as) 105621.

Turing predicted that roughly by the end of the twentiethtagna machine with 10
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gigabytes of memory would have around a 30% chance of foalimgman interrogator
after 5 minutes of questioning. Given the fact that you can $ome of the people all
the time, it is not clear how rigorous this particular stamidis. Nevertheless, the
critical issue for Turing was that using language as humanis dufficient, by itself,
as an operational test for intelligence.

Surprisingly, many of the issues raised by Turing becanevagit as early as 1966
in the context of the ELIZA program (Weizenbaum, 1966). EAMas an early natu-
ral language processing system capable of carrying on geliniorm of conversation
with a user. Consider the following session with a versiokbfZA that imitated the
responses of a Rogerian psychotherapist.

User:  You are like my father in some ways.

ELIZA1: WHAT RESEMBLANCE DO YOU SEE

Usek:  You are not very aggressive but | think you don’t want me ttasothat.
ELIZA: WHAT MAKES YOU THINK | AM NOT AGGRESSIVE

User:  You don't argue with me.

ELIZA3: WHY DO YOU THINK | DON'T ARGUE WITH YOU

Usen:  You are afraid of me.

ELIZA,: DOES IT PLEASE YOU TO BELIEVE | AM AFRAID OF YOU

As we will discuss in more detail in Ch. 2, ELIZA is a remarkablmple program
that makes use of pattern-matching to process the inputrandlate it into suitable
outputs. The success of this simple technique in this donsaitue to the fact that
ELIZA doesn't actually need t&nowanything to mimic a Rogerian psychotherapist.
As Weizenbaum notes, this is one of the few dialogue genresenthe listener can act
as if they know nothing of the world.

ELIZAs deep relevance to Turing’s ideas is that many peoyie interacted with
ELIZA came to believe that it reallynderstoodthem and their problems. Indeed,
Weizenbaum (1976) notes that many of these people contiaueelieve in ELIZA'S
abilities even after the program’s operation was explaitwethem. In more recent
years, Weizenbaum'’s informal reports have been repeatadsomewhat more con-
trolled setting. Since 1991, an event known as the Loebnige Rompetition has
attempted to put various computer programs to the Turing #@ihough these con-
tests seem to have little scientific interest, a consistesult over the years has been
that even the crudest programs can fool some of the judges ebthe time (Shieber,
1994). Not surprisingly, these results have done nothinguill the ongoing debate
over the suitability of the Turing test as a test for intadlige among philosophers and
Al researchers (Searle, 1980).

Fortunately, for the purposes of this book, the relevandhede results does not
hinge on whether or not computers will ever be intelligemtunderstand natural lan-
guage. Far more important is recent related research inattial sciences that has
confirmed another of Turing’s predictions from the same pape

Nevertheless | believe that at the end of the century the iis@s and
educated opinion will have altered so much that we will beedblspeak
of machines thinking without expecting to be contradicted.

Itis now clear that regardless of what people believe or kabaut the inner workings
of computers, they talk about them and interact with thenoagkentities. People act
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toward computers as if they were people; they are polite émthtreat them as team
members, and expect among other things that computerscsheuwlble to understand
their needs, and be capable of interacting with them ndyurBbr example, Reeves
and Nass (1996) found that when a computer asked a humanlt@m/how well the
computer had been doing, the human gives more positive nesgdhan when a differ-
ent computer asks the same questions. People seemed taideéfreing impolite. In
a different experiment, Reeves and Nass found that pecgdegate computers higher
performance ratings if the computer has recently said dunggflattering to the hu-
man. Given these predispositions, speech and language-Bgstems may provide
many users with the most natural interface for many apjdinat This fact has led to
a long-term focus in the field on the designcoihversational agentsartificial entities
that communicate conversationally.

1.5 THE STATE OF THEART

We can only see a short distance ahead, but we can see plergyltiat needs to
be done.

Alan Turing.

This is an exciting time for the field of speech and languagegssing. The
startling increase in computing resources available tcatlegage computer user, the
rise of the Web as a massive source of information and theasang availability of
wireless mobile access have all placed speech and languagesping applications
in the technology spotlight. The following are examples aing currently deployed
systems that reflect this trend:

e Travelers calling Amtrak, United Airlines and other trayebviders interact
with conversational agents that guide them through thega®mof making reser-
vations and getting arrival and departure information.

e Luxury car makers such as Mercedes-Benz models provideratito speech
recognition and text-to-speech systems that allow driteisontrol their envi-
ronmental, entertainment and navigational systems byevoicsimilar spoken
dialogue system has been deployed by astronauts on thedtiteral Space Sta-
tion .

e Blinkx, and other video search companies, provide seamstices for million of
hours of video on the Web by using speech recognition tedyydb capture the
words in the sound track.

e Google provides cross-language information retrieval tadslation services
where a user can supply queries in their native languageataiseollections in
another language. Google translates the query, finds therelegant pages and
then automatically translates them back to the user'saéivguage.

e Large educational publishers such as Pearson, as well taggtesrvices like
ETS, use automated systems to analyze thousands of stedagsegrading and
assessing them in a manner that is indistinguishable framamgraders.
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e Interactive tutors, based on lifelike animated charactas/e as tutors for chil-
dren learning to read, and as therapists for people dealitig aphasia and
Parkinsons disease. (?, ?)

e Text analysis companies such as Nielsen Buzzmetrics, W@nand Collective
Intellect, provide marketing intelligence based on autmianeasurements of
user opinions, preferences, attitudes as expressed imggluliscussion forums
and and user groups.

1.6 SOME BRIEFHISTORY

Historically, speech and language processing has bederdreary differently in com-
puter science, electrical engineering, linguistics, asgchology/cognitive science.
Because of this diversity, speech and language processtangasses a humber of
different but overlapping fields in these different depaits:computational linguis-
tics in linguistics,natural language processingn computer sciencespeech recogni-
tion in electrical engineering;omputational psycholinguisticsin psychology. This
section summarizes the different historical threads whiate given rise to the field
of speech and language processing. This section will peowidy a sketch; see the
individual chapters for more detail on each area and itsiteriogy.

1.6.1 Foundational Insights: 1940s and 1950s

The earliest roots of the field date to the intellectuallytiferperiod just after World
War Il that gave rise to the computer itself. This period fribyra 1940s through the end
of the 1950s saw intense work on two foundational paradigtims automaton and
probabilistic or information-theoretic models.

The automaton arose in the 1950s out of Turing’s (1936) motialgorithmic
computation, considered by many to be the foundation of modemputer science.
Turing’s work led first to theMcCulloch-Pitts neuron (McCulloch and Pitts, 1943), a
simplified model of the neuron as a kind of computing elemleait tould be described
in terms of propositional logic, and then to the work of Kledi951) and (1956) on
finite automata and regular expressions. Shannon (1948gdmgwobabilistic models
of discrete Markov processes to automata for language. iDggtlue idea of a finite-
state Markov process from Shannon’s work, Chomsky (1958 donsidered finite-
state machines as a way to characterize a grammar, and dafiiméie-state language
as alanguage generated by a finite-state grammar. Thegensattls led to the field of
formal language theory, which used algebra and set theory to define formal languages
as sequences of symbols. This includes the context-freargea, first defined by
Chomsky (1956) for natural languages but independenttodisred by Backus (1959)
and Naur et al. (1960) in their descriptions of the ALGOL gangming language.

The second foundational insight of this period was the agrakent of probabilistic
algorithms for speech and language processing, which ¢tat8kannon’s other con-
tribution: the metaphor of thaoisy channeland decoding for the transmission of
language through media like communication channels anecpagcoustics. Shannon
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also borrowed the concept efhtropy from thermodynamics as a way of measuring
the information capacity of a channel, or the informationtent of a language, and
performed the first measure of the entropy of English usindabilistic techniques.

It was also during this early period that the sound specaoyiwas developed
(Koenig et al., 1946), and foundational research was dornesinumental phonetics
that laid the groundwork for later work in speech recognitioThis led to the first
machine speech recognizers in the early 1950s. In 1952nasers at Bell Labs built
a statistical system that could recognize any of the 10 gliggm a single speaker
(Davis et al., 1952). The system had 10 speaker-dependertspatterns roughly
representing the first two vowel formants in the digits. Thelgieved 97—99% accuracy
by choosing the pattern which had the highest relative tatrom coefficient with the
input.

1.6.2 The Two Camps: 1957-1970

By the end of the 1950s and the early 1960s, speech and lamguacessing had split
very cleanly into two paradigms: symbolic and stochastic.

The symbolic paradigm took off from two lines of researcheTinst was the work
of Chomsky and others on formal language theory and gemegtntax throughoutthe
late 1950s and early to mid 1960s, and the work of many liriigsiand computer sci-
entists on parsing algorithms, initially top-down and battup and then via dynamic
programming. One of the earliest complete parsing systeass4elig Harris’s Trans-
formations and Discourse Analysis Project (TDAP), whiclswaplemented between
June 1958 and July 1959 at the University of Pennsylvaniari$d962)? The sec-
ond line of research was the new field of artificial intelligenIn the summer of 1956
John McCarthy, Marvin Minsky, Claude Shannon, and NatHdRiehester brought
together a group of researchers for a two-month workshoptat they decided to call
artificial intelligence (Al). Although Al always includedminority of researchers fo-
cusing on stochastic and statistical algorithms (inclugdabilistic models and neural
nets), the major focus of the new field was the work on reagpaii logic typified by
Newell and Simon’s work on the Logic Theorist and the GenBrablem Solver. At
this point early natural language understanding systems luélt, These were simple
systems that worked in single domains mainly by a combinatifopattern matching
and keyword search with simple heuristics for reasoningguastion-answering. By
the late 1960s more formal logical systems were developed.

The stochastic paradigm took hold mainly in departmentsasfssics and of elec-
trical engineering. By the late 1950s the Bayesian methadheginning to be applied
to the problem of optical character recognition. Bledsoé Browning (1959) built
a Bayesian system for text-recognition that used a largi#od&ry and computed the
likelihood of each observed letter sequence given each imdite dictionary by mul-
tiplying the likelihoods for each letter. Mosteller and Vdak (1964) applied Bayesian
methods to the problem of authorship attributionTdre Federalispapers.

The 1960s also saw the rise of the first serious testable pkyglal models of

2 This system was reimplemented recently and is describecblyi &and Hopely (1999) and Karttunen
(1999), who note that the parser was essentially implerdeagea cascade of finite-state transducers.
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human language processing based on transformational gagrasiwell as the first
on-line corpora: the Brown corpus of American English, a lliom word collection of
samples from 500 written texts from different genres (nepsgp, novels, non-fiction,
academic, etc.), which was assembled at Brown UniversityQi63—64 (Kucera and
Francis, 1967; Francis, 1979; Francis and Kucera, 198®) Vdilliam S. Y. Wang'’s
1967 DOC (Dictionary on Computer), an on-line Chinese diadiéctionary.

1.6.3 Four Paradigms: 1970-1983

The next period saw an explosion in research in speech agddae processing and
the development of a number of research paradigms thadlstilinate the field.

The stochasticparadigm played a huge role in the development of speecly+eco
nition algorithms in this period, particularly the use oétHidden Markov Model and
the metaphors of the noisy channel and decoding, developegéendently by Jelinek,
Bahl, Mercer, and colleagues at IBM’s Thomas J. Watson Rekdaenter, and by
Baker at Carnegie Mellon University, who was influenced by work of Baum and
colleagues at the Institute for Defense Analyses in ProtvcefAT&T'’s Bell Laborato-
ries was also a center for work on speech recognition andhegi®; see Rabiner and
Juang (1993) for descriptions of the wide range of this work.

The logic-basedparadigm was begun by the work of Colmerauer and his col-
leagues on Q-systems and metamorphosis grammars (Cokenet®r0, 1975), the
forerunners of Prolog, and Definite Clause Grammars (Reagid Warren, 1980). In-
dependently, Kay’s (1979) work on functional grammar, amaty later, Bresnan and
Kaplan’s (1982) work on LFG, established the importanceeatfiire structure unifica-
tion.

Thenatural language understandingfield took off during this period, beginning
with Terry Winograd’s SHRDLU system, which simulated a robmbedded in a world
of toy blocks (Winograd, 1972). The program was able to aiceafural language text
commandgMove the red block on top of the smaller green ook hitherto unseen
complexity and sophistication. His system was also the firsittempt to build an
extensive (for the time) grammar of English, based on Halisl systemic grammar.
Winograd’s model made it clear that the problem of parsing well-enough under-
stood to begin to focus on semantics and discourse modelgerRechank and his
colleagues and students (in what was often referred to a¥aleeSchodlbuilt a se-
ries of language understanding programs that focused oaheonceptual knowledge
such as scripts, plans and goals, and human memory organi¢&thank and Albel-
son, 1977; Schank and Riesbeck, 1981; Cullingford, 1981enky, 1983; Lehnert,
1977). This work often used network-based semantics (QujltL968; Norman and
Rumelhart, 1975; Schank, 1972; Wilks, 1975h, 1975a; Kmtd®74) and began to
incorporate Fillmore’s notion of case roles (Fillmore, 8ptto their representations
(Simmons, 1973).

The logic-based and natural-language understanding iganadvere unified on
systems that used predicate logic as a semantic reprasentich as the LUNAR
question-answering system (Woods, 1967, 1973).

Thediscourse modelingparadigm focused on four key areas in discourse. Grosz
and her colleagues introduced the study of substructurisaodrse, and of discourse
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focus (Grosz, 1977; Sidner, 1983), a number of researclegetto work on automatic
reference resolution (Hobbs, 1978), and Bi2l (Belief-Desire-Intention) framework
for logic-based work on speech acts was developed (PeamadlAllen, 1980; Cohen
and Perrault, 1979).

1.6.4 Empiricism and Finite State Models Redux: 1983-1993

This next decade saw the return of two classes of models wigidHost popularity in
the late 1950s and early 1960s, partially due to theoredicpiments against them such
as Chomsky'’s influential review of SkinneN&rbal BehaviolChomsky, 1959). The
first class was finite-state models, which began to recetemtiin again after work
on finite-state phonology and morphology by Kaplan and K&8() and finite-state
models of syntax by Church (1980). A large body of work on éirstate models will
be described throughout the book.

The second trend in this period was what has been called #terfr of empiri-
cism”; most notably here was the rise of probabilistic medbfoughout speech and
language processing, influenced strongly by the work at B Thomas J. Watson
Research Center on probabilistic models of speech redogniThese probabilistic
methods and other such data-driven approaches spreadgesutsinto part-of-speech
tagging, parsing and attachment ambiguities, and sensarititis empirical direction
was also accompanied by a new focus on model evaluationd lmasasing held-out
data, developing quantitative metrics for evaluation, amgbhasizing the comparison
of performance on these metrics with previous publisheeanesh.

This period also saw considerable work on natural languagemtion.

1.6.5 The Field Comes Together: 1994-1999

By the last five years of the millennium it was clear that thédfisas vastly chang-
ing. First, probabilistic and data-driven models had beequite standard throughout
natural language processing. Algorithms for parsing,-p&gpeech tagging, reference
resolution, and discourse processing all began to incatpg@robabilities, and employ
evaluation methodologies borrowed from speech recognétia information retrieval.
Second, the increases in the speed and memory of computkaditaaed commercial
exploitation of a number of subareas of speech and languagessing, in particular
speech recognition and spelling and grammar checking.chmeel language process-
ing algorithms began to be applied to Augmentative and Altve Communication
(AAC). Finally, the rise of the Web emphasized the need fogleage-based informa-
tion retrieval and information extraction.

1.6.6 The Rise of Machine Learning: 2000-2007

The empiricist trends begun in the latter part of the 199@elacated at an astound-
ing pace in the new century. This acceleration was largaledrby three synergistic
trends. First, large amounts of spoken and written matbeahme widely available
through the auspices of the Linguistic Data Consortium ().l4Dd other similar or-
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ganizations. Importantly, included among these matewalie annotated collections
such as the Penn Treebank(Marcus et al., 1993), Prague BapanTreebank(Hajic,
1998), PropBank(Palmer et al., 2005), Penn Discourse ard€bliltsakaki et al.,
2004), RSTBank(Carlson et al., 2001) and TimeBank(?),falllach layered standard
text sources with various forms of syntactic, semantic alagimatic annotations. The
existence of these resources promoted the trend of castimg complex traditional
problems, such as parsing and semantic analysis, as preliesupervised machine
learning. These resources also promoted the establishohexditional competitive
evaluations for parsing (Dejean and Tjong Kim Sang, 20@ifyrmation extraction(?,
?), word sense disambiguation(Palmer et al., 2001; Kiifjaind Palmer, 2000) and
question answering(Moorhees and Tice, 1999).

Second, this increased focus on learning led to a more semerplay with the
statistical machine learning community. Techniques sscbupport vector machines
(?; Vapnik, 1995), multinomial logistic regression (MaxE(Berger et al., 1996), and
graphical Bayesian models (Pearl, 1988) became standactiqe in computational
linguistics. Third, the widespread availability of higlesformance computing systems
facilitated the training and deployment of systems thatadaot have been imagined a
decade earlier.

Finally, near the end of this period, largely unsupervigatistical approaches be-
gan to receive renewed attention. Progress on statispigmbaches to machine trans-
lation(Brown et al., 1990; Och and Ney, 2003) and topic miode{?) demonstrated
that effective applications could be constructed fromesyst trained on unannotated
data alone. In addition, the widespread cost and difficulfgroducing reliably anno-
tated corpora became a limiting factor in the use of supedvapproaches for many
problems. This trend towards the use unsupervised tecasigill likely increase.

1.6.7 On Multiple Discoveries

Even in this brief historical overview, we have mentionedienber of cases of multiple
independent discoveries of the same idea. Just a few of th#ifres” to be discussed
in this book include the application of dynamic programntimgequence comparison
by Viterbi, Vintsyuk, Needleman and Wunsch, Sakoe and Ghizakoff, Reichert
et al, and Wagner and Fischer (Chapters 3, 5 and 6) the HMM/noiayro#l model
of speech recognition by Baker and by Jelinek, Bahl, and BtefChapters 6, 9, and
10); the development of context-free grammars by ChomskiyogrBackus and Naur
(Chapter 12); the proof that Swiss-German has a non-cofriexsyntax by Huybregts
and by Shieber (Chapter 15); the application of unificatmlahguage processing by
Colmeraueet al. and by Kay in (Chapter 16).

Are these multiples to be considered astonishing coincie€h A well-known hy-
pothesis by sociologist of science Robert K. Merton (196@uas, quite the contrary,
that

all scientific discoveries are in principle multiples, inding those that on
the surface appear to be singletons.

Of course there are many well-known cases of multiple dispper invention; just a
few examples from an extensive list in Ogburn and ThomasZLi@2lude the multiple



14

Chapter 1. Introduction

invention of the calculus by Leibnitz and by Newton, the nplét development of the
theory of natural selection by Wallace and by Darwin, andrthatiple invention of
the telephone by Gray and BéllBut Merton gives a further array of evidence for the
hypothesis that multiple discovery is the rule rather themexception, including many
cases of putative singletons that turn out be a rediscovigrsewiously unpublished or
perhaps inaccessible work. An even stronger piece of eva@isrhis ethnomethodolog-
ical point that scientists themselves act under the assamgbtat multiple invention is
the norm. Thus many aspects of scientific life are designéelip scientists avoid be-
ing “scooped”; submission dates on journal articles; edréétes in research records;
circulation of preliminary or technical reports.

1.6.8 A Final Brief Note on Psychology

Many of the chapters in this book include short summariessgtpological research
on human processing. Of course, understanding human lgaguracessing is an im-
portant scientific goal in its own right and is part of the geh&eld of cognitive sci-
ence. However, an understanding of human language pragesasn often be helpful
in building better machine models of language. This seem$raxy to the popular
wisdom, which holds that direct mimicry of nature’s algbnts is rarely useful in en-
gineering applications. For example, the argument is oftede that if we copied
nature exactly, airplanes would flap their wings; yet aingla with fixed wings are a
more successful engineering solution. But language is @emmireautics. Cribbing from
nature is sometimes useful for aeronautics (after alljangs do have wings), but it is
particularly useful when we are trying to solve human-cesdgasks. Airplane flight
has different goals than bird flight; but the goal of speedogaition systems, for ex-
ample, is to perform exactly the task that human court repsmperform every day:
transcribe spoken dialog. Since people already do this weltan learn from nature’s
previous solution. Since an important application of spemed language processing
systems is for human-computer interaction, it makes semsegy a solution that be-
haves the way people are accustomed to.

1.7 SUMMARY

This chapter introduces the field of speech and languagesgsoty. The following are
some of the highlights of this chapter.

e A good way to understand the concerns of speech and languagesging re-
search is to consider what it would take to create an inwlligagent like HAL
from 2001: A Space Odyssey, or build a web-based questiomears or a ma-
chine translation engine.

e Speech and language technology relies on formal modelepoesentations, of

3 Ogburn and Thomas are generally credited with noticing ttefprevalence of multiple inventions sug-
gests that the cultural milieu and not individual geniuh&sdeciding causal factor in scientific discovery. In
an amusing bit of recursion, however, Merton notes that #visndea has been multiply discovered, citing
sources from the 19th century and earlier!
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knowledge of language at the levels of phonology and phesiethorphology,
syntax, semantics, pragmatics and discourse. A small nuafitbermal models
including state machines, formal rule systems, logic, amdabilistic models
are used to capture this knowledge.

e The foundations of speech and language technology lie irpoten science, lin-
guistics, mathematics, electrical engineering and pdpgyoA small number of
algorithms from standard frameworks are used throughaéapand language
processing,

e The critical connection between language and thought hesegl speech and
language processing technology at the center of debaténgtigent machines.
Furthermore, research on how people interact with complkediaindicates that
speech and language processing technology will be criticle development
of future technologies.

e Revolutionary applications of speech and language proggsse currently in
use around the world. The creation of the web, as well asfgigni recent
improvements in speech recognition and synthesis, witl leamany more ap-
plications.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Research in the various subareas of speech and languagsgiraris spread across
a wide number of conference proceedings and journals. Thie@nces and journals
most centrally concerned with natural language processiidgcomputational linguis-
tics are associated with the Association for Computatidmajuistics (ACL), its Eu-
ropean counterpart (EACL), and the International Confeeezn Computational Lin-
guistics (COLING). The annual proceedings of ACL, NAACL,daBACL, and the
biennial COLING conference are the primary forums for warkhis area. Related
conferences include various proceedings of ACL Speciarést Groups (SIGs) such
as the Conference on Natural Language Learning (CoNLL),alkas the conference
on Empirical Methods in Natural Language Processing (EMNLP

Research on speech recognition, understanding, and sysiheresented at the
annual INTERSPEECH conference, which is called the Intesnal Conference on
Spoken Language Processing (ICSLP) and the European @anéeon Speech Com-
munication and Technology (EUROSPEECH) in alternatings,ear the annual IEEE
International Conference on Acoustics, Speech, and SRyeakssing (IEEE ICASSP).
Spoken language dialogue research is presented at theseankahops like SIGDial.

Journals includ€omputational LinguisticNatural Language Engineerin§peech
CommunicationComputer Speech and Languagdiee IEEE Transactions on Audio,
Speech & Language Processiagd theACM Transactions on Speech and Language
Processing

Work on language processing from an Atrtificial Intelligernmerspective can be
found in the annual meetings of the American AssociationAfificial Intelligence
(AAAI), as well as the biennial International Joint Confece on Atrtificial Intelli-
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gence (IJCAI) meetings. Artificial intelligence journalfgt periodically feature work
on speech and language processing inclM@ehine Learning Journal of Machine
Learning Researctand theJournal of Artificial Intelligence Research

There are a fair number of textbooks available coveringousriaspects of speech
and language processing. Manning and Schitze (1888@p@ations of Statistical Lan-
guage Processingocuses on statistical models of tagging, parsing, disguation,
collocations, and other areas. Charniak (19%j(istical Language Learnings an
accessible, though older and less-extensive, introduttigimilar material. Manning
et al. (2008) focuses on information retrieval, text cléisation, and clustering. NLTK,
the Natural Language Toolkit (Bird and Loper, 2004), is aeswaif Python modules
and data for natural language processing, together withtardld.anguage Process-
ing book based on the NLTK suite. Allen (199%W4tural Language Understandihg
provides extensive coverage of language processing frenAtiperspective. Gazdar
and Mellish (1989) Natural Language Processing in Lisp/Prologovers especially
automata, parsing, features, and unification and is avaifage online. Pereira and
Shieber (1987) gives a Prolog-based introduction to pgiad interpretation. Russell
and Norvig (2002) is an introduction to artificial intelligee that includes chapters on
natural language processing. Partee et al. (1990) has dokeag coverage of mathe-
matical linguistics. A historically significant collecticof foundational papers can be
found in Grosz et al. (1986Readings in Natural Language Processing

Of course, a wide-variety of speech and language processsaurces are now
available on the Web. Pointers to these resources are nmadtan the home-page for
this book at:

http://www.cs.colorado.edu/"martin/slp.html
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